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10.4. Grötzsch’s theorem 75
10.5. Exericises 76
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LECTURE 1

Basics on surfaces

The Teichmüller space of a surface S is the deformation space of complex structures
on S and can also be seen as a space of hyperbolic metrics on S. The aim of this course
will be to study the geometry and topology of this space and its quotient: the moduli
space of hyperbolic metrics on S.

Before we get to any of this, we need to talk about surfaces themselves. So, today
we will discuss some of the basics on surfaces.

1.1. Preliminaries on surface topology

1.1.1. Examples and classification. A surface is a smooth two-dimensional
manifold. We call a surface closed if it is compact and has no boundary. A sur-
face is said to be of finite type if it can be obtained from a closed surface by removing a
finite number of points and (smooth) open disks with disjoint closures. In what follows,
we will always assume our surfaces to be orientable.

Example 1.1. To properly define a manifold, one needs to not only describe the set
but also give smooth charts. In what follows we will content ourselves with the sets
(Exercise 1.1 completes the picture).

(a) The 2-sphere is the surface

S2 =
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

(b) Let S1 denote the circle. The 2-torus is the surface

T2 = S1 × S1

(c) Given two (oriented) surfaces S1, S2, their connected sum S1#S2 is defined as
follows. Take two closed sets D1 ⊂ S1 and D2 ⊂ S2 that are both diffeomorphic
to closed disks, via diffeomorphisms

ϕi :
{

(x, y) ∈ R2; x2 + y2 ≤ 1
}
→ Di, i = 1, 2,

so that ϕ1 is orientation preserving and ϕ2 is orientation reversing.
Then

S1#S2 =
(
S1 r D̊1 t S2 r D̊2

)
/ ∼

where D̊i denotes the interior of Di for i = 1, 2 and the equivalence relation ∼
is defined by

ϕ1(x, y) ∼ ϕ2(x, y) for all (x, y) ∈ R2 with x2 + y2 = 1.

The figure below gives an example.
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8 1. BASICS ON SURFACES

Figure 1. A connected sum of two tori.

Like our notation suggests, the manifold S1#S2 is independent (up to dif-
feomorphism) of the choices we make (the disks and diffeomorphisms ϕi). This
is a non-trivial statement, the proof of which we will skip. Likewise, we will
also not prove that the connected sum of surfaces is an associative operation
and that S2#S is diffeomorphic to S for all surfaces S.

A classical result from the 19th century tells us that the three simple examples above
are enough to understand all finite type surfaces up to diffeomorphism.

Theorem 1.2 (Classification of closed surfaces). Every closed orientable surface is
diffeomorphic to the connected sum of a 2-sphere with a finite number of tori.

Indeed, because the diffeormorphism type of a finite type surface does not depend
on where we remove the points and open disks (another claim we will not prove), the
theorem above tells us that an orientable finite type surface is (up to diffeomorphism)
determined by a triple of positive integers (g, b, n), where

- g is the number of tori in the connected sum and is called the genus of the
surface.

- b is the number of disks removed and is called the number of boundary compo-
nents of the surface.

- n is the number of points removed and is called the number of punctures of
the surface.

Definition 1.3. The triple (g, b, n) defined above will be called the signature of the
surface. We will denote the corresponding surface by Σg,b,n and will write Σg = Σg,0,0.

1.1.2. Euler characteristic. The Euler characteristic is a useful topological in-
variant of a surface. There are multiple ways to define it. We will use triangulations.
A triangulation T = (V,E, F ) of a closed surface S will be the data of a finite set of
points V = {v1, . . . .vk} ∈ S (called vertices), a finite set of arcs E = {e1, . . . , el} with
endpoints in the vertices (called edges) so that the complement S r (∪vi ∪ ej) consists
of a collection of disks F = {f1, . . . , fm} (called faces) that all connect to exactly 3
edges.

Note that a triangulation T here is a slightly more general notion than that of a
simplicial complex (it’s an example of what Hatcher calls a ∆-complex [Hat02, Page
102]). Figure 2 below gives an example of a triangulation of a torus that is not a
simplicial complex.
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Figure 2. A torus with a triangulation

Definition 1.4. S be a closed surface with a triangulation T = (V,E, F ). The Euler
characteristic of S is given by

χ(S) = |V | − |E|+ |F | .

Because χ(S) can be defined entirely in terms of singular homology (see [Hat02,
Theorem 2.4] for details), it is a homotopy invariant. In particular this implies it should
only depend on the genus of our surface S. Indeed, we have

Lemma 1.5. Let S be a closed connected and oriented surface of genus g. We have

χ(S) = 2− 2g.

Proof. See Exercise 1.2. �

For surfaces that are not closed, we can define

χ(Σg,b,n) = 2− 2g − b− n.
This can be computed with a triangulation as well. For surfaces with only boundary
components, the usual definition still works. For surfaces with punctures there no
longer is a finite triangulation, so the definition above no longer makes sense. There are
multiple ways out. The most natural is to use the homological definition, which gives
the formula above. Another option is to allow some vertices to be missing, that is, to
allow edges to run between vertices and punctures. Both give the formula above.

1.2. Riemann surfaces

For the basics on Riemann surfaces, we refer to [Bea84, FK92] and for a reference
on complex functions of a single variable, we refer to [SS03].

1.2.1. Definition and first examples. A Riemann surface is a one-dimensional
complex manifold. That is,

Definition 1.6. A Riemann surface X is a connected Hausdorff topological space X,
equipped with an open cover {Uα}α∈A of open sets and maps ϕα : Uα → C so that

(1) ϕα(Uα) is open and ϕα is a homeomorphism onto its image.
(2) For all α, β ∈ A so that Uα ∩ Uβ 6= ∅ the map

ϕα ◦ (ϕβ)−1 : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

is holomorphic.
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The pairs (Uα, ϕα) are usually called charts and the collection ((Uα, ϕα))α∈A is usually
called an atlas.

Note that we do not a priori assume a Riemann surface X to be a second count-
able space. It is however a theorem by Radó that every Riemann surface is second
countable (for a proof, see [Hub06, Section 1.3]). Moreover every Riemann surface is
automatically orientable (see for instance [GH94, Page 18]).

Example 1.7. (a) The simplest example is of course X = C equipped with one
chart: the identity map.

(b) We set X = C∪{∞} = Ĉ and give it the topology of the one point compacti-
fication of C, which is homeomorphic to the sphere S2. The charts are

U0 = C, ϕ0(z) = z

and
U∞ = X \ {0}, ϕ∞(z) = 1/z.

So U0 ∩ U∞ = C \{0} and

ϕ0 ◦ (ϕ∞)−1(z) = 1/z for all z ∈ C \{0}

which is indeed holomorphic on C \{0}. Ĉ is usually called the Riemann sphere.

(c) Recall that a domain D ⊂ Ĉ is any connected and open set in Ĉ. Any such

domain inherits the structure of a Riemann surface from Ĉ.

1.2.2. Quotients. To get a larger set of examples, we will consider quotients. First
of all, we need the notion of a holomorphic map:

Definition 1.8. LetX and Y be Riemann surfaces, equipped with atlasses {(Uα, ϕα)}α∈A
and {(Vβ, ψβ)}β∈B respectively. A function f : X → Y is called holomorphic if

ψβ ◦ f ◦ ϕ−1
α : ϕα(Uα ∩ f−1(Vβ))→ ψβ(f(Uα) ∩ Vβ)

is holomorphic for all α ∈ A, β ∈ B so that f(Uα) ∩ Vβ 6= ∅. A bijective holomorphism
is called a biholomorphism or conformal.

Note that when ϕ : X → Y is biholomorphic, then so is ϕ−1 : Y → X.
The group

PSL(2,C) =

{(
a b
c d

)
; a, b, c, d ∈ C, ad− bc = 1

}/{
±
(

1 0
0 1

)}
acts on Ĉ by

(1)

[
a b
c d

]
=
az + b

cz + d
,

where some care needs to be taken with the point ∞ (see Exercise 1.3). It turns out

that PSL(2,C) is the full group of biholomorphisms of Ĉ, but we will skip over this for
now. Moreover, each such map that is not the identity has two fixed points (that might
coincide) (see Exercise 1.3). These maps are called Möbius transformations.

Theorem 1.9. Let D ⊂ Ĉ be a domain and let G < PSL(2,C) so that
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(1) g(D) = D for all g ∈ G
(2) If g ∈ G \ {e} then the fixed points of g lie ourside of D.
(3) For each compact subset K ⊂ D, the set{

g ∈ G; g(K) ∩K 6= ∅
}

is finite.

Then the quotient space
D/G

has the structure of a Riemann surface.

A group that satisfies the second condition is said to act freely on D and a group
that satisfies the thirs condition is said to act properly discontinuously on D. We will
postpone the proof of the theorem to the next lecture.

1.2.3. Tori. The theorem from the previous section gives us a lot of new examples.
The first is that of tori. Consider the elements

g1 :=

[
1 1
0 1

]
, gτ :=

[
1 τ
0 1

]
∈ PSL(2,C),

for some τ ∈ C with Im(τ) > 0, acting on the domain C ⊂ Ĉ by

g1(z) = z + 1 and gτ (z) = z + τ

for all z ∈ C.
We define the group

Λτ = 〈g1, gτ 〉 < PSL(2,C).

A direct computation shows that[
1 p+ qτ
0 1

] [
1 r + sτ
0 1

]
=

[
1 p+ q + (r + s)τ
0 1

]
,

for all p, q, r, s ∈ Z, from which it follows that

Λτ =

{[
1 n+mτ
0 1

]
; m,n ∈ Z

}
' Z2 .

Let us consider the conditions from Theorem 1.9. (1) is trivially satisfied: Λτ

preserves C. Any non-trivial element in Λτ is of the form[
1 n+mτ
0 1

]
and hence only has the point ∞ ∈ Ĉ as a fixed point (see Exercise 1.3), which gives
us condition (2). To check condition (3), suppose K ⊂ C is compact. Write dK =
sup

{
|z − w| ; z, w ∈ K

}
<∞. Given g ∈ Λτ , write

Tg = inf
{
|gz − z| ; z ∈ C

}
for the translation length of g. Note that Tg = |gz − z| for all z ∈ C. This is quite
special. We have{

g ∈ Λτ ; g(K) ∩K 6= ∅
}
⊂
{
g ∈ Λτ ; Tg ≤ 2dK

}
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and the latter is finite. So C /Λz is indeed a Riemann surface.
We claim that this is a torus. One way to see this is to note that the quotient map

π : C→ C /Λτ restricted to the convex hull

F = conv({0, 1, τ, 1 + τ)

:=
{
λ1 + λ2τ + λ3(1 + τ); λ1, λ1, λ3 ∈ [0, 1], λ1 + λ2 + λ3 ≤ 1

}
is surjective. Figure 3 shows a picture of F . On F̊ , π is also injective. So to understand
what the quotient looks like, we only need to understand what happens to the sides of
F . Since the quotient map identifies the left hand side of F with the right hand side
and the top with the bottom, the quotient is a torus.

τ

0 1

1 + τ

F

Figure 3. A fundamental domain for the action Λτ y C.

We can also prove that C /Λτ is a torus by using the fact that for all z ∈ C there
exist unique x, y ∈ R so that

z = x+ yτ.

The map C /Λτ → S1 × S1 given by

[x+ yτ ] 7→ (e2πix, e2πiy)

is a homeomorphism.
Note that we have not yet proven whether all these tori are distinct as Riemann

surfaces. But it will turn out later that many of them are.

1.3. Hyperbolic surfaces

Set H2 =
{
z ∈ C; Im(z) > 0

}
, the upper half plane. It turns out that the group

of biholomorphisms of H2 is PSL(2,R). We will see a lot more about this later during
the course, but for now we will just note that there are many subgroups of PSL(2,R)
that satisfy the conditions of Theorem 1.9.

It also turns out that PSL(2,R) is exactly the group of orientation preserving isome-
tries of the metric

ds2 =
dx2 + dy2

y2
.

This is a complete metric of constant curvature −1. So, this means that all these
Riemann surfaces naturally come equipped with a complete metric of constant curvature
−1.
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1.4. Exercises

Exercise 1.1. Define an atlas for S2 and T2.

Exercise 1.2. In this exercise we prove Lemma 1.5 in two different ways.

1. (a) Describe a way to obtain a closed oriented surface of genus g from a
polygon with 4g sides.

(b) Use a triangulation of a 4g-gon to prove Lemma 1.5.
2. (a) Show that if a closed oriented surface S is the connect sum of two closed

oriented surfaces S1 and S2 then

χ(S) = χ(S1) + χ(S2)− 2.

(b) Compute the euler characteristic of the 2-sphere and the torus and use
those to prove Lemma 1.5.

Exercise 1.3. (a) Given g =

[
a b
c d

]
∈ PSL(2,C),

- what is g(∞)?
- what is g−1(∞)?
- what are the fixed points of g?

(b) Show that (1) defines an action





LECTURE 2

Quotients, uniformization, tori and spheres

2.1. Quotients revisited

We begin by tying up a loose end from the previous lecture:

Theorem 1.9. Let D ⊂ Ĉ be a domain and let G < PSL(2,C) so that

(1) g(D) = D for all g ∈ G
(2) If g ∈ G \ {e} then the fixed points of g lie ourside of D.
(3) For each compact subset K ⊂ D, the set{

g ∈ G; g(K) ∩K 6= ∅
}

is finite.

Then the quotient space
D/G

has the structure of a Riemann surface.

Proof. Let π : D → D/G denote the quotient map. First of all, since D is
connected and π is continuous, D/G is connected.

In order to show that D/G is Hausdorff, we consider two distinct points

π(z1) 6= π(z2) ∈ D/G
where z1 and z2 are two pre-images in D. Define

An =
{
w ∈ D; |w − z1| < r/n

}
and Bn =

{
w ∈ D; |w − z2| < r/n

}
,

where r > 0 is small enough so that

K = A1 ∪B1 ⊂ D.

Now, suppose that for all n ≥ 1 we have

π(An) ∩ π(Bn) 6= ∅
This means that we can find some sequence an ∈ An and gn ∈ G so that

gn(an) ∈ Bn

for all n ∈ N. This means that

∅ 6= gn(An) ∩Bn ⊂ gn(K) ∩K
for all n ∈ N and hence by the third assumption, the set {gn}n∈N is finite. This means
that there is a subsequence so that gn = g for some fixed g ∈ G and all n large enough

z2 = lim
n→∞

gn(an) = lim
n→∞

g(an) = g(z1),

15
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which contradicts π(z1) 6= π(z2) and hence proves that D/G is Hausdorff.
All that remains is to find an atlas. To this end, select a precompact open disk

Kz ⊂ D around each z ∈ D. By assumptions (2) and (3) we can choose Kz small
enough so that no non-trivial translate g(Kz) intersects it. This implies that the map

π|Kz : Kz → D/G

is a homeomorphism onto its image. So we set

Uz = π(Kz) and ϕz = (π|Kz)−1 : Uz → D.

This means that the transition maps are of the form

ϕz ◦ ϕ−1
w = (π|Kz)−1 ◦ (π|Kw).

Given any element ζ in the domain of this map, we have

ϕz ◦ ϕ−1
w (ζ) = g(ζ) =: ξ

for some g ∈ G and ξ ∈ D. Near ζ we have π = π|Kw while near ξ we have π = π|Kz .
Since π = π ◦ g for all g ∈ G, we obtain

π|Kz = π|Kw ◦ g
and hence

ϕz ◦ ϕ−1
w = g

near ζ, which is holomorphic. �

2.2. The uniformization theorem and automorphism groups

The Riemann mapping theorem tells us that any pair of simply connected domains
in C that are both not all of C are biholomorphic. In the early 20th century this was
generalized by Koebe and Poincaré to a classification of all simply connected Riemann
surfaces:

Theorem 2.1 (Uniformization theorem). Let X be a simply connected Riemann sur-
face. Then X is biholomorphic to exactly one of

Ĉ, C or H2 .

Proof. See for instance [FK92, Chapter IV]. �

For later use, we define:

Definition 2.2. Let X be a Riemann surface, its automorphism group is given by

Aut(X) :=
{
ϕ : X → X; ϕ is a biholomorphism

}
.

We record the following fact:

Proposition 2.3. • Aut(Ĉ) = PSL(2,C) acting by Möbius transformations,
• Aut(C) =

{
ϕ : z 7→ az + b; a ∈ C \{0}, b ∈ C

}
,

• Aut(H2) = PSL(2,R) acting by Möbius transformations.

Proof. See for instance [Bea84, Chapter 5] or [IT92, Section 2.3]. �



2.3. QUOTIENTS OF THE THREE SIMPLY CONNECTED RIEMANN SURFACES 17

Note that in all three cases, we have

Aut(X) =
{
g ∈ Aut(Ĉ); g(X) = X

}
,

that is, all the automorphisms of C and H2 extend to Ĉ. However, not all automor-
phisms of H2 extend to C.

The uniformization theorem implies that every Riemann surface is of the form of
the surfaces in Theorem 1.9.

Corollary 2.4. Let X be a Riemann surface. Then there exists a group G < Aut(D),

where D is exactly one of C, Ĉ or H2 so that

• G acts freely and properly discontinuously on D and
• X = D/G as a Riemann surface.

Proof. Let X̃ denote the universal cover of X and π1(X) its fundamental group.

The fact that X is a Riemann surface, implies that X̃ can be given the structure of a

Riemann surface too, so that π1(X) acts freely and properly discontinuously on X̃ by
biholomorphisms (see for instance [IT92, Lemma 2.6]) and so that

X̃/π1(X) = X.

Since X̃ is simply connected, it must be biholomorphic to exactly one of C, Ĉ or H2. �

2.3. Quotients of the three simply connected Riemann surfaces

Now that we know that we can obtain all Riemann surfaces as quotients of one
of three simply connected Riemann surfaces, we should start looking for interesting
quotients.

2.3.1. Quotients of the Rieman sphere. It turns out that for the Riemann
sphere there are none:

Proposition 2.5. Let X be a Riemann surface. The universal cover of X is biholo-

morphic to Ĉ if and only if X is biholomorphic to Ĉ.

Proof. The “if” part is clear. For the “only if” part, note that every element in

PSL(2,C) has at least one fixed point on Ĉ (see Exercise 1.3(a)). Since, by assumption

X = Ĉ/G,
where G acts properly discontinuously and freely, we must have G = {e}. �

2.3.2. Quotients of the plane. In Section 1.2.3, we have already seen that in the
case of the complex plane, the list of quotients is a lot more interesting: there are tori.
This however turns out to be almost everything:

Proposition 2.6. Let X be a Riemann surface. The universal cover of X is biholo-
morphic to C if and only if X is biholomorphic to either C, C \{0} or

C /
〈[

1 λ
0 1

]
,

[
1 µ
0 1

]〉
for some λ, µ ∈ C \{0} that are linearly independent over R.
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Proof. First suppose X = C /G. Since G acts properly discontinuously, G is one
of the following three forms:

(1) G = {e}
(2) G = 〈ϕb〉, where ϕb(z) = z + b for some b ∈ C \{0}
(3) G = 〈ϕb1 , ϕb2〉 where b1, b2 ∈ C are independent over R.

(see Exercise 2.1). We have already seen that the third case gives rise to tori. In the
second case, the surface is biholomorphic to C \{0} (see Exercise 2.2).

Now let us prove the converse. For X = C the statement is clear. Likewise, for
X = C \{0}, we have just seen that the composition

C→ C /(z ∼ z + 1) ' C \{0}
is the universal covering map. So the only question is whether every Riemann surface
structure on the torus comes from the complex plane. We have seen above that the uni-
versal cover cannot be the Riemann sphere, which means that (using the uniformization
theorem) all we need to prove is that it cannot be the upper half plane either.

The fundamental group of the torus is isomorphic to Z2, so what we need to prove
is that there is no subgroup of Aut(H2) = PSL(2,R) that acts properly discontinuously
and freely on H2. For this we use Lemma 2.7, the proof of which we leave to the
reader. �

Lemma 2.7. Suppose G < PSL(2,R) acts properly discontinuously and freely on H2

and suppose furthermore that G is abelian. Then G ' Z.

2.3.3. Quotients of the upper half plane, part I. It will turn out that the
richest family of Riemann surfaces is that of quotients of H2. Indeed, looking at the
clasification of closed orientable surfaces, we note that we have so far only seen the
sphere and the torus. It turns out that all the other closed orientable surfaces also
admit the structure of a Riemann surface. In fact, they all admit lots of different such
structures. The two propositions above imply that they must all arise as quotients of
H2.

We will not yet discuss how to construct all these surfaces but instead discuss an
example (partially taken from [GGD12, Example 1.7]). Fix some distinct complex
numbers a1, . . . , a2g+1 and consider the following subset of C2:

X̊ =
{

(z, w) ∈ C2; w2 = (z − a1)(z − a2) · · · (z − a2g+1)
}
.

Let X denote the one point compactification of X̊ obtained by adjoining the point
(∞,∞).

As opposed to charts, we will describe inverse charts, or parametrizations around
every p ∈ X̊:

• Suppose p = (z0, w0) ∈ X̊ is so that z0 6= ai for all i = 1, . . . , 2g + 1. Set

ε := min
i=1,...,2g+1

{|z0 − ai| /2}

Then define the map ϕ−1 :
{
ζ ∈ C; |ζ| < ε

}
→ X̊ by

ϕ−1(ζ) =
(
ζ + z0,

√
(ζ + z0 − a1) · · · (ζ + z0 − a2)

)
,



2.3. QUOTIENTS OF THE THREE SIMPLY CONNECTED RIEMANN SURFACES 19

where the branch of the square root is chosen so that ϕ−1(0) = (z0, w0), gives
a parametrization.
• For p = (aj, 0), we set

ε := min
i 6=j
{
√
|z − ai| /2}

Then define the map ϕ−1 :
{
ζ ∈ C; |ζ| < ε

}
→ X̊ by

ϕ−1(ζ) =

ζ2 + aj, ζ

√∏
i 6=j

(ζ2 + aj − ai)

 .

The reason that we need to take different charts around these points is that√
z − aj

is not a well defined holomorphic function near z = aj.
Also note that the choice of the branch of the root does not matter. By

changing the branch we would obtain a new parametrization ϕ̃−1 that satisfies
ϕ̃−1(ζ) = ϕ̃−1(−ζ).

We leave the fact that this defines a Riemann surface structure as an exercise (Ex-
ercise 2.3).

It’s not hard to see that X̊ is not bounded as a subset of C2. This means in particular
that it’s not compact. We can however compactify it in a similar fashion to how we
compactified C in order to obtain the Riemann sphere. That is, we add a point (∞,∞)
and around this point define a parametrization:

ϕ−1
∞ (ζ) =

{ (
ζ−2, ζ−(2g+1)

√
(1− a1ζ2) · · · (1− a2g+1ζ2)

)
if ζ 6= 0

(∞,∞) if ζ = 0,

for all ζ ∈ {|ζ| < ε} and some appropriate ε > 0.
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2.4. Exercises

Exercise 2.1. Suppose G < Aut(C) acts properly discontinuously on C.

(a) Show that G cannot contain a Möbius transformation of the form

ϕ : z 7→ az + b

with a 6= 1. Hint: Show that ϕn(z) = anz + 1−an
1−a b. There are two cases to

consider: |a| 6= 1 and |a| = 1.
(b) Show that G is either generated by a single Möbius transformation or by two

Möbius transformations that are linearly independent over R.

Exercise 2.2. Let b ∈ C \{0} and consider the Möbius transformation ϕb : C → C
given by

ϕb(z) = z + b

for all z ∈ C. Show that the map

[z] ∈ C /〈ϕb〉 7→ e2πiz/b ∈ C \{0}
is a biholomorphism.

Exercise 2.3. (a) Check that the parametrizations in Section 2.3.3 give rise to
holomorphic charts.



LECTURE 3

More on quotients and conformal structures

3.1. Quotients of the upper half plane, part II

We continue the discussion from Section 2.3.3. The reason that the resulting surface
X is compact is that we can write it as the union of the sets{

(z, w) ∈ X̊; |z| ≤ 1/ε2
}
∪
({

(z, w) ∈ X̊; |z| ≥ 1/ε2
}
∪ {(∞,∞)}

)
,

for some small ε > 0. The first set is compact beacause it’s a bounded subset of C2.
The second set is compact because it’s ϕ−1

∞ ({|ζ| ≤ ε}).
To see that X is connected, we could proceed using charts as well. We would have

to find a collection of charts that are all connected, overlap and cover X. However, it’s
easier to use complex analysis. Suppose z0 6= ai for all i = 1, . . . , a2g+1. In that case,
we can define a path

z 7→

z,
√√√√2g+1∏

i=1

(z − ai)


between z0 and ai using analytic continuation.

To figure out the genus of X, note that there is a map π : X → Ĉ given by

π(z, w) = z for all (z, w) ∈ X.

This map is two-to-one almost everywhere. Only the points z = ai, i = 1, . . . , 2g + 1
and the point z =∞ have only one pre-image.

Now triangulate Ĉ so that the vertices of the triangulation coincide with the points
a1, . . . , a2g+1,∞. If we lift the triangulation to X using π, we can compute the Euler

characteristic of X. Every face and every edge in the triangulation of Ĉ has two pre-
images, whereas each vertex has only one. This means that:

χ(X) = 2χ(Ĉ)− (2g + 2) = 2− 2g.

Because X is an orientable closed surface, we see that it must have genus g (Lemma
1.5). In particular, if g ≥ 2, these surfaces are quotients of H2. Note that this also

implies that for g ≥ 1, the Riemann surface X̊ is also a quotient of H2.

To get a picture of what X looks like, draw a closed arc α1 between a1 and a2 on

Ĉ, an arc α2 between a3 and a4 that does not intersect the first arc and so on, and so
forth. The last arc αg+1 goes between a2g+1 and ∞. Figure 1 shows a picture of what
these arcs might look like.

21
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a1

a2

a3

a4a2g+1

∞

Figure 1. Ĉ with some intervals removed.

Let

D = Ĉ \

(
g+1⋃
i=1

αi

)
.

The map

π|π−1(D) : π−1(D)→ D

is now a two-to-one map. Moreover on the arcs, it’s two-to-one on the interior and
one-to-one on the boundary. Because it’s also smooth, this means that the pre-image

of the arcs is a circle. So, X may be obtained (topologically) by cutting Ĉ open along
the arcs, taking two copies of that, and gluing these along their boundary. Figure 2
depicts this process.

Figure 2. Gluing X out of two Riemann spheres.

Finally, we note that our Riemann surfaces come with an involution ı : X → X,
given by

ı(w) =

{
−w if w 6=∞
∞ if w =∞.

This map is called the hyperelliptic involution and the surfaces we described are hence

called hyperelliptic surfaces. Note that π : X → Ĉ is the quotient map X → X/ı.
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3.2. Riemannian metrics and Riemann surfaces

We already noted that every Riemann surface comes with a natural Riemannian
metric. Indeed the Riemann sphere has the usual round metric of constant curvature
+1. Likewise, C has a flat metric, its usual Euclidean metric Aut(C) does not act by
isometries. However, in the proof of Proposition 2.6, we saw that all the quotients are
obtained by quotienting by a group that does act by Euclidean isometries. This means
that the Euclidean metric descends. Finally, we will see later that Aut(H2) also acts
by isometries of the hyperbolic metric defined in Section 1.3. So every quotient of H2

comes with a natural metric of constant curvature −1.

It turns out that we can also go the other way around. That is: Riemann surface
structures on a given surface are in one-to-one correpsondence with complete metrics
of constant curvature.

One way to see this uses the Killing-Hopf theorem. In the special case of surfaces,
this states that every oriented surface equipped with a Riemannian metric of constant
curvature +1, 0 or −1 can be obtained as the quotient by a group of orientation pre-
serving isometries acting properly discontinuously and freely on S2 equipped with the
round metric, R2 equipped with the Euclidean metric or H2 equipped with the hyper-
bolic metric respectively (see [CE08, Theorem 1.37] for a proof). For a Riemannian
manifold M , let us write

Isom+(M) =
{
ϕ : M →M ; ϕ is an orientation preserving isometry

}
.

So, we need the fact that

(1) Isom+(S2) = SO(2,R) and this has no non-trivial subgroups that act properly
discontinuously on S2.

(2) Isom+(R2) = SO(2,R)nR2, where R2 acts by translations. The only subgroups
of this group that act properly discontinuously and freely are the fundamental
groups of tori (see Exercise 2.1).

(3) Isom+(H2) = PSL(2,R).

Assuming these facts for now, we get our one-to-one correspondence:

Proposition 3.1. Given an orientable surface Σ of finite type with ∂Σ = ∅, the iden-
tification described above gives a one-to-one correspondence of sets

{
Riemann surface
structures on Σ

}/
biholomorphism↔


Complete Riemannian

metrics of constant
curvature {−1, 0,+1}

on Σ


/

isometry.

Whether the curvature is 0, +1 or −1 is determined by the topology of Σ. This for
instance follows from the discussion above. It can also be seen from the Gauss-Bonnet
theorem. Recall that in the case of a closed Riemannian surface X, this states that∫

X

K dA = 2π χ(Σ),
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where K is the Gaussian curvature on X and dA the area measure. For constant
curvature κ, this means that

κ · area(X) = 2π χ(X)

So χ(X) = 0 if and only of κ = 0 and otherwise χ(X) needs to have the same sign as
κ. This last equality generalizes to finite type surfaces and we obtain:

Lemma 3.2. Let X be a hyperbolic surface homeomorphic to Σg,b,n then

area(X) = 2π(2g + n+ b− 2).

3.3. Conformal structures

There is another type of structures on a surface that is in one-to-one correspondence
with Riemann surface structures, namely conformal structures.

We say that two Riemannian metrics ds2
1 and ds2

2 on a surface X are conformally
equivalent is there exists a positive function ρ : X → R+ so that

ds2
1 = ρ · ds2

2.

So a conformal equivalence class of Riemannian metrics can be seen as a notion of
angles on the surface.

We have already seen that a Riemann surface structure induces a Riemannian metric
on the surface, so it certainly also induces a conformal class of metrics.

So, we need to explain how to go back. We will also only sketch this. First of all,
suppose we are given a surface X with charts (Uj, (uj, vj))j equipped with a Riemannian
metric that in all local coordinates (uj, vj) is of the form

ds2 = ρ(uj, vj) · (du2
j + dv2

j ),

where ρ : X → R+ is some smooth function. Consider the complex-valued coordinate

wj = uj + i vj.

We claim that this is holomorphic. Indeed, applying a coordinate change on Uj ∩ Uk,
we have

ds2 = ρ(uk, vk) ·

[((
∂uj
∂uk

)2

+

(
∂vj
∂uk

)2
)
du2

k +

((
∂uj
∂vk

)2

+

(
∂vj
∂vk

)2
)
dv2

k

+ 2

(
∂uj
∂uk

∂vj
∂vk

+
∂uj
∂vk

∂vj
∂uk

)
dukdvk

]
.

Our assumption implies that(
∂uj
∂uk

)2

+

(
∂vj
∂uk

)2

=

(
∂uj
∂vk

)2

+

(
∂vj
∂vk

)2

and
∂uj
∂uk

∂vj
∂vk

=
∂uj
∂vk

∂vj
∂uk

= 0.

Some elementary, but tedious, manipulations show that these are equivalent to the
Cauchy-Riemann equations for the chart transition wk ◦ w−1

j , which means that these
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coordinates are indeed holomorphic. The coordinates (Uj, wj) are usually called isother-
mal coordinates.

Also note that we have not used the factor ρ, so any metric that is conformal to our
metric will give us the same structure.

This means that what we need to show is that for each Riemannian metric, we can
find a set of coordinates so that our metric takes this form. So, suppose our metric is
given by

ds2 = A dx2 + 2B dx dy + V dy2

in some local coordinates (x, y).
Writing z = x+ iy, we get that

ds2 = λ |dz + µdz|2 := λ(dz + µdz)(dz + µdz),

where

λ =
1

4

(
A+ C + 2

√
AC −B2

)
and µ =

A− C + 2i B

A+ C + 2
√
AC −B2

.

We are looking for a coordinate w = u+ iv so that

ds2 = ρ(du2 + dv2) = ρ |dw|2 = ρ ·
∣∣∣∣∂w∂z

∣∣∣∣2 · ∣∣∣∣dz +
∂w/∂z

∂w/∂z
dz

∣∣∣∣2 .
This means that isothermal coordinates exist if there is a solution to the partial differ-
ential equation

∂w

∂z
= µ · ∂w

∂z
.

It turns out this solution does indeed exist on a surface, which means that we obtain a
Riemann surface structure. Moreover, it turns out this map is one-to-one. In particular,
holmorphic maps are conformal. So we obtain

Proposition 3.3. Given an orientable surface Σ of finite type with ∂Σ = ∅, the iden-
tification described above gives a one-to-one correspondence of sets{

Riemann surface
structures on Σ

}/
biholom.↔

 Conformal classes
of Riemannian
metrics on Σ


/

diffeomorphism.
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3.4. Exercises

Exercise 3.1. Check that the map π : X → Ĉ defined in Section 3.1 is holomorphic.



LECTURE 4

Hyperbolic surfaces

In order to describe the quotients of H2, we’re going to use hyperbolic geometry.
For this section we will mainly follow [Bus10] and [Bea95].

4.1. The hyperbolic plane

Hyperbolic geometry originally developed in the early 19th century to prove that the
parallel postulate in Euclidean geometry is independent of the other postulates. From
this perspective, the hyperbolic plane can be seen as a geometric object satisfying a
collection of axioms very similar to Euclid’s axioms for Euclidean geometry, but with
the parallel postulate replaced by something else. From a more modern perspective,
hyperbolic geometry is the study of manifolds that admit a Riemannian metric of
constant curvature −1.

4.1.1. The upper half plane model. From the classical point of view, any con-
crete description of the hyperbolic plane is a model for two-dimensional hyperbolic
geometry, in the same way that R2 is a model for Euclidean geometry.

We start with the upper half plane model.

Definition 4.1. The hyperbolic plane H2 is the complex domain

H2 =
{
z ∈ C; Im(z) > 0

}
equipped with the Riemannian metric ds2

x+iy : Tx+iyH2×Tx+iyH2 → R given by

ds2
x+iy(v, w) =

1

y2

(
dx2 + dy2

)
for all x ∈ R and y ∈ (0,∞)

Because they are convenient, we will almost always work in local coordinates x =
Re(z) and y = Im(z) for all z ∈ H2. We will denote the corresponding tangent vector
fields by ∂/∂x and ∂/∂y respectively.

Let us first note that even thought distances in H2 behave very differently than in
Euclidean geometry, the angles are the same. Indeed, this follows from the fact that
the hyperbolic metric on H2 is conformal to the Euclidean metric.

Example 4.2. Let us compute the hyperbolic length of the straight line segment be-
tween ai ∈ H2 and bi ∈ H2 (denoted [ai, bi]) for 0 < a < b ∈ R. We may parameterize
this segment by

γ : [0, 1]→ [ai, bi] given by γ(t) = (1− t) · ai+ t · bi.
27
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We have
d

dt
γ(t) = −a ∂

∂y γ(t)

+ b
∂

∂y γ(t)

= (b− a)
∂

∂y γ(t)

.

So, denoting the Riemannian metric by g(·, ·) : Tz H2×Tz H2 → R, we have

g

(
d

dt
γ(t),

d

dt
γ(t)

)
=

(b− a)2

(a+ t(b− a))2
.

This means that the length of the line segment is given by

`([ai, bi]) =

∫ 1

0

√
g

(
d

dt
γ(t),

d

dt
γ(t)

)
dt

=

∫ 1

0

b− a
a+ t(b− a)

dt

= [log(a+ t(b− a))]10
= log(b/a).

Recall that given a connected Riemannian manifold (M, g), the distance between
two points p, q ∈M is given by

d(p, q) = inf
{
`(γ); γ : [0, 1]→M smooth, γ(0) = p and γ(1) = q

}
.

Example 4.3. We claim that for ai, bi ∈ H2 with 0 < a < b ∈ R we have

d(ai, bi) = log(b/a).

In Example 4.2 we have already shown that

d(ai, bi) ≤ log(b/a),

so all we have to do is show the other inequality. Let γ : [0, 1] → H2 be any other
smooth path with γ(0) = ai and γ(1) = bi. Write

x(t) = Re(γ(t)) and y(t) = Im(γ(t)),

so γ(t) = x(t) + iy(t). We have

`(γ) =

∫ 1

0

√
g

(
d

dt
γ(t),

d

dt
(γ(t)

)
dt

=

∫ 1

0

1

y(t)

√
ẋ(t)2 + ẏ(t)2dt,

where ẋ(t) = dx(t)/dt and ˙y(t) = dy(t)/dt. As such

`(γ) ≥
∫ 1

0

ẏ(t)

y(t)
dt = log(b/a),

which proves our claim.
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Recall that PSL(2,R) acts on H2 by

(2)

[
a b
c d

]
· z =

az + b

cz + d

for all z ∈ H2 and

[
a b
c d

]
∈ PSL(2,R). In Exercise 4.1 we prove that this is an action

by isometries. That is

d(g z, g w) = d(z, w)

for all z, w ∈ H2 and g ∈ PSL(2,R). Recall moreover that

Isom+(H2) = PSL(2,R).

That is, there are no other orientation preserving isometries. We note that the assump-
tion that the map preserves orientation is important here. The map x+ iy 7→ −x+ iy
is an example of an isometry that does not preserve orientation and does not lie in
PSL(2,R).

As a consequence we obtain:

Proposition 4.4. Let z, w ∈ H2. Then

d(z, w) = cosh−1

(
1 +

|z − w|2

2 · Im(z) · Im(w)

)
.

Proof. First of all, for z and w on the imaginary axis, this formula restricts to the
formula from Example 4.3. As such, our strategy will be to prove that the expression
on the right is invariant under Möbius transformations (as well as the expression on
the left) and then to show that every pair of elements z, w ∈ H2 can be mapped to the
imaginary axis by Möbius transformations.

The first fact comes down to checking that

|z − w|2

2 · Im(z) · Im(w)
=

|Az − Aw|2

2 · Im(Az) · Im(Aw)

for all A ∈ PSL(2,R) and z, w ∈ H2. This is a straightforward computation that we
leave to the reader.

To show that we can move every pair of points to the imaginary axis with a Möbius
transformation, we may assume that not both z and w are on the imaginary axis.

First suppose that z and w lie on a vertical line {x = b}. In this case the Möbius
transformation z 7→ z − b maps both points to the imaginary axis.

Now suppose that z and w do not lie on a vertical line. Let C be the unique
Euclidean circle through z and w that is perpendicular to the real line. Let α be one
of the two points on the intersection C ∩ R.

z 7→ −1

z − α
is a Möbius transformation. We claim that it sends C to a straight line. One way to
check this is by parameterization. Indeed, suppose C has center β ∈ R and suppose
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β > α. We can then parameterize

C(t) = β + e2πit(β − α), t ∈
(

0,
1

2

)
It is a straightforward computation to check that

Re

(
−1

C(t)− α

)
=

−1

2(β − α)
.

As such, our Möbius transformation sends z and w to two elements that lie on a vertical
line and we are done. �

We note that Möbius transformations preserve the set of half circles orthogonal to
R and vertical lines in H2 (see Exercise 4.2).

Recall that a geodesic γ : R → H2 is a smooth path so that for all t0 ∈ R, there
exists a δ > 0 such that

d(γ(t), γ(s)) = |t− s| for all t, s ∈ (t0 − δ, t0 + δ).

That is, geodesics are locally length minimizing curves 1. A geodesic segment is a
smooth path γ : (a, b)→ H2 with the same property. We will often drop the distinction
between geodesics and geodesic segments.

It follows from the proof and the two examples above that:

Proposition 4.5. The image of a geodesic γ : R→ H2 is a vertical line or a half circle
orthogonal to R. Moreover, every vertical line and half circle orthogonal to the real line
can parameterized as a geodesic.

We will often forget about the parametrization and call the image of a geodesic a
geodesic as well. Note that it follows from the proposition above that given any two
distinct points z, w ∈ H2 there exists a unique geodesic γ ⊂ H2 so that both z ∈ γ and
w ∈ γ. Furthermore, it also follows given a point z ∈ H2 and a geodesic γ that does
not contain it, there is a unique perpendicular from z to γ (a geodesic γ′ that intersects
γ once perpendicularly and contains z)

The final fact we will need about the hyperbolic plane is:

Proposition 4.6. Let z ∈ H and let γ ⊂ H2 be a geodesic so that z /∈ γ. Then

d(z, γ) := inf
{

d(z, w); w ∈ γ
}

is realized by the intersection point of the perpendicular from z to γ.
Likewise, any two geodesics that don’t intersect and are not asymptotic to the same

point in R∪{∞} have a unique common perpendicular. Moreover, this perpendicular
minimizes the distance between them.

Proof. The first claim follows from Pythagoras’ theorem for hyperbolic triangles.
Indeed, given three points in H2 so that the three geodesics through them form a right
angled hyperbolic triangle with sides of length a, b and c (where c is the side opposite
the right angle), we have

cosh(a) cosh(b) = cosh(c)

1It turns out that geodesics in H2 are also globally length minimizing.



4.1. THE HYPERBOLIC PLANE 31

Figure 1. The Farey tesselation.

(see Exercise 4.3). This means in particular that c > b.

So, any other point on γ is further away from z than the point w realizing the
perpendicular. Because that other point forms a right angled triangle with w and z.

The second claim follows from the first. �

4.1.2. The disk model. Set

∆ =
{
z ∈ C; |z| < 1

}
.

The map f : H2 → ∆ given by

f(z) =
z − i
z + i

is a biholormorphism. We can also use it to push forward the hyperbolic metric to ∆.
A direct computation tells us that the metric we obtain is given by

ds2 = 4
dx2 + dy2

(1− x2 − y2)2
.

Since f is conformal, the angles in the disk model are still the same as Euclidean angles.

We have:

Proposition 4.7. The hyperbolic geodesics in ∆ are

• straight diagonals through the origin 0 ∈ ∆
• C ∩∆ where C ⊂ C is a circle that intersects ∂∆ orthogonally.

Proof. This follows from Proposition 4.5 and the fact that by definition f maps
geodesics to geodesics (see Exercise 4.4). �

The following figure shows a collection of geodesics in ∆, known as the Farey tesse-
lation.
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4.2. Hyperbolic surfaces

A hyperbolic surface will be a finite type surface equipped with a metric that locally
makes it look like H2.

Because we will want to deal with surfaces with boundary later on, we need half
spaces. Let γ ⊂ H2 be a geodesic. H2 rγ consists of two connected components C1 and
C2. We will call Hi = Ci ∪ γ a closed half space (i = 1, 2). So for example{

z ∈ H2; Re(z) ≤ 0
}

is a closed half space.

We formalize the notion of a hyperbolic surface as follows:

Definition 4.8. A finite type surface S with atlas (Uα, ϕα)α∈A is called a hyperbolic
surface if ϕα(Uα) ⊂ H2 for all α ∈ A and

1. for each p ∈ S there exists an α ∈ A so that p ∈ Uα and
- If p ∈ ∂S then

ϕα(Uα) = V ∩H

for some open set V ⊂ H2 and some closed half space H ⊂ H2.
- If p ∈ S̊ then ϕα(Uα) ⊂ H2 is open.

2. For every α, β ∈ A and for each connected component C of Uα ∩ Uβ we can
find a Möbius transformation A : H2 → H2 so that

ϕα ◦ ϕ−1
β (z) = A(z)

for all z ∈ ϕβ(C) ⊂ H2.

Note that every hyperbolic surface comes with a metric: every chart is identified
with an open set of H2 which gives us a metric. Because the chart transitions are
restrictions of isometries of H2, this metric does not depend on the choice of chart and
hence is well defined.

Definition 4.9. A hyperbolic surface S is called complete if the induced metric is
complete.

4.3. Right angled hexagons

Even though Definition 4.8 is a complete definition, it is not very descriptive. In
what follows we will describe a concrete cutting and pasting construction for hyperbolic
surfaces.

We start with right angled hexagons. A right angled hexagon H ⊂ H2 is a compact
simply connected closed subset whose boundary consists of 6 geodesic segments, that
meet each other orthogonally.

The picture to have in mind is:
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H2

H
γ1

γ2 γ3
γ4 γ5

γ6

Figure 2. A right angled hexagon H.

It turns out that the lengths of three non-consecutive sides determine a right angled
hexagon up to isometry.

Proposition 4.10. Let a, b, c ∈ (0,∞). Then there exists a right angled hexagon
H ⊂ H2 with three non-consecutive sides of length a, b and c respectively. Moreover,
if H ′ is another right angled hexagon with this property, then there exists a Möbius
transformation A : H2 → H2 so that

A(H) = H ′.

Proof. Let us start with the existence. Let γim denote the positive imaginary axis
and set

B =
{
z ∈ H2; d(z, γim) = c

}
.

B is a one-dimensional submanifold of H2. Because the map z 7→ λz is an isometry
that preserves γim for every λ > 0, it must also preserve B. This means that B is a
(straight Euclidean) line.

Now construct the following picture:

H2

a γ
x

c

B

α

Figure 3. Constructing a right angled hexagon H(a, b, c).
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That is, we take the geodesic though the point i ∈ H2 perpendicular to γim and at
distance a draw a perpendicular geodesic γ. furthermore, for any p ∈ B, we draw the
geodesic α that realizes a right angle with the perpendicular from p to γim. Now let

x = d(α, γ) = inf
{

d(z, w); z ∈ γ, w ∈ α
}
.

Because of Proposition 4.6, x is realized by the common perpendicular to α and γ. By
moving p over B, we can realize any positive value for x and hence obtain our hexagon
H(a, b, c).

We also obtain uniqueness from the picture above. Indeed, given any right angled
hexagon H ′ with three non-consequtive sides of length a, b and c, apply a Möbius
transformation A : H2 → H2 so that the geodesic segment of length a starts at i and is
orthogonal to the imaginary axis. This implies that the geodesic after a gets mapped
to the geodesic γ. Furthermore, one of the endpoints of the geodesic segment of length
c needs to lie on the line B. We now know that the the geodesic α before that point
needs to be tangent to B. Because α and β have a unique common perpendicular. The
tangency point of α to B determines the picture entirely. Because the function that
assigns the length x of the common perpendicular to the tangency point is injective,
we obtain that there is a unique solution. �
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4.4. Exercises

Exercise 4.1. (a) Given A ∈ PSL(2,R), show that its derivative DzA satisfies

gAz(DzAv,DzAw) = gz(v, w)

for all z ∈ H2 and v, w ∈ Tz H2.
(b) Given a smooth path γ : [0, 1] → H2 and A ∈ PSL(2,R), we obtain a new

smooth path A ◦ γ : [0, 1]→ H2. Show that

`(γ) = `(A ◦ γ).

Conclude that
d(Az,Aw) = d(z, w)

for all z, w ∈ H2 and A ∈ PSL(2,R).

Exercise 4.2. Let C ⊂ H2 be a half circle orthogonal to R or a vertical line and let
A : H2 → H2 be a Möbius transformation. Show that A(C) is a vertical line or half
circle orthogonal to R.

Hint: consider what a Möbius transformation does to the endpoints (NB: ∞ is a
possible endpoint) of half circles orthogonal to R and vertical lines

Exercise 4.3. Pythagoras’ theorem: Suppose x, y, z ∈ H2 form a right angled triangle
(that is, the geodesic between x and y intersects that between y and z perpendicularly)
and let

a = d(x, y), b = d(y, z) and c = d(z, x).

Prove that
cosh(a) · cosh(b) = cosh(c).

Hint: just like in the proof of Proposition 4.4 you may assume that the geodesic between
y and z is the imaginary axis.

Exercise 4.4. Complete the proof of Proposition 4.7.

Exercise 4.5. Let H be a right angled hexagon with three non consecutive sides of the
same length a > 0.

(a) Show without computing their lengths that the lengths of the other three sides
are also all the same.

(b) Compute the length of the other three sides.





LECTURE 5

Pants decompositions, part I

For this lecture, we mainly follow [Bus10].

5.1. Pairs of pants and gluing

One of our main building blocks for hyperbolic surfaces is the following:

Definition 5.1. Let a, b, c ∈ (0,∞). A pair of pants is a hyperbolic surface that
is diffeomorphic to Σ0,3,0 such that the boundary components have length a, b and c
respectively.

Proposition 5.2. Let a, b, c ∈ (0,∞) and let P and P ′ be pairs of pants with boundary
curves of lengths a, b and c. Then there exists an isometry ϕ : P → P ′.

Proof sketch. There exists a unique orthogonal geodesic (this essentially follows
from Proposition 4.6, in Proposition 6.1 we will do a similar proof in full) between every
pair of boundary components of P .

These three orthogonals decompose P into right-angled hexagons out of which three
non-consecutive sides are determined. Proposition 4.10 now tells us that this determines
the hexagons up to isometry and this implies that P is also determined up to isometry.

�

Note that it also follows from the proof sketch above that the unique perpendiculars
cut each boundary curve on P into two geodesic segments of equal length.

In order to deal with non-compact surfaces, we will need non-compact polygons.
To this end, we note that, looking at Proposition 4.5, complete geodesics in H2 are
parametrized by their endpoints : pairs of distinct point in

∂H2 := R∪{∞}
(or S1 if we use the disk model).

A (not necessarily compact) polygon now is a closed connected simply connected
subset P ⊂ H2, whose boundary consists of geodesic segments.

If two consecutive segments “meet” at a point in ∂H2, this point will be called an
ideal vertex of the boundary. Note that the angle at an ideal vertex is always 0. A
polygon all of whose vertices are ideal is called an ideal polygon.

We can also make sense of a pair of pants where some of the boundary components
have “length” 0. In this case, we obtain a complete hyperbolic structure on a surface
with boundary and punctures so that

#punctures + #boundary components = 3.

Such pairs of pants can be obtained by gluing either

37
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• two pentagons with one ideal vertex each and right angles at the other vertices,
• two quadrilaterals with two ideal vertices each right angles at the other vertices

or
• two ideal triangles.

Along the sides of infinite length there however is a gluing condition. We will come
back to this later (see Proposition 6.3).

Moreover, we obtain a similar uniqueness statement to the proposition above. As
always in the non-compact case, the adjective complete does need to be added.

If P is a pair of pants and δ ⊂ ∂P is one of its boundary components, let us write
`(δ) for the length of δ. Recall that an isometry between Riemannian manifolds M and
N is a diffeomorphism ϕ : M → N so that

dM(x, y) = dN(ϕ(x), ϕ(y))

for all x, y ∈M .

Example 5.3. Given two pairs of pants P1 with boundary components δ1, δ2 and δ3

and P2 with boundary components γ1, γ2 and γ3 so that

`(δ1) = `(γ1),

we can choose an orientation reversing isometry ϕ : δ1 → γ1 and from that obtain a
hyperbolic surface

S = P1 t P2/ ∼,
where ϕ(x) ∼ x for all x ∈ δ1. One way to see that this surface comes with a well
defined hyperbolic structure, is that locally it’s obtained by gluing two half spaces in
H2 together along their defining geodesics. Note that S is diffeomorphic to Σ0,4,0.

Repeating the construction above, we can build hyperbolic surfaces of any genus
and any number of boundary components.

In what follows we will prove that every hyperbolic surface can be obtained from
this construction.

5.2. The universal cover of a hyperbolic surface with boundary

It will be useful to have a description of the Riemannian universal cover of a surface
with boundary. To this end, we first prove:

Proposition 5.4. Let X be a hyperbolic surface with non-empty boundary that consists
of closed geodesics. Then there exists a complete hyperbolic surface X∗ without boundary
in which X can be isometrically embedded so that X is a deformation retract of X∗.

Proof. For each ` ∈ (0,∞), we define a hyperbolic surface

F` = [0,∞)× R /{t ∼ t+ 1},
equipped with the metric

ds2 = dρ2 + `2 cosh2(ρ) · dt2

for all (ρ, t) ∈ F`. We will call such a surface a funnel.
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One can check that this is a metric of constant curvature −1, in which the boundary
is totally geodesic.

We can glue funnels of the right length along the boundary components, in a similar
way to Example 5.3. Figure 1 shows an example.

F`1

F`2

F`3

X

Figure 1. Attaching funnels

Since both F` and X are complete, the resulting surface X∗ is complete.
Moreover, since F` retracts onto its boundary component, X is a deformation retract

of X∗. �

See [Bus10, Theorem 1.4.1] for a version of the above to surfaces with more general
types of boundary components.

Recall that a subset C ⊂M of a Riemannian manifold M is called convex if for all
p, q ∈ C there exists a length minimizing geodesic γ : [0, d(p, q)]→M such that

γ(0) = p, γ(d(p, q)) = q and γ(t) ∈ C ∀ t ∈ [0, d(p, q)].

As a result of this construction we obtain:

Proposition 5.5. Let X be a complete hyperbolic surface with non-empty boundary

that consists of closed geodesics. Then the universal Riemannian cover of X̃ of X is
isometric to a convex subset of H2 whose boundary consists of complete geodesics.

Proof. The Killing-Hopf theorem tells us that the universal cover of X∗ is the
hyperbolic plane H2. Here X∗ is the surface given by Proposition 5.4.

Let us denote the covering map by π : H2 → X∗. Now let C be a connected
component of π−1(X). The boundary of C consists of the lifts of ∂X and hence of
a countable collection of disjoint complete geodesics in H2. As such, it’s a countable
intersection of half spaces (which are convex) and hence convex. �

5.3. Simple closed geodesics, part I

Definition 5.6. Let M be a smooth manifold.
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• A simple closed curve is an continuous embedding

γ : S1 →M.

• A closed curve is an continuous immersion

γ : S1 →M

• Two closed curves γ1, γ2 : S1 → M are called freely homotopic, if there exists
a continuous map:

H : S1 × [0, 1]→ X.

so that
H(t, 0) = γ1(t) and H(t, 1) = γ2(t)

for all t ∈ S1.

So, the difference between free homotopy and usual homotopy of loops is that there
is no mention of basepoints in the case of free homotopy. It turns out that two sim-
ple closed curves on a a surface are freely homotopic if and only if they are freely
isotopic (see [FM12, Proposition 1.10] for a proof). Moreover, there is a one-to-one
correspondence{

Conjugacy classes of
non-trivial elements in π1(X)

}
↔
{

free homotopy classes of
non-trivial closed curves on X

}
.

Closed curves that are also geodesics will be called closed geodesics. These turn out
to come from what are called hyperbolic elements in π1(X), we will describe how this
works in what follows.

Definition 5.7. Let g ∈ PSL(2,R).

(1) If tr (g)2 < 4 then g is called elliptic.
(2) If tr (g)2 = 4 then g is called parabolic.
(3) If tr (g)2 > 4 then g is called hyperbolic.

Note that, since trace is conjugacy invariant, conjugate elements in PSL(2,R) are
of the same type.

The classification can equivalently be described as:

Lemma 5.8. Let g ∈ PSL(2,R). Then

(1) g is elliptic if and only if g has a single fixed point inside H2.
(2) g is parabolic if and only if g has a single fixed point on R∪{∞}.
(3) g is hyperbolic if and only if g has two distinct fixed points on R∪{∞}.

Proof. Exercise 5.1(a). �

Given a hyperbolic isometry, we can define its translation distance as follows:

Definition 5.9. Let g ∈ PSL(2,R) be hyperbolic. Then its translation distance is
given by

Tg := inf
{
z ∈ H2; d(z, gz)

}
.

Moreover, its axis is defined as

αg :=
{
z ∈ H2; d(z, gz) = Tg

}
.
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We have:

Lemma 5.10. Let g ∈ PSL(2,R) be hyperbolic with fixed points x1, x2 ∈ ∂H2. Then
its axis αg is the unique geodesic between x1 and x2 and its translation length is given
by

Tg = 2 cosh−1

(
|tr (g)|

2

)
.

Proof. Exercise 5.1(b). �
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5.4. Exercises

Exercise 5.1. (a) Prove Lemma 5.8.
(b) Prove Lemma 5.10. Hint: translate everything to the imaginary axis.

Exercise 5.2. Suppose Γ acts properly discontinuously and freely on a closed convex
subset C ⊂ H2. Suppose g ∈ Γ is a hyperbolic element. Show that the axis αg of g is
contained in C.
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Pants decompositions, part II

We will mainly follow [Bus10] for this lecture.

6.1. Simple closed geodesics part II

Now we can state the corrspondence that we are after. We will call a curve puncture
parallel if it can be homotoped into a puncture.

Proposition 6.1. Let X be a complete hyperbolic surface with totally geodesic bound-
ary. Then there are one-to-one correspondences{

Non-trivial free homotopy classes of
non puncture-parallel closed curves on X

}
↔
{

Conjugacy classes of
hyperbolic elements in Γ

}
.

and {
Conjugacy classes of

hyperbolic elements in Γ

}
↔
{

Oriented, unparametrized
closed geodesics on H2 /Γ

}
.

Moreover, the unique geodesic minimizes length over the conjugacy class.

If the free homotopy class contains a simple closed curve, then the corresponding
geodesic is also simple.

More generally, if γ and γ′ are non-homotopic non-puncture parallel and non-trivial
closed curves, then

• The number of self-intersections of the unique geodesic γ homotopic to γ is
mimimal among all closed curves homotopic to γ and
• #γ∩γ′ is minimal among all pairs of curves homotopic to γ and γ′ respectively.

Before we prove this, we recall the Arzelà-Ascoli theorem. First recall that a map
f : X → Z between metric spaces X and Z is called L-Lipschitz, for some L > 0 if

dZ(f(x), f(y)) ≤ L · dX(x, y)

for all x, y ∈ X. The Arzelà-Ascoli theorem now states:

Theorem 6.2 (Arzelà-Ascoli). Let X be a metric space that has a countable dense
subset and Z a compact metric space. Suppose γn : X → Z is an L-Lipschitz map
for all n ∈ N and some fixed L > 0. Then there exists a subsequence (γnk)k∈N that
converges uniformly on compact sets in X to an L-Lipschitz map γ : X → Z.

See [Bus10, Theorem A.19] for a proof.
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Proof of Proposition 6.1. In order to make our lives a little easier, we will
assum X to be compact. The argument for the general case is similar. We will hence
not worry about the assumption that the curve is non puncture parallel.

First of allm consider a conjugacy class K ⊂ Γ of hyperbolic elements. Let us pick
an element g ∈ K, with axis αg ⊂ C (note that the axis necessarily lies in C, Exercise
5.2). The projection map π : C → X sends αg to a closed geodesic of length Tg.
Moreover, since

π
(
αhgh−1

)
= π

(
hαg

)
= π

(
αg

)
,

the resulting geodesic does not depend on the choice of g.
So, we need to go back. Let

C :=
{
γ′ : S1 → X; γ′ freely homotopic to γ

}
and set

L = inf
{
`(γ′); γ′ ∈ C

}
.

Now consider a sequence (γn)n so that `(γn) → L. It follows from the Arzelà-Ascoli
theorem ([Bus10, Theorem A.19]) that there exists a subsequence (γnk)k and a closed
curve γ : S1 → X so that γnk → γ̃ uniformly as k → ∞. Because γ minimizes length,
it needs to be a geodesic (up to reparameterization).

To show uniqueness, suppose there are two freely homotopic geodesics γ1, γ2 : S1 →
X. Consider the universal cover π : C → X. Because γ1 and γ2 are freely homotopic,
we can lift them to continuous maps γ̃1, γ̃2 : R→ H2 that are homotopic. The fact that
γ1 and γ2 are geodesics implies that γ̃1 and γ̃2 are as well.

The cyclic subgroup G of the deck group Γ that leaves γ̃1 invariant also leaves γ̃2

invariant (because they are homotopic). Since γ̃1/G and γ̃2/G are compact, we obtain
that

sup
t∈R
{d(γ̃1(t), γ̃2(t)} <∞.

Now we note that when geodesics have at least one pair of distinct endpoints, the
above does not hold. This implies that γ̃1 and γ̃2 have the same endpoints, which in
turn implies they have coincide.

To get the conjugacy class, we note that the cyclic subgroup G < Γ must be gener-
ated by a hyperbolic element g. Had we chosen another lift, we would have obtained a
conjugate of g.

For the statement about simplicity, we first need to show that γ is primitive, that
is, it is not a non-trivial power in Γ. To this end, suppose gk is an element in the
conjugacy class corresponding to γ so that g is primitive. Consider the cover

A := H2 /〈g〉 → X∗,

where X∗ is the surface provided by Proposition 5.4 and gk ∈ Γ is an element in the
conjugacy class corresponding to γ. Since A is an orientable surface with fundamental
group isomorphic to Z, it must be an annulus. All simple closed curves in an annulus
induce eaither g or g−1 in its fundamental group (Exercise 6.1).

Now that we know that γ is primitive, we need to show that it doesn’t have any self
intersecions. If γ were to have self intersections, this would mean that each lift γ̃ of γ
is intersected by another lift gγ̃ of γ. Consider the lifts γ̃ and gγ̃ of γ with the same
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enpoints as γ̃ and gγ̃ respectively. Since γ̃ and gγ̃ intersect, these entpoints alternate,
which means that γ̃ and gγ̃ intersect as well (see Figure 1). This however implies that
γ has a self-intersection, which isn’t the case.

γ̃
γ̃

gγ̃
gγ̃

Figure 1. Intersecting curves in ∆.

We leave the proof of the rest to the reader. �

Before we get to pants decompositions, we record what happens to curves that are
parallel to a puncture.

Proposition 6.3. Let X be a complete hyperbolic surface. So that X = C/Γ where C is
a convex subset of H2, bounded by complete geodesics and Γ < PSL(2,R) acts prorperly
discontinuously and freely on C. Then there are a one-to-one correspondences{

Conjugacy classes of
parabolic elements in Γ

}
↔
{

Oriented, unparametrized
puncture-parallel closed curves H2 /Γ

}
.

This proposition gives us the gluing condition we spoke about in Section 5.1: the
gluing needs to be so that the resulting puncture parallel curves give rise to parabolic
elements, this turns out to uniquely determine the gluing.

6.2. Every hyperbolic surface admits a pants decomposition

As an immediate consequence to Proposition 6.1 we get that hyperbolic surfaces
admit pants decompositions.

Definition 6.4. Let X be a complete, orientable hyperbolic surface of finite area. A
pants decomposition of X is a collection of pairwise disjoint simple closed geodesics
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P = {α1, . . . , αk} in X so that each connected component of

X \

(
k⋃
i=1

αi

)
consists of hyperbolic pairs of pants whose boundary components have been removed.

We have the following:

Lemma 6.5. Let P be a pants decomposition of a hyperbolic surface X that is homeo-
morphic to Σg,b,n then

• P contains 3g + n+ b− 3 closed geodesics and
• X \ P consists of 2g + n+ b− 2 pairs of pants.

Proof. Exercise 6.2. �

Proposition 6.6. Let X be a complete, orientable hyperbolic surface of finite area and
totally geodesic boundary. Then X admits a pants decomposition.

Proof. Take any collection of simple closed curves on Σg,b,n that decompose it into
pairs of pants. Proposition 6.1 tells us that these curves can be realized by unique
geodesics. �

Note that we actually get countably many such pants decompositions: given a
pants decomposition we can apply a diffeomorphism not isotopic to the identity (of
which there are many, we will see more about this later) to obtain a new topological
pants decomposition, that is realized by different geodesics.

Finally, we remark, that lengths alone are not enough to determine the hyperbolic
metric:

Example 6.7. ϕ in Example 5.3 is determined up to ‘twist’. That is, if we parameterize
δ1 by a simple closed geodesic x : R /(`(δ1)Z) → δ1 and ϕ′ : δ1 → γ1 is a different
orientation reversing isometry, then there exists some t0 ∈ R so that

ϕ′(x(t)) = ϕ(x(t0 + t))

for all t ∈ R /(`(δ1)Z)→ δ1.

Summarizing the above, we get the following parametrization of all hyperbolic sur-
faces:

Theorem 6.8. Let (g, b, n) be so that

χ(Σg,b,n) < 0.

If we fix a pants decomposition P of Σg,b,n and vary the lengths `i ∈ (0,∞) and twist
τi ∈ [0, `i], we obtain all complete hyperbolic surfaces homeomorphic to Σg,b,n.

Note however that there is no guarantee that we don’t obtain the same surface
multiple times (and in fact we do).
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6.3. Exercises

Exercise 6.1. Let A be an annulus and γ : S1 → A a simple closed curve. Make an
identification π1(A) ' Z ' 〈g〉. Show that the conjugacy class in π1(A) corresponding
to γ is either {g} or {g−1}. Hint: assume it’s not and use the intermediate value
theorem.

Exercise 6.2. Prove Lemma 6.5.





LECTURE 7

Spaces of tori

The goal of the rest of this course is to understand the deformation spaces associated
to Riemann surfaces: Teichmüller and moduli spaces. We will mainly follow [IT92].

In general, the Teichmüller space associated to a surface will be a space of marked
Riemann surface structures on that surface and the corresponding moduli space will
be a space of isomorphism classes of Riemann surface structures. As such, the moduli
space associated to a surface will be a quotient of the corresponding Teichmüller space.

First of all, note that the uniformization theorem tells us that there is only one
Riemann surface structure on the sphere. This means that the corresponding moduli
space will be a point. It turns out that the same holds for its Teichmüller space.
This means that the lowest genus closed surface for which we can expect an intersting
deformation space is the torus.

7.1. Riemann surface structures on the torus

So, let us parametrize Riemann surface structures on the torus. Recall from Propo-
sition 2.6 that every Riemann surface structure on the torus is of the form

C /
〈[

1 λ
0 1

]
,

[
1 µ
0 1

]〉
for some λ, µ ∈ C \{0} that are linearly independent over R.

First of all note that every such torus is biholomorphic to a torus of the form

Rτ := C /Λτ ,

for some τ ∈ H2, where

Λτ =

〈[
1 1
0 1

]
,

[
1 τ
0 1

]〉
(see Exercise 7.1).

However, there are still distinct τ, τ ′ ∈ H2 that lead to holomorphic tori. We have:

Proposition 7.1. Let τ, τ ′ ∈ H2. The two tori Rτ and Rτ ′ are biholomorphic if and
only if

τ ′ =
aτ + b

cτ + d
for some a, b, c, d ∈ Z with ad− bc = 1.

Proof. First assume Rτ and Rτ ′ are biholomorphic and let f : Rτ ′ → Rτ be a

biholomorphism. Lift f to a biholomorphism f̃ : C→ C. This means that

f̃(z) = αz + β

49
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for some α, β ∈ C. By postcomposing with a biholomorphism of C, we may assume

that f̃(0) = 0.

Because f̃ is a lift, we know that both f̃(1) and f̃(τ ′) are equivalent to 0 under Λτ .
So

f̃(τ ′) = ατ ′ = aτ + b

f̃(1) = α = cτ + d

for some a, b, c, d ∈ Z. So

τ ′ =
aτ + b

cτ + d
.

So we only need to show that ad − bc = 1. If we apply the same argument to f̃−1 we
obtain

τ =
a′τ ′ + b′

c′τ ′ + d′
,

for some a′, b′, c′, d′ ∈ Z. Working out the relations f̃−1 ◦ f̃(1) = 1 and f̃−1 ◦ f̃(τ ′) = τ ′,
we obtain ad− bc = ±1. Since

Im(τ ′) =
ad− bc
|cτ + d|2

> 0,

we obtain ad− bc = 1.

Conversely, if

τ ′ =
aτ + b

cτ + d

Then

f([z]) = [(cτ + d)z]

gives a biholomorphic map f : Rτ ′ → Rτ . �

7.2. The Teichmüller and moduli spaces of tori

Looking at Proposition 7.1, we see that we can parametrize all complex structures
on the torus with the set

M1 = H2 /PSL(2,Z).

Moreover this set is the quotient of the hyperbolic place by a group of isometries that
acts properly discontinuously on it. However, the group doesn’t quite act freely, so it’s
not directly a hyperbolic surface.

So, let us investigate the structure of this quotient. One way of doing this is to find
a fundamental domain for the action of PSL(2,Z) on H2. Set

F =
{
z ∈ H2; |z| ≥ 1 and − 1

2
≤ Re(z) ≤ 1

2

}
.

Figure 1 shows a picture of F .
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H2 F

−1+
√

3i
2 i

1+
√

3i
2

−1
2

1
2

Figure 1. A fundamental domain for the action of PSL(2,Z) on H2.

We claim

Proposition 7.2. For all τ ∈ H2 there exists an element g ∈ PSL(2,Z) so that gτ ∈ F .
Moreover,

• if τ ∈ F̊ then (
PSL(2,Z) · τ

)
∩ F = {τ},

• if Re(τ) = 1
2

then(
PSL(2,Z) · τ

)
∩ F = {gτ, gτ + 1},

• if Re(τ) = −1
2

then(
PSL(2,Z) · τ

)
∩ F = {gτ, gτ − 1}.

• and if |τ | = 1 then(
PSL(2,Z) · τ

)
∩ F = {gτ,−1/τ},

Proof. Let z ∈ H2 and g =

[
a b
c d

]
∈ PSL(2,Z). A direct computation shows

that

Im(gz) =
Im(z)

|cz + d|2
.

Now let τ ∈ H2 and let g ∈ PSL(2,Z) be an element so that Im(gτ) is maximal. Note
that this is an honest maximum, since the number of integers so that |cz + d| ≤ K is

finite for any K > 0. Since T =

[
1 1
0 1

]
∈ PSL(2,Z), we can always post-compose

with T k for some k ∈ Z to make sure that −1
2
≤ Re(gτ) ≤ 1

2
. Now suppose that

|gτ | < 1. Since S =

[
0 −1
1 0

]
∈ PSL(2,Z) this leads to a contradiction, because

S(gτ) would have a larger imaginary part (this follows from a direct computation).
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Now suppose both z and gz lie in F for some g ∈ PSL(2,R). Without loss of
generality, we assume that Im(gz) ≥ Im(z). This implies that

|cz + d| ≤ 1.

Using that z ∈ F this implies that c ∈ {−1, 0, 1}. If c = 0, then d = ±1 and we obtain

g =

[
1 k
0 1

]
for some k ∈ Z. Now using that z ∈ F , we see that either k ∈ {±1} and Re(z) ∈ {±1

2
}

or k = 0.
If c = ±1, then d = 0 and hence

g =

[
0 1
0 −1

]
which gives us the |gτ | = 1 case. �

Since T maps the line Re(z) = −1/2 to the line Re(z) = 1/2 and S fixes i and
swaps (−1 +

√
3i)/2 and (1 +

√
3i)/2 (which are in turn the fixed points of ST ). These

turn out to be the only side identifications and thus the quotient looks like Figure 2:

±1+
√

3i
2

i π

2π
3

Figure 2. A cartoon of M1.

So M1 is a space that has the structure of a hyperbolic surface near almost every
point. The only problematic points are the images of i and (±1 +

√
3i)/2, where the

M1 looks like a cone. The technical term for such a space is a hyperbolic orbifold.
M1 is called the moduli space of tori. T 1 = H2 is called the Teichmüller space of

tori.
Our next intermediate goal is to generalize this to all surfaces. Of course, we could

use pants decompositions to parametrize Riemann surface structures on surfaces of
higher genus. However, there is no a priori reason that the resulting deformation space
should have anything to do with the Teichmüller space of the torus we just introduced.
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To this end, we start by introducing different perspectives on T 1, that generalize more
naturally to higher genus surfaces.

7.3. T 1 as a space of marked structures

Our objective in this section is to understand what the information is that is
parametrized by T 1.

7.3.1. Markings as a choice of generators for π1(R), part I. So, suppose

τ ∈ H2 and τ ′ = gτ for some g =

[
a b
c d

]
∈ PSL(2,Z). Let f : Rτ ′ → Rτ denote

the biholomorphism from the proof of Proposition 7.1. We saw that we can find a lift

f̃ : C→ C so that f̃(z) = (cτ + d)z. In particular, using the relation between τ and τ ′,
we see that

f̃({1, τ ′}) = {cτ + d, aτ + b}.
So, the biholomorphism corresponds to a base change (i.e. the change of a choice of
generators) for Λτ .

Let us formalize this idea of a base change. First we take a base point p0 = [0] ∈ Rτ

for the fundamental group π1(Rτ , p0). The segments between 0 and 1 and between 0
and τ project to simple closed curves on Rτ and determine generators

[Aτ ], [Bτ ] ∈ π1(Rτ , p0).

This now also gives us a natural choice of isomorphism Λτ ' π1(Rτ , p0), mapping

1 7→ [Aτ ] and τ 7→ [Bτ ].

Likewise, for Rτ ′ we also obtain a natural system of generators [Aτ ′ ], [B
′
τ ] ∈ π1(Rτ ′ , p0).

Moreover, if f∗ : π1(Rτ ′ , p0)→ π1(Rτ , p0) denotes the map f induces on the fundamental
group, then

f∗([Aτ ′ ]) 6= [Aτ ] and f∗([Bτ ′ ]) 6= [Bτ ].

Let us package these choices of generators:

Definition 7.3. Let R be a Riemann surface homeomorphic to T2.

(1) A marking on R is a generating set Σp ⊂ π1(R, p) consisting of two elements.
(2) Two markings Σp and Σ′p′ are called equivalent if there exists a continuous curve

α from p to p′ so that the corresponding isomorphism Tα : π(R, p)→ π1(R, p′)
satisfies

Tα(Σp) = Σ′p′ .

Two pairs (R,Σ) and (R′,Σ′) of marked Riemann surfaces homeomorphic to T2 are
called equivalent if there exists a biholomorphic mapping h : R→ R′ so that

h∗(Σ) ' Σ′.

Note that above we have not proved that (Rτ , {[Aτ ], [Bτ ]}) and (Rτ ′ , {[Aτ ′ ], [Bτ ′ ]})
are equivalent as marked Riemann surfaces, because our map f∗ did not send the
generators to each other, and in fact, they are not equivalent:
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Theorem 7.4. Let τ, τ ′ ∈ T 1. Then the marked Riemann surfaces

(Rτ , {[Aτ ], [Bτ ]}) and (Rτ ′ , {[Aτ ′ ], [Bτ ′ ]})
are equivalent if and only if τ ′ = τ . Moreover, we have an identification

T 1 =

{
(R,Σp);

R a Riemann surface homemorphic to T2

p ∈ R, Σp a marking on R

}/
∼ .
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7.4. Exercises

Exercise 7.1. Prove that every complex 1-dimensional torus is biholomorphic to a
torus of the form

Rτ := C /Λτ ,

for some τ ∈ H2.





LECTURE 8

Teichmüller space

We will mainly follow [IT92] for this lecture.

8.1. Markings as a choice of generators for π1(R), part II

We begin by proving the following theorem from the previous lecture:

Theorem 7.4. Let τ, τ ′ ∈ T 1. Then the marked Riemann surfaces

(Rτ , {[Aτ ], [Bτ ]}) and (Rτ ′ , {[Aτ ′ ], [Bτ ′ ]})

are equivalent if and only if τ ′ = τ . Moreover, we have an identification

T 1 =

{
(R,Σp);

R a Riemann surface homemorphic to T2

p ∈ R, Σp a marking on R

}/
∼ .

Proof. We begin by proving part of the second claim: every marked complex torus
is equivalent to a marked torus of the form (Rτ , {[Aτ ], [Bτ ]}). So, suppose (R,Σ) is a
marked torus. We know that R is biholomorphic to Rτ for some τ ∈ T 1. Moreover, since
Σ = {[A], [B]} is a minimal generating set for Λτ , we can find a lattice isomorphism
ϕ : Λτ → Λτ so that

ϕ([A]) = 1.

Moreover Rϕ([B]) is biholomorphic to Rτ . So (R,Σ) is equivalent to

(Rϕ([B]), {Aϕ([B]), Bϕ([B])}).

So, to prove the theorem, we need to show that (Rτ , {[Aτ ], [Bτ ]}) and (Rτ ′ , {[Aτ ′ ], [Bτ ′ ]})
are equivalent if and only if τ = τ ′. Of course, if τ = τ ′ then the two corresponding
marked surfaces are equivalent, so we need to show the other direction.

So let h : Rτ ′ → Rτ be a biholomorphism that induces the equivalence. We may

assume that h([0]) = [0] and take a lift h̃ : C→ C so that

h̃(0) = 0.

This means that h̃(z) = αz for some α ∈ C \{0}. Hence 1 = h̃(1) = α, which implies

that τ = h̃(τ ′) = τ ′. �

Note that so far, our alternate description of Teichmüller space only recovers the
set T 1 and not yet it topology. Of course we can use the bijection to define a topology.
However, there is also an intrinsic defintion. We will discuss how to do this later.
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8.2. Markings by diffeomorphisms

First, we give a third interpreation of T 1. This goes through another (equivalent)
way of marking Riemann surfaces.

To this end, fix once and for all a surface S diffeomorphic to T2. We define:

Definition 8.1. Let R and R′ be Riemann surfaces and let

f : S → R and f ′ : S → R′

be orientation preserving diffeomorphisms. We say that the pairs (R, f) and (R′, f ′)
are equivalent if there exists a biholomorphism h : R→ R′ so that

(f ′)−1 ◦ h ◦ f : S → S

is homotopic to the identity.

Note that if we pick a generating set {[A], [B]} for the fundamental group π1(S, p)
then every pair (R, f) as above defines a point

(R, {f∗([A]), f∗([B])}) ∈ T 1 .

It turns out that this gives another description of the Teichmüller space of tori:

Theorem 8.2. Fix S and [A], [B] ∈ π1(S, p) as above. Then the map{
(R, f);

R a Riemann surface, f : S → R
an orientation preserving diffeomorphism

}/
∼ → T 1

given by

(R, f) 7→ (R, {f∗([A]).f∗([B])}),
is a well-defined bijection.

Proof. We start with well-definedness. Meaning, suppose (R, f) and (R′, f ′) are
equivalent. By definition, this means that there exists a biholomorphic map h : R→ R′

so that

h ◦ f : S → R′ and f ′ : S → R′

are homotopic. Now if α is a continuous arc between f ′(p) and h(f(p)), we see that Tα
induces an equivalence between the markings

{f ′∗([A]), f ′∗([B])} and {(h ◦ f)∗([A]), (h ◦ f)∗([B])},
making (R, {f∗([A]), f∗[B]}) and (R′, {f ′∗([A]), f ′∗([B])}) equivalent. This means that
they correspond to the same point by the previous theorem. So, the map is well defined.

Moreover, the map is surjective. For any τ ∈ T 1 we can find an orientation preserv-
ing diffeomorphism f : S → Rτ . Indeed, we know that S is diffeomorphic to Rτ0 for
some τ0 ∈ T 1 so that {[A], [B]} = {[Aτ0 ], [Bτ0 ]}. One checks that the map fτ : C→ C
given by

fτ (z) =
(τ − τ 0)z + (τ − τ0)z

τ0 − τ 0

descends to an orientation preserving diffeomorphism that also induces the marking
{[Aτ ], [Bτ ]}.
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For the injectivity, suppose that[
(R, {f∗([A]), f∗([B])})

]
=
[
(R′, {f ′∗([A]), f ′∗([B])})

]
.

Take τ0 ∈ T 1 so that [
(S, {[A], [B]})

]
=
[
(Rτ0 , {([Aτ0 ]), [Bτ0 ]})

]
.

Moreover, let h : R→ R′ be a holomorphism so that h∗{f∗([A]), f∗([B])} = {f ′∗([A]), f ′∗([B])}.
We choose lattices Λ,Λ′ ⊂ C, generated by 1 adn a and 1 and a′ respectively so that

R = C /Λ and R′ = C /Λ′,

and the generators induce the bases {f∗([A]), f∗([B])} and {f ′∗([A]), f ′∗([B])} respec-
tively.

Now, let f̃ , f̃ ′, h̃ : C→ C be lifts. We may assume that

f̃(0) = f̃ ′(0) = h̃(0) = 0, f̃(1) = f̃ ′(1) = h̃(1) = 1,

and

f̃(τ0) = a, f̃ ′(τ0) = a′ and h̃(a) = a′

So we obtain a homotopy Ft : C→ C defined by

Ft(z) = (1− t) h̃ ◦ f̃(z) + t f̃ ′(z)

between f̃ and f̃ ′ that descends to a homotopy between f : S → R′ and f ′ : S → R′. �

8.3. The Teichmüller space of Riemann surfaces

The two description of the Teichmüller space of the torus above can be generalized
to different Riemann surfaces. We will take the second one as a definition, as this is
the most common definition in the literature. Moreover, it naturally leads to another
key object in Teichmüller theory: the mapping class group.

Definition 8.3. Let S be a surface of finite type. Then the Teichmüller space of S is
defined as

T (S) =

{
(X, f);

X a Riemann surface , f : S → X
an orientation preserving diffeomorphism

}/
∼,

where

(X, f) ∼ (Y, g)

if and only if there exists a biholomorphism h : X → Y so that the map

g−1 ◦ h ◦ f : S → S

is homotopic to the identity.

Remark 8.4. Note that by phrasing the definition in terms of Riemann surfaces, we
cannot yet make sense of a Teichmüller space of surfaces with boundary. However, in
the world of hyperbolic surfaces, such Teichmüller spaces do make sense.



60 8. TEICHMÜLLER SPACE

We will often write

T (Σg,n) = T g,n and T (Σg) = T g .

In order to get to the analogous definition to the space of marked tori, we need to
single out particularly nice generating sets for the fundamental group, just like we did
for tori. We will stick to closed surfaces. Recall that the fundamental group of a surface
of genus g satisfies:

π1(Σg, p) =

〈
a1, . . . , ag, b1, . . . , bg

∣∣∣∣∣
g∏
i=1

[ai, bi] = e

〉
.

In what follows, a generating set A1, . . . , Ag, B1, . . . , Bg of π1(Σg, p) that satisfies

g∏
i=1

[Ai, Bi] = e,

will be called a canonical generating set. Note that this includes the torus case.

Definition 8.5. Let R be a closed Riemann surface.

(1) A marking on R is a canonical generating set Σp ⊂ π1(R, p).
(2) Two markings Σp and Σ′p′ are called equivalent if there exists a continuous curve

α from p to p′ so that the corresponding isomorphism Tα : π(R, p)→ π1(R, p′)
satisfies

Tα(Σp) = Σ′p′ .

Two pairs (R,Σ) and (R′,Σ′) of marked closed Riemann surfaces are called equivalent
if there exists a biholomorphic mapping h : R→ R′ so that

h∗(Σ) ' Σ′.

Just like in the case of the torus, the space of marked Riemann surfaces turns out
to be the same as Teichmüller space:

Theorem 8.6. Let S be a closed surface and Σ a marking on S. Then the map

T (S)→
{

(R,Σp);
R a closed Riemann surface diffeomorphic to S

p ∈ R, Σp a marking on R

}/
∼ .

given by

[(R, f)] 7→ [(R, f∗(Σ)]

is a bijection.

Proof sketch. Write Σ = {[A1], . . . , [Ag], [B1], . . . , [Bg]}, where Ai, Bi are simple
closed curves based at a point p0 ∈ S. Let us start with the injectivity. So, suppose

[(R, f∗(Σ)] = [(R′, f ′∗(Σ)].

This means that we can find a biholomorphic map h : R→ R′ and a self-diffeomorphism
g0 : R′ → R′ so that

g1 = g0 ◦ h ◦ f
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corresponds with f ′ on the curves A1, . . . , Ag, B1, . . . , Bg. The domain obtained by
deleting these curves from S is a disk. This implies that f and g1 are homotopic, which
in turn means that

[(R, f)] = [(R′, f ′)] ∈ T (S).

For surjectivity, suppose we are given a marked Riemann surface (R,Σp). So we
need to find an orientation preserving homeomorphism f : S → R so that f∗(Σ) =
Σp. So, let us take simple closed smooth curves A′1, . . . , A

′
g, B

′
1, . . . , B

′
g so that Σp =

{[A′1], . . . , [A′g], [B
′
1], . . . , [B′g]}. Moreover, we will set

C =

g⋃
j=1

(Aj ∪Bj), C ′ =

g⋃
j=1

(A′j ∪B′j), S0 = S \ C, and R0 = R \ C ′.

R0 and S0 are diffeomorphic to polygons with 4g sides. So we can find a diffeomorphism
by extending a diffeomorphism R0, S0. For more details, see [IT92, Theorem 1.4]. �
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8.4. Exericises

Exercise 8.1. Flesh out the argument for injectivity in the proof of Theorem 8.6.



LECTURE 9

The mapping class group and moduli space

9.1. The mapping class group

Just like in the case of the torus, we have a natural group action on the Teichmüller
space of a surface, by a group called the mapping class group:

Definition 9.1. Let S0 be a compact surface of finite type and Σ ⊂ S0 a finite set. Set
S = S0 \ Σ.

The mapping class group of S is given by

MCG(S) = Diff+(S, ∂S,Σ)/Diff+
0 (S, ∂S,Σ)

where

Diff+(S, ∂S,Σ) =

f : S → S;
f an orientation preserving diffeomorphism
that preserves the boundary components of
S setwise, and the puncture pointwise


and

Diff+
0 (S, ∂S,Σ) =

{
f ∈ Diff+(S, ∂S,Σ); f homotopic to the identity

}
.

The group operation is induced by composition of functions (see Exercise 9.1).

We will discuss some properties of this group. Since this is not a course on mapping
class groups, we will not discuss the proofs of these properties. For more information,
we refer to [FM12]. Some authors let go of the condition that MCG(S) fixes the
punctures. The group we defined above is then often called the pure mapping class
group.

9.1.1. Dehn twists. Let us start by describing some non-trivial elements. First,
consider an annulus

A := [0, 1]× R /Z .

Define a map T : A→ A by

T (t, [θ]) = T (t, [θ + t])

for all t ∈ [0, 1], θ ∈ R. This map is called a Dehn twist. Note that this map fixes
∂A pointwise. Figure 1 shows that this map does to a segment connecting the two
boundary components of the annulus.
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Figure 1. A Dehn twist on an annulus.

Now let α be an essential simple closed curve on S. Let N be closed regular neigh-
borhood of α. Identifying N with A, we can define a map Tα : S → S by

Tα(p) =

{
T (p) if p ∈ N
p if p ∈ S \N

Because T |∂A is the identity map, this is a continuous map. To obtain an element in
MCG(S), we need to start with a smooth map. There are multiple ways out at the
moment. We could smoothen T . Or we could use surface topology to argue that Tα
is homotopic to a smooth map. Since for the mapping class group, we only car about
diffeomorphisms up to homotopy, the element we get in MCG(S) will not depend on
how we do this.

Figure 2 shows an example of a Dehn twist.

γ Tα(γ)

Figure 2. A Dehn twist on a surface of genus two.

We see that Tα maps a curve γ on the surface intersecting the defining curve α (of
which we have only drawn the regular neighborhood) transversely to a curve that is not
homotopic to γ. In particular, Tα is not homotopic to the identity and hence defines a
non-trivial element in MCG(S).

9.1.2. Dehn-Lickorish. It actually turns out that the mapping class group is
finitely generated. In the following theorem, a non-separating curve will be a curve α
so that S \ α is connected. Figure 3 shows an example.
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α

β

Figure 3. A separating curve (α) and a non-separating curve (β).

Theorem 9.2 (Dehn - Lickorish theorem). Let S be a surface of finite type, the mapping
class group MCG(S) is generated by finitely many Dehn twists about nonseparating
simple closed curves.

For a proof see [FM12, Chapter 4].

9.2. Moduli space

Looking at Definition 8.3, we see there is a natural group action of the mapping
class group of a surface on the corresponding Teichmüller space.

[g] · [(R, f)] = [(R, f ◦ g−1)].

The quotient is what will be called moduli space.

Definition 9.3. Let S be a surface of finite type . The moduli space of S is the space

M(S) = T (S)/MCG(S).

We will write
M(Σg,n) =Mg,n and M(Σg) =Mg .

Remark 9.4. Note that by using the convention that the mapping class group fixes
boundary components and punctures, we leave these “marked”, i.e. if two surfaces
are isometric, but any isometry between them permutes the punctures, these surfaces
represent different points in moduli space.

9.3. The mapping class group of the torus

Recall that the moduli space of the torus also appeared as a quotient. Namely, we
had

M1 = H2 /PSL(2,Z).

This makes one wonder whether the mapping class group of the torus is maybe PSL(2,Z).
This turns out to be almost correct.

First we need to introduce the algebraic intersection number between oriented
curves. Let α and β be two oriented closed curves on an oriented surface S that inter-
sect each other transversely at every intersection point. Then the algebraic intersection
number between α and β is given by

i(α, β) =
∑
p∈α∩β

sgn(ω(vp(α), vp(β))),
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where sgn : R→ {±1} denotes the sign function, ω is any volume form that induces the
orientation and vp(α) and vp(β) denote the unit tangent vectors to α and β respectively
at p. Note that

i(β, α) = −i(α, β).

Figure 4 shows an exemple of a positive contribution to the intersection number.

αp

β

Figure 4. A positive contribution to i(α, β) if the orientation points out
of the page.

We note that this form descends to homology. That is, it induces a form

i : H1(S,Z)×H1(S,Z)→ Z

called the intersection form, with the properties:

(1) i is bilinear.
(2) i is alternating, i.e.

i(a, b) = −i(b, a)

for all a, b ∈ H1(S,Z).
(3) i is non-degenerate, i.e. if a ∈ H1(S,Z) is such that

i(a, b) = 0 for allb ∈ H1(S,Z)

then a = 0.

(see [FK92, Section III.1] for more details). Such a form is called a symplectic form.

Recall that every diffeomorphism f : S → S induces an automorphism f∗ : H1(S,Z)→
H1(S,Z). First of all note that the image preserves the intersection form. Moreover,
isotopic maps give rise to the same automorphism. So this gives us a representation

MCG(S)→ Aut(H1(S,Z), i)

called the homology representation of the mapping class group. Recall that if S is a
closed orientable surface of genus g, then H1(S,Z) ' Z2g. Choosing an identification,
the homology representation becomes a map

MCG(S)→ Sp(2g,Z) =
{
A ∈ Mat2g(Z); i(Av,Aw) = i(v, w), ∀v, w ∈ Z2g

}
.

Finally, there is an isomorphism

Sp(2,Z) ' SL(2,Z)

(see Exercise 9.2).

We will show that for the torus, the homology representation is an isomorphism.
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Theorem 9.5. We have

MCG(T2) ' SL(2,Z).

The action of MCG(T2) on T 1 is that given by(
a b
c d

)
τ =

aτ − b
−cτ + d

for all

(
a b
c d

)
∈ SL(2,Z) and τ ∈ T 1.

Proof. Let us first prove that the homology representation is surjective. We will
identify

T2 = R2 /Z2

Every element A ∈ SL(2,Z) induces a linear map φA : R2 → R2. Moreover, since
SL(2,Z) preserves Z2 ⊂ R2, the action on R2 descends to an action by diffeomorphisms

[φA] : T2 → T2.

Moreover, since the action of A on lattice vectors corresponds to the action on closed
curves. [φA]∗ = A.

For injectivity, we note that for T2, we have

π1(T2, [0]) ' H1(T2,Z).

So suppose, φ : T2 → T2 is a diffeomorphism so that φ∗ = Id. This means that if we

take a lift φ̃ : R2 → R2 we have

φ̃(x+ (m,n)) = φ̃(x) + φ∗(m,n) = φ̃(x) + (m,n),

for all (m,n) ∈ Z. This means that

Ft(x) = tx+ (1− t)φ̃(x), t ∈ [0, 1], x ∈ R2

gives a Z2-equivariant homotopy between φ̃ and the identity. In other words, φ is
isotopic to the identity and in particular represents the trivial element in MCG(T2).

In order to prove the final statement, use a generating set

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
of SL(2,Z). Proving the claim for these two elements, proves it for all (using that the
formula defines an action, the proof of which we leave to the reader). Let us write α
and β for the curves corresponding to the vectors (0, 1), (1, 0) ∈ Z2 respectively. Above
we essentially showed that T acts as Tα (see also Exercise 9.3). Now since

Tα(X, f) = (X, f ◦ T−1
α ),

we see that Tα(τ) = τ − 1.
Likewise, S acts by Tα ◦ Tβ ◦ T−1

α , which means that it sends the lattice with basis
(1, τ) to a lattice with basis (−τ, 1). Now we need to rotate and scale the lattice back
into position. And obtain (1,−1/τ). �
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Remark 9.6. Note that the theorem above implies that the mapping class group action
is not faithful. The kernel of the action is the center of SL(2,Z), i.e. the subgroup{

±
(

1 0
0 1

)}
< SL(2,Z).

On the other hand, we do have

H2 /PSL(2,Z) = H2 / SL(2,Z).

This means that the mapping class group action is indeed a generalization of the situ-
ation for the torus case.
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9.4. Exericises

Exercise 9.1. Check that the group operation of the mapping class group of a surface
is well defined.

Exercise 9.2. Show that
Sp(2,Z) ' SL(2,Z).

Exercise 9.3. How can (
1 1
0 1

)
,

(
1 0
1 1

)
∈ SL(2,Z)

be realized by Dehn twists?





LECTURE 10

A topology on Teichmüller space

Our next goal is to put a topology on Teichmüller space. Of course, the goal is
that marked complex structures that are more similar should be closer to each other.
So that raises the question how one measures the how similar two marked complex
structures are. This is where Beltrami differentials come in. We will mainly follow
[IT92, Hub06]

10.1. Beltrami coefficients

In what follows, we will equip our base surface S with a complex structure as well.
So, suppose

[R, f ] ∈ T (S).

Let (U, z) denote a local coordinate on S and (V,w) one on R so that f(U) ⊂ V . Define
a map F = w ◦ f ◦ z−1 : z(U)→ C and consider the function

µ =

(
∂F

∂z

)/(∂F
∂z

)
on z(U). This is a smooth function that is independent of the choice of coordinate
(V,w) (Exercise 10.1). One computes that the Jacobian of F is given by∣∣∣∣∂F∂z

∣∣∣∣2 − ∣∣∣∣∂F∂z
∣∣∣∣2 .

Since F is orientation preserving, this is positive and hence

|µ| < 1.

Moreover, the Cauchy-Riemann equations imply that F is holomorphic on z(U) if and
only if µ = 0. In this sense, µ measures how far away f is from conformal in the chart
(U, z). We will make this more geometric later. µ will be called the Beltrami coefficient
of f with respect to (U, z).

Let’s have a look at how the Beltrami coefficient depends on the coordinate. So,
consider coordinate patches (Uj, zj) and (Uk, zk) on S so that Uj∩Uk 6= ∅ and coordinate
patches (Vj, wj) and (Vk, wk) on R so that

f(Uj) ⊂ Vj and f(Uk) ⊂ Vk.

Let µj and µk denote the corresponding Beltrami coefficients. Working out the chain
rule, we get

µj = (µk ◦ zkj) ·
(
∂zkj
∂zj

)/(∂zkj
∂zj

)
on zj(Uj ∩ Uk),
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where zkj = zk ◦ z−1
j . In particular, the absolute value |µ| is independent of the choice

of coordinate patch. We will write |µf (z)| for this value at the point z ∈ R.

10.2. Quasiconformal mappings

Now let us consider what it is that |µf (z)| measures. Let f : D → D denote an
orientation preserving diffeomorphism of some domain D ⊂ C containing 0. And write

Df(0) · z =
∂f

∂z
(0) · z +

∂f

∂z
(0) · z

denote the first order Taylor expansion of f at 0. Writing Df(0) · z = a · z + b · z (so
a = ∂f

∂z
(0) and b = ∂f

∂z
(0)), it turns out that the determinant and operator norm of

Df(0) are given by

det(Df(0)) = |a|2 − |b|2 and ||Df(0)|| = |a|+ |b| .
The former is a direct computation and the latter we will see in a moment.

Let us consider the inverse image of a unit circle under this map. I.e. the solutions
of the equation

|Df(0) · z| = 1.

Let us write
z = r eiθ, a = |a| eiα, b = |b| eiβ.

The equation then becomes∣∣∣∣(|a|+ |b|) cos

(
θ +

α− β
2

)
+ i(|a| − |b|) sin

(
θ +

α− β
2

)∣∣∣∣ =
1

r
.

This is the equation of an ellipse with

- minor axis at polar angle β−α
2

of half length 1
|a|+|b|

- major axis at polar angle β−α+π
2

of half length 1
|a|−|b| .

Note that the latter is positive since the Jacobian

det(Df(0)) = |a|2 − |b|2 > 0.

Moreover, the former proves out claim about the operator norm.
Figure 1 shows a picture of the situation.

Df(0)
1

|a|−|b|

1
|a|+|b|

Figure 1. An ellipse that gets mapped to a circle.
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The ratio of the axes of the ellipse is

|a|+ |b|
|a| − |b|

=
1 + |µf (0)|
1− |µf (0)|

.

In particular, if µf (0) is close to 1, then the preimage is very far away from a circle and
if µf (0) = 0 (i.e. if f is biholomorphic) then the preimage is a circle. So this means
that

• Biholomorphic maps locally send circles to circles (i.e. they are conformal)
• The µf (0) measures how far away the preimage of a circle (an ellipse) is from

a circle.

For this reason, the Beltrami coefficient µf (z) is sometimes also called the complex
dillatation of f at z. Since the ratio between the major and minor axis of the ellipse is
a measure of how far f is from being conformal, this leads to the following definition:

Definition 10.1. Let R and R′ be Riemann surfaces and let f : R → R′ be an
orientation preserving diffeomorphism. We say f : R → R′ is a K-quasiconformal
mapping if

K ≥ Kf := sup
z∈R

{
1 + |µf (z)|
1− |µf (z)|

}
.

Kf is called the quasiconformal dillatation of f .

Note that
Kf ≥ 1

for all orientation preserving diffeomorphisms f : R → R′. Moreover, the fact that
holomorphic maps are exactly the maps with µf = 0 implies that 1-quasiconformal
maps are conformal.

Remark 10.2. The notion of a quasiconformal map can be generalized to maps of
much lower regularity (see eg. [IT92, Chapter 4]).

The Beltrami coefficient behaves as follows with respect to precomposition with a
diffeomorphism:

Proposition 10.3. Let R, S and T be Riemann surfaces and let

R
f−→ S

g−→ T

be orientation preserving diffeomorphisms. Then

• the following relation holds

µg ◦ f =

(
∂f

∂z

/ ∂f

∂z

)
· µg◦f − µf

1− µf · µg◦f
.

• In particular, if S1 and S2 are Riemann surfaces and

f1 : R→ S1 and f2 : R→ S2

are orientation preserving diffeomorphisms. Then the map f2 ◦ f−1
1 : S1 → S2

is biholomorphic if and only if

µf1 = µf2 .

Proof. This follows from the chain rule (Exercise 10.2). �



74 10. A TOPOLOGY ON TEICHMÜLLER SPACE

10.3. Topologizing Teichmüller space

Now that we have equipped our base surface S with the structure of a Riemann
surface. We can define the set of functions

B(S)1 :=

µf : S → C;
f : S → R an orientation

preserving diffeomorphism,
R a Riemann surface

 .

This can be given a topology using the L∞-norm. I.e.

||µf ||∞ = sup
z∈S
{|µf (z)|}.

Again writing S = S0 \Σ where S0 is a closed and orientable surface and Σ a finite set,
we obtain an action of Diff+(S,Σ) on B(S)1 by pullback, i.e.

ϕ · µf = µf◦ϕ−1

for all ϕ ∈ Diff+(S,Σ) and µf ∈ B(S)1.
We now have the following:

Theorem 10.4. Let S, R and R′ be Riemann surfaces and

f : S → R and f ′ : S → R′

be orientation preserving diffeomorphisms. Then there exists a biholomorphic mapping

h : R→ R′

if and only if

µf = µf ′◦ϕ−1

for some ϕ ∈ Diff+(S,Σ). Moreover, the map

(f ′)−1 ◦ h ◦ f : S → S

is homotopic to the identity if and only if ϕ ∈ Diff+
0 (S,Σ).

Proof. Suppose that there exists a biholormorphic map h : R→ R′. Then we set

ϕ = (f ′)−1 ◦ h ◦ f : S → S.

Then

µf ′ = µh◦f◦ϕ−1 = µf◦ϕ−1 ,

where we have used Proposition 10.3 for the second equality.
Conversely, suppose there exists some ϕ ∈ Diff+

0 (S,Σ) so that

µf = µf ′◦ϕ−1

Proposition 10.3 then shows that f ′ ◦ ϕ ◦ f−1 : R→ R′ is biholomorphic.
The second claim follows from the form of ϕ. �

A direct consequence is the following:
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Corollary 10.5. The map from the set of marked Riemann surfaces defined by

(R, f) 7→ µf

induces a bijections
T (S)→ B(S)1/Diff+

0 (S,Σ)

and
M(S)→ B(S)1/Diff+(S,Σ).

In particular, since B(S)1 is a topological space, these bijections equip T (S) and
M(S) with a topology. We will see later on that the choice of Riemann surface structure
on S does not influence the topology on Teichmüller space.

10.4. Grötzsch’s theorem

In order to have a non-trivial example of the quasi-conformal comparisson between
two Riemann surfaces and also for applications later on, we will prove Grötzsch’s the-
orem.

In this section Am will denote the annulus

Am :=
{
z ∈ C; 0 < Im(z) < m

}
/Z

for all m > 0. Here the Z-action is given by k · z = z + k for all k ∈ Z, z ∈ C.

Theorem 10.6 (Grötzsch’s theorem). Let f : Am → Am′ be a K-quasiconformal map.
Then

1

K
≤ m

m′
≤ K.

Moreover, equality is realized if and only if f can be lifted to a map

f̃ :
{
z ∈ C; 0 < Im(z) < m

}
→
{
z ∈ C; 0 < Im(z) < m

}
given by

f̃(x+ iy) = b+ x+ i
m′

m
y

for some b ∈ R.

We will prove this theorem in the next lecture.
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10.5. Exericises

Exercise 10.1. Suppose
[R, f ] ∈ T (S).

Let (U, z) denote a local coordinate on S and (V,w) one on R so that f(U) ⊂ V . Define
a map F = w ◦ f ◦ z−1 : z(U)→ C and consider the function

µ =

(
∂F

∂z

)/(∂F
∂z

)
on z(U). Show that this is a smooth function that is independent of the choice of
coordinate (V,w).

Exercise 10.2. Prove Proposition 10.3.



LECTURE 11

Grötzsch’s theorem and quasiconformal maps

We will mainly follow [Hub06] for today’s material.

11.1. Grötzsch’s theorem

Recall that Am denotes the annulus

Am :=
{
z ∈ C; 0 < Im(z) < m

}
/Z

for all m > 0, where the Z-action is given by k · z = z + k for all k ∈ Z, z ∈ C.

Theorem 10.6 (Grötzsch’s theorem). Let f : Am → Am′ be a K-quasiconformal map.
Then

1

K
≤ m

m′
≤ K.

Moreover, equality is realized if and only if f can be lifted to a map

f̃ :
{
z ∈ C; 0 < Im(z) < m

}
→
{
z ∈ C; 0 < Im(z) < m

}
given by

f̃(x+ iy) = b+ x+ i
m′

m
y

for some b ∈ R.

Before we prove the theorem, we need two lemmas. In the first lemma, we assume
the annuli Am′ and Am are equipped with the Euclidean metric that descends from C.
Moreover, for the rest of this section ||Df(z)|| will denote the L2-norm of Df(z). I.e.
if f(x+ iy) = u(x, y) + iv(x, y) then

||Df ||2 =

∣∣∣∣∂u(x, y)

∂x

∣∣∣∣2 +

∣∣∣∣∂u(x, y)

∂y

∣∣∣∣2 +

∣∣∣∣∂v(x, y)

∂x

∣∣∣∣2 +

∣∣∣∣∂v(x, y)

∂y

∣∣∣∣2 .
Lemma 11.1. Let f : Am → Am′ be a K-quasiconformal map. Then

1

area(Am)

∫
Am

||Df(x, y)|| dxdy ≥ max

{
1,
m′

m

}
.

Proof. The basic observation is that since the shortest non-trivial curve in Am
has length 1, f sends circles in Am′ to circles of length at least 1. Likewise, vertical
segments in Am go to segments of length at least m′. This means that

1

area(Am)

∫
Am

||Df(x, y)|| dxdy ≥ 1

m

∫ m

0

∫ 1

0

∣∣∣∣∂f∂x
∣∣∣∣ dxdy ≥ 1

m

∫ m

0

dy = 1.

77
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Likewise

1

area(Am)

∫
Am

||Df(x, y)|| dxdy ≥ 1

m

∫ 1

0

∫ m

0

∣∣∣∣∂f∂y
∣∣∣∣ dydx ≥ 1

m

∫ 1

0

m′dx =
m′

m
.

�

Moreover, we have:

Lemma 11.2. Let R and R′ be Riemann surfaces and let f : R → R′ be a K quasi-
conformal map. Then

det(Df)(z) ≥ 1

K
||Df(z)||2

for all z ∈ R.

Proof. This is a matter of writing out the Jacobian and ||Df(z)||2. Indeed

det(Df(z)) =

∣∣∣∣∂f∂z
∣∣∣∣2 − ∣∣∣∣∂f∂z

∣∣∣∣2 and ||Df(z)||2 =

(∣∣∣∣∂f∂z
∣∣∣∣+

∣∣∣∣∂f∂z
∣∣∣∣)2

.

So
det(Df(z))

||Df(z)||2
=

1− |µ(z)|
1 + |µ(z)|

≥ 1

K
.

�

We can now prove Grötzsch’s theorem.

Proof of Theorem 10.6. We have

m′ = area(A′m) =

∫
Am

det(Df)(x, y)dxdy.

Using the lemma above, we get

m′ ≥ 1

K

∫
Am

||Df(x, y)||2 dxdy =

1

mK

∫
Am

||Df(x, y)||2 dxdy
∫
Am

12dxdy

≥ 1

mK

(∫
Am

||Df(x, y)|| dxdy
)2

.

The last step is the Cauchy-Schwarz inequality. Now using Lemma 11.1, we get

m′ ≥ m

K
max

{
1,
m′

m

}2

,

which is equivalent to the theorem.
Moreover, to reach equality, we need both the Jacobian det(Df(z)) and ||Df(z)||

to be constant functions, which means that f̃ needs to be an affine map. Moreover,
since horizontal circles need to be mapped to horizontal circles and vertical segments
to vertical segments, f needs to be of the form as claimed. �
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11.2. Inverses and composition of quasi-conformal maps

It is not clear from Defintion 10.1 that being quasiconformal is closed under taking
inverses and composition. It turns out it is and we will prove that in this section.

Instead of proving this directly, we will first give an equivalent definition of quasi-
conformal mappings. In this definition, a quadrilateral (Q, p1, p2, p3, p4) in a Riemann
surface R will be closed subset Q ⊂ R so that

• Q is homeomorphic to a closed disk
• the points p1, p2, p3, p4 ∈ ∂Q are called the vertices of Q and their cyclic order

coincides with that induced by the orientation.

Figure 1 shows an example.

Figure 1. A quadrilateral.

First we note:

Lemma 11.3. For every quadrilateral Q we can find a homeomorphism

h : Q→
{
z ∈ C; 0 ≤ Re(z) ≤ a, 0 ≤ Im(z) ≤ b

}
for some a, b > 0 so that h is conformal on the interior Q̊ of Q and

h(p1) = 0, h(p2) = a, h(p3) = a+ ib and h(p4) = ib.

Moreover, a/b is independent of h.

Proof. By the Riemann mapping theorem, we can find a conformal map

Q̊→ H2,

which by the Carathéodory theorem extends to a homeomorphism

Q→ H2 ∪∂H2 .

By post-composing with a Möbius transformation, we obtain a map h1 : Q→ H2 ∪∂H2

so that also

h1(p1) = −1, h1(p2) = 1 and h1(p3) = −h1(p4) > 1.

If we set k = 1/h1(p3) and define h2 : H2 → C by

h2(z) =

∫ z

0

dζ√
(1− ζ2)(1− k2ζ2)

for all z ∈ H2 ∪∂H2, then h2 turns out to be a conformal map between H2 ∪∂H2 and
some rectangle {

z ∈ C; −K ≤ Re(z) ≤ K, 0 ≤ Im(z) ≤ K ′
}
.
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For instance, to see that the image of H2 ∪∂H2 is indeed given by this rectangle, we
note that if we let ζ run over the real line the argument of

√
(1− ζ)2(1− k2ζ2) jumps

by π/2 each time ζ crosses a root. As such, ∂H2 gets sent to a rectangular curve. So
H2 itself gets mapped either to the interior or the exterior of this curve. Using that i
gets mapped to a point with positive imaginary part, we see that it’s the interior. For
more information on this map and its cousins, see [Neh75, Section V.6].

The map we are after is now

h(z) = h2 ◦ h1(z) +K

for all z ∈ Q.
To see that a/b is well defined, we suppose that h′ : Q → C is another mapping

satisfying the conditions of the lemma. This means that

h′ ◦ h−1 : [0, a] + i[0, b]→ [0, a′] + [0, b′]

is a biholormophism. Using the Schwartz reflection principle (see eg. [SS03, Theorem
5.6]), we can extend this map to an automorphism of C. This means that there exist
λ ∈ C \{0} and µ ∈ C so that

h′ ◦ h−1(z) = λz + µ

for all z ∈ [0, a] + i[0, b]. The fact that

h′(p1) = h(p1) = 0, h(p2) > 0 and h′(p2) > 0

implies that λ ∈ (0,∞) and µ = 0. This implies that

a′/b′ = a/b.

�

We will call the ratio a/b the modulus of Q and denote it by

M(Q).

We now claim the following

Theorem 11.4. Let D ⊂ C be a domain. An orientation preserving embedding f :
D → C is K-quasiconformal if and only if

1

K
·M(Q) ≤M(f(Q)) ≤ K ·M(Q)

for all quadrilaterals Q ⊂ D.

Before we get to the proof of this theorem, we note the following immediate conse-
quence:

Corollary 11.5. Let R, S and T be Riemann surfaces and suppose

R
f1−→ S

f2−→ T

are quasi-conformal with quasiconformal dilatations K1 and K2 then
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• The map
f2 ◦ f1 : R→ T

is quasiconformal with dilatation

K ≤ K1 ·K2.

• The map
f−1

1 : S → R

is K1-quasiconformal.

Proof. Exercise 11.1. �

Proof of Theorem 11.4. The proof that if f is K-quasiconformal then the re-
lation between the moduli holds is essentially the same as that of Grötzsch’s theorem,
so we leave it to the reader.

For the other direction, we expand f near 0 as

f(z) = f(0) +
∂f

∂z
(0) · z +

∂f

∂z
(0) · z + o(|z|).

Consider the rectangle
Rε = [0, ε] + i[0, ε].

Up to a small error f(Rε) is the rectangle[
a, a+

1

2

(
∂f

∂z
(0) +

∂f

∂z
(0)

)
ε

]
+ i

[
b, b+

1

2

(
∂f

∂z
(0)− ∂f

∂z
(0)

)
ε

]
,

where f(0) = a+ ib. So, from out assumption we obtain

K = KM(Rε) ≥M(f(Rε)) ≥
∂f
∂z

(0) + ∂f
∂z

(0)
∂f
∂z

(0)− ∂f
∂z

(0)
+ o(1)

so if we let ε tend to 0, we get that

K ≥
∂f
∂z

(0) + ∂f
∂z

(0)
∂f
∂z

(0)− ∂f
∂z

(0)

and hence, since the point 0 did not play a role in the above, that f is K-quasiconformal.
�
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11.3. Exercises

Exercise 11.1. Prove Corollary 11.5.



LECTURE 12

Hyperbolic annuli and Fenchel-Nielsen coordinates

12.1. The Teichmüller metric

The topology on Teichmüller space is actually induced by a metric, called the Te-
ichmüller metric. We won’t dive into the (very interesting) theory of the Teichmüller
metric too much in this course. However, it will be useful to have it around, so we will
use this section to define it.

Definition 12.1. Let S be a surface of finite type without boundary. Then we define
the Teichmüller metric on T (S) by

dT([R, f ], [R′, f ′]) = inf
g

log(Kg)

where the infimum is taken over all quasi-conformal maps g : R → R′ so that g ◦ f is
isotopic to f ′ relative to the punctures.

Note that for non-compact surfaces, the existence of a single map g with the required
properties is not clear. We will pretend this issue does not exist for now.

The fact that
dT([R, f ], [R′, f ′]) = 0

if [R, f ] = [R′, f ′] follows from the fact that 1-quasiconformal maps are conformal.
The fact that this is so only if [R, f ] = [R′, f ′] can be proved with an apporximation
argument. Corollary 11.5 implies the triangle inequality so the Teichmüller metric is
indeed a metric. Finally, this metric induces the same topology on Teichmüller space
(Exercise 12.1).

12.2. Hyperbolic annuli

Some of the annuli we saw in Section 11.1 can also be equipped with a hyperbolic
metric. In order to do this, note that if g ∈ PSL(2,R) is a hyperbolic or parabolic
isometry then the group 〈g〉 ' Z acts on H2 properly disconinuously and freely. This
means that

Ng = H2 /〈γ〉
is an orientable hyperbolic surface with fundamental group Z and hence an annulus.
First we note that the geometry of the annulus only depends on the translation length
of g.

Lemma 12.2. Let g, h ∈ PSL(2,R) be either both hyperbolic or both parabolic elements
so that their translation lengths satisfy Tg = Th. Then the annuli Ng and Nh are
isometric. Moreover, every complete hyperbolic annulus is isometric to Ng for some
parabolic or hyperbolic g ∈ PSL(2,R).

83
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Proof. Exercise 12.2. �

Note that this includes the case where Tg = Th = 0.
The question now becomes whether it is biholomorphic to Am for some m and if so,

to which. In order to solve this question, we introduce a new model for the hyperbolic
plane the band model. Set

B =
{
z ∈ C; |Im(z)| < π

2

}
,

equipped with the metric

ds2 =
dx2 + dy2

cos2(y)
.

This is another model for the hyperbolic plane, moreover the real line is a geodesic in
B (see Exercise 12.3). Maps of the from ϕb : B→ B defined by

z 7→ z + b

for some b > 0 are isometries for this metric. Moreover 〈ϕb〉 ' Z acts on B properly
discontinuously, which means that

Mb = B /〈ϕb〉
is a hyperbolic annulus. Moreover, the translation length of ϕb is b, so using Lemma
12.2, we see that

Mb ' Ng

as hyperbolic surfaces, where g ∈ PSL(2,R) is any hyperbolic element with translation
length b.

We now claim that:

Lemma 12.3. Let m > 0. The annuli Am and Mπ/m are biholomorphic.

Proof. Since the map z 7→ z − i m/2 is a biholormophism of C that commutes
with the Z-action. Am is biholomorphic to{

z ∈ C; |Im(z)| < m
2

}
/Z .

The map
{
z ∈ C; |Im(z)| < m

2

}
→ B given by z 7→ π

m
z is a Z-equivariant biholomor-

phism and hence descends to a biholomorphism{
z ∈ C; |Im(z)| < m

2

}
/Z 'Mπ/m.

�

For the parabolic case we have:

Lemma 12.4. let g ∈ PSL(2,R) be parabolic. The annuli Ng and D \{0} are biholo-
morphic.

Proof. Using Lemma 12.2, we may assume that

g =

[
1 1
0 1

]
.

The map H2 → D given by
z 7→ e−2πiz

induces the biholomorphism. �
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12.3. Fenchel-Nielsen coordinates, part I

In what follows we will introduce a set of coordinates on Teichmüller spaces of
hyperbolic surfaces. So in this section, we will assume that our base surface S admits a
complete hyperbolic metric. Moreover, we will fix a (topological) pants decomposition
P on S.

12.3.1. Lengths. Given any essential closed curve γ on S, we obtain a function

`γ : T (S)→ R+

called a length function, defined as follows. Each [R, f ] ∈ T (S) can be seen as a marked
hyperbolic surface. So, Proposition 6.1 implies that the homotopy class of f(γ) on R
contains a unique geodesic. `γ([R, f ]) is the length of this geodesic.

Hence, given S and P as above, we obtain a map

`P : T (S)→ R3g−3+n
+

defined by

`P([R, f ]) =
(
`γ([R, f ])

)
γ∈P

.

We have:

Lemma 12.5. Let S and γ be as above. The function

log ◦`γ : T (S)→ R

is 1-Lipschitz with respect to the Teichmüller metric, i.e.

|log(`γ([R, f ]))− log(`γ([R
′, f ′]))| ≤ dT([R, f ], [R′, f ′])

for all [R, f ], [R′, f ′] ∈ T (S).

Proof. Fix a basepoint p ∈ S so that we can identify γ with an element of π1(S, p),
that we will also denote by γ. The infinite cyclic subgroup of π1(S, p) generated by γ
induces a Z-cover

Sγ → S.

We will writeA andA′ for the corresponding covering spaces ofR andR′. Just like in the
proof of Proposition 6.1, these are annuli and by Lemma 12.3, they are biholomorphic
to Aπ/`γ([R,f ]) and Aπ/`γ([R′,f ′]) respectively. K-quasiconformal maps between R and R′

lift to K-quasiconformal maps of A and A′. So we have

dT([R, f ], [R′, f ′]) = inf
g homotopic
to ′f◦f−1

log(Kg)

= inf
g homotopic
to f ′◦f−1

log(Kg̃:A→A′)

≥
∣∣∣∣log

(
`γ([R, f ])

`γ([R′, f ′])

)∣∣∣∣ ,
where the last line follows from Grötzsch’s theorem (Theorem 10.6). �
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12.3.2. Twists. So, given S and P as above, we have a continuous map

`P : T (S)→ R3g−3+n
+ .

It’s however not quite injective. The problem is that we can still rotate the hyperbolic
metric along the curves in the pants decomposition. Twist coordinates will remedy
this.

First we pick a collection of disjoint simple closed curves Γ so that for each pair
of pants P in S \ P , Γ ∩ P consists of three arcs, each connecting a different pair of
boundary components of P . Figure 1 shows an example.

Figure 1. A pants decomposition P with a set of curves Γ.

Regardless of our choice of pants decomposition P , such a system of curves Γ always
exists (Exercise 12.4).

Now let γ ∈ P be a pants curve. Then γ bounds either one P or two pairs of pants
P1 and P2 in the decomposition. Let us assume the latter for simplicity, the other case
is analogous. The left hand side of Figure 2 shows an example of such a curve γ.

γ
P1

P2

η

f

α1

δ

α2

Figure 2. The image of an arc under a diffeomorphism.

If f : S → R is an orientation preserving diffeomorphism, then it maps P to some
pants decomposition of R. Moreover, if η is one of the (two) components of (P1∪P2)∩Γ
that intersects γ, then f(η) is some arc between boundary components of f(P1) and
f(P2) (like on the right hand side of Figure 2). Now

• δ will be the unique simple closed geodesic in the free homotopy class of f(γ)
on R.
• α1 and α2 the two unique perpendiculars between the boundary components

between which f(η) runs and δ (see Figure 2).
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Then relative to the boundary of f(P1 ∪ P2), the arc f(η) is freely homotopic to
α2 · δk · α1 for some k ∈ Z.

The twist along γ is now

τγ([R, f ]) = k · `γ([R, f ])± d(p1, p2) ∈ R
where

• p1 and p2 are the points where α1 and α2 hit δ.
• The signs are determined by the orientation of R in the following way. The

orientation of R gives a notion of “twisting to the left” along δ. Left twists are
counted positively and right twists negatively.
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12.4. Exercises

Exercise 12.1. Show that the topology induced on Teichmüller space by the Te-
ichmüller metric is the same as that induced by Beltrami coefficients.

Exercise 12.2. (a) Prove that every hyperbolic isometry of H2 is conjugate to
one of the form [

λ 0
0 λ−1

]
, λ > 1.

(b) Prove that every parabolic isometry of H2 is conjugate to[
1 1
0 1

]
.

(c) Prove Lemma 12.2.

Exercise 12.3. (a) Show that

B =
{
z ∈ C; |Im(z)| < π

2

}
,

equipped with the metric

ds2 =
dx2 + dy2

cos2(y)

is isometric to H2. Hint: this can be done without providing an isometry.
(b) Show that R ⊂ B is a geodesic.

Exercise 12.4. Let P be a pants decomposition of a surface S. Show that there exists
collection of disjoint simple closed curves Γ so that for each pair of pants P in S \ P ,
Γ ∩ P consists of three arcs, each connecting a different pair of boundary components
of P .
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Tecihmüller space is a cell

We finish the proof that Fenchel-Nielsen coordinates give rise to a homeomorphism.
We will mainly follow [Hub06].

13.1. Fenchel-Nielsen coordinates, part II

Let us prove that twists are continuous:

Lemma 13.1. Let S and γ be as above. The function

τγ : T (S)→ R

is continuous.

Proof sketch. Suppose that

dT([R, f ], [R′, f ′])

is small. This means that the map f ′ ◦ f−1 : R → R′ is close to an isometry. Since it
maps the curves and arcs used to define τγ([R, f ]) to those used to define τγ([R

′, f ′]).

So, this map lifts to a map ˜f ′ ◦ f−1 : H2 → H2 that is close to conformal and hence close
to an isometry. This means that the numbers τγ([R, f ]) and τγ([R

′, f ′]) are close. �

13.1.1. Fenchel Nielsen coordinates are homeomorphic. Putting the above
together, we obtain a continuous map

FNP : T (S)→ R3g−3+n
+ ×R3g−3+n

defined by

FNP([R, f ]) =
(
`γ([R, f ]), τγ([R, f ])

)
γ∈P

.

For S = Σ0,3 we will adopt the convention that FN is the constant map.
It turns out that the Fenchel Nielssen map is a homeomorphism:

Theorem 13.2. Let S be a surface of finite type such that χ(S) < 0 and let P be a
pants decomposition of S. Then the map

FNP : T (S)→ R3g−3+n
+ ×R3g−3+n,

is a homeomorphism.

Proof. Since we have already proved that lengths and twists are continuous, we
only need to provide a continuous inverse to the map FNP .

89
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Given a vector (`γ, τγ)γ∈P , we can use the gluing construction we discusses in Lec-
tures 5 and 6 in order to produce a hyperbolic surface R. The lengths give us the
geometry of the pairs of pants and the gluing along a curve γ is determined by

τ (0)
γ = τγ + k · `γ,

where k is such that τ
(0)
γ ∈ [0, `γ). Call this surface R

(
(`γ, [τγ])γ

)
. In particular, by

varying the twist τγ, we obtain the same surface countably many times.

The question however is what the marking, i.e. the map f : S → R
(

(`γ, [τγ])γ

)
,

should be. In order to do this, we fix open regular neighborhoods NS
γ of the curves

γ ∈ P on S so that

S \
⋃
γ∈P

Nγ

consists of disjoint pairs of pants P S
1 , . . . , P

S
k . We will once and for all parametrize the

annuli

NS
γ =

(
R /Z

)
× (−1, 1).

On R(`γ, [τγ]) we pick such neighborhoods too and obtain neighborhoods NR
γ and

pairs of pants PR
i . We will assume that

NR
γ =

{
x ∈ R

(
(`γ, [τγ])γ

)
; d(x, γ) < ε

}
for some ε small enough. Moreover, we assume ε varies continuously as a function of
(`γ, [τγ])γ.

In order to build f , we now pick a parametrization

NR
γ =

(
R /`γ Z

)
× (−1, 1)

where the subset (
R /`γ Z

)
× {t} ⊂ NR

γ

is one of the (one or two) components of{
x ∈ R

(
(`γ, [τγ])γ

)
; d(x, γ) = |t| · ε

}
,

parametrized by a constant multiple (depending on t) of arclength for all t ∈ (−1, 1).
The map fγ : NS

γ → NR
γ is now given by

fγ(θ, t) =

(
`γ · θ + τγ ·

t+ 1

2
, t

)
.

The awkward (t + 1)/2 is an artifact of choosing the interval (−1, 1) instead of (0, 1)
(the latter would have made some of the previous equations more awkward).

For the complements of the annuli we choose arbitrary homeomorphisms and fPi :
P S
i → PR

i that smoothly extend the fγ.
This map is clearly an inverse and since we can make everything depend on the

input continuously, it’s continuous. �
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Remark 13.3. Looking at the proof above, it’s a natural question to ask whether we
maybe get a fundamental domain for moduli space by only considering τγ ∈ [0, `γ).

However, this not the case. To see this, take any f ∈ Diff+(S,Σ) (where S = S0 \Σ,
S0 is closed and Σ a finite set) that is not homotopic to the identity. Then we get a

surface isometric to R
(

(`γ, [τγ])γ∈P

)
if we assign the lengths of the curves in f(P) to

the curves in P instead (the isometry will be induced by f).

13.2. Teichmüller spaces of hyperbolic surfaces with boundary

From the perspective of hyperbolic surfaces, the theory above has a natural gener-
alization to surfaces with boundary.

Definition 13.4. Let Σg,b,n be a surface that supports a hyperbolic metric and label its
boundary components by β1, . . . , βb. Given L1, . . . , Lb, the Teichmüller space of hyper-
bolic surfaces diffeomorphic to Σg,b,n with boundary components of length L1, . . . , Lb is
defined as

T g,b,n(L1, . . . , Lb) =

(R, f);
R a complete hyperbolic surface, f : Σg,b,n → R

an orientation preserving diffeomorphism so
that f(βi) has length Li ∀i = 1, . . . , b

/ ∼,
where (R, f) ∼ (R′, f ′) if and only if there exists an isometry m : R→ R′ so that

(f ′)−1 ◦m ◦ f : Σg,b,n → Σg,b,n

is homotopic to the identity.

Note that MCG(Σg,b,n) acts on T g,b,n(L1, . . . , Lb), which leads to:

Definition 13.5. Given L1, . . . , Lb, the moduli space of hyperbolic surfaces diffeomor-
phic to Σg,b,n with boundary components of length L1, . . . , Lb is defined as

Mg,b,n(L1, . . . , Lb) = T g,b,n(L1, . . . , Lb)/MCG(Σg,b,n).

Note that in this moduli space, the boundary components are still marked.
Tracing the proof of Theorem 13.2, we obtain

Proposition 13.6. Let P be a pants decomposition of Σg,b,n. The map

FNP : T (Σg,b,n)→ R3g−3+b+n
+ ×R3g−3+b+n

is a bijection.

Proof. Exercise 13.1. �

This means we can equip these moduli and Teichmüller spaces with a topology as
well.
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13.3. Exercises

Exercise 13.1. Prove Proposition 13.6.



LECTURE 14

Towards a complex structure on Teichmüller space

It turns out Teichmüller space of a surface without boundary is not just homeomor-
phic to an open set in C3g−3+n, it also also carries a natural complex structure. Our
next intermediate goal is to explain where this comes from. The global strategy is to
embed Teichmüller space in a space of quadratic differentials via a map called the Bers
embedding. This goes in two steps. First of all, we identified Teichmüller space with
a quotient of a space of Beltrami coefficients. For each Beltrami coefficient µ, we will
find a “canonical” quasiconformal map f = fµ so that µ = µf . We will then use the
Schwarzian derivative to associate a quadratic differential to this map f .

In this lecture, we will discuss some of the ingredients from the above, following
[Hub06, Dum09].

14.1. Solving the Beltrami equation

We start with the input for the first step of the process we described in Section 14:
solving the Beltrami equation. We have:

Proposition 14.1. Let D ⊂ C be a domain. Suppose that µ : D → C is a real analytic
function so that

||µ||∞ < 1.

Then for every z ∈ D there exists an open neighborhood V of z so that there is a real
analytic function f : V → C that is a homeomorphism onto its image and

∂f

∂z
= µ

∂f

∂z

on V .
Moreover, if f1 : V1 → C and f2 : V2 → C are two such functions then there exists

an analytic homeomorphism

h : f1(V1 ∩ V2)→ f2(V1 ∩ V2)

so that on V1 ∩ V2: f2 = h ◦ f1.

Proof. The trick is to first think of µ and f as maps with two real inputs, i.e.
to write z = (x, y) and then to enlarge our space of inputs by allowing x and y to be
complex. We will think of C embedded in C2 as R2 ⊂ C.

Choose some neighborhood W of z0 = (x0, y0) so that µ is analytic in W , the
Beltrami equation becomes

(1− µ(x, y))
∂f(x, y)

∂x
+ i(1 + µ(x, y))

∂f(x, y)

∂y
= 0.

93



94 14. TOWARDS A COMPLEX STRUCTURE ON TEICHMÜLLER SPACE

Now consider the ODE
dy(x)

dx
= i

1 + µ(x, y(x))

1− µ(x, y(x))
.

f solves the first equation if and only if f is constant on solutions y = y(x) to the
equation above. Indeed,

df(x, y(x))

dx
=
∂f(x, y(x))

∂x
+
dy(x)

dx

∂f(x, y(x))

∂y
.

So, this trick turns our PDE into a first order ODE.
This also means that f is uniquely determined by its value on a transversal to the

complex lines y(x). So for instance by its values on

L =
{

(x, y) ∈ W ; x = x0

}
.

If we let f denote the solution that is equal to y on L, then

∂f

∂y
(x0, y0) = 1

and
∂f

∂x
(x0, y0) = −i1 + µ(x0, y0)

1− µ(x0, y0)
.

Since the latter is not a real number, the inverse function theorem applies and hence f
induces a local diffeomorphism between W ∩ R2 and C. Moreover, any other solution
satisfies g(x0, y) = h(y) for some analytic h and we hence obtain g(x, y) = h ◦ f . �

Remark 14.2. Proposition 14.1 can be extended to L∞ functions µ (see [Hub06,
Theorem 4.6.1]).

The proposition above allows us to make the following definition:

Definition 14.3. Let D ⊂ C be a domain. Suppose that µ : D → C is a real analytic
function of compact support so that

||µ||∞ < 1.

Then the unique f : D → C so that

∂f

∂z
= µ

∂f

∂z

and

f(z) = z +O
(
|z|−1)

as z →∞ will be denoted fµ : D → C.

14.2. The Schwarzian derivative

Now we discuss the Schwarzian derivative. Given a domain D ⊂ Ĉ and an analytic

function f : D → Ĉ with non vanishing derivatives, the Schwarzian S(f) measures how
far away f is from a Möbius transformation.
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14.2.1. The definition. We start with a lemma:

Lemma 14.4. Let D ⊂ Ĉ be a domain and z0 ∈ D. For every analytic map f : D → Ĉ
with non-vanishing derivative there exists a unique element A ∈ PSL(2,C) so that

f(z0) = A(z0),
df

dz
(z0) =

dA

dz
(z0) and

d2f

dz2
(z0) =

d2A

dz2
(z0).

Proof. Exercise 14.1. �

Looking at this lemma, we see that the third order term of the Taylor expansion of
f − A is a good measure of how far f is from a Möbius transformation. That is, we
could consider the map

D3(f − A)(z0) : Tz0D → Tf(z0)Ĉ.
This is naturally a cubic map:

D3(f − A)(z0)(λv) = λ3v

for all v ∈ Tz0D, λ ∈ C. In order to have something that is completely local, we
postcompose with Df(z0)−1. This gives us a quadratic map

Df(z0)−1 ◦D3(f − A)(z0) : Tz0D → C .
The reason that this is quadratic is that the map

Df(z0) : Tz0D → Tf(z0)Ĉ
induces an isomorphism between the set of quadratic maps{

q : Tz0D → C; q(λv) = λ2q(v), λ ∈ C, v ∈ Tz0D
}

and the set of cubic maps{
m : Tz0D → Tf(z0)Ĉ; m(λv) = λ3m(v), λ ∈ C, v ∈ Tz0D

}
by (

Df(z0) · q
)

(v) = q(v) ·Df(z0) · v
for all v ∈ Tz0D and all quadratic maps q : Tz0D → C.

Definition 14.5. Let D ⊂ Ĉ be a domain and z0 ∈ D. Moreover, let f : D → Ĉ be an
analytic map with non-vanishing derivative. Finally, let A ∈ PSL(2,C) be the unique
element so that

f(z0) = A(z0),
df

dz
(z0) =

dA

dz
(z0) and

d2f

dz2
(z0) =

d2A

dz2
(z0).

Then the Schwarzian derivative of f at z0 is given by

S(f)(z0) := 6 ·Df(z0)−1 ◦D3(f − A)(z0) : Tz0D → C .

The 6 in the definition above is just a normalization. Such a quadratic map corre-
sponds to a differential form of the form

S(f)(z) = φ(z)dz2

(assuming f is analytic). This can be made completely explicit:
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Lemma 14.6. Let D ⊂ Ĉ be a domain and z0 ∈ D. Moreover, let f : D → Ĉ be an
analytic map with non-vanishing derivative. Then

S(f)(z) =

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)
dz2.

Proof. Without loss of generality, we assume that z = 0 and f(0) = 0. Write

f(z) = a1z +
a2

2
z2 +

a3

6
z3 + . . . .

Since f(0) = 0, A is of the form

A(z) =
αz

1 + βz
= αz − αβz2 + αβ2z3 − . . . .

This means that
α = a1 and β = − a2

2a1

.

So the difference in the third order term is

a3

6
− a2

2

4a1

.

Post-composing with Df(0)−1 corresponds to dividing by a1. So

S(f)(0) =

(
a3

a1

− 3

2

a2
2

a2
1

)
dz2,

as claimed. �

14.2.2. Basic properties. The following properties of the Schwarzian derivative
are immediate:

Proposition 14.7. Let D ⊂ Ĉ be a domain and let f : D → Ĉ be an analytic map
with non-vanishing derivative.

(1) S(f) = 0 on D if and only if f = A|D for some A ∈ PSL(2,C)
(2) S(A ◦ f) = S(f) for all A ∈ PSL(2,C).

Intermezzo: Darboux derivatives. There is another interpretation of the Schwarzian
derivative. We will not use it in the rest of this course, but since it gives a nice geoemtric
interpretation of S(f), we briefly sketch it here, following [Dum09].

Again, let D ⊂ Ĉ be a domain and f : D → Ĉ an analytic function with non-
vanishing derivative. The map

D → PSL(2,C)

that associates to each point z ∈ D the unique Möbius transformation that agrees with
f up to second order at z is called the osculation map. We will denote the value at
z ∈ D by oscz(f).

Note that if this map is constant, then f is a Möbius transformation. So in order
to see how far f is from a Möbius transformation, we can take a derivative. Note that
it follows from the proof of Lemma 14.6 that this is possible. We could take the usual
differential geometric derivative, but since the target is a Lie group, there is a way to
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take a derivative with values in the corresponding Lie algebra. This is what is called
the Darboux derivative and goes as follows.

First, recall that given a Lie group G, its Lie algebra g is the tangent space TeG at
the identity element e ∈ G. This is an associative algebra with multiplication induced
by the Lie bracket [·, ·] : g× g→ g. If G is a matrix group, then g is naturally a matrix
algebra and the Lie bracket on g is given by the commutator:

[X, Y ] = XY − Y X.
The Lie algebra of PSL(2,C) is

sl2(C) :=
{
X ∈ Mat2×2(C); tr (X) = 0

}
.

In the usual differential geometric setting, the derivative of a smooth map F : M →
N is a map

DF : TpM → TF (p)N.

In the case where the target is a Lie group, there’s a natural way to “forget the under-
lying points” i.e. to make the differential lie in the Lie algebra of G. This is where the
Maurer-Cartan form comes in. Given g ∈ G, the map

Lg : G→ G

will denote left multiplication with g, i.e.

Lg(h) = gh

for all h ∈ G. The Maurer-Cartan form ωG ∈ Λ1G⊗ g is now given by

ωG|g(v) = (DLg)
−1v

for all v ∈ TgG and g ∈ G. In words, this form identifies the tangent space at a point
in the group with its Lie algebra.

The Darboux derivative of a smooth map

F : M → G

between a manifold M and a Lie group G is the g-valued 1-form

ωF := F ∗ωG ∈ Λ1(M)⊗ g.

Now a computation shows that if S(f)(z) = φ(z)dz2 then

ωoscf (z) = −1

2
φ(z)

(
z −z2

1 −z

)
dz.
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14.3. Exercises

Exercise 14.1. Prove Lemma 14.4. Hint: most of this is done in the proof of Lemma
14.6.
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More about Schwarzians and quadratic differentials

Most of the material below is taken from [Hub06].

15.1. Which quadratic differentials do we hit?

A natural question is which quadratic differentials (i.e. expressions locally of the
form q(z) = φ(z)dz2) can be obtained as the Schwarzian of a funcion. We have:

Proposition 15.1. Let U ⊂ Ĉ be a simply connected open set and let q be a holomorphic
quadratic differential on U . Then for any z0 ∈ U and a0, a1, a2 ∈ C so that a1 6= 0 there
exists a unique meromorphic function f : U → C so that

S(f) = q, f(z0) = a0,
df

dz
(z0) = a1 and

d2f

dz2
(z0) = a2.

Proof. Existence and uniqueness follows from standard ODE considerations.
Write q(z) = φ(z)dz2 and consider the differential equation

d2w

dz2
+
φ

2
w = 0.

Since this is a linear second order differential equation without singularities, it has two
linearly independent solutions w1, w2 : U → C. A direct computation shows that there
exists a constant C ∈ C so that

f(z) = C · w1(z)

w2(z)

satisfies
S(f) = q,

(Exercise 15.1). Now let A be a Möbius transformation so that A ◦ f satisfies the other
three conditions. �

Example 15.2. Let us consider an example. Set q = −2k2dz2for some k ∈ (0,∞)
on the unit disk D ⊂ C. The differential equation from the proof in Proposition 15.1
becomes

d2w

dz2
− k2w = 0

which has solutions
w1(z) = eikz and w2(z) = e−ikz.

The ratio

f =
eikz

e−ikz
= e2ikz

99
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is a solution to the equation

S(f) = q.

Note that this solution is an injective function on D if and only if k ≤ π.

It turns out this fact that the solution is injective if and only if the quadratic
differential is “small” is a general phenomenon. To quantify this, we need to first study
quadratic differentials.

15.2. Quadratic differentials

First of all we note that a holomorphic quadratic differential induces natural coor-
dinates near a point where it’s not equal to 0. That is, let q be a quadratic differential
on compact a Riemann surface R. Furthermore suppose that x ∈ R has an open
neighborhood on which we can write

q = q(ζ)dζ2

such that q(x) 6= 0. We may assume, by making U smaller if necessary, that q(ζ) 6= 0
for all ζ ∈ U . This means that on U , q has a well defined holomorphic square root√
q(ζ)dζ.
We obtain a well defined coordinate on U by setting

z(y) =

∫ y

x

√
q(ζ)dζ

for all y ∈ U . In this local coordinate, we have

q = dz2.

We will call a local coordinate so that q takes this form a natural coordinate. Note that
if there are two such different coordinates z and z′ then locally

z′ = ±z + b

for some b ∈ C.
Moreover note that, because translations and flipping the sign preserve the notion of

the real and the imaginary direction in C, the quadratic differential induces the notion
of a horizontal and a vertical direction on the surface. Note however that left and
right nor up and down are not well defined, because of the possibility of sign changes.
Finally, we obtain a local area element |q| by just taking the Euclidean area element in
natural coordinates. If q = q(ζ)dζ2 and ζ = ξ + iη, where ξ and η are real. Then the
area element is given by

|q| = |q(ζ)| dξdη.
Note that since the zeroes of holomorphic functions don’t accumulate (see eg. [SS03,

Theorem 3.1.1]), we can find natural coordinates for q near all but finitely many points
in R. In particular, the area of q,

||q||1 =

∫
R

|q|

is well defined.
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Likewise, if g ≥ 2 then R has a unique hyperbolic metric inducing its complex
structure. If ρ2 denotes the area element of this hyperbolic metric, then we can define
a natural ∞-norm by

||q||∞ = sup
z∈R

|q| (z)

ρ2(z)
.

Finally, we need a fact from the theory of Riemann surfaces that we will just need
to assume, because it would take us too far astray to prove it.

Proposition 15.3. Let R be a compact Riemann surface of genus g ≥ 1. The vector
space Q(R) of quadratic differentials on R has complex dimension

dimC(Q(R)) =

{
1 if g = 1
3g − 3 otherwise.

This follows from the Riemann-Roch theorem (see [FK92, Proposition III.5.2]).

15.3. Nehari’s theorem

We now want to prove the claim that an injectove function gives rise to a “small”
Schwarzian. We need one more ingredient:

Theorem 15.4 (Area theorem). Suppose f : D \{0} → C is analytic and has the series
representation

f(z) =
1

z
+
∞∑
n=0

anz
n.

Then
∞∑
n=0

n |an|2 ≤ 1.

Proof. Exercise 15.2. �

We are now ready to prove Nehari’s theorem:

Theorem 15.5 (Nehari). Let f : D→ Ĉ be injective and analytic. Then

||S(f)||∞ ≤
3

2
.

Proof. Since composition with a Möbius transformation does not change the
Schwarzian, we may consider the problem near z = 0 and assume that f(0) = ∞,
so f is of the form

f(z) =
1

z
+
∞∑
n=0

anz
n.

We moreover assume that f has constant term 0.
The area theorem implies that |a1| ≤ 1. We have

f ′(z) = − 1

z2
+ a1 +O (z) , f ′′(z) =

2

z3
+O (1) , f ′′′(z) = − 6

z4
+O (1)
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as z → 0.

S(f)(z) =

(
−6/z4 +O (1)

−1/z2 + a1 +O (z)
− 3

2

(
2/z3 +O (1)

−1/z2 + a1 +O (z)

)2
)
dz2

=
1

z2

6 +O (z4)

1− a1z2 +O (z3)
− 3

2z2

(
2 +O (z3)

−1 + a1z2 +O (z3)

)2

=
1

z2

(
6 + 6a1z

2 +O
(
z3
))
− 3

2z2

(
2 + 2a1z

2 +O
(
z3
))2

= −6a1 +O (z) ,

as z → 0. Now we recall that the hyperbolic area element is given by

4
|dz|2

(1− z2)2)
= (4 +O

(
z2
)
) |dz|2 ,

so

||S(f)||∞ ≤
|6a1|

4
≤ 3

2
.

�

15.4. The Ahlfors-Weill construction, part I

Now we want to go the other way around compared to Nehari’s theorem. Suppose
q ∈ Q((H2)∗) is a bounded holomorphic quadratic differential so that

||q||∞ <
1

2
.

Write q = q(z)dz2 and define a Beltrami coefficient on Ĉ by

µq(z) :=

{
2 Im(z)2q(z) if z ∈ H2

0 otherwise.

Note that ||µq||∞ < 1, which means that we can apply the construction from Proposition

14.1 to obtain a function fµq that is injective and analytic on (H2)∗.

Theorem 15.6 (Ahlfors-Weill construction). Let q ∈ Q((H2)∗) be so that ||q||∞ < 1
2
.

Then fµq |(H2)∗ : (H2)∗ → C is injective and analytic and we have

S(fµq |(H2)∗) = q.
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15.5. Exercises

Exercise 15.1. Let U ⊂ Ĉ be a simply connected open set and let q be a holomorphic
quadratic differential on U . Write q(z) = φ(z)dz2 and consider the differential equation

d2w

dz2
+
φ

2
w = 0.

Since this is a linear second order differential equation without singularities, it has two
linearly independent solutions w1, w2 : U → C. Show that there exists a constant C ∈ C
so that

f(z) = C · w1(z)

w2(z)
satisfies

S(f) = q.

Exercise 15.2. In this exercise we prove Theorem 15.4.

(a) Suppose D ⊂ C is a domain bounded by a simple closed curve γ. Show that
the area of D is given by

area(D) = ±
∫
γ

xdy = ∓
∫
γ

ydx.

Here the sign depends on the orientation of γ. Hint: Green’s theorem.
(b) Let f : D \{0} be of the form of Theorem 15.4. For r > 0, let Dr denote the

unique bounded component of C \
{
f(reiθ); 0 ≤ θ ≤ 2π

}
. Use (a) to show

that

area(Dr) = −1

2
Re

(∫ 2π

0

f(re−iθ) re−iθf ′(re−iθ) dθ

)
.

(c) Fill in the expression for f and show that

area(Dr) = −π
∞∑

n=−1

nr2n |an|2 .

(d) Prove Theorem 15.4.
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A complex structure on Teichmüller space

16.1. The Ahlfors-Weill construction, part II

Theorem 15.6 (Ahlfors-Weill construction). Let q ∈ Q((H2)∗) be so that ||q||∞ < 1
2
.

Then fµq |(H2)∗ : (H2)∗ → C is injective and analytic and we have

S(fµq |(H2)∗) = q.

Proof sketch. Proposition 15.1 implies that if f : (H2)∗ → C is a solution to the
equation

S(f) = q,

then any other solution can be obtained from it by composing it with a Möbius trans-
formation. So, let us build f according to the recipe in the proof of Proposition 15.1.
That is, we consider the ODE

d2w(z)

dz2
+
q(z)

2
w(z) = 0,

take two linearly independent solutions w1 and w2 so that

w1(z)
dw2(z)

dz
− w2(z)

dw1(z)

dz
= 1

and we let f be the quotient of these on (H2)∗. We extend f to Ĉ by:

f(z) =

{
w1(z)+(z−z)w′1(z)

w2(z)+(z−z)w′2(z)
if z ∈ H2 ∪∂H2

w1(z)
w2(z)

if z ∈ (H2)∗.

This formulas the following interpretation. A direct computation gives that

oscf (z)(ζ) =
w1(z) + (ζ − z)w′1(z)

w2(z) + (ζ − z)w′2(z)

on (H2)∗. So we have extended it by setting

f(z) = oscf (z)(z)

for z ∈ H2 ∪∂H2.
A direct computation now shows that

∂f

∂z
= µ

∂f

∂z
.

Injectivity follows from Proposition 15.1 and real analyticity follows from an argument
similar ot the proof of Nehari’s theorem (see [Hub06, Theorem 6.3.10]). �
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16.2. Back to Teichmüller space

Our next goal is to connect the above back up to Teichmüller theory. To make our
lives a little easier, we will restrict to closed surfaces of genus g ≥ 2.

Recall the description
T (S) = B(S)1/Diff+

0 (S),

where B(S)1 denotes the space of Beltrami coefficients on S. Since we equipped S with
the structure of a Riemann surface in order to do this, we can Identify

S = H2 /Γ

for some Γ < PSL(2,R) that acts properly discontinuously and freely on H2. B(S)1

then gets identified with the space
B(H2)Γ

1

of Beltrami coefficients on H2 that are invariant under the Γ-action. Given µ ∈ B(H2)Γ
1 ,

we will write [µ] for its image in T (S).
Given an element µ ∈ B(H2)Γ

1 , we may extend it to the entire complex plane C by
setting

µ̂(z) =

{
µ(z) if z ∈ H2

0 otherwise.

The reason that this is a sensible thing to do is the following:

Proposition 16.1. For µ ∈ B(C)1, let fµ : C→ C denote the solution to the equation

∂f

∂z
= µ

∂f

∂z
that fixes 0 and 1. Then we have

[µ1] = [µ2] ∈ T (S)

for µ1, µ2 ∈ B(H2)Γ
1 if and only if

f µ̂1|(H2)∗ = f µ̂2|(H2)∗ .

Proof. First of all note that [µ1] = [µ2] implies that there exists an element ϕ ∈
Diff+

0 (S) so that
ϕ̃∗µ2 = µ1

where ϕ̃ : H2 → H2 denotes a lift of ϕ : S → S that fixes R (here we’re really thinking
of Beltrami coefficients as forms).

We now claim that (
f µ̂2
)−1 ◦ f µ̂1 = ϕ̃ on H2 .

Indeed, by definition (i.e. just by filling in the transformation rule, Proposition 10.3)((
f µ̂2
)−1 ◦ f µ̂1

)∗
µ2 = µ1

on H2. Proposition 14.1 implies that hence
(
f µ̂2
)−1 ◦ f µ̂1 and ϕ̃ differ by a Möbius

transformation. Since the both fix 0, 1 and ∞, they must be equal.
That means that f µ̂1 and f µ̂2 coincide on R and hence on

(
H2
)∗

, since they are both

analytic on
(
H2
)∗

. �
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Note that Γ, seen as a subgroup of PSL(2,R) acts on (H2)∗ as well. We will denote
the (3g − 3)-dimensional complex vector space of Γ-invariant holomorphic quadratic

differentials on (H2)∗ by Q
(
(H2)∗

)Γ
.

We are now ready to construct the map from Teichmüller space to a finite dimen-
sional complex vector space. First we define a map on the level of Beltrami coefficients:

Definition 16.2. We define a map

Ψ : B(H2)Γ
1 → Q

(
(H2)∗

)Γ

by
Ψ(µ) = S(f µ̂|(H2)∗),

for all µ ∈ B(H2)Γ
1 .

We now have:

Theorem 16.3 (The Bers embedding). The map Ψ : B(H2)Γ
1 → Q

(
(H2)∗

)Γ
induces a

map

T (S)→
{
q ∈ Q

(
(H2)∗

)Γ
; ||q||∞ < 3/2

}
that is a homeomorphism onto its image. Moreover, the complex structure this induces
on T (S) does not depend on the choice of base surface S.

Proof. The fact that Ψ is continuous follows from continuity of all the expressions
involved:

• Extending µ to the lower half plane is continuous.
• The map µ 7→ fµ is continuous.
• Taking the Schwarzian derivative is continuous.

Injectivivty follows immediately from Proposition 16.1. Since we already know T (S)
is homeomorphic to an open subset of R6g−6, invariance of domain tells us that f is a
homeomorphism onto its image.

Now suppose S ′ a Riemann surface that is diffeomorphic to S. Using Fenchel-
Nielssen coordingates, we have already seen that this means that T (S) and T (S ′) are
homeomorphic. In fact a diffeomorphism ϕ : S → S ′ induces an isomorphism

ϕ∗ : B(H2)Γ′

1 → B(H2)Γ
1 .

So we obtain a map

ψ(T (S ′)) ⊂ Q((H)∗)Γ′ −→ ψ(T (S)) ⊂ Q((H)∗)Γ

as follows. Suppose q ∈ ψ(T (S ′)) and choose a µ ∈ B(H2)Γ′
1 so that

S(fµ|(H2)∗) = q.

Then we obtain an element in ψ(T (S)) of the form

S(fϕ
∗µ|(H2)∗) ∈ Q((H)∗)Γ.

All the maps involved are analytic (the fact that pulling back a Beltrami coefficient by
an orientation preserving diffeomorphism is analytic follows from Proposition 10.3), so
this gives a holomorphic map. �
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Given a Riemann surface R = H2 /Γ, we also obtain a conjugate Riemann surface

R∗ =
(
H2
)∗
/Γ.

We have an isomorphism

Q
(
(H2)∗

)Γ ' Q (R∗)

Looking at the proof above, we get local coordinates near [R, f ] ∈ T (S) in Q (R∗). This
also means that:

Proposition 16.4. The Bers embedding induces an identification

T[R,f ] T (S) ' Q(R∗).

It turns out that the cotangent space to Teichmüller space is naturally given by
quadratic differentials, i.e.

T ∗[R,f ] T (S) ' Q(R).

This comes out of a pairing
Q(R∗)×Q(R)→ C .

Given by

(p, q) 7→
∫
R

p(z)q(z)

λ2(z)

where λ2(z) denotes the hyperbolic area element on R.

Proposition 16.5. The pairing above induces an identification

T ∗[R,f ] T (S) ' Q(R).
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Symplectic geometry

17.1. The Weil-Petersson form

Recall that we found an identification cotangent space

T ∗[R,f ] T (S) ' Q(R)

for all [R, f ] ∈ T (S).
This space also comes with a natural inner product:

Definition 17.1 (The Weil-Petersson inner product). Let R be a Riemann surface.
Given p, q ∈ Q(R). We define their Weil Petersson inner product by

〈p, q〉 =

∫
R

pq

λ2
,

where λ2 denotes the hyperbolic area element on R. ωWP will denote the form on
T[R,f ] T (S) that is dual to Im〈·, ·〉.

It turns out this equips Teichmüller space with the structre of a Kähler manifold:

Theorem 17.2. The Weil-Petersson metric is Kähler, i.e. dωWP = 0.

We will not prove this and refer to [Hub06, Theorem 7.7.2] for a proof.
Note that ωWP is a symplectic form. That is,

(1) ωWP is bilinear
(2) ωWP is non-degenerate, i.e. if v ∈ T[R,f ] T (S) is so that

ωWP(v, w) = 0 for all w ∈ T[R,f ] T (S)

then v = 0.
(3) ωWP is anti-symmetric, i.e.

ωWP(v, w) = −ωWP(w, v)

for all v, w ∈ T[R,f ] T (S).

(see Exercise 17.1).

17.2. Symplectic manifolds

In short, Teichmüller space comes with the structure of a symplectic manifold. So,
let us briefly discuss symplectic manifolds. For a more comprehensive introduction, we
refer to [Hec14], from which most of the material below has been taken.

Definition 17.3. A symplectic form on a smooth manifold M is a smooth 2-form
ω ∈ Ω2(M) that is closed and non-degenerate, i.e.
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• dω = 0 and
• ωp : TpM × TpM → R is a non-degenerate bilinear form.

A smooth manifold equipped with a symplectic form is called a symplectic manifold.

Note that when we compare the definition above to the list of properties of a
symplectic form on a vector space, we see two differences. First of all, there is no
anti-symmetry requirement. The reason for this is that 2-forms are automatically anti-
symmetric, which makes the requirement superfluous. The second addition is that the
form is required to be closed. This comes from the requirement that ω does not change
under Hamiltonian flows.

17.2.1. Why are symplectic forms required to be closed?

Definition 17.4. Let (M,ω) be a symplectic manifold and let H : M → R be a
smooth function. The Hamiltonian vector field associated to H is the unique vector
vH : M → TM so that

dH = −ω(vH , ·).

Note that this uses the fact that ω is non-degenerate.
Recall that a vector field v : M → TM induces a flow on M . That is, for every

p ∈M we consider the differential equation

γp(0) = p,
dγp(t)

dt
= v(γp(t)) ∈ TpM.

This is a first order differential equation that can be solved on some maximal open
interval Ip ⊂ R around 0. This defines a flow

φvt (p) = γp(t), t ∈ Ip, p ∈M.

The flow associated to the Hamiltonian vector vH field is called the Hamiltonian flow
associated to H.

In order to make sense of “staying constant along the flow of a vector field”, we
need to be able to differentiate along the flow lines. This is where the Lie derivative
comes in.

Definition 17.5. Given a vector field v and a form α ∈ Ωk(M), the Lie derivative of
α along v is given by

Lv α =
d

dt
((φvt )

∗α)t=0 ∈ Ωk(M).

Note that for a function, we have

Lv f = v(f) = df(v).

In particular
LvH H = dH(vH) = −ω(vH , vH) = 0,

by antisymmetry. So H is a constant of motion along its Hamiltonian flow.
The formula Lv f = v(f) = df(v) turns out to generalize to something called Car-

tan’s formula. Given a vector field v : M → TM , we define

ıv : Ωk(M)→ Ωk−1(M)
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by
ıvα(w1, . . . , wk−1) = α(v, w1, . . . , wk−1).

Cartan’s formula now reads:

Lemma 17.6 (Cartan’s formula). Let v : M → TM be a vector field and let α ∈
Ωk(M). Then

Lv α = d(ıvα) + ıvdα.

Proof. Exercise 17.2. �

Now we get to the reason why we assume our form to be closed:

Lemma 17.7. Let ω ∈ Ω2(M) be closed. Then

LvH ω = 0

for all smooth H : M → R.

Proof. Using Lemma 17.6, we obtain

LvH ω = d(ıvHω) + ıvHdω = −d(dH) = 0.

�

17.2.2. Examples.

Example 17.8. The classical example is the manifold M = R2n equipped with coor-
dinates (q1, . . . , qn, p1, . . . , pn) and the symplectic form

ω =
n∑
j=1

dpj ∧ dqj.

Note that
ı∂/∂pjω = dqj and ı∂/∂qjω = −dpj.

If H : R2n → R is a smooth function, then

dH =
n∑
j=1

∂H

∂qj
dqj +

∂H

∂pj
dpj.

Using the three expressions above, this means that

vH =
n∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
.

So the Hamiltonian flow associated to H is determined by the equations

dqj(t)

dt
=
∂H

∂pj
,

dpj(t)

dt
= −∂H

∂qj
.

These are Hamilton’s equations of motion and this is also the reason for the sign con-
vention in the definition of the Hamiltonian vector field.

For instance, for the classical Hamiltonian

H(q, p) = K(p) + V (q),
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where q should be thought of as the position of some object of mass m, p its momentum,
K its kinetic energy

K(p) =
m

2

n∑
j=1

p2
j

and V is some potential, Hamilton’s equation turns into

m
dq(t)

dt
= p(t),

dp

dt
= −∇V.

So if we take a second derivative on the right hand side, this turns into

F (q) = m
d2q(t)

dt2
,

Newton’s second law of motion for the conservative force field F (q) = −∇V (q).

Example 17.9 (Cotangent bundles). Let M be an n-dimensional manifold. Its cotan-
gent bundle T ∗M is a smooth 2n-manifold. Consider the projection map

π : T ∗M →M.

This is a smooth map, so it has a derivative

Dξπ : Tξ(T
∗M)→ Tπ(ξ)M

at every point ξ ∈ T ∗M . From this we obtain a linear form

θξ : Tξ(T
∗M)→ R

by
θξ(v) = ξ(Dξπ · v)

for all v ∈ Tξ(T ∗M).
So, this gives rise to an element θ ∈ Ω1(T ∗M) and a closed (even exact) two form

ω = dθ ∈ Ω2(M).

All we need to do is chack that ω is non-degenerate. To this end, let us write out a
local expression for it. Take local coordinates (x1, . . . , xn, ξ1, . . . , xn) so that

π(x1, . . . , xn, ξ1, . . . , ξn) = (x1, . . . , xn).

So

θ =
n∑
j=1

ξjdxj

and hence

ω = dθ =
n∑
j=1

dξj ∧ dxj,

so locally our form is just the symplectic form from the previous example. Since non-
degeneracy is a local condition, this means ω is non-degenerate and hence a symplectic
form. ω is sometimes called the canonical symplectic form on T ∗M .

We note that symplectic manifolds are always even-dimensional. This for instance
follows from the following.
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Lemma 17.10. In a symplectic vector space (V, ω) one can choose a symplectic basis.
I.e. a basis (e1, . . . , en, f1, . . . , fn), so that

ω(ej, ek) = ω(fj, fk) = 0, ω(fj, ek) = ω(ej, fk) = δjk.

In particular symplectic vector spaces have even dimension.

Proof. Choose any non-zero vector e1 ∈ V . Because ω is non-degenerate, there
exists a vector f1 ∈ V so that

ω(e1, f1) = 1

Set U = R e1 ⊕ R f1. This is a direct sum, because ω(e1, e1) = 0. Write

V = U ⊕
{
w ∈ V ; ω(e1, w) = ω(f1, w) = 0

}
,

this is a direct sum because ω is non-degenerate on U an V . We can now proceed by
induction. �

We finish this section with a result we won’t prove. It states that symplectic man-
ifold locally all look the same. This is sort of a manifold version of the lemma above.
Note that this is very different from Riemannian manifolds: different metrics can have
wildly different curvature tensors.

Theorem 17.11 (Darboux). If (M,ω) is a symplectic manifold then around each point
p ∈M , we can find a local parametrization ϕ : U →M with coordinates

(x1, . . . , xn, ξ1, . . . , ξn)

so that
ϕ∗ω =

∑
j

dξj ∧ dxj

on U .

The coordinates in this theorem are often called Darboux coordinates.
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17.3. Exercises

Exercise 17.1. Let V be a complex vector space and let h : V ×V → C be a hermitian
inner product and set ω(v, w) = Im(h(v, w)). Show that ω is a symplectic form.

Exercise 17.2. (a) Prove Lemma 17.6 for 1-forms.
(b) Prove that if Lemma 17.6 holds for forms α and β, then it also holds for α∧ β

and conclude the proof of the lemma.
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Wolpert’s magical formula

The Weil-Petersson symplectic form was obtained in a rather complicated way. In
order to work with it, it’s useful to find Darboux coordinates for it. Wolpert proved
that that Fenchel-Nielsen coordinates are global Darboux coordinates for ωWP. In what
follows, we will discuss this proof, following [Hub06].

We start with the theorem:

Theorem 18.1 (Wolpert’s magical formula). Let S be a closed orientable surface of
genus g ≥ 2 and let P be a pants decomposition of S. Then

2ωWP =
∑
γ∈P

d`γ ∧ dτγ.

We will prove this theorem in multiple steps. The first step is a result from the
hyperbolic geometry of surfaces called the collar theorem, due to Keen [Kee74]. This
theorem is used throughout the study of hyperbolic surfaces. Define a function η :
R+ → R+ by

η(`) =
1

2
log

(
cosh(`/2) + 1

cosh(`/2)− 1

)
for all ` ∈ R+. The collar theorem now reads:

Theorem 18.2 (Collar theorem). Let X be a complete hyperbolic surface and let Γ =
(γn)n be a collection of disjoint simple closed geodesics. Then the collars

C(γi) =
{
x ∈ X; d(x, γi) < η(`(γi))

}
are homeomorphic to annuli and pairwise disjoint.

Proof. Consider the geodesics γi and γj in the collection. Since they are disjoint,
we can find a pants decomposition of X that includes them both. It can be shown
(Exercise 18.1) that C(γi) is contained in the (one or two) pairs of pants bounded by
γi. So the only thing we need to check is the case where γi and γj are both boundary
components of the same pair of pants (Exercise 18.1). �

The second and longest step in the proof of Wolpert’s theorem is:

Proposition 18.3. Let ξ ∈ T[R,f ] T (S) then

ωWP

(
∂

∂τγ
, ξ

)
=

1

2
d`γ(ξ).

In other words, ∂/∂τγ is the Hamiltonian vector field for 1
2
`γ.
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Proof sketch. Let us first set up some notation. Let

πγ : Rγ → R

denote the infinite cover corresponding to γ. That is, we consider the unique closed
geodesic on R that is homotopic to f(γ), identify this with an element g ∈ π1(R) and

set Rγ = R̃/〈g〉. We will denote the corresponding geodesic with γ ⊂ R as well.
We will use the band model again and make the identification

Rγ = B /`γ([R, f ])Z .

Moreover, we will denote by C ⊂ R and C̃ ⊂ Rγ the collars around γ ⊂ R and the
central curve γ̃ ⊂ Rγ given to us by the collar theorem. Finally, let Ωγ ⊂ Rγ denote a
fundamental domain for the quotient πγ : Rγ → R.

The proof now goes by building a quadratic differential qγ that “represents” ∂/∂τγ.
Here represents is in quotation marks, because the space of quadratic differentials is
the cotangent space and not the tangent space.

Note that the quadratic differential dz2 on B is invariant under translations, which
means that it descends to Rγ. We are going to push this forward to a quadratic
differential on R, using πγ. This goes as follows. Suppose U ⊂ R is simply connected
and open and (U, ζ : U → C) is a coordinate patch. Then

π−1
γ (U) ⊂ Rγ

is a union of disjoint sets Ui ⊂ R so that πγ : Ui → U is a diffeomorphism. So we obtain
local coordinates

ζi : Ui → C
by

ζi := ζ ◦ πγ|Ui .
So if we have a quadratic differential q ∈ Q(Rγ) then on Ui it can be written as

q(ζi) = ϕi(ζi)dζ
2
i .

We now set (
(πγ)∗q

)
|U =

∑
i

ϕidζ
2.

This allows us to define
qγ = (πγ)∗dz

2 ∈ Q(R).

Any tangent vector ξ is represented by a quadratic differential pξ ∈ Q(R∗). Our
goal is to show that

ωWP

(
∂

∂τγ
, ξ

)
=

1

π
Re

∫
R

qγpξ
λ2

,

and

〈d`γ, ξ〉 =
2

π
Re

∫
R

qγpξ
λ2

,

where λ2 denotes the hyperbolic area element on R. Note that this would prove the
proposition. This goes in multiple steps:

(1) First we identify ∂/∂τγ with a Beltrami form.
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(2) Then we use some linear algebra to argue how the Weil-Petersson form can be
evaluates on a Beltrami differential.

(3) Then we evaluate both sides of the first of these identities, using a Fourier
series.

(4) Finally, we prove the second identity.

Step 1. So first, we will associate a Beltrami coefficient to a twist deformation. To this
end, write h for the half-width of C, so

h = η (`γ([R, f ])) .

Suppose Rt is the surface obtained by performing a twist of magnitude t along γ on R.
Define a map

ft : R→ Rt

that is constant on R \ A and

ft(x+ iy) =

{
x+ iy + t

2h
(y − h) if y > 0

x+ iy − t
2h

(y − h) if y < 0

for x+ iy ∈ A. Here we parameterized A using a fundamental domain for A in B that
is symmetric around R ⊂ B. The corresponding annulus in Rt is parametrized in a
discontinuous way: we use the same parametrization as on R, which below γ is shifted
by t. Figure 1 shows what this map does.

ft

R Rt

Figure 1. The map ft;R→ Rt.

ft : R → Rt is a diffeomorphism away from ∂A. So, we may take the Beltrami
coefficient of f away from ∂ and obtain

µt =
∂ft/∂z

∂ft/∂z
=

{
−t

4hi+t
on A

0 on R \ A.

Thinking of this as a Beltrami form, i.e. writing

µt =
−t

4hi+ t

dz

dz



118 18. WOLPERT’S MAGICAL FORMULA

on A, we have (
d

dt
µt

)
t=0

=
i

4h

dz

dz
.

on A. Of course this is not quite a smooth Beltrami form on R, but an approximation
argument can be used in order to resolve this.

Step 2: Using the embedding T (S) ↪→ B(S)1/Diff+
0 (S), this form also represents a

tangent vector, exactly the tangent to our twist deformation. In order to see what the
Weil-Petersson pairing does to a tangent vector of this form, we need to trace some
definitions.

A hermitian inner product 〈·, ·〉 : V × V → C on a complex vector space induces an
isomorphism Φ : V → V ∗ by (

Φ(v)
)

(w) = 〈v, w〉

So the Weil-Petersson pairing induces an isomorphism

Q(R)→ T[R,f ] T (S)

by

q 7→ q

λ2

where λ2 is the hyperbolic area element on R. The right hand side is naturally a
Beltrami form on R (i.e. a form of type (−1, 1)). The inner product with a Beltrami
form is then given by 〈

q

λ2
, µ

〉
=

∫
R

qµ.

So

ωWP

((
d

dt
µt

)
t=0

,
p

λ2

)
= Im

i

4h

∫
C

p =
1

4h
Re

∫
C

p.

Here we filled in p/λ2, because, using the fact that the Weil-Petersson form is non-
degenerate, we may assume that our Beltrami coefficient is of this form.

Step 3: In order to evaluate this last expression, we lift p to Rγ. I.e. we set p̃ = (πγ)
∗p.

Since it’s periodic with period ` = `γ([R, f ]), we may develop it into a Fourier series.
We set

p̃ =
1

`

∞∑
k=−∞

bke
2πikz/`dz2.

So for all −π/2 < y < π/2 we have∫ `

0

p̃(x+ iy)dx = b0.
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So we compute

ωWP

((
d

dt
µt

)
t=0

,
p

λ2

)
=

1

4h
Re

∫
C

p

=
1

4h
Re

∫
C̃

p̃(z) |dz|2

=
1

4h
Re

∫ h

−h

∫ l

0

p̃(x, y)dxdy

=
1

2
Re(b0)

On the other hand

1

π
Re

∫
R

qγp

λ2
=

1

π
Re

∫
Ωγ

(q̃(z)dz2)(p̃(z)dz2)

(
cos2(y)

|dz|2

)
=

∫
Rγ

dz2(p̃(z)dz2)

(
cos2(y)

|dz|2

)
=

∫ π/2

−π/2

∫ l

0

p̃(x+ iy)dx cos2(y)dy =
1

2
Re(b0).

Step 4: Now we need to show that

〈d`γ, ξ〉 =
2

π
Re

∫
R

qγpξ
λ2

.

We have seen that we can parametrize the set of hyperbolic annuli up to isometry by
the length of their core curve. This gives us a function

L : T (A)→ R

for any annulus A. We claim that this function is analytic and as such, we obtain a
linear functional

dL : TA T (A)→ R
By a similar lifting element to the above, we have

dL(π∗γµ) = 〈d`γ, µ〉

for all Beltrami forms µ. If we can show that this has the same kernel as

ξ 7→ Re

∫
Rγ

qγpξ
λ2

,

then these two functionals must be multiples of each other.
So, we need to identify the kernels of both. In order to do this, we interpret Beltrami

forms on A as antilinear maps TA→ TA, given by

µ(z)
dz

dz
w(z)

∂

∂z
= µ(z)w(z)

∂

∂z
,

coming from applying dz to w(z) ∂
∂z

.
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We claim that these kernels are exactly all Beltrami forms of the form ∂ξ/∂z, where
ξ : A → TA is a vector field so that ξ|∂A is tangent to ∂A. This follows from careful
analysis. For details, see [Hub06]. �

The third step is:

Proposition 18.4.
L∂/∂τγ ωWP = 0

Proof. This is direct from Proposition 18.3, Theorem 17.2 and Lemma 17.7. �

Now we can prove the theorem.

Proof of Theorem 18.1. Write

ωWP =
∑
α,β∈P

aαβd`α ∧ d`β + bαβd`α ∧ dτβ + cαβdτα ∧ dτβ.

Our first claim is that these coefficients are constant under twists. To this end, we
use that

Lv ψ(w1, w2) =
∂

∂v
ψ(w1, w2)− ∂

∂v
ψ([v, w1], w2)− ∂

∂v
ψ(w1, [v, w2])

for all vector fields v, w1, w2 and 2-forms ψ (Exercise 18.2).
We have for instance

∂

∂τγ
aαβ =

∂

∂τγ

(
ωWP

(
∂

∂`α
,
∂

∂`β

))
= L∂/∂τγ ωWP

(
∂

∂`α
,
∂

∂`β

)
= 0,

where we have used that the brackets of the tangent vectors vanish and Proposition
18.4.

This means that in order to compute the coefficients aαβ, bαβ, cαβ, we may twist so
that all the twist-coordinates of our surface are 0. A surface R of which all the twists
are 0 admits an involution σ : R→ R, that flips the two hexagons in each pair of pants.
Since this involution is anti-holomorphic, ωWP is odd under this form. d`α is even under
σ and dτα is odd. So the only odd terms in ωWP are the terms of the form d`α ∧ dτβ.
So aαβ = cαβ = 0. Proposition 18.3 implies that

bαβ = ωWP

(
∂

∂`α
,
∂

∂τβ

)
=

{
−1

2
if α = β

0 otherwise.

�
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18.1. Exercises

Exercise 18.1. Complete the proof of Theorem 18.2.

Exercise 18.2. Let M be a manifold, v, w1, w2 : M → TM vector fields and ψ ∈
Ω2(M). Prove that

Lv ψ(w1, w2) =
∂

∂v
ψ([v, w1], w2) +

∂

∂v
ψ(w1, [v, w2]).





LECTURE 19

Integrating geometric functions on Moduli space

The main goal for the rest of this course is to derive Mirzakhani’s recurrences for
Weil-Petersson volumes of moduli spaces. We will mainly follow [Mir07a].

19.1. The Weil-Petersson volume form on moduli space

The Weil-Petersson symplectic form descends to Mg, one way to see this is from
Wolpert’s formula. Indeed

ϕ∗d`α = d`ϕ−1(α) and ϕ∗dτα = dτϕ−1(α)

for all simple closed curves α on Σg and ϕ ∈ MCG(Σg). Since Wolpert’s magical formula
(Theorem 18.1) holds for any pants decomposition, it follows that

ϕ∗ωWP = ωWP

for all ϕ ∈ MCG(Σg) and hence that ωWP descends to Mg. We are actually skipping
over a little issue when we say this: Mg is not a manifold, it is only an orbifold.
In particular, it does not have a well-defined tangent space at each point. There are
multiple ways out of this, that we will discuss when the issue comes up.

Since ωWP descends, so does the volume form

d volWP =
23g−3

(3g − 3)!
∧3g−3 ωWP

that it induces 1. Note that this is just the standard Euclidean volume form in Fenchel-
Nielsen coordinates.

The main question we want to answer is:

What is Vg := volWP(Mg) ?

One way to turn this into a well defined question is to set

Vg = volWP(Fg),
where Fg is a Borel fundamental domain2 for the action of MCG(Σg) on T g. Again,
because of the MCG(Σg)-invariance of ωWP, this is well-defined.

First of all, it is not at all clear that this is finite, because Mg is not compact
(Exercise 19.1). However, this follows from Wolpert’s magical formula together with a
theorem by Bers:

Corollary 19.1. Let g ≥ 2. Then

Vg <∞.
1The factor in front is just a normalization that will make the recursion come out nicer.
2A fundamental domain that is also a Borel set.

123
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Proof sketch. Bers [Ber74] proved that there exists a constant3 Bg > 0 so that
every closed orientable surface of genus g admits a pants decomposition in which all
curves have length at most Bg.

There are finitely many MCG(Σg)-orbits of (topological) pants decompositions of
Σg (Exercise 19.2). Let {P1, . . . ,Pk} be a set of representatives of these orbits (one
representative per orbit). Then

k⋃
i=1

{
X ∈ T g; `α(X) ≤ Bg, 0 ≤ τα(X) ≤ `α(X)∀α ∈ P i

}
contains a fundamental domain for the mapping class group. On the other hand, it is
finite a collection of bounded sets in T g and hence has finite volume. �

Since there are estimates on Bg, the proof above can even be improved in order to
bound Vg from above. For us, it just indicates that the quest for the value of Vg is not
pointless.

19.2. Symplectic forms on moduli spaces of surfaces with boundary

The most natural thing to try would of course be to find a nice fundamental domain
for the MCG(Σg)-action on T g and try to integrate d volWP over it. However, it turns
out that describing such a fundamental domain is a really hard problem. So, instead
we are going to determine a recurrence for volumes of moduli spaces of surfaces with
boundary.

To this end, we will define the Weil-Petersson form on such moduli spaces too.
Recall that we defined these spaces in Section 13.2. We will simplify our notation
slightly, in order to be consistent with the notation in [Mir07a]. That is, we will
write T g,n(L1, . . . , Ln) and Mg,n(L1, . . . , Ln) instead, where all the postive entries in
the vector (L1, . . . , Ln) correspond to boundary components of that length and Li = 0
indicates that the entry corresponds to a puncture.

Definition 19.2. Let g, n ∈ N be so that χ(Σg,n) < 0 and let P be a pants decompo-
sition of Σg,n. Moreover, let L1, . . . , Ln ∈ R≥0. The Weil-Petersson symplectic form on
T g,n(L1, . . . , Ln) is given by

ωWP =
1

2

∑
α∈P

d`α ∧ dτα.

The associated volume form is

d volWP =
23g+n−3

(3g + n− 3)!
∧3g+n−3 ωWP.

This is a MCG(Σg,n)-invariant form and hence descends to Mg,n(L1, . . . , Ln). For
us, this form seems to come out of thin air, we just define it by analogy to the case of
closed surfaces. In reality, this is not the case. The spaces T g,n(L1, . . . , Ln) come with

3What the value of Bg is, is an open problem. It is not even clear at which rate it grows as a
function of g. The best known lower bound on this rate is ≈ √g [Bus10, Chapter 5] and the best

known upper bound is ≈ g [Par14]
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a natural symplectic form called the Goldman symplectic form [Gol84]. It’s a theorem
by Wolpert [Wol82] that this form can be expressed as above in Fenchel-Nielsen. In
particular, it follows that it coincedes with the Weil-Petersson symplectic form when
n = 0 or L1 = L2 = . . . = Ln = 0.

19.3. Level sets of length functions

As we mentioned in the previous section, we are going to set up a recurrence for
Weil-Petersson volumes of moduli spaces of surfaces with boundary.

In order to do this, we make use of the following observation. Consider an essential
simple closed curve α ⊂ Σg,n. Then from hyperbolic surface X ∈ T g,n(L1, . . . , Ln) so
that `α(X) = t, we obtain a hyperbolic surface X ′ ∈ T (Σg,n \ α,L1, . . . , Ln, t, t) by
cutting X open along α.

Our goal is to use this operation to build maps between moduli spaces. Of course,
there are several issues in doing this, among them the fact that level sets of length
functions in moduli spaces do not make any sense. The goal of this section is to make
this work.

First of all, in order to make set of level sets of length functions, we define the
following cover of moduli space:

Definition 19.3. Let g, n ∈ N be so that χ(Σg,n) < 0 and let L1, . . . , Ln ∈ R≥0.
Moreover, let Γ = {γ1, . . . , γk} be a collection of distinct homotopy classes of essential
simple closed curves on Σg,n. Define

Mg,n(L1, . . . , Ln)Γ = T g,n(L1, . . . , Ln)/ StabMCG(Σg,n)(Γ).

Here

StabMCG(Σg,n)(Γ) =
k⋂
i=1

StabMCG(Σg,n)(γi).

Furthermore, we will write

πΓ :Mg,n(L1, . . . , Ln)Γ →Mg,n(L1, . . . , Ln)

for the projection map.

In words: in Mg,n(L1, . . . , Ln)Γ, the boundary components and the curves in Γ are
still marked. Informally, we can also write

Mg,n(L1, . . . , Ln)Γ =

{
(X, η);

X ∈Mg,n(L1, . . . , Ln),
η ∈M(Σg,n) · Γ realized by closed geodesics

}
.

Note that since ωWP is MCG(Σg,n) invariant, Mg,n(L1, . . . , Ln)Γ also comes with a
symplectic form. Given a ∈ Rk

+, we will also define

Mg,n(L1, . . . , Ln)Γ[a] :=
{

(X, η) ∈Mg,n(L1, . . . , Ln)Γ; `ηi(X) = ai, i = 1, . . . , k
}
.

These level sets come with k natural Hamiltonian flows

φti :Mg,n(L1, . . . , Ln)Γ[a]→Mg,n(L1, . . . , Ln)Γ[a],
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obtained by twisting around the ith curve in Γ. The fact that this flow is Hamiltonian
is direct from Definition 19.2. Note that this flow induces an action of a k-dimensional
torus Tk on Mg,n(L1, . . . , Ln)Γ[a]. Let us write

Mg,n(L1, . . . , Ln)Γ[a]∗ =Mg,n(L1, . . . , Ln)Γ[a]/Tk.

Since the flows are Hamiltonian, they preserve the symplectic form and hence
Mg,n(L1, . . . , Ln)Γ[a]∗ comes with a symplectic form too.

Now note that we have a natural map

M(Σg,n \ Γ, L1, . . . , Ln, a, a)→Mg,n(L1, . . . , Ln)Γ[a]∗

obtained by “gluing Γ together”. The reason that a appears twice is that every curve
in Γ gives rise to two boundary components. This map is[

StabMCG(Σg,n)(Γ) :
k⋂
i=1

Stab+
MCG(Σg,n)(γi)

]
- to - 1,

because of the fact that boundary components are marked. Here Stab+
MCG(Σg,n)(γi)

denotes the subgroup of the mapping class group that also preserves the left and right
hand side of γi, or equivalently, an orientation on it.

So, the identification we spoke about in the beginning of this section is:

Lemma 19.4. The map

M(Σg,n \ Γ, L1, . . . , Ln, a, a)→Mg,n(L1, . . . , Ln)Γ[a]∗

locally preserves d volWP.

Proof. This is direct from Definition 19.2. �

19.4. Geometric functions

In this section we will define a specific type of functions onMg,n(L1, . . . , Ln). These
will be called geometric functions.

Definition 19.5 (Geometric functions). Let g, n ∈ N be so that χ(Σg,n) < 0 and let
L1, . . . , Ln ∈ R≥0. Moreover, let Γ = {γ1, . . . , γk} be a collection of distinct homotopy
classes of essential simple closed curves on Σg,n. Finally, let F : Rk

+ → R be a function.
Then we define

F Γ :Mg,n(L1, . . . , Ln)→ R
by

F Γ(X) =
∑

(α1,...,αk)∈MCG(Σg,n)·Γ

F (`α1(X), . . . , `αk(X)).

Note that, even though the individual length functions are not well defined on
Mg,n(L1, . . . , Ln), the sum above is.
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Example 19.6. Consider an non-separating simple closed curve α on Σg,n (like the
curve in Figure 1). Moreover, let χ[a,b] : R+ → R denote the characteristic function of
the interval [a, b]. That is,

χ[a,b](x) =

{
1 if x ∈ [a, b]

0 otherwise

for all x ∈ R.

α

Figure 1. A non-separating simple closed curve α

First of all note that the orbit MCG(Σg,n) ·α is the set of all non-separating simple
closed curves on Σg,n. So

χα[a,b](X) =
∑

γ a non-separating simple
closed geodesic on X

χ[a,b](`γ(X)) = #

 non-separating simple
closed geodesics on X with

length in [a, b]


for all X ∈Mg,n(L1, . . . , Ln).

19.5. Integration, part I

We are now ready to prove Mirzakhani’s integration formula for geometric functions.
We first introduce some terminology. Let Γ = {γ1, . . . , γk} be a collection of distinct
homotopy classes of essential simple closed curves on Σg,n. Then the symmetry group
of Γ is the group

Sym(Γ) = StabMCG(Σg,n)(Γ)
/ k⋂

i=1

Stab+
MCG(Σg,n)(γi).

Moreover, we set

M(Γ) = #{connected components of Σg,n \ Γ that are homeomorphic to Σ1,1}.

We then have

Theorem 19.7 (Mirzakhani’s integration formula). Let g, n ∈ N be so that χ(Σg,n) < 0
and let L ∈ Rk

≥0. Moreover, let Γ = {γ1, . . . , γk} be a collection of distinct homotopy

classes of essential simple closed curves on Σg,n. Finally, let F : Rk
+ → R be integrable.
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Then∫
Mg,n(L)

F Γ(X)d volWP(X)

= CΓ

∫
Rk+

F (x) volWP(M(Σg,n \ Γ, L, x, x) · x1 · x2 · · ·xkdx1 · · · dxk,

where CΓ is a constant. If (g, n) /∈ {(1, 1), (2, 0)} then

CΓ =
1

2M(Γ)#Sym(Γ)
.
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19.6. Exercises

Exercise 19.1. Prove thatMg is not compact. Hint: consider sequences of hyperbolic
surfaces with shorter and shorter closed geodesics on them.

Exercise 19.2. Show that there are finitely many MCG(Σg)-orbits of (topological)
pants decompositions of Σg. Hint: find a bijection between MCG(Σg)-orbits of pants
decompositions of Σg and trivalent graphs on 2g − 2 vertices.
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Integration and the McShane-Mirzakhani identity

20.1. Integration, part II

Our first goal is to prove Mirzakhani’s integration formula:

Theorem 19.7 (Mirzakhani’s integration formula). Let g, n ∈ N be so that χ(Σg,n) < 0
and let L ∈ Rk

≥0. Moreover, let Γ = {γ1, . . . , γk} be a collection of distinct homotopy

classes of essential simple closed curves on Σg,n. Finally, let F : Rk
+ → R be integrable.

Then∫
Mg,n(L)

F Γ(X)d volWP(X)

= CΓ

∫
Rk+

F (x) volWP(M(Σg,n \ Γ, L, x, x) · x1 · x2 · · ·xkdx1 · · · dxk,

where

volWP(M0,3(L1, L2, L3)) = 1

for all L1, L2, L3 ≥ 0 and CΓ is a constant. If (g, n) /∈ {(1, 1), (2, 0)} then

CΓ =
1

2M(Γ)#Sym(Γ)
.

Proof. First of all, let us define a function

F̂ :Mg,n(L)Γ → R

by

F̂ (X, η) = F (`η1(X), . . . , `ηk(X))

for all (X, η) ∈Mg,n(L). We then have

F Γ(X) =
∑

(X,η)∈(πΓ)−1(X)

F̂ (X, η)

131
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and hence∫
Mg,n(L)

F Γ(X)d volWP(X) =

∫
Mg,n(L)

∑
(X,η)∈(πΓ)−1(X)

F̂ (X, η)d volWP(X)

=

∫
Mg,n(L)Γ

F̂ (X, η)d volWP(X, η)

=

∫
Rk+

∫
Mg,n(L)Γ[a]

F̂ (a1, . . . ak)d volWP(X, η)da1 · · · dak

=

∫
Rk+
F̂ (a1, . . . ak) volWP(Mg,n(L)Γ[a])da1 · · · dak.

Now we claim that

volWP(Mg,n(L)Γ[a]) = 2−M(Γ)a1 · · · ak · volWP(Mg,n(L)Γ[a]∗).

The reason for this is that generically,

ϕti(X, η) 6= (X, η) for all 0 < t < `γi(X).

On the other hand, this does describe the whole fibre of the quotient map

Mg,n(L)Γ[a]→Mg,n(L)Γ[a]∗.

The only exception is if γi cuts off a one-holed torus. Every one holed torus has an
order 2 symmetry. As such we only need to go up to ai/2 in order to describe the whole
fibre. Note that if Σ \ Γ consists of pairs of pants, then the only deformations of the
elements in Mg,n(L)Γ[a] are twists along the curves in Γ. As such, we need to set

volWP(M0,3(L1, L2, L3) = 1

in order to make our claim work.
All in all we get∫

Mg,n(L)

F Γ(X)d volWP(X)

= 2−M(Γ)

∫
Rk+
F̂ (a1, . . . ak) volWP(Mg,n(L)Γ[a]∗)a1 · · · ak · da1 · · · dak

=
1

2M(Γ)Sym(Γ)

∫
Rk+
F̂ (a1, . . . ak) volWP(M(Σg,n \ Γ, L, a, a))a1 · · · ak · da1 · · · dak,

using Lemma 19.4. �

20.2. The McShane-Mirzakhani identity

The previous section tells us how to integrate geometric functions over Mg,n(L).
However, in order to compute the volume of Mg,n(L), we need to integrate a constant
function overMg,n(L). So, we need to find a constant function that can be expressed as
a geometric function, i.e. an identity that holds for all hyperbolic surfaces inMg,n(L).
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First, we define two functions D,R : R3
≥0 → R by

D(x, y, z) = 2 log

(
e
x
2 + e

y+z
2

e−
x
2 + e

y+z
2

)
and R(x, y, z) = x− log

(
cosh(y

2
) + cosh(x+z

2
)

cosh(y
2
) + cosh(x−z

2
)

)
,

for all (x, y, z) ∈ R3
≥0. Moreover, since the boundary components are marked in every-

thing that we do, we will give them names: β1, . . . , βn. Finally, we define sets of (tuples
of) curves on Σg,n:

F0 =

{α1, α2};
αi a homotopy class of essential simple closed curves
on Σg,n, i = 1, 2, α1 6= α2 s.t. β1, α1 and α2 bound a

pair of pants together


and

F j =

{
α;

α a homotopy class of essential simple closed curves on Σg,n,
s.t. β1, βj and α bound a pair of pants together

}
.

Note that these sets consist of finitely many MCG(Σg,n)-orbits of (tuples of) curves.
Figures 1 and 2 show examples of elements of these sets.

β3 β2

β1α1

α2

Figure 1. A pair (α1, α2) ∈ F0

β3 β2

β1
α

Figure 2. An element α ∈ F3

The identity that we will prove is:

Theorem 20.1 (McShane-Mirzakhani identity). Let g, n ∈ N so that n > 0 and 3g +
n− 3 > 0, L ∈ Rn

≥0 and X ∈Mg,n(L). Then∑
{α1,α2}∈F0

D(L1, `α(X), `β(X)) +
n∑
j=2

∑
α∈Fj

R(L1, Lj, `α(X)) = L1.
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Before we prove this theorem, we note that it leads to a recursive formula for the
volumes of moduli spaces of surfaces with boundary. Let us write

Vg,n(L) = volWP(Mg,n(L))

Corollary 20.2 (Volume recursion). We have

L1 · Vg,n(L) =

∫ ∞
0

∫ ∞
0

D(L1, x, y) · Vg−1,n+1(L2, . . . , Ln, x, y) · x · y dxdy

+
∑

J1tJ2={2,...,n}
g1+g2=g

∫ ∞
0

∫ ∞
0

D(L1, x, y) · Vg1,|J1|+1(LJ1 , x) · Vg2,|J2|+1(LJ2 , x) · x · y dxdy

+
n∑
j=2

∫ ∞
0

R(L1, Lj, x) · Vg,n−1(L2, . . . , L̂j, . . . , Ln, y) · x dx,

where LJi denotes the vector (Lj)j∈Ji.

Proof. The only thing to worry about is that the first sum in Theorem 20.1 is over
unordered pairs, whereas mapping class group orbits are sums over ordered pairs. So,
we need to include a factor 2. On the other hand CΓ = 1

2
, so these factors cancel each

other. �

20.2.1. The idea of the proof. The idea of the proof is to decompose β1 as
follows

β1 = E t

 ⊔
(α1,α2)∈F0

I0,α1,α2

 t
 n⊔
j=2

⊔
α∈Fj

Ij,α


where the sets I0,α1,α2 , Ij,α are (unions of) intervals and E is a set of measure 0. So
what we then get is

(3) L1 =
∑

(α1,α2)∈F0

`(I0,α1,α2) +
n∑
j=2

∑
α∈Fj

`(Ij,α).

The unions of intervals and E are constructed by the following process. For p ∈ β1, let
νp denote the inward pointing unit tangent vector orthogonal to β1. This allows us to
define a geodesic

γp : [0, Tp] :→ X

that satisfies

γp(0) = p and
dγ(t)

dt
|t=0 = νp.

Here Tp ∈ R+ ∪{∞} is the largest possible time for which this geodesic is defined (it
might hit the boundary of the surface again).

Now there are multiple options:

(1) Tp =∞ and γp is simple. In that case, p ∈ E,
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(2) Tp < ∞, γp is simple and γp(Tp) ∈ β1. In that case, we consider a closed
regular neighborhood N of

γp([0, Tp]) ∪ β1.

The boundary of N consists of two simple closed curves α1 and α2 that cut
out a pair of pants together with β1. In this case, p ∈ I0,α1,α2 .

(3) Tp <∞, γp is simple and γp(Tp) ∈ βj for some j 6= 1. In that case, consider a
closed regular neighborhood N of

γp([0, Tp]) ∪ β1 ∪ βj.
The boundary of N consists of a simple closed curve α that cuts out a pair of
pants together with β1 and βj. In this case, p ∈ Ij,α.

(4) γp is not simple. In this case, let tp denote the time at which γp first intersects
itself. Let N denote a regular neighborhood of

γp([0, tp]) ∪ β1

The boundary of N consists of two simple closed curves α1 and α2 that cut
out a pair of pants together with β1. In this case, p ∈ I0,α1,α2 .

Figures 3 and 4 show the third and fourth case above.

β3 β2

β1α1

α2

Figure 3. A pair (α1, α2) ∈ F0

β3 β2

β1
α

Figure 4. An element α ∈ F3

Intuitively, the reason that the sets I0,α1,α2 and Ij,α are unions of intervals is that if
we move the base point p ∈ β1 for the geodesic a little bit to a new point p′, then γp
and γp′ stay parallel long enough so that the process leads to the same set of curves.

So, proving the theorem consists of two parts:

(1) Proving that the lengths of the intervals I0,α1,α2 and Ij,α are given by the
functions D andR respectively. That is, we have to determine the contribution
of each pair of pants.

(2) Proving that E has measure 0.
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20.2.2. Geodesics on a pair of pants. Our first goal is to determine the lengths
of the intervals described above. To this end, consider a hyperbolic pair of pants P
with boundary components β1, β2, β3 of lengths x1, x2 and x3 respectively. Moreover,

let P̃ ⊂ H2 denote the Riemannian universal cover of P . Figure 5 shows an example.

H2

β̃1

ỹ1

ỹ2

β̃3

γ̃

β1

y1 w1

z1

y2
w2 z2

γ

β2

β3

Figure 5. A pair of pants and a part of its universal cover

Now consider lifts β̃1 and β̃3 of β1 and β3 that realize the distance between β1 and
β3.

The orthogonal projection of β̃3 to β̃1 (drawn on the left in Figure 5) determines

two points ỹ1 and ỹ2 on β̃1: the endpoints of this projection. The geodesic γ̃ that runs

between ỹ1 and the corresponding endpoint of β̃ is asymptotic to β̃3 and hence projects
to a simple geodesic based at some point y1 ∈ β1 that spirals around β3.

In total, this gets us four points on β1: y1 and y2 coming from the projection of β̃3

to β̃1 and z1 and z2 coming from the projection of β̃2 to β̃1.
We define two more points w1, w2 ∈ β1 to be the points where the unique orthogonal

between β1 and itself is realized.
We now claim the following:

Lemma 20.3. Using the notation from above:

(1) R(x1, x2, x3) is the length of the subsegment of β1 between y1 and y2 and con-
taining w1 and w2.

(2) D(x1, x2, x3) is the sum of the lengths of the segments between yi and zi con-
taining wi, i = 1, 2.

Proof. Exercise 20.1. �

20.2.3. The set of simple geodesics. Now it’s time to formalize the decompo-
sition of the boundary component and the identification with embedded pairs of pants.
First, let us once and for all fix a surface X ∈Mg,n(L). We write

E(X) =
⋃

γ a complete simple geodesic
on X that meets ∂X

orthogonally once or twice

γ ⊂ X

and
Ei = E(X) ∩ βi.
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Our first claim is that these sets have measure 0:

Lemma 20.4. Ei has measure 0 for all i = 1, . . . , n.

Proof Sketch. We first claim that E(X) has measure 0 as a subset of X. This
follows from a result due to Birman and Series [BS85]. Birman and Series prove that
the set of all simple geodesics on a closed hyperbolic surface Y has measure 0. If
we double X along its boundary, then we obtain a closed surface. Moreover, all the
geodesics in E(X) remain simple geodesics (note that this uses that they are orthogonal
to the boundary). So E(X) has measure 0 in Y and hence in X.

Now consider a collar neighborhood

U (i)
r =

{
y ∈ Y ; d(y, βi) < r

}
of βi in Y . We have

µ2(E(X) ∩ Ui) ∼ 2r · µ1(Ei)

as r → 0, where µ2 denotes the area measure on Y and µ1 the length measure on βi.
Since the left hand side is equal to 0, we must have

µ1(Ei) = 0.

�

20.2.4. The proof. Now we are ready to prove the identity:

Proof of Theorem 20.1. Lemma 20.4 implies that we just need to figure out
how much length each pair of pants contributes to L1.

So, consider a pair of pants formed by β1, βj and some simple closed geodesic α.
Again look at Figure 5 with β2 = βj and β3 = α. Then p ∈ Ij,α if and only if p lies
between y1 and y2, on the side that also contains w1 and w2.

Likewise for I0,α1,α2 , we consider Figure 5 with β2 = β1 and β3 = α2. Then p ∈
I0,α1,α2 if and only if p lies either between y1 and z1, on the side that contains w1 or
between y2 and z2, on the side that contains w2. �
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20.3. Exercises

Exercise 20.1. Prove Lemma 20.3.



LECTURE 21

Applications of Mirzakhani’s volume recursion

Corollary 20.2 has the following applications:

(1) The volume of Mg,n(L) is a polynomial in L [Mir07a].
(2) A new proof of the Witten conjecture on the intersection theory ofMg [Mir07b].
(3) The number of simple closed curves of length at most L on a hyperbolic surface

of finite type is asymptotic to a polynomial in L [Mir08].
(4) The large genus asymptote of the Weil-Petersson volume of Mg [MZ15].
(5) Because the Weil-Petersson volume ofMg is finite, we can use the volume form

to pick a point inMg at random. That is, we define a probability measure by

Probg[A] :=
volWP(A)

volWP(Mg)
, A ⊆Mg measurable.

In [Mir13], Mirzakhani studied the shape of a “typical” hyperbolic surface of
large genus.

In this final lecture, we will discuss the first and third application. This lecture is
intended as an outlook and nothing, except the computation of V1,1 below, is part of
the exam material.

21.1. Weil-Petersson volumes are polynomial in the boundary lengths

We start with an example, taken from [Mir07a]. Using the methods from the
previous lecture, we can explicitly compute the volume of M1,1. To this end we need
the classical McShane identity:

Theorem 21.1 (McShane identity). [McS98] Let X be a once-puntured torus, equipped
with a complete hyperbolic metric. Then∑

γ a simple closed
geodesic onX

1

1 + exp(`γ(X))
=

1

2
.

This theorem can be derived from Theorem 20.1. However, historically, this was
the version that was proved first, with a very similar proof.

In order to calculate V1,1 = V1,1(0), we proceed as in the proof of Corollary 20.2.
So, we apply Theorem 19.7 and get:

1

2
V1,1 =

∫ ∞
0

1

1 + exp(x)
V0,3(x, x, 0) x dx =

∫ ∞
0

x

1 + exp(x)
dx =

π2

12
.

So

V1,1 =
π2

6
.
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In [Mir07a], the above is proved without appealing directly to Theorem 19.7. Instead,
Mirzakhani proves this with a simplified version of the proof of that theorem.

The general statement of the polynomiality of Weil-Petersson volumes is [Mir07a,
Theorem 6.1]:

Theorem 21.2 (Mirzakhani). The function Vg,n(L) is a polynomial in L2
1, . . . , L

2
n of

the form

Vg,n(L) =
∑

d1,...,dn≥0
d1+...+dn≤3g−3+n

Cd1,...,dn · L2d1
1 · · ·L2dn

n

where
Cd1,...,dn ∈ π6g−6+2n−2d1−...−2dn Q>0,

for all d1, . . . , dn ≥ 0 so that
∑

i di ≤ 3g − 3 + n.

Proof idea. The proof is inductive and based on a recurrence derived from Corol-
lary 20.2. �

21.2. The number of short simple closed curves

For a hyperbolic surface X and L > 0, set

cX(L) = #

{
γ a closed geodesic on X

of length ≤ L

}
,

where we do not distinguish between geodesics γ and γ′ if one can be obtained by
reparametrizing the other, but do distinguish between two geodesics with opposite
orientations.

A classical result, originally due to Huber [Hub56], states that on a closed hyper-
bolic surface1

cX(L) ∼ eL

L
as L→∞.

This is a somewhat surprising result, because it is completely independent of the ge-
ometry and topology of X.

Mirzakhani used her methods to study the number of simple closed geodesics. We
set

sX(L) = #

{
γ a simple closed geodesic

on X of length ≤ L

}
.

In the function sX , we will not distinguish between different orientations on our closed
geodesics. This is just because this fits better with our methods. In any event, the
difference between the two functions is a factor 2.

It turns out that the number of simple geodesics grows much slower than all geodesics
[Mir08, Theorem 1.1]:

Theorem 21.3. Let X ∈ Mg,n be a hyperbolic surface. Then there exists a constant
bX > 0 so that

sX(L) ∼ bX · L6g−6+2n as L→∞.
The proof of this theorem is based on the convergence of a sequence of measures on

the space of measured geodesic laminations on Σg,n.

1Recall that the notation “f(x) ∼ g(x) as x→∞” means that limx→∞ f(x)/g(x) = 1.
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21.2.1. Measured laminations. We will very briefly sketch what measured lam-
inations and their key properties are. For a more background, we refer to [CB88,
PH92, AL17].

A lamination on a hyperbolic surface X is a closed subset that is a disjoint union
of complete simple geodesics that do not intersect each other.

One example of a geodesic lamination is a collection of disjoint simple closed geodesics
(a multicurve), like for instance a pants decomposition. Figure 1 shows another exam-
ple.

Figure 1. A lamination consisting of two simple closed geodesics and
one geodesic arc. The left hand side is consists of three lifts of the com-
ponents to H2

A measured geodesic lamination on X is a geodesic lamination on X, together with
an assignment

α 7→ λα

that assigns a Radon measure λα so each arc α that is transverse to the lamination.
This assignment has to satisfy the following conditions:

• Subarcs: If α′ ⊂ α is a subarc, then λα′ is the restriction of λα to α′

• Sliding: If α and α′ are homotopic via a homotopy Ft so that F1 : α→ α′ is a
homeomorphism and Ft(α) is transverse to the leaves of the lamination for all
t, then

λα′ = (F1)∗λα.

Note that it follows that the support of the measure λα is contained in the intersec-
tion of α with the lamination.

The set of measured laminations ML(X) can be topologized using weak star con-
vergence. It turns out that this topology does not depend on the geometry of X. So
we will often write MLg,n for the space of measured laminations. There are coordi-
nates, called Dehn-Thurston coordinates, that are somewhat similar to Fenchel-Nielsen
coordinates and that provide a homeomorphism

MLg,n → R3g−3+n
+ ×R3g−3+n .

Unlike Fenchel-Nielssen coordinates, these coordinates do however not give MLg,n the
structure of a smooth manifold.

Note that R+ acts onMLg,n, by multiplying the measures with a scalar. MCG(Σg,n)
acts on MLg,n as well.
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Every multicurve induces a measured lamination. The lamination is a multicurve
and the measure assigned to an arc α is the sum Dirac masses on the intersections of
α and the multicurve. We will denote this element of MLg,n by∑

i

γi ∈MLg,n,

where {γi}i are the geodesics on X that form the multicurve.

For us, the most important example of a measured lamination is a weighted multic-
urve, i.e. we scale the measures on arcs transverse to γi with a number ti ∈ R+. These
measured laminations will be denoted∑

i

tiγi ∈MLg,n.

It turns out that the set of such measures is actually dense in MLg,n.

The length function on geodesics can naturally be extended to weighted multicurves,
by setting

`(
∑
i

tiγi) =
∑
i

ti`(γi).

It turns out that ` extends to a continuous function

` :MLg,n × T g,n → R+

that satisfies:

• For any simple closed curve γ

`(γ,X) = `γ(X).

• For all t ∈ R+, λ ∈MLg,n, X ∈ T g,n

`(tλ,X) = t`(λ,X).

• For all ϕ ∈ MCG(Σg,n), λ ∈MLg,n

`(ϕλ, ϕX) = `(λ,X)

Finally, MLg,n can be equipped with a MCG(Σg,n)-invariant measure µTh called
the Thurston measure. This measure satisfies

µTh(tU) = t6g−6+2nµTh(U)

and [Mas85]:

Theorem 21.4 (Masur). Suppose ν is a measure on MLg,n that is absolutely contin-
uous2 with respect to µTh and MCG(Σg,n)-invariant. Then ν is a multiple of µTh.

2recall that a measure λ is absolutely continuous with repsect to another measure ν if ν(A) = 0
implies that λ(A) = 0 for all measurable sets A.
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21.2.2. The proof. The proof of Theorem 21.3 now goes as follows. Once and
for all fix a simple closed curve γ on Σg,n and for all L > 0, define a measure µL,γ on
MLg,n by:

µL,γ =
1

L6g−6+2n

∑
α∈MCG(Σg,n)·γ

δ 1
L
γ,

where for λ ∈MLg,n, δλ denotes the Dirac mass on λ.
For X ∈ T g,n, write

BX =
{
λ ∈MLg,n; `(λ,X) ≤ 1

}
We have

µL,γ(BX) =
1

L6g−6+2n

∑
α∈MCG(Σg,n)·γ

1 1
L
γ has length ≤1

=
1

L6g−6+2n

∑
α∈MCG(Σg,n)·γ

1γ has length ≤L

=:
1

L6g−6+2n
sX(L, γ).

There are finitely many mapping class group orbits of simple closed curves on Σg,n,
which means that sX(L) splits as a finite sum of measures of the form above.

So, if we can prove that, as L → ∞ the measures µL,γ converge to fixed measures
µγ, we would get

sX(L, γ) ∼ µγ(BX)L6g−6+2n

as L→∞. Then, since sX(L) is a finite sum of the sX(L, γ)’s, we would be done.
The proof of this goes as follows.

Step 1: One proves that there exists a constant C(X, γ) > 0 so that

µL,γ(BX) =
sX(L, γ)

L6g−6+2n
≤ C(X, γ).

Since any compact set K lies in L · BX for L large enough, this proves that for any
compact set K,

µL,γ(K)

is bounded as a function of L and as such (by Banach-Alaoglu) there is a subsequential
limit

µLn,γ → ν.

Step 2: We need to prove that all such limits are multiples of the Thurston measure. It
is not so hard to see that the limit is MCG(Σg,n)-invariant. So, we need to show that
it is absolutely continuous with respect to µTh, so that we can invoke Masur’s theorem
(Theorem 21.4). For this, we refer to [Mir08].
Step 3: Now that we know all our subsequential limits are multiples of the Thurston
measure, we need to prove that which multiple it is, does not depend on the subsequence.
This is where Weil-Petersson volumes come in.

Let (Lk)k be so that
µLk,γ → R(Lk)kµTh,
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as n→∞. We have

R(Lk)k

∫
Mg,n

µTh(BX)d volWP(X) =

∫
Mg,n

lim
k→∞

µLk,γ(BX)d volWP(X)

=

∫
Mg,n

lim
k→∞

sX(Lk, γ)

L6g−6+2n
n

d volWP(X)

= lim
n→∞

∫
Mg,n

sX(Lk, γ)

L6g−6+2n
n

d volWP(X)

= lim
k→∞

∫ Lk

0

1

L6g−6+2n
k

volWP(M(Σ \ γ, x, x)) x d volWP(X).

Now we use that volWP(M(Σ \ γ, x, x)) is a polynomial (Theorem 21.2) in x and see
that the right hand side converges to a constant that is independent of the sequence
Lk. The integral ∫

Mg,n

µTh(BX)d volWP(X)

also doesn’t depend on the sequence, so neither can R(Lk)k , which finishes the proof.
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sics. Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition.

[CB88] Andrew J. Casson and Steven A. Bleiler. Automorphisms of surfaces after Nielsen and
Thurston, volume 9 of London Mathematical Society Student Texts. Cambridge University
Press, Cambridge, 1988.

[CE08] Jeff Cheeger and David G. Ebin. Comparison theorems in Riemannian geometry. AMS
Chelsea Publishing, Providence, RI, 2008. Revised reprint of the 1975 original.

[Dum09] David Dumas. Complex projective structures. In Handbook of Teichmüller theory. Vol. II,
volume 13 of IRMA Lect. Math. Theor. Phys., pages 455–508. Eur. Math. Soc., Zürich, 2009.
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[GGD12] Ernesto Girondo and Gabino González-Diez. Introduction to compact Riemann surfaces and
dessins d’enfants, volume 79 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 2012.

[GH94] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley Classics Library.
John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.

[Gol84] William M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. in
Math., 54(2):200–225, 1984.

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[Hec14] G. Heckman. Symplectic geometry. Lecture notes, available at

https://www.math.ru.nl/ heckman/symplgeom.html, 2014.
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