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Preface

The purpose of this book is

(a): to provide the elements of probability and stochastic processes of direct
interest to the applied sciences where probabilistic models play an important role,
most notably the information and communications sciences, the computer sciences,
operations research and electrical engineering, but also epidemiology, biology, ecol-
ogy, physics and the earth sciences,

(b): to introduce very progressively the basic notions of probability and to help
the reader to acquire the computational skills necessary for the manipulation of
random variables and vectors (the elementary “calculus of probability”), and

(c): to give the essentials of the mathematical theory that will bring the reader
to the level that is indispensable for a profitable application of probability in the
fields mentioned above.

The treatment is mathematical yet not unnecessarily abstract. It maintains the
balance between depth and width that is adequate for the efficient manipulation,
based on solid theoretical foundations, of the most popular probabilistic models.
The theoretical tools are presented gradually in such a way as to not deter the
reader with a wall of technicalities before having the opportunity to understand
their relevance in simple situations. In particular, the use of the so-called modern
integration theory (that is, the Lebesgue integral) is postponed until the fifth
chapter, where it is reviewed in sufficient detail for a rigorous treatment of the
topics of interest in the various domains of application listed above. All the results
are proved, except in the rare situations where the tools needed for the proof require
a deeper immersion into the foundations of measure and integration theory and
only when their content is intuitive. They are then accompanied by meaningful
examples of application.

The contents are organized in three parts.

Part I: The Elementary Calculus

In this part (Chapters 1 to 3), the beginner is acquainted with the vocabulary of
probability theory and with the methods and tricks of the trade that suffice to treat
simple, yet significant, examples. The first two chapters are devoted to discrete
probability models and the third chapter to continuous random variables and vec-
tors. This part features, among other topics, generating functions, the Gaussian
vectors, linear regression and the elementary theory of conditional expectation.
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The focus there is on practical computations and only a working knowledge of
series, of the Riemann integral and of matrices is required.

Part II: The Essential Theory

The book then proceeds to the basic theory of probability, starting with a brief sur-
vey of integration theory, that is then used to revisit, formalize and generalize the
results of the previous chapters that were either admitted or proved in the special
framework of discrete probability and continuous random vectors. It introduces
the various types of convergence of sequences of random variables: almost-sure,
in probability, in distribution, in variation and in the quadratic mean, featuring
in particular the strong law of large numbers and the central limit theorem, and
gives the intermediate, and then the advanced, theory of conditional expectation.
Chapter 8 is an introduction to martingales, one of the fundamental tools of prob-
ability. It may be considered to be a continuation of the theme “Convergence of
sequences”, especially of the chapter on almost-sure convergence.

The first and second parts provide the material for a basic course in the theory
of probability.

Part III: The Important Models

The results gathered at this point are then applied to the four most important and
ubiquitous categories of probabilistic models:

• Markov chains, an omnipresent and most versatile model of applied proba-
bility,

• Poisson processes (on the line and in space), which occur in a number of
applications, ranging from ecology to queuing and mobile communications
networks,

• Brownian motion, which models fluctuations of the stock market and the
“white noise” of physics, and

• Wide-sense stationary processes, which are of special importance in signal
analysis and design, and also in the earth sciences.

An appendix on Hilbert spaces is given for easy reference and self-containedness.

Each chapter contains a final section with exercises. In the important transition
chapters 4 and 5, the solutions are given.

viii Preface



This book can be used as a text in a variety of ways and at various levels of
study. Essentially, it provides the material for a two-semester graduate course on
probability and stochastic processes in a department of applied mathematics, or
for students in departments where stochastic models play an essential role.

The progressive introduction of the concepts and of the tools, together with the
inclusion of numerous examples, also make this book well-adapted to self-study.

Paris, October 15, 2023

Pierre Brémaud
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Chapter 1

Basic Notions

Probability theory aims at quantifying randomness. It concerns “experiments”
(performed by man or Nature, or both) whose outcome is uncertain, and evaluates
the probability of the resulting events. The meaning of these terms (outcomes,
events and probability) is given in the so-called axiomatic framework embodied
in the trinity (Ω,F , P ), called the probability space, that will be progressively
introduced in this chapter.

1.1 Outcomes and Events

We first recall the notation concerning the basic set operations: union, intersection,
and complementation.

If A and B are subsets of some set Ω, A∪B denotes their union and A∩B their
intersection. In this book, A denotes the complement of A in Ω. The notation
A + B (the sum of A and B) implies by convention that A and B are disjoint,
in which case it stands for the union A ∪ B. Similarly, the notation

∑∞
k=1Ak is

used for ∪∞k=1Ak only when the Ak’s are pairwise disjoint. The notation A − B
is used only if B ⊆ A, and it stands for A ∩ B. In particular, if B ⊂ A, then
A = B + (A− B).

A subset of Ω consisting of just one element a ∈ Ω is called a singleton and is
denoted by {a}. Similar notation is used for sets with a finite number of elements.
For instance {a, b, c} represents the set consisting of the three distinct elements a,
b and c in Ω.

The indicator function of the subset A ⊆ Ω is the function 1A : Ω → {0, 1}
defined by

1A(ω) :=

{
1 if ω ∈ A ,
0 if ω �∈ A.
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Let now P be a property that an element of some set X may or may not possess.
The notations

1P(x) or 1{x satisfies P}

stand for f(x), where f(x) = 1 if x satisfies property P, = 0 otherwise. A variety
of similar notations will be used and should be self-explanatory in a given context.
For instance, f and g being real-valued functions defined on a set X, 1{f≥g}(x) is
equal to 1 if f(x) ≥ g(x), and to 0 otherwise.

Random phenomena are observed by means of experiments. Each experiment
results in an outcome. The collection of all possible outcomes ω is called the sample
space Ω. Any subset A of the sample space Ω can be regarded as a representation
of some event 1.

Example 1.1.1: Tossing a die, take 1. The experiment consists in tossing
a die once. The possible outcomes are ω = 1, 2, . . . , 6 and the sample space is the
set Ω = {1, 2, 3, 4, 5, 6}. The subset A = {1, 3, 5} is the event “result is odd.”

Example 1.1.2: Throwing a dart. The experiment consists in throwing a
dart at a wall. The sample space can be chosen to be the plane R2. An outcome
is the position ω = (x, y) hit by the dart. The subset A = {(x, y); x2 + y2 > 1} is
an event that could be named “you missed the dartboard” (the disk of radius 1
centered at 0).

Example 1.1.3: Heads or Tails, take 1. The experiment is an infinite
succession of coin tosses. One can take for the sample space the collection of all
sequences ω := {xn}n≥1, where xn = 1 or 0, depending on whether the n-th toss
results in heads or tails. The subset A = {ω; xk = 1 for k = 1 to 1,000} is a lucky
event for anyone betting on heads!

Probability theory was born out of the study of practical problems (mostly
gambling, but not exclusively) and this has led the probabilists to develop their
own dialect which connects their science to reality and favors intuition.

One says that outcome ω realizes event A if ω ∈ A. For instance, in the die
model of Example 1.1.1, the outcome ω = 1 realizes the event “result is odd”, since
1 ∈ A = {1, 3, 5}. Obviously, if ω does not realize A, it realizes A. Event A∩B is
realized by outcome ω if and only if ω realizes both A and B. Similarly, A ∪ B is

1 However, in general, the appellation “event” will be reserved to a more restricted class of
subsets. See Definition 1.1.4.
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realized by ω if and only if ω realizes at least one event among A and B (both can
be realized). Two events A and B are called incompatible when A ∩ B = ∅. In
other words, event A ∩ B is impossible: no outcome ω can realize both A and B.
For this reason one refers to the empty set ∅ as the impossible event. Naturally,
Ω is called the certain event.

Recall now that the notation
∑∞

k=1Ak is used for ∪∞k=1Ak only when the subsets
Ak are pairwise disjoint. In the terminology of sets, the sets A1, A2, . . . form a
partition of Ω if

∑∞
k=0Ak = Ω. One then calls events A1, A2, . . . mutually exclusive

and exhaustive. They are exhaustive in the sense that any outcome ω realizes at
least one among them. They are mutually exclusive in the sense that any two
distinct events among them are incompatible. Therefore, any ω realizes one and
only one of the events A1, . . . , An.

If B ⊆ A, event B is said to imply event A, because ω realizes A whenever it
realizes B.

Probability theory associates with each event a number, the probability of the
said event. The collection F of events to which a probability is assigned is not
always identical to the collection of all subsets of Ω. The requirement on F is that
it should be a σ-field, whose definition follows.

Definition 1.1.4 Let F be a collection of subsets of Ω, such that

(i) the certain event Ω is in F ,

(ii) if A belongs to F , then so does its complement A, and

(iii) if A1, A2, . . . belong to F , then so does their union ∪∞k=1Ak.

One then calls F a σ-field on Ω, here the σ-field of events.

The requirements in the definition are in a sense minimal if you want the σ-field
F to contain the “interesting” events (those for which you are eager to compute the
probability). Indeed, the complement, the unions and intersections of interesting
events are most likely interesting events. A natural question at this point is: why
not accept in general as an event the union of an arbitrary (not just countable)
collection of events. The answer is given in the next section.

Note that the impossible event ∅, being the complement of the certain event
Ω, is in F . Note also that if A1, A2, . . . belong to F , then so does their intersection
∩∞k=1Ak (see Exercise 1.5.27).

The collection P(Ω) of all subsets of Ω and F = {Ω,∅} are called respectively
the trivial σ-field and the gross σ-field.
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If the sample space Ω is finite or countable, one usually (but not always and
not necessarily) considers any subset of Ω to be an event. That is F = P(Ω). But
this is not true in the general case, both for technical reasons that will be of little
concern in this course.2 Even in the discrete case, this is not necessarily true. For
instance, suppose that you wish to play heads or tails and have no coin (as an
inveterate gambler, you are probably broke), but you keep handy a precious die
in your pocket. You can use the die model of Example 1.1.1, calling “even” heads
and “odd” tails. That is, you will use the σ-field {Ω,∅, {1, 3, 5}, {2, 4, 6}} instead
of the trivial σ-field.

Definition 1.1.5 Let Ω be an arbitrary set, and let C be a non-empty collection
of its subsets. The σ-field generated by C, denoted by σ(C), is by definition the
smallest σ-field containing all the subsets in C.

Let us now agree to call an interval of R any convex subset of R: [a, b], [a, b),
(a, b], (a, b), (−∞, b], (−∞, b), (a,+∞), [a,+∞), (−∞,+∞).

Definition 1.1.6 The σ-field on Rn, denoted by B(Rn) and called the Borel σ-
field on Rn is, by definition, the smallest σ-field on Rn that contains all rectangles,
that is, all sets of the form

∏n
j=1 Ij, where the Ij’s are arbitrary intervals of R.

In other words, B(Rn) is the σ-field on Rn generated by the rectangles.

The above definition of the Borel σ-field is not constructive and therefore one
may wonder if there exist sets that are not Borel sets. The theory tells us that
there are indeed such sets, but they are in a sense “exotic” and never met in
applications. At this stage, you just have to know that any set for which you have
once computed the n-volume is in B(Rn).

Example 1.1.7: Heads or Tails, take 2. Let F be the smallest σ-field that
contains all the sets {ω ; xk = 1} (k ≥ 1). It also contains the sets {ω ; xk = 1},
k ≥ 1 (pass to the complements), and therefore (take intersections) all the sets of
the form {ω ; x1 = a1, . . . , xn = an} (n ≥ 1, a1, . . . , an ∈ {0, 1}).

1.2 Probability of Events

The probability P (A) of an event A measures the likeliness of its occurrence. As
a function defined on F , it is required to satisfy a few properties, the axioms

2 See however the comment in the next subsection.
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of probability. These are motivated by the following heuristic interpretation of
P (A) as the empirical frequency of occurrence of event A. If n “independent”
experiments are performed, among which nA result in the realization of A, then
the empirical frequency of occurrences of event A,

F (A) =
nA

n
,

should be close to P (A) if n is “sufficiently large”. (This statement will be clarified
later on by the law of large numbers.) Clearly, the empirical frequency function F
satisfies the axioms listed in the following definition.

Definition 1.2.1 A probability on (Ω,F) is a mapping P : F → R such that

(i) 0 ≤ P (A) ≤ 1,

(ii) P (Ω) = 1, and

(iii) P (∪∞k=1Ak) =
∑∞

k=1 P (Ak) whenever the sets Ak ∈ F (k ≥ 1) are mutually
disjoint.

Property (iii) is called σ-additivity. The triple (Ω,F , P ) is called a probability
space, or an abstract probability model.

Example 1.2.2: Tossing a die, take 2. An event A is a subset of Ω =
{1, 2, 3, 4, 5, 6}. The formula

P (A) = |A|
6
,

where |A| is the cardinality of A (the number of elements inA), defines a probability
P .

Example 1.2.3: Heads or Tails, take 3. Choose probability P such that for
any event of the form A = {x1 = a1, . . . , xn = an}, where a1, . . . , an are arbitrary
in {0, 1},

P (A) = 1
2n

.

Note that this does not define the probability of all events of F . But the theory
tells us that there exists such a probability satisfying the above requirement and
that it is unique.3

3 In this book, all the results concerning the existence and uniqueness of probabilities will be
assumed, as they require a deeper immersion in the theory and are in fact easily admitted. The
interested reader will find the proofs in [1] or [3] for instance.
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Example 1.2.4: Random point in the square. The following is a possible
model of a random point in the unit square: Ω = [0, 1]2, F is the collection of
sets in the Borel σ-field B(R2) that are contained in [0, 1]2. The theory tells us
that there indeed exists one and only one probability P assigning to rectangles
therein their area in the usual sense, called the Lebesgue measure on [0, 1]2, which
formalizes the intuitive notion of area.

The probability of Example 1.2.2 suggests an unbiased die, where the outcomes
1, 2, 3, 4, 5 and 6 are equiprobable. As we shall see later on, the probability P of
Example 1.2.3 implies an unbiased coin and independent tosses (the emphasized
terms will be defined later).

We now answer a question that the reader may have in mind. Why, for instance
in Example 1.2.4 above, don’t we take for the σ-field of events the trivial σ-field?
The answer is easy, although its proof is not immediate and belongs to an advanced
course on measure theory: there exists no probability P on the trivial σ-field on
the square [0, 1]2 that assigns to rectangles therein their area in the usual sense.

Another question is: why impose only σ-additivity, and not unrestricted addi-
tivity
(P (∪i∈IAi) =

∑
i∈I P (Ai) where the index set I is arbitrary and the Ai’s are

mutually disjoint)? In fact, if unrestricted additivity was part of the definition
of probability, there would exist no such “probability” on the Borel σ-field on
the square [0, 1]2 assigning to rectangles therein their area in the usual sense (see
Exercise 1.5.5).

We now list some properties that follow directly from the axioms:

Theorem 1.2.5 For any event A

P (A) = 1− P (A) , (1.1)

and
P (∅) = 0 . (1.2)

Proof. For a proof of (1.1), use additivity:

1 = P (Ω) = P (A+ A) = P (A) + P (A) .

Applying (1.1) with A = Ω gives (1.2). �

Theorem 1.2.6 Monotonicity:

A ⊆ B =⇒ P (A) ≤ P (B) . (1.3)
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Proof. Observe that B = A+ (B − A) when A ⊆ B, and therefore

P (B) = P (A) + P (B − A) ≥ P (A) .

�

Theorem 1.2.7 Sub-σ-additivity:

P (∪∞k=1Ak) ≤
∞∑

k=1

P (Ak) . (1.4)

See Exercise 1.5.7.

The next property, the sequential continuity of probability, is close to a tautol-
ogy and yet extremely useful.

Theorem 1.2.8 Let {An}n≥1 be a non-decreasing sequence of events, that is,
An+1 ⊇ An (n ≥ 1). Then

P (∪∞n=1An) = limn↑∞ P (An) . (1.5)

Proof. Write
An = A1 + (A2 − A1) + · · ·+ (An − An−1)

and
∪∞k=1Ak = A1 + (A2 − A1) + (A3 − A2) + · · · .

Therefore,

P (∪∞k=1Ak) = P (A1) +

∞∑

j=2

P (Aj − Aj−1)

= lim
n↑∞

{

P (A1) +

n∑

j=2

P (Aj −Aj−1)

}

= lim
n↑∞

P (An).

�

Corollary 1.2.9 Let {Bn}n≥1 be a non-increasing sequence of events, that is,
Bn+1 ⊆ Bn (n ≥ 1). Then,

P (∩∞n=1Bn) = limn↑∞ P (Bn) . (1.6)

See Exercise 1.5.8.

A central notion of probability is that of a negligible set. Its importance is due
to the fact that probabilistic calculations bear on the probability of events, not on
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the events themselves. One will never be able to say that an event such as “the
empirical frequency of heads in an infinite sequences of independent tosses of a
fair coin is equal to 1

2
” is certain, that is, is identical to Ω. One will only be able

to prove that the complementary event has null probability.

Definition 1.2.10 A set N ⊂ Ω is called P -negligible if it is contained in an
event A ∈ F of null probability.

Note that the set N need not be an event (an element of F). An event that is
negligible set will of course be called a negligible event.

Theorem 1.2.11 A countable union of negligible sets is a negligible set.

Proof. Let Nk (k ≥ 1) be P -negligible sets. By definition there exists a sequence
Ak (k ≥ 1) of events of null probability such that Nk ⊆ Ak (k ≥ 1). We have

N := ∪k≥1Nk ⊆ A := ∪k≥1Ak ,

and then P (A) = 0, by the sub-σ-additivity property of probability. �

Example 1.2.12: Random point in the square, take 2. Each rational
point of the square considered as a set (a singleton) has a null area and therefore
null probability. Therefore, in this model, the (countable) set of rational points
of the square has null probability. In other words, in this particular model, the
probability of drawing a rational point is null.

1.3 Independence and Conditioning

Recall the heuristic frequency interpretation of probability at the beginning of
Section 1.2. A situation where

nA∩B
nB

≈ nA

n

(here ≈ is a non-mathematical symbol meaning “approximately equal”) suggests
some kind of “independence” of A and B, in the sense that statistics relative to A
do not vary when passing from a neutral sample of population to a selected sample
characterized by the property B. For example, the proportion of people with a
family name beginning with H is the same among a large population with the
usual mix of men and women as it would be among a large all-male population.
This prompts us to give the following formal definition of independence, the single
most important concept of probability theory.
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Definition 1.3.1 Two events A and B are called independent if

P (A ∩B) = P (A)P (B) . (1.7)

One should be aware that incompatibility does not mean independence. As a
matter of fact, two incompatible events A and B are independent if and only if
at least one of them has null probability. Indeed, if A and B are incompatible,
P (A ∩B) = P (∅) = 0, and therefore (1.7) holds if and only if P (A)P (B) = 0.

The notion of independence carries over straightforwardly to families of events.

Definition 1.3.2 A sequence {An}n∈N of events is called independent if for any
finite set of indices i1, . . . , ir ∈ N,

P (Ai1 ∩ Ai2 ∩ · · · ∩ Air) = P (Ai1)× P (Ai2)× · · · × P (Air) .

One also says that the An’s (n ∈ N) are jointly independent.

Definition 1.3.3 The conditional probability of A given B is the number

P (A | B) := P (A∩B)
P (B)

, (1.8)

defined when P (B) > 0. If P (B) = 0, one defines P (A | B) arbitrarily between 0
and 1.

In particular, if A and B are independent, then P (A | B) = P (A).

The quantity P (A | B) represents our expectation of A being realized when
the only available information is that B is realized. The corresponding heuristic
quantity is the relative frequency nA∩B/nB.

Probability theory is primarily concerned with the computation of probabilities
of complex events. The following formulas, the so-called Bayes rules, are not only
useful, but indispensable. They lay the foundations of the elementary calculus of
probability and give the first opportunity to solve simple yet non-trivial problems.

Theorem 1.3.4 With P (A) > 0, we have the Bayes rule of retrodiction:

P (B | A) = P (A | B)P (B)
P (A)

. (1.9)

Proof. Rewrite (1.8) symmetrically in A and B:

P (A ∩ B) = P (A | B)P (B) = P (B | A)P (A) .

�
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Theorem 1.3.5 Let B1, B2, . . . be events forming a partition of Ω, that is such
that

∑∞
i=1Bi = Ω. Then for any event A, we have the Bayes rule of total causes:

P (A) =
∞∑

i=1

P (A | Bi)P (Bi) . (1.10)

Proof. Decompose A as follows:

A = A ∩ Ω = A ∩
( ∞∑

i=1

Bi

)

=

∞∑

i=1

(A ∩ Bi) .

Therefore (by σ-additivity and by definition of conditional probability):

P (A) = P

( ∞∑

i=1

(A ∩Bi)

)

=

∞∑

i=1

P (A ∩Bi) =

∞∑

i=1

P (A | Bi)P (Bi) .

�

Example 1.3.6: Diploids and the Hardy–Weinberg law. In diploid
organisms (you for instance) each hereditary character is carried by a pair of genes.
Consider the situation in which a given gene can take two forms called alleles,
denoted a and A. Such was the case in the historical experiments performed in
1865 by the Czech monk Gregory Mendel, who studied the hereditary transmission
of the nature of the skin in a species of green pea. The two alleles corresponding
to the gene or character “nature of the skin” are a for “wrinkled” and A for
“smooth”. The genes are grouped into pairs and there are two alleles, thus three
genotypes are possible for the character under study: aa, Aa (same as aA), and
AA (4). During the reproduction process, each of the two parents contributes to
the genetic heritage of their descendant by providing one allele of their pair. This
is done by intermediaries of the reproductive cells called gametes (in the human
species, the spermatozoid and the ovula) which carry only one gene of the pair of
genes characteristic of each parent. The gene carried by the gamete is chosen at
random among the pair of genes of the parent. The actual process occurring in
the reproduction of diploid cells is called meiosis.

4 With each genotype is associated a phenotype which is the external appearance correspond-
ing to the genotype. Genotypes aa and AA have different phenotypes —otherwise no character
could be isolated—, and the phenotype of Aa lies somewhere between the phenotypes of aa and
AA. Sometimes, an allele is dominant, that is, A, and the phenotype of Aa is then the same as
the phenotype of AA.
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A given cell possesses two chromosomes. A chromosome can be viewed as
a string of genes, each gene being at a specific location in the chain. A given
chromosome duplicates itself and four new cells are formed for every chromosome
(see the figure below). One of the four gametes of a “mate” (say, the ovula) chosen
at random selects randomly one of the four gametes of the other “partner” (say,
the spermatozoid) and this gives “birth” to a pair of alleles.

A

a

One parent cell

A

A
a

a

A

A

a

a

F
ou

r
ga
m
et
es

Figure 1.1: Meiosis.

Let us start from an idealistically infinite population where the genotypes are
found in the following proportions:

AA : Aa : aa

x : 2z : y.

Here x, y, and z are numbers between 0 and 1, and x+2z+y = 1. The two parents
are chosen independently (random mating), and their gamete chooses an allele at
random in the pair carried by the corresponding parent.

We seek the genotype distribution of the second generation. Our first task
consists in providing a probabilistic model. We propose the following one. The
sample space Ω is the collection of all quadruples ω = (x1, x2, y1, y2) where x1 and
x2 take their values in {AA, aA, aa}, and y1 and y2 take their values in {A, a}.
Four “coordinate functions” X1, X2, Y1, Y2 are defined by X1(ω) = x1, X2(ω) =
x2, Y1(ω) = y1 and Y2(ω) = y2. We interpret X1 and X2 as the pairs of genes in
parents 1 and 2 respectively. Y1 is the allele chosen by gamete 1 among the alleles
of X1, with a similar definition for Y2. The data available are, for the selection of
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parents:

P (X1 = AA) = P (X2 = AA) = x ,

P (X1 = aa) = P (X2 = aa) = y ,

P (X1 = Aa) = P (X2 = Aa) = 2z ,

and for the choice of allele by gamete 1:

P (Y1 = A | X1 = AA) = 1, P (Y1 = a | X1 = AA) = 0,

P (Y1 = A | X1 = aa) = 0, P (Y1 = a | X1 = aa) = 1,

P (Y1 = A | X1 = Aa) =
1

2
, P (Y1 = a | X1 = Aa) =

1

2
,

and the similar data for the choice of allele by gamete 2. One must also add the
assumptions of independence of X1 and X2 and of Y1 and Y2. We are required to
compute the genotype distribution of the second generation, that is,

p = P (Y1 = A, Y2 = A) ,

q = P (Y1 = a, Y2 = a) ,

2r = P (Y1 = A, Y2 = a or Y1 = a, Y2 = A) .

We start with the computation of p. In view of the independence of Y1 and Y2,
p = P (Y1 = A)P (Y2 = A). By the rule of total causes,

P (Y1 = A) = P (Y1 = A | X1 = AA)P (X1 = AA)

+ P (Y1 = A | X1 = Aa)P (X1 = Aa)

+ P (Y1 = A | X1 = aa)P (X1 = aa)

= 1 · x+
1

2
· 2z + 0 · y = x+ z .

Therefore p = (x+ z)2 and by symmetry, q = (y + z)2. Now 2r = P (Y1 = A, Y2 =
a) + P (Y1 = a, Y2 = A), and therefore by symmetry, r = P (Y1 = A, Y2 = a). In
view of the independence of Y1 and Y2, r = P (Y1 = A)P (Y2 = a). Finally, in view
of previous computations, 2r = 2(x+ z)(y + z).

Theorem 1.3.7 For any sequence of events A1, . . . , An, we have the Bayes se-
quential formula:

P
(
∩ki=1Ai

)
= P (A1)P (A2 | A1)P (A3 | A1 ∩A2) · · ·P

(
Ak | ∩k−1

i=1 Ai

)
. (1.11)
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Proof. By induction. First observe that (1.11) is true for k = 2 by definition of
conditional probability. Suppose that (1.11) is true for k. Write

P
(
∩k+1
i=1Ai

)
= P

((
∩ki=1Ai

)
∩Ak+1

)

= P
(
Ak+1 | ∩ki=1 Ai

)
P
(
∩ki=1Ai

)
,

and replace P
(
∩ki=1Ai

)
by the assumed equality (1.11) to obtain the same equality

with k + 1 replacing k. �

Example 1.3.8: Should one always believe doctors? Doctors apply a
test that gives a positive result in 99% of the cases where the patient is affected
by the disease. However it happens in 2% of the cases that a healthy patient has a
positive test. Statistical data show that one individual out of 1000 has the disease.
We compute the probability for a patient with a positive test to be affected by the
disease.

Let M be the event “patient is ill,” and let + and − be the events “test is
positive” and “test is negative” respectively. We have the data

P (M) = 0.001, P (+ | M) = 0.99, P (+ | M) = 0.02,

and we must compute P (M | +). By the retrodiction formula,

P (M | +) =
P (+ |M)P (M)

P (+)
.

By the formula of total causes,

P (+) = P (+ |M)P (M) + P (+ | M)P (M) .

Therefore,

P (M | +) =
(0.99)(0.001)

(0.99)(0.001) + (0.02)(0.999)
,

that is, approximately 0.005.

One might have mixed feelings concerning the reliability of the pharmaceutical
company that manufactures such a test. There is however a possible explanation.
For certain types of illness, it is much preferable to provoke many false alarms
than to fail to detect the illness. This is the case in group testing, where the
blood samples are mixed. If this mixed sample is positive, the patients are tested
individually with a more reliable, in general more expensive, test.
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Example 1.3.9: The ballot problem. In an election, candidates I and II
have obtained a and b votes respectively. Candidate I won, that is a > b. We shall
compute the probability that in the course of the vote counting process, candidate
I has always had the lead.

Let pa,b be the probability that A is always ahead. By the Bayes rule of total
causes, and conditioning on the last vote:

pa,b = P (A always ahead |A gets last vote )P (A gets last vote )

+ P (A always ahead |B gets last vote )P (B gets last vote )

= pa−1,b
a

a+ b
+ pa,b−1

b

a + b
,

with the convention that for a = b + 1, pa−1,b = pb,b = 0. The result follows by
induction on the total number of votes a+ b:

pa,b =
a− b

a+ b
.

Definition 1.3.10 Let A, B, and C be events, with P (C) > 0. One says that A
and B are conditionally independent given C if

P (A ∩ B | C) = P (A | C)P (B | C) . (1.12)

In other words, A and B are independent with respect to the probability PC

defined by PC(A) = P (A |C) (see Exercise 1.5.18).

Example 1.3.11: Cheap watches. Two factories A and B manufacture
watches. Factory A produces on average one defective item out of 100, and B
produces on average one bad watch out of 200. A retailer receives a container of
watches from one of the two above factories, but he does not know which. He
checks the first watch. It works!

(a) What is the probability that the second watch he will check is good?

(b) Are the states of the first two watches independent?

Solution: (a) Let Xn be the state of the nth watch in the container, with Xn = 1
if it works and Xn = 0 if it does not. Let Y be the factory of origin. We express
our a priori ignorance of where the case comes from by

P (Y = A) = P (Y = B) =
1

2
.
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Also, we assume that given Y = A (resp., Y = B), the states of the successive
watches are independent. For instance,

P (X1 = 1, X2 = 0 | Y = A) = P (X1 = 1 | Y = A)P (X2 = 0 | Y = A) .

We have the data

P (Xn = 0 | Y = A) = 0.01 , P (Xn = 0 | Y = B) = 0.005 .

We are required to compute

P (X2 = 1 | X1 = 1) =
P (X1 = 1, X2 = 1)

P (X1 = 1)
.

By the formula of total causes, the numerator of this fraction equals

P (X1 = 1, X2 = 1 | Y = A)P (Y = A) + · · ·
· · ·+ P (X1 = 1, X2 = 1 | Y = B)P (Y = B) ,

that is, (0.5)(0.99)2 + (0.5)(0.995)2, and the denominator is

P (X1 = 1 | Y = A)P (Y = A) + P (X1 = 1 | Y = B)P (Y = B) ,

that is, (0.5)(0.99) + (0.5)(0.995). Therefore,

P (X2 = 1 | X1 = 1) =
(0.99)2 + (0.995)2

0.99 + 0.995
.

(b) The states of the two watches are not independent. Indeed, if they were,
then

P (X2 = 1 | X1 = 1) = P (X2 = 1) = (0.5) (0.99 + 0.995) ,

a result different from what we obtained.

The example above shows that two events A and B can be conditionally inde-
pendent given C and conditionally independent given C, and yet not be indepen-
dent.

1.4 Counting Models

A number of problems in Probability reduce to counting the elements of finite sets.
The general setting is the following.
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The set of all possible outcomes, Ω, is finite, and for some reason (symmetry for
instance) one is led to believe that all the outcomes ω have the same probability.
Since the probabilities sum up to one, each outcome has probability 1

|Ω| , where |Ω|
denotes the cardinality (the number of elements) of the set Ω. Since the probability
of an event A is the sum of the probabilities of all outcomes ω ∈ A, we have

P (A) = |A|
|Ω| . (1.13)

Thus, computing P (A) requires counting the elements in the sets A and Ω.

There is a whole branch of mathematics devoted mainly to counting, called
combinatorics. A basic item of combinatorics is the binomial coefficient. The bi-
nomial coefficient expresses the number of fixed-size subsets of a finite set. Suppose
we have a set F containing n elements denoted by 1, 2, . . . , n. How many different
subsets of p elements of F are there? If we denote this number, called the binomial
coefficient, by

(
n
p

)
, then we have

(
n

p

)

=
n!

p!(n− p)!
. (1.14)

Proof. To prove this formula, we proceed in two steps. First we shall determine
the number of possible ordered sequences of p elements taken from F without
repetition. (Note the difference between an ordered sequence of p elements without
repetition and a subset of p elements: a subset such as {1, 2, 3} for instance gives
rise to 6 ordered sequences of 3 elements taken from F without repetition:

(1, 2, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (1, 3, 2), (2, 1, 3).)

To make an ordered sequence of p elements taken from F without repetition, we
must first select the first element: there are n choices. Having selected the first
element, there remains only n− 1 choices for the second element since we exclude
repetitions. We proceed in this way up to the last element, which must be chosen
among the n − p + 1 remaining elements. Thus the number A(n, p) of ordered
sequences of p elements taken from F without repetition is

n(n− 1)(n− 2) . . . (n− p+ 1) ,

that is

A(n, p) =
n!

(n− p)!
.

In particular, the number of ordered sequences of length p that one can obtain
from a given set of length p is A(p, p) = p!, and since each subset of p elements



1.4. COUNTING MODELS 17

gives rise to exactly p! ordered subsequences of length p, we have
(
n

p

)

=
A(n, p)

p!
,

which is formula (1.14). �

Let now F be a finite set with n elements. How many subsets of F are there?
One could answer with

∑n
p=0

(
n
p

)
, and this is true if we use the convention that

(
n
0

)
= 1 or equivalently 0! = 1. (Recall that the empty set ∅ is a subset of F , and

it is the only subset of F with 0 elements. With the above conventions, formula
(1.14) also holds for p = 0.) Therefore, anticipating the binomial formula (1.15),
this number is

2n =
n∑

p=0

(
n

p

)

. (�)

However one can prove directly that the number of subsets of F is 2n.

Proof. Let x1, x2, . . . , xn be an enumeration of the elements of F . To any subset
of F there corresponds a sequence of 0’s and 1’s of length n, where there is a 1
in the ith position if and only if xi is included in the subset. Conversely, to any
sequence of 0’s and 1’s of length n, there corresponds a subset of F consisting of all
xi’s for which the ith digit of the sequence is 1. Therefore, the number of subsets
of F is equal to the number of sequences of length n of 0’s and 1’s, which is 2n.

(This method of proof, consisting in establishing a bijection with a set which
is easy to count, is fundamental in combinatorics.) �

Formula (�) is a particular case of the binomial formula

(x+ y)n =
n∑

p=0

(
n

p

)

xpyn−p . (1.15)

Letting x = y = 1 indeed gives (�).

Proof. (of the binomial formula) Let xi, yi (1 ≤ i ≤ n) be real numbers. The
product

∏n
i=1(xi + yi) is the sum of all possible products xi1xi2 · · ·xipyj1 · · · yjn−p

where {i1, . . . , ip} is a subset of {1, . . . , n} and {j1, . . . , jn−p} is the complement of
{i1, . . . , ip} in {1, . . . , n}. Therefore,

n∏

i=1

(xi + yi) =

n∑

p=0

∑

{i1,···ip}
{i1,...,ip}⊆{1,··· ,n}

xi1 . . . xipyj1 . . . yjn−p .
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The second sum in the right-hand side of this equality contains
(
n
p

)
elements, since

there are
(
n
p

)
different subsets {i1, . . . , ip} of p elements of {1, . . . , n}. Now, letting

xi = x, yi = y (1 ≤ i ≤ n), we obtain the binomial formula. �

From (1.14) it follows immediately that
(
n

p

)

=

(
n

n− p

)

. (1.16)

Example 1.4.1: An Urn problem. ¿From an urn containing N1 black balls
and N2 red balls, you draw at random, successively and without replacement, n
(n ≤ N1 + N2) balls. The probability of having drawn k black balls (0 ≤ k ≤
inf(N1, n)) is:

pk =

(
N1

k

)(
N2

n−k

)

(
N1+N2

n

) . (1.17)

Proof. The set of outcomes Ω is the family of all subsets ω of n balls among the
N1 +N2 balls in the urn. Therefore,

|Ω| =
(
N1 +N2

n

)

.

It is reasonable to suppose that all the outcomes are equiprobable (the urn should
be properly shaken before catching the balls with a net). Therefore, formula (1.13)
applies and one must count the subsets ω with k black balls and n − k red balls.
To form such a set, you first form a set of k black balls among the N1 black balls,
and there are

(
N1

k

)
possibilities. To each such subset of k black balls, you must

associate a subset of n − k red balls. This multiplies the possibilities by
(

N2

n−k

)
.

Thus, if A is the number of subsets of n balls among the N1 +N2 balls in the urn
which consist of k black balls and n− k red balls, then

|A| =
(
N1

k

)(
N2

n− k

)

.

�

For future reference, we quote here the negative binomial formula:

(1− z)−p = 1 +

(
p

p− 1

)

z +

(
p+ 1

p− 1

)

z2 +

(
p+ 2

p− 1

)

z3 + · · · , (1.18)

where z ∈ C, |z| ≤ 1. (Hint for the proof: For p ≥ 2, (1 − z)−p is the (p− 1)-th
derivative of (1− z)−1.)
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Poincaré’s Formula

Elementary computations give

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2)

and

P (A1 ∪A2 ∪ A3) = P (A1) + P (A2) + P (A3)

− P (A1 ∩A2)− P (A1 ∩ A3)− P (A2 ∩ A3)

+ P (A1 ∩ A2 ∩ A3) .

More generally (Exercise 1.5.9):

Theorem 1.4.2 Let P be a probability on some measurable space (Ω,F) and let
A1, . . . , Ar be arbitrary events. Then

P (∪ri=1Ai) =
∑

i

P (Ai)−
∑

i<j

P (Ai ∩Aj)

+
∑

i<j<k

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)r+1P (A1 ∩A2 ∩ · · · ∩Ar) . (1.19)

Example 1.4.3: Euler’s formula. Let ϕ(n) denote the number of integers k
(2 ≤ k ≤ n) that are prime with the integer n ≥ 2 (the function ϕ is called Euler’s
function). Euler proved that

ϕ(n)

n
=

∏

p|n

(

1− 1

p

)

,

where the product is over all the prime numbers p that divide n. The proof below
uses Poincaré’s formula.

The integer n ≥ 2 has a (unique) representation as

n = pα1
1 · · · pαr

r

where p1, . . . , pr are distinct prime numbers > 1. Let Ω := {1, 2, . . . , n}. Take for
probability the uniform probability on Ω, that is

P (A) :=
|A|
n

,

where |A| denotes the cardinality of A. Poincaré’s formula then reads:

| ∪ni=1 Ai| =
∑

i

|Ai| −
∑

i<j

|Ai ∩ Aj |

+
∑

i<j<k

|Ai ∩Aj ∩ Ak| − · · ·+ (−1)r+1|A1 ∩ A2 ∩ · · · ∩ Ar| .
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We shall apply it to the sets

Ak := {integers divisible by pk} (k = 1, . . . , r) .

In particular A1 ∪ A2 ∪ · · · ∪ Ar is the set of integers divisible by at least one
of the integers p1, . . . , pr and A1 ∪A2 · · · ∪Ar is the set of integers that are not
divisible by any of the p1, . . . , pr, that is the set of integers that are prime with n.
Therefore,

|A1 ∩ A2 ∩ · · · ∩ Ar| = n− ϕ(n) .

Applying Poincaré’s formula, and noting that

|Ai| =
n

pi
, |Ai ∩Aj | =

n

pipj
(i < j), . . . , |A1 ∩ A2 ∩ · · · ∩ Ar| =

n

p1 · · · pr
,

we obtain that

n− ϕ(n) =
∑

i

n

pi
−

∑

i<j

n

pipj
+ · · ·+ (−1)r−1 n

p1 · · · pr
.

Therefore

ϕ(n) = n−
∑

i

n

pi
+

∑

i<j

n

pipj
− · · · − (−1)r−1 n

p1 · · · pr
,

which is Euler’s formula.

The next example formalizes the ebriate postman problem, in which letters are
randomly distributed in the mailboxes.

Example 1.4.4: Coincidences. An urn contains n balls, each one with a
different number from 1 to n. One draws the balls, one by one, in succession
and without replacement. Each time a ball is drawn, one notes its number. The
randomness of the procedure is formalized by a random permutation σ of the set
{1, 2, . . . , n}, all the permutations being equiprobable, that is, σ0 being a given
permutation,

P (σ = σ0) =
1

n!
.

One says that there is a coincidence at the i-th sample if σ(i) = i, and we denote
by Ei the corresponding event. We shall compute the probability that there is at
least one coincidence occurring in the sequence of successive drawings. This event
is

A := E1 ∪ E2 ∪ · · · ∪En .
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We have that,

P (Ei1 ∩Ei2 ∩ · · · ∩ Eik) =

(
n

k

)
(n− k)!

n!
(i1 < i2 < · · · < ik) ,

so that, by Poincaré’s formula

P (A) =

n∑

k=1

(−1)k−1

(
n

k

)
(n− k)!

n!
=

n∑

k=1

(−1)k−1

k!
.

This quantity tends to 1− e−1 ∼ 0.63212 as n ↑ ∞.

1.5 Exercises

Exercise 1.5.1. De Morgan’s rules

(a) Let {An}n≥1 be an arbitrary sequence of subsets of Ω. Prove De Morgan’s
identities: ( ∞⋂

n=1

An

)

=

∞⋃

n=1

An and

( ∞⋃

n=1

An

)

=

∞⋂

n=1

An .

(b) Prove that if F is a σ-field on Ω, and if A1, A2, . . . belong to F , then so does
their intersection ∩∞k=1Ak.

Exercise 1.5.2. Finitely often, infinitely often

Let {An}n≥1 be an arbitrary sequence of subsets of Ω.

(a) Show that ω ∈ B :=
⋃∞

n=1

⋂∞
k=nAk if and only if there exists at most a finite

number (depending on ω) of indices k such that ω ∈ Ak.

(b) Show that ω ∈ D :=
⋂∞

n=1

⋃∞
k=nAk if and only if there exist an infinite number

(depending on ω) of indices k such that ω ∈ Ak.

Exercise 1.5.3. Indicator functions

Prove the following identities for all subsets A,B of a given set Ω, and all sequences
{An}n≥1 forming a partition of Ω:

1A∩B = 1A × 1B , 1A = 1− 1A , 1 =
∑

n≥1

1An .

Exercise 1.5.4. Union of σ-fields
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Let F1 and F2 be two σ-fields on the set Ω. Give a counterexample contradicting
the assertion that F1 ∪ F2 is a σ-field.

Exercise 1.5.5. Why just σ-additive?
Consider the probability model of Example 1.2.4 (random point on the square).
Prove that there exists no totally additive probability P on the Borel σ-field on
the square [0, 1]2 that assigns to rectangles therein their surface. (By “totally
additive”, it is meant that the probability of the union of an arbitrary —not
necessarily countable— collection of mutually disjoint sets in the Borel σ-field is
the sum of the individual probabilities.)

Exercise 1.5.6. Identities
Let (Ω,F , P ) be a probability space and let A and B be events (∈ F). Prove the
identities

P (A ∪ B) = 1− P (A ∩ B), P (A ∪ B) = P (A) + P (B)− P (A ∩B).

Exercise 1.5.7. Sub-σ-additivity
Let (Ω,F , P ) be a probability space. Prove the sub-σ-additivity property: for any
sequence {An}n≥1 of events,

P

( ∞⋃

n=1

An

)

≤
∞∑

n=1

P (An) .

Exercise 1.5.8. Sequential continuity, the decreasing case

Prove Corollary 1.2.9.

Exercise 1.5.9. Poincaré’s formula

Let P be a probability on some measurable space (Ω,F) and let A1, . . . , Ar be
arbitrary events. Prove that

P (∪ri=1Ai) =
∑

i

P (Ai)−
∑

i<j

P (Ai ∩Aj)

+
∑

i<j<k

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)r+1P (A1 ∩A2 ∩ · · · ∩Ar) . (1.20)

Exercise 1.5.10. Roll it!

You roll fairly and simultaneously three unbiased dice. What is the probability
that one die shows 4, another 2, and another 1?
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Exercise 1.5.11. One is the sum of the two others

You perform three independent tosses of an unbiased die. What is the probability
that one of these tosses results in a number that is the sum of the two other
numbers?

Exercise 1.5.12. Urns

1. An urn contains 17 red balls and 19 white balls. Balls are drawn in succession
at random and without replacement. What is the probability that the first 2 balls
are red?

2. An urn contains N balls numbered from 1 to N . Someone draws n balls
(1 ≤ n ≤ N) simultaneously from the urn. What is the probability that the lowest
number drawn is k?

Exercise 1.5.13. Heads or tails as usual

A person, A, tossing an unbiased coin N times obtains TA tails. Another person,
B, tossing her own unbiased coin N+1 times has TB tails. What is the probability
that TA ≥ TB?

Exercise 1.5.14. Extension of the basic formula of independence

Let {Cn}n≥1 be a sequence of independent events. Then

P (∩∞n=1Cn) = Π∞
n=1P (Cn) .

This extends formula (1.7) to a countable number of sets.

Exercise 1.5.15. The switches

Two nodes A and B in a communications network are connected by three different
routes and each route contains a number of links that may fail. These are repre-
sented symbolically in Fig. 1.2 by switches that are in the lifted position if the link
is in a failure state. In this figure, the number associated with a switch is the prob-
ability that the corresponding link is out of order. The links fail independently.
What is the probability that A and B are connected?

Exercise 1.5.16. Pairwise independence does not suffice

Give a simple example of a probability space (Ω,F , P ) with three events A1, A2, A3

that are pairwise independent, but not globally independent (that is, the family
{A1, A2, A3} is not independent).

Exercise 1.5.17. Independent family of events
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0.25 0.25

A
0.4

B

0.1 0.1 0.1

Figure 1.2: All switches up.

If {Ai}i∈I is an independent family of events, is it true that {Ãi}i∈I is also an
independent family of events, where for each i ∈ I, Ãi = Ai or Ai (your choice, for
instance, with I = N, Ã0 = A0, Ã1 = A1, Ã3 = A3, . . .)?

Exercise 1.5.18. Conditional independence and the Markov property

1. Let (Ω,F , P ) be a probability space. For a fixed event C of positive probability
define PC(A) := P (A | C). Show that PC is a probability on (Ω,F). (And note
that A and B are independent with respect to this probability if and only if they
are conditionally independent given C.)

2. Let A1, A2, A3 be three events of positive probability. Show that events A1 and
A3 are conditionally independent given A2 if and only if the “Markov property”
holds, that is, P (A3 | A1 ∩ A2) = P (A3 | A2).

Exercise 1.5.19. Roll it once more!

You roll fairly and simultaneously three unbiased dice. What is the probability
that some die shows 1, given that the sum of the 3 values equals 5?

Exercise 1.5.20. Social Apartheid University

In the renowned Social Apartheid University, students have been separated into
three social groups for “pedagogical” purposes. In group A, one finds students who
individually have a probability of passing equal to 0.95. In group B this probability
is 0.75, and in group C only 0.65. The three groups are of equal size. What is the
probability that a student passing the course comes from group A? B? C?

Exercise 1.5.21. Wise bet

There are three cards. The first one has both faces red, the second one has both
faces white, and the third one is white on one face, red on the other. A card is
drawn at random, and the color of a randomly selected face of this card is shown
to you (the other remains hidden). What is the winning strategy if you must bet
on the color of the hidden face?
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Exercise 1.5.22. A sequence of liars

Consider a sequence of n “liars” L1, . . . , Ln. The first liar L1 receives information
about the occurrence of some event in the form “yes or no” and transmits it to L2,
who transmits it to L3, etc. . . Each liar transmits what he hears with probability
p ∈ (0, 1), and the contrary with probability q = 1 − p. The decision of lying or
not is made by each liar independently of the rest of his colleagues. What is the
probability xn of obtaining the correct information from Ln? What is the limit of
xn as n increases to infinity?

Exercise 1.5.23. The campus library complaint

You are looking for a book in the campus libraries. Each library has it with
probability 0.60 but in each library the book may have been stolen with probability
0.25. If there are three libraries, what are your chances of obtaining the book?

Exercise 1.5.24. Safari butchers

Three tourists participate in a safari in Africa. They encounter an elephant, who is
unaware of the rules of the game. The innocent beast is killed, having received two
out of the three bullets simultaneously shot by the tourists. The hit probabilities
of the tourists are: Tourist A: 1

4
, Tourist B: 1

2
, Tourist C: 3

4
. Give for each tourist

the probability that he was the one who missed.

Exercise 1.5.25. The Hardy–Weinberg law

In Example 1.3.6, show that the genotypic distributions of all generations, starting
from the third one, are the same and that the stationary distribution depends only
on the proportion c of alleles of type A in the initial population.

Exercise 1.5.26. Slumberidge University alumni

A student from the famous Veryhardvard University has with probability 0.25 a
bright intelligence. Students from the Slumberidge University have a probability
0.10 of being bright. You find yourself in an assembly with 10 Veryhardvard
students and 20 Slumberidge University students. You meet a handsome girl
(resp. boy) whose intelligence is obviously superior. What is the probability that
she (resp. he) registered at Slumberidge University?

Exercise 1.5.27. Operations on events

Let F be a σ-field on some set Ω. Show that if A1 and A2 are in F , then so is
their symmetric difference A1�A2 := A1 ∪A2 − A1 ∩ A2.

Exercise 1.5.28. Small σ-fields

Is there a σ-field on Ω with 6 elements (including of course Ω and ∅)?



26 CHAPTER 1. BASIC NOTIONS

Exercise 1.5.29. Atoms
Let the non-empty subsets A1, . . . , Ak of a set Ω form a partition of the latter.

(a) How many elements are there in the σ-field F they generate on Ω? (The sets
A1, . . . , Ak are called the atoms of F .)

(b) Show that if a σ-field F on Ω contains a finite number of elements, it is
generated by a finite number of sets that form a partition of Ω.

Exercise 1.5.30. Lost umbrella

With probability p ∈ (0, 1) the umbrella that you have lost is, equiprobably, in
one of the seven floors of a given building. You have explored without success six
floors. What is the probability that you will find your umbrella on the seventh
floor?

Exercise 1.5.31. Rolling dice

Two (fair) dice are rolled independently in succession. Show that the event “the
sum obtained is 7” is independent of the number shown by the first die.

Exercise 1.5.32. The five coins

There are five fair coins, two have an A written on both faces, one has a B on both
faces, and two have an A on one face and a B on the other face.

(a) Someone picks a coin at random and tosses it. What is the probability that
the lower face has an A on it?

(b) Keeping your eyes shut, you pick a coin at random, take this coin into another
room and toss it. You open your eyes and see that the upper face shows an A.
What is the probability that the lower face has an A on it?

Exercise 1.5.33. Proof-reading
A book contains four errors. Each time it is proof-read, a so far uncorrected
error is corrected with probability 1

3
. The corrections of the different errors are

independent. So are the proof-readings. How many proof-readings are necessary
for the probability that no error is left to be larger than 0.9? (Hint: take for the
probability space the set of 4-tuples (a1, a2, a3, a4) of positive integers, where ai is
the number of proof-readings necessary to get rid of error i.)



Chapter 2

Discrete Random Variables

The number of heads in a sequence of 10,000 coin tosses, the number of days it
takes until the next rain and the size of a genealogical tree are random numbers.
All are functions of the outcome of a random experiment performed either by
man or nature taking discrete values, that is, values in a countable set. In the
above examples, the values are numbers, but they can be of a different nature, for
instance graphs 1.

2.1 Probability Distribution and Expectation

Definition 2.1.1 Let E be a countable set. A function X : Ω→ E such that for
all x ∈ E

{ω;X(ω) = x} ∈ F

is called a discrete random variable or discrete random element.

Being in F , the event {X = x} can be assigned a probability.

Definition 2.1.2 From the probabilistic point of view, a discrete random variable
X is described by its probability distribution function (or distribution, for short)
{π(x)}x∈E, where

π(x) := P (X = x) .

Since E is a countable set, it can always be identified with N or N := N∪{∞},
and therefore we shall often assume that either E = N or N.

1 See for instance [6].
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Calling a random variable taking integer values a “random number” is an
innocuous habit as long as one is aware that it is not the function X that is
random, but the outcome ω. This in turn makes the number X(ω) random.

One is sometimes faced with the problem of proving that a random variable X,
taking its values in N (and therefore for which the value ∞ is a priori possible),
is in fact almost surely finite. That is, we have to prove that P (X = ∞) = 0 or,
equivalently, that P (X <∞) = 1. Since

{X <∞} =
∑∞

n=0{X = n} ,

we have

P (X <∞) =
∑∞

n=0 P (X = n) .

This remark provides an opportunity to recall that in an expression such as∑∞
n=0, the sum is over N and does not include∞ as the notation wrongly suggests.

A less ambiguous notation would be
∑

n∈N. However, we shall stick to the classical
notation and in the case where the summation is over all integers plus ∞, we shall
always use the notation

∑
n∈N.

In the vein of the above simple rules, let us mention the following often used
expression of P (X <∞) for an integer-valued random variable X:

P (X <∞) = lim
n↑∞

P (X ≤ n) .

For the proof (because it requires one), observe that the events An := {X ≥ n}
(n ≥ 0) form a non-decreasing sequence and that ∪nAn = {X < ∞}. The result
then follows by sequential continuity of probability (Theorem 1.2.8).

Example 2.1.3: Tossing a Die, take 3. In this example, the sample space
is Ω = {1, 2, 3, 4, 5, 6}. Take for X the identity: X(ω) = ω. In that sense X is a
random number obtained by tossing a die.

Example 2.1.4: Heads or Tails, take 4. The sample space Ω is the collec-
tion of all sequences ω := {xn}n≥1, where xn = 1 or 0. Define a random variableXn

by Xn(ω) := xn. It is the random number obtained at the n-th toss. It is indeed a
random variable since for all an ∈ {0, 1}, {ω ; Xn(ω) = an} = {ω ; xn = an} ∈ F ,
by definition of F .

The following are elementary remarks.
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Theorem 2.1.5 (a) Let E and F be countable sets. Let X be a random variable
with values in E, and let f : E → F be an arbitrary function. Then Y := f(X) is
a random variable.

(b) Let E1 and E2 be countable sets. Let X1 and X2 be random variable with values
in E1 and E2 respectively. Then Y := (X1, X2) is a random variable with values
in E := E1 ×E2.

Proof. (a) Let y ∈ F . The set {ω; Y (ω) = y} is in F since it is a countable union
of sets in F , namely:

{Y = y} =
∑

x∈E; f(x)=y

{X = x} .

(b) Let x = (x1, x2) ∈ E. The set {ω; X(ω) = x} is in F since it is the intersection
of sets in F , namely:

{X = x} = {X1 = x1} ∩ {X2 = x2} .

�

Independence and Conditional Independence

Definition 2.1.6 Two discrete random elements X and Y taking their values in
E and F respectively are called independent if

P (X = i, Y = j) = P (X = i)P (Y = j) (i ∈ E, j ∈ F ) . (2.1)

The left-hand side of (2.1) is P ({X = i}∩{Y = j}). This is a general feature of
the notational system: commas replace intersection signs. For instance, P (A,B)
is the probability that both events A and B occur.

Definition 2.1.7 The discrete random elements X1, . . . , Xk taking their values in
E1, . . . , Ek are said to be independent if for all i1 ∈ E1, . . . , ik ∈ Ek,

P (X1 = i1, . . . , Xk = ik) = P (X1 = i1) · · ·P (Xk = ik) . (2.2)

Definition 2.1.8 A sequence {Xn}n≥1 of discrete random elements indexed by the
set of positive integers and taking their values in the sets {En}n≥1 respectively is
called an independent sequence if any finite collection of distinct random elements
Xi1 , . . . , Xir extracted from this sequence are independent.
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Definition 2.1.9 The sequence of discrete random elements {Xn}n≥1 is said to be
an independent and identically distributed sequence (for short: an iid sequence)
if

(a) the Xns take their values in the same set E,

(b) the family {Xn}n≥1 is independent, and

(c) the probability distribution function of Xn does not depend on n.

Example 2.1.10: Heads or Tails, take 5. We show that the sequence
{Xn}n≥1 is iid. (Therefore, we have a model for independent tosses of an unbiased
coin.)

Proof. Event {Xk = ak} is the direct sum of the events {X1 = a1, . . . , Xk−1 =
ak−1, Xk = ak} for all possible values of (a1, . . . , ak−1). Since there are 2k−1 such
values and each one has probability 2−k, we have P (Xk = ak) = 2k−12−k, that is,

P (Xk = 1) = P (Xk = 0) =
1

2
.

Therefore,

P (X1 = a1, . . . , Xk = ak) = P (X1 = a1) · · ·P (Xk = ak)

for all a1, . . . , ak ∈ {0, 1}, from which it follows by definition that X1, . . . , Xk are
independent random variables, and more generally that {Xn}n≥1 is a family of
independent random variables. �

Example 2.1.11: Heads or Tails, take 6. The number of occurrences of
heads in n tosses is Sn = X1 + · · · +Xn. This random variable is the fortune at
time n of a gambler systematically betting on heads. We compute its probability
distribution when the Xn’s are iid, but P (Xn = 1) = p ∈ (0, 1) (allowing for a
bias of the coin). The sum Sn takes the integer values 0 to n. The event {Sn = k}
is “k among X1, . . . , Xn are equal to 1”. There are

(
n
k

)
distinct ways of assigning k

values of 1 and n− k values of 0 to X1, . . . , Xn, and all have the same probability
pk(1− p)n−k. Therefore

P (Sn = k) =
(
n
k

)
pk(1− p)n−k .



2.1. PROBABILITY DISTRIBUTION AND EXPECTATION 31

Definition 2.1.12 Let {Xn}n≥1 and {Yn}n≥1 be sequences of discrete random el-
ements indexed by the positive integers and taking their values in the sets {En}n≥1

and {Fn}n≥1 respectively. They are said to be independent sequences if any finite
collection of random elements Xi1 , . . . , Xir and Yj1, . . . , Yis extracted from their
respective sequences are independent, the discrete random elements (Xi1, . . . , Xir)
and (Yj1, . . . , Yis) are independent.

This means that

P ((∩r�=1{Xi� = a�}) ∩ (∩sm=1{Yjm = bm}))

= P (∩r�=1{Xi� = a�})P (∩sm=1{Yjm = bm}) (2.3)

for all a1 ∈ E1, . . . , ar ∈ Er and all b1 ∈ F1, . . . , bs ∈ Fs.

The notion of conditional independence for events (Definition 1.3.10) extends
naturally to discrete random variables.

Definition 2.1.13 Let X, Y , Z be random variables taking their values in the
denumerable sets E, F , G, respectively. One says that X and Y are conditionally
independent given Z if for all x, y, z in E, F , G, respectively, events {X = x}
and {Y = y} are conditionally independent given {Z = z}.

Theorem 2.1.14 Let X, Y , and Z be three discrete random variables with val-
ues in E, F , and G, respectively. If for some function g : E × F → [0, 1],
P (X = x | Y = y, Z = z) = g(x, y) for all x, y, z, then P (X = x | Y = y) = g(x, y)
for all x, y, and X and Z are conditionally independent given Y .

Proof. We have

P (X = x, Y = y) =
∑

z

P (X = x, Y = y, Z = z)

=
∑

z

P (X = x | Y = y, Z = z)P (Y = y, Z = z)

= g(x, y)
∑

z

P (Y = y, Z = z) = g(x, y)P (Y = y) .

Therefore,

P (X = x | Y = y) = g(x, y) = P (X = x | Y = y, Z = z) .

�
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Expectation

Definition 2.1.15 Let X be a discrete random variable taking its values in the
countable set E and let g : E → R be a function that is either non-negative or
such that ∑

x∈E |g(x)|P (X = x) <∞ . (2.4)

One then defines E[g(X)], the expectation of g(X), by the formula

E[g(X)] :=
∑

x∈E g(x)P (X = x) . (2.5)

If the summability condition (2.4) is satisfied, the random variable g(X) is
called integrable, and in this case the expectation E[g(X)] is a finite number. If g
is only assumed non-negative, the expectation may be infinite.

Example 2.1.16: Heads or Tails, take 7. Consider the random variable
Sn = X1 + · · ·+Xn. We compute its expectation.

E[Sn] =

n∑

i=1

iP (Sn = i) =

n∑

i=1

i

(
n

i

)

pi(1− p)n−i

=
n∑

i=1

i
n!

i!(n− i)!
pi(1− p)n−i

=

n∑

i=1

np
(n− 1)!

(i− 1)!((n− 1)− (i− 1))!
pi−1(1− p)(n−1)−(i−1) .

Performing the change of variables j = i− 1, we obtain

E[Sn] = np

n−1∑

j=0

(n− 1)!

j!((n− 1)− (j))!
pj(1− p)(n−1)−j = np .

It is important to realize that a discrete random variable taking finite values
may have an infinite expectation:

Example 2.1.17: Finite Random Variables with Infinite Expecta-

tions. Let X, taking values in E = N, have the distribution P (X = n) = 1
cn2

(n ∈ N), where the constant c is chosen such that

P (X <∞) =
∞∑

n=1

P (X = n) =
∞∑

n=1

1

cn2
= 1
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(that is c =
∑∞

n=1
1
n2 = π2

6
). In fact, the expectation of X is

E[X] =
∞∑

n=1

nP (X = n) =
∞∑

n=1

n
1

cn2
=

∞∑

n=1

1

cn
=∞ .

The above example is artificial, but there are more natural occurrences of
the phenomenon. Consider for instance Example 2.1.11 (“heads or tails” with
an unbiased coin). The quantity 2Sn − n is the fortune at time n of a gambler
systematically betting one bitcoin on heads (and therefore losing one bitcoin on
tails). Let T be the first integer n > 0 (necessarily even) such that 2Sn − n = 0.
Then as it turns out as we shall prove later, in Example 9.1.29, that T is a finite
random variable with infinite expectation.

Theorem 2.1.18 Let A be some event. The expectation of the indicator random
variable X = 1A is

E[1A] = P (A) . (2.6)

Proof. X = 1A takes the value 1 with probability P (X = 1) = P (A) and the
value 0 with probability P (X = 0) = P (A) = 1− P (A). Therefore,

E[X] = 0× P (X = 0) + 1× P (X = 1) = P (X = 1) = P (A) .

�

Theorem 2.1.19 Let g1 : E → R and g2 : E → R be functions such that g1(X)
and g2(X) are integrable (resp., non-negative), and let λ1, λ2 ∈ R (resp., ∈ R+).
Expectation is linear

E[λ1g1(X) + λ2g2(X)] = λ1E[g1(X)] + λ2E[g2(X)] . (2.7)

Also, expectation is monotone, in the sense that g1(x) ≤ g2(x) for all x implies

E[g1(X)] ≤ E[g2(X)] . (2.8)

Also, we have the triangle inequality

|E[g(X)]| ≤ E[|g(X)|] . (2.9)

Proof. These properties follow from the corresponding properties of series. �

The next example gives an alternative way of computing the expectation of an
integer-valued random variable.
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Theorem 2.1.20 For an integer-valued (that is, taking its values in N) random
variable X, we have the telescope formula:

E[X] =
∑∞

n=1 P (X ≥ n) .

Proof.

E[X] = P (X = 1)+2P (X = 2) + 3P (X = 3) + · · ·
= P (X = 1) +P (X = 2) + P (X = 3) + · · ·

+P (X = 2) + P (X = 3) + · · ·
+ P (X = 3) + · · ·

�

Theorem 5.2.4 will generalize this formula.

Definition 2.1.21 Let X be an integer-valued random variable such that E[|X|] <
∞. Then X is said to be integrable. In this case (only in this case), one defines
the mean of X as the (finite) number

μ = E[X] =
+∞∑

n=0

nP (X = n) .

From the inequality |a| ≤ 1+a2, true for all a ∈ R, we have that |X| ≤ 1+X2,
and therefore, by the monotonicity and linearity properties, E[|X|] ≤ 1 + E[X2]
(we also used the fact that E[1] = 1). Therefore if E[X2] < ∞ (in which case
we say that X is square-integrable) then X is integrable. The following definition
then makes sense.

Definition 2.1.22 Let X be a square-integrable random variable. We then define
the variance σ2 of X by

σ2 = E[(X − μ)2] =
+∞∑

n=0

(n− μ)2P (X = n) .

The variance is also denoted by Var (X). From the linearity of expectation, it
follows that E[(X −m)2] = E[X2]− 2mE[X] +m2, that is,

Var (X) = E[X2]−m2 . (2.10)
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Markov’s Inequality

Theorem 2.1.23 Let Z be a non-negative discrete random variable and let a be
a positive number. Then (Markov’s inequality):

P (Z ≥ a) ≤ E[Z]

a
.

Proof. Take expectations in the inequality Z ≥ a1{Z≥a}. �

Taking Z = (X−m)2 in Markov’s inequality and a = ε2, we obtain Chebyshev’s
inequality:

P (|X −m| ≥ ε) ≤ Var (X)

ε2
.

The Markov inequality, its corollary the Chebyshev inequality and the upcom-
ing Jensen’s inequality will apply in very general situations, as we shall see in the
sequel.

Example 2.1.24: Bernstein’s polynomial approximation A continuous
function f from [0, 1] into R can be approximated by a polynomial. More precisely,
for all x ∈ [0, 1],

f(x) = limn↑∞Pn(x) , (�)

where

Pn(x) :=
n∑

k=0

f

(
k

n

)
n!

k!(n− k)]
xk(1− x)n−k ,

and the convergence of the series in the right-hand side is uniform in [0, 1]. This
classical result of analysis will now be proved using probabilistic arguments.

E

[

f

(
Sn

n

)]

=
n∑

k=0

f

(
k

n

)

P (Sn = k) =
n∑

k=0

f

(
k

n

)
n!

k!(n− k)!
xk(1− x)n−k .

The function f is continuous on the bounded interval [0, 1] and therefore uniformly
continuous on this interval. Therefore to any ε > 0, one can associate a number
δ(ε) such that if |y−x| ≤ δ(ε), then |f(x)−f(y)| ≤ ε. Being continuous on [0, 1], f
is bounded on [0, 1] by some finite number, say M . Now

|Pn(x)− f(x)| =
∣
∣
∣
∣E

[

f

(
Sn

n

)

− f(x)

]∣
∣
∣
∣ ≤ E

[∣
∣
∣
∣f

(
Sn

n

)

− f(x)

∣
∣
∣
∣

]

= E

[∣
∣
∣
∣f

(
Sn

n

)

− f(x)

∣
∣
∣
∣ 1A

]

+ E

[∣
∣
∣
∣f

(
Sn

n

)

− f(x)

∣
∣
∣
∣ 1A

]

,
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where A := {ω ; |Sn(ω)/n) − x| ≤ δ(ε)}. Since |f(Sn/n) − f(x)|1A ≤ 2M1A, we
have

E

[∣
∣
∣
∣f

(
Sn

n

)

− f(x)

∣
∣
∣
∣ 1A

]

≤ 2MP (A) = 2MP

(∣
∣
∣
∣
Sn

n
− x

∣
∣
∣
∣ ≥ δ(ε)

)

.

Also, by definition of A and of δ(ε),

E

[∣
∣
∣
∣f

(
Sn

n

)

− f(x)

∣
∣
∣
∣ 1A

]

≤ ε .

Therefore

|Pn(x)− f(x)| ≤ ε+ 2MP

(∣
∣
∣
∣
Sn

n
− x

∣
∣
∣
∣ ≥ δ(ε)

)

.

But x is the mean of Sn/n, and the variance of Sn/n is nx(1−x) ≤ n/4. Therefore,
by Chebyshev’s inequality,

P

(∣
∣
∣
∣
Sn

n
− x

∣
∣
∣
∣ ≥ δ(ε)

)

≤ 4

n[δ(ε)]2
.

Finally

|f(x)− Pn(x)| ≤ ε+
4

n[δ(ε)]2
,

and

lim
n↑∞
|f(x)− Pn(x)| ≤ ε .

Since ε > 0 is otherwise arbitrary, this suffices to prove the convergence in (�).
The convergence is uniform since the right-hand side of the latter inequality does
not depend on x ∈ [0, 1].

Jensen’s Inequality

This inequality concerns the expectation of convex functions of a random variable.
We therefore start by recalling the definition of a convex function. Let I be an
interval of R (closed, open, semi-closed, infinite, etc.) with non-empty interior
(a, b). The function ϕ : I → R is called a convex function if for all x, y ∈ I and
all 0 < θ < 1,

ϕ(θx+ (1− θ)y) ≤ θϕ(x) + (1− θ)ϕ(y) .

If the inequality is strict for all x �= y and all 0 < θ < 1, the function ϕ is said to
be strictly convex.
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Theorem 2.1.25 Let I be as above and let ϕ : I → R be a convex function. Let
X be an integrable discrete real-valued random variable such that P (X ∈ I) = 1.
Assume moreover that either ϕ is non-negative, or that ϕ(X) is integrable. Then
(Jensen’s inequality)

E [ϕ(X)] ≥ ϕ(E [X]) .

y=φ(x)

xo

φ(xo)

x
a b

y

Proof. A convex function ϕ has the property that for any x0 ∈ (a, b), there exists
a straight line y = αx+ β passing through (x0, ϕ(x0)), that is,

ϕ(x0) = αx0 + β , (�)

and such that for all x ∈ (a, b),

ϕ(x) ≥ αx+ β , (��)

where the inequality is strict if ϕ is strictly convex. (The parameters α and β
may depend on x0 and may not be unique.) Take x0 = E[X]. In particular
ϕ(E[X]) = αE[X] + β. By (��), ϕ(X) ≥ αX + β, and taking expectations using
(�),

E[ϕ(X)] ≥ αE[X] + β = ϕ(E[X]) .

�
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Moment Bounds

Theorem 2.1.26 (a) For any integer-valued random variable X, we have the first
moment bound

P (X �= 0) ≤ E[X] .

(b) For a square-integrable real-valued discrete random variable X, we have the
second moment bound

P (X = 0) ≤ Var (X)

E[X]2
.

Proof. (a) For the first moment bound,

P (X �= 0) = P (X = 1) + P (X = 2) + P (X = 3) + · · ·
≤ P (X = 1) + 2P (X = 2) + 3P (X = 3) + · · · = E[X] .

(b) Since the event X = 0 implies the event |X − E[X]| ≥ E[X],

P (X = 0) ≤ P (|X −E[X]| ≥ E[X]) ≤ Var (X)

E[X]2
,

where the last inequality is Chebyshev’s inequality. �

Product Rule for Expectation

The product formula for expectations featured in the next theorem will be met
several times in this book and is in fact very general (see Theorem 5.4.4).

Theorem 2.1.27 Let Y and Z be two independent discrete random elements with
values in the countable sets F and G respectively, and let v : F → R, w : G→ R
be functions which are either non-negative, or such that v(Y ) and w(Z) are both
integrable. Then

E[v(Y )w(Z)] = E[v(Y )]E[w(Z)] .

Proof. Consider the discrete random element X with values in E = F×G defined
by X = (Y, Z), and let the function g : E → R be defined by g(x) = v(y)w(z)
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(x = (y, z)). We have, under the prevailing conditions,

E[v(Y )w(Z)] = E[g(X)] =
∑

x∈E
g(x)P (X = x)

=
∑

y∈F

∑

z∈F
v(y)w(z)P (Y = y, Z = z)

=
∑

y∈F

∑

z∈F
v(y)w(z)P (Y = y)P (Z = z)

=

(
∑

y∈F
v(y)P (Y = y)

)(
∑

z∈F
w(z)P (Z = z)

)

= E[v(Y )]E[w(Z)] .

�

The following consequence of the product rule is extremely important. It says
that for independent random variables, “variances add up”.

Theorem 2.1.28 Let X1, . . . , Xn be independent integrable discrete random vari-
ables with real values. Then

σ2
X1 + ···+Xn

= σ2
X1

+ · · · + σ2
Xn

. (2.11)

Proof. Let μ1, . . . , μn be the respective means of X1, . . . , Xn. The mean of the
sum X := X1 + · · ·+Xn is μ := μ1 + · · ·+ μn. If i �= k, we have, by the product
formula for expectations,

E [(Xi − μi)(Xk − μk)] = E [(Xi − μi)]E [(Xk − μk)] = 0 .

Therefore

Var (X) =E
[
(X − μ)2

]
= E

⎡

⎣

(
n∑

i=1

(Xi − μi)

)2
⎤

⎦

=E

[
n∑

i=1

n∑

k=1

(Xi − μi)(Xk − μk)

]

=

n∑

i=1

n∑

k=1

E [(Xi − μi)(Xk − μk)]

=

n∑

i=1

E
[
(Xi − μi)

2
]
=

n∑

i=1

Var (Xi) .
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�

Note that means always add up, even when the random variables are not in-
dependent.

Let X be an integrable discrete random variable. Then, clearly, for any a ∈ R,
aX is integrable and its variance is given by the formula

Var (aX) = a2 Var (X) .

Example 2.1.29: Variance of the empirical mean. ¿From the above
remark and Theorem 2.1.28, it follows that if X1, . . . , Xn are independent and
identically distributed integrable random variables with real values and common
variance σ2, then

Var

(
X1 + · · ·+Xn

n

)

=
σ2

n
.

Example 2.1.30: The weak law of large numbers. Let {Xn}n≥1 be
an independent sequence of real-valued discrete random variables with the same
probability distribution, mean (supposed well defined) m and variance σ2 < ∞.
Then, since the variance of the n-th order empirical mean Xn := X1+···+Xn

n
is equal

to σ2

n
, we have by Chebyshev’s inequality, for all ε > 0,

P (
∣
∣Xn −m

∣
∣ ≥ ε) = P

(∣
∣
∣
∣

∑n
i=1(Xi −m)

n
≥ ε

∣
∣
∣
∣

)

≤ σ2

n2ε
.

Therefore the empirical mean Xn converges to the mean m in probability, which
means exactly (by definition of the convergence in probability) that, for all ε > 0,

lim
n↑∞

P (
∣
∣Xn −m

∣
∣ ≥ ε) = 0 .

This result is called the weak law of large numbers in order to distinguish it
from a much more powerful result, the strong law of large numbers in Chapter 6.
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2.2 Remarkable Discrete Distributions

Uniform

Let X be a finite set whose cardinality is denoted by |X |. The random variable
with values in this set and having the distribution

P (X = x) =
1

|X | (x ∈ X )

is said to be uniformly distributed (or to have the uniform distribution) on X .

Example 2.2.1: Is this number the larger one? Let a and b be two
numbers in {1, 2, . . . , 10, 000}, with a > b. Only one of these numbers is shown to
you, chosen at random and equiprobably. Call X this (now random) number. Is
there a good strategy for guessing if the number shown to you is the largest of the
two? Of course, we would like to have a probability of success strictly larger than
1
2
. Perhaps surprisingly, there is such a strategy, that we now describe. Select at

random uniformly on {1, 2, . . . , 10, 000} a number Y . If X ≥ Y , say that X is the
largest (= a), otherwise say that it is the smallest.

Let us compute the probability PE of a wrong guess. An error occurs when
either (i) X ≥ Y and X = b, or (ii) X < Y and X = a. These events are exclusive
of one another, and therefore

PE = P (X ≥ Y,X = b) + P (X < Y,X = a)

= P (b ≥ Y,X = b) + P (a < Y,X = a)

= P (b ≥ Y )P (X = b) + P (a < Y )P (X = a)

= P (b ≥ Y )
1

2
+ P (a < Y )

1

2
=

1

2
(P (b ≥ Y ) + P (a < Y ))

=
1

2
(1− P (Y ∈ [b+ 1, a]) =

1

2

(

1− a− b

10, 000

)

<
1

2
.

Let {Xn}n≥1 be an iid sequence of random variables taking their values in the
set {0, 1} and with a common distribution given by

P (Xn = 1) = p (p ∈ (0, 1)) .

Define the Hamming weight h(a) of the binary vector a = (a1, a2, . . . , an) ∈ {0, 1}n
by h(a) :=

∑k
j=1 aj . Since P (Xj = aj) = p or 1 − p depending on whether ai = 1

or 0, and since there are exactly h(a) coordinates of a that are equal to 1,

P (X1 = a1, . . . , Xk = ak) = ph(a)qk−h(a) , (2.12)



42 CHAPTER 2. DISCRETE RANDOM VARIABLES

where q := 1− p.

Comparing with Examples 1.1.3 and 1.2.3, we see that we have modelized a
game of heads or tails, with a biased coin if p �= 1

2
. The sequence {Xn}n≥1 is called

a Bernoulli sequence of parameter p.

Example 2.2.2: The gambler’s ruin. Two players A and B play “heads or
tails”, where heads occur with probability p ∈ (0, 1) and the successive outcomes
form an iid sequence. Calling Xn the fortune in dollars of player A at time n,
then Xn+1 = Xn + Zn+1, where Zn+1 = +1 (resp., −1) with probability p (resp.,
q = 1 − p), and {Zn}n≥1 is iid. In other words, A bets $1 on heads at each toss,
and B bets $1 on tails. The respective initial fortunes of A and B are a and b
(positive integers). The game ends when a player is ruined. The duration of the
game is T , the first time n at which Xn = 0 or c, and the probability of winning
for A is u(a) = P (XT = c | X0 = a). We shall compute u(a).

1 2 3 4 5 6 7 8 9 10 T = 11

c = a+ b

0

a

A wins

The gambler’s ruin

Instead of computing u(a) alone, we shall compute

u(i) := P (XT = c | X0 = i)

for all states i (0 ≤ i ≤ c). For this, we first obtain a recurrence equation for u(i)
by breaking down event “A wins” according to what can happen after the first step
(the first toss) and using the Bayes rule of total causes. If X0 = i (1 ≤ i ≤ c− 1),
then X1 = i+1 (resp., X1 = i−1) with probability p (resp., q), and the probability
of winning for A with updated initial fortune i+ 1 (resp., i− 1) is u(i+ 1) (resp.,
u(i− 1)). Therefore, for i (1 ≤ i ≤ c− 1),

u(i) = pu(i+ 1) + qu(i− 1) ,
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with the boundary conditions u(0) = 0, u(c) = 1. The characteristic equation
associated with this linear recurrence equation is pr2 − r + q = 0. It has two
distinct roots, r1 = 1 and r2 =

q
p
, if p �= q, and a double root, r1 = 1, if p = q = 1

2
.

Therefore, the general solution is u(i) = λri1 + μri2 = λ + μ
(

q
p

)i

when p �= q, and

u(i) = λri1 + μiri1 = λ + μi when p = q = 1
2
. Taking into account the boundary

conditions, one can determine the values of λ and μ. The result is, for p �= q,

u(i) =
1− ( q

p
)i

1− ( q
p
)c
,

and for p = q = 1
2
,

u(i) =
i

c
.

In the case p = q = 1
2
, the probability v(i) that B wins when the initial fortune of B

is c−i is obtained by replacing i by c−i in the expression for u(i): v(i) = c−i
c

= 1− i
c
.

One checks that u(i) + v(i) = 1, which means in particular that the probability
that the game lasts forever is null. The reader is invited to check that the same is
true in the case p �= q.

The framework of heads or tails shelters the three most common discrete ran-
dom variables: the binomial, the geometric and the Poisson random variables.

Binomial

Definition 2.2.3 A random variableX taking its values in the set E = {0, 1, . . . , n}
and with the probability distribution

P (X = i) =

(
n

i

)

pi(1− p)n−i (0 ≤ i ≤ n)

is called a binomial random variable of size n and parameter p ∈ (0, 1). This is
denoted by X ∼ B(n, p).

The mean and the variance of a binomial random variable X of size n and
parameter p are given by

E[X] = np ,

Var (X) = np(1− p) ,
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Proof. In Example 2.1.11, it was proved that the number of occurrences of heads
in n tosses, Sn = X1 + · · ·+Xn, is a binomial random variable B(n, p). We have

E [Sn] =

n∑

i=1

E [Xi] = nE [X1]

and since the Xi’s are iid,

Var (Sn) =
n∑

i=1

Var (Xi) = nVar (X1) .

Now
E [X1] = 0× P (X1 = 0) + 1× P (X1 = 1) = P (X1 = 1) = p ,

and since X2
1 = X1,

E
[
X2

1

]
= E [X1] = p .

Therefore
Var (X1) = E

[
X2

1

]
− E [X1]

2 = p− p2 = p(1− p)

and
Var (Sn) = np(1− p) .

�

Geometric

Definition 2.2.4 A random variable X taking its values in N+ and with the dis-
tribution

P (T = k) = (1− p)k−1p ,

where 0 < p < 1, is called a geometric random variable with parameter p. This is
denoted by X ∼ Geo(p).

Example 2.2.5: First “heads” in the sequence. Define the random vari-
able T to be the first time of occurrence of 1 in the Bernoulli sequence {Xn}n≥1,
that is,

T = inf{n ≥ 1;Xn = 1} ,
with the convention that if Xn = 0 for all n ≥ 1, then T =∞. The event {T = k}
is exactly {X1 = 0, . . . , Xk−1 = 0, Xk = 1}, and therefore,

P (T = k) = P (X1 = 0) · · ·P (Xk−1 = 0)P (Xk = 1) ,
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that is, for k ≥ 1,

P (T = k) = (1− p)k−1p .

The mean of a geometric random variable X with parameter p > 0 is

E [X] =
1

p
. (2.13)

Proof.

E [X] =
∞∑

k=1

k (1− p)k−1 p .

But for α ∈ (0, 1),

∞∑

k=1

kαk−1 =
∂

∂α

( ∞∑

k=1

αk

)

=
∂

dα

(
1

1− α
− 1

)

=
1

(1− α)2
.

Therefore

E [X] =
1

(1− (1− p))2
× p =

1

p2
× p ,

that is, finally, (2.13). �

Example 2.2.6: The coupon collector. In a certain brand of chocolate
tablets one can find coupons, one for each tablet, randomly and independently
chosen among n types. A prize may be claimed once the chocolate amateur has
gathered a collection containing a subset with all the types of coupons. We shall
compute the average value of the number X of chocolate tablets bought when this
happens for the first time. For this, let Xi (0 ≤ i ≤ n−1) be the number of tablets
bought while exactly i coupons of different types have been collected, so that

X =
n−1∑

i=0

Xi .

Each Xi is a geometric random variable with parameter pi = 1− i
n
. In particular

((2.13)),

E [Xi] =
1

pi
=

n

n− i
,
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and therefore

E [X] =

n−1∑

i=0

E [Xi] = n

n∑

i=1

1

i
.

The sum H(n) :=
∑n

i=1
1
i
(called the n-th harmonic number) satisfies the inequal-

ities

lnn ≤ H(n) ≤ lnn+ 1

as can be seen by expressing lnn as the integral
∫ n

1
1
x
dx, cutting the domain of

integration into segments of unit length, and using the fact that the integrand is
a decreasing function, which gives the inequalities

n∑

i=2

1

i
≤

∫ n

1

dx

x
≤

n−1∑

i=1

1

i
,

that is

H(n)− 1 ≤ lnn ≤ H(n− 1) .

This gives the inequalities

H(n) ≤ lnn + 1

and

H(n) ≥ ln(n+ 1) = lnn+ ln
n + 1

n
.

Therefore H(n) = lnn +O(1) 2 and, finally,

E [X] = n lnn +O(n) .

In fact, observing that |
∑n

i=1 1/i− lnn| ≤ 1, we have that |E [X]− n lnn| ≤ n.

Poisson

Definition 2.2.7 A random variable X taking its values in N and such that

P (X = k) = e−θ θ
k

k!
(k ≥ 0)

is called a Poisson random variable with parameter θ > 0. This is denoted by
X ∼ Poi(θ).

2 f(n) = O(g(n)) means that there exists a positive real number M and an integer n0 such
that |f(n)| ≤ M |g(n)| for all n ≥ n0. This notation is part of the so-called Landau notational
system.
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Example 2.2.8: The Poisson law of rare events, take 1. A veterinary
surgeon in the Prussian cavalry once collected data concerning accidents due to
horse kickbacks among soldiers. He found that the (random) number of accidents
of this kind in a given year closely follows a Poisson distribution. The purpose of
this example is to explain why.

Suppose that you play “heads or tails” for a large number n of (independent)
tosses with a coin such that

P (Xi = 1) =
α

n
.

In the Prussian cavalry example, n is the (large) number of soldiers and Xi = 1 if
the i-th soldier has been hurt by a horse. Let Sn be the total number of heads (of
wounded soldiers). We show that for all k ≥ 0,

lim
n↑∞

pn(k) = e−αα
k

k!
, (�)

with the convention 0! = 1.

This explains the findings of the veterinary surgeon. The average number of
casualties is α and the choice P (Xi = 1) = α

n
guarantees this. Letting n ↑ ∞

accounts for n being large but unknown.

Here is the proof of the mathematical statement. As we know, the random
variable Sn follows a binomial law:

P (Sn = k) =

(
n

k

)(α

n

)k (
1− α

n

)n−k

of mean n× α
n
= α. With pn(k) := P (Sn = k), we see that

pn(0) =
(
1− α

n

)n

→ e−α

and
pn(k + 1)

pn(k)
=

n−k
k+1

α
n

1− α
n

→ α

k + 1
.

Therefore, (�) holds for all k ≥ 0, showing that the limit distribution is indeed a
Poisson distribution of mean α.

Theorem 2.2.9 For a Poisson random variable with parameter θ > 0,

E[X] = θ and Var (X) = θ .
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Proof. The following is a direct computation. Later on we shall see a better
approach (via generating functions).

E [X] = e−θ

∞∑

k=1

kθk

k!
= e−θθ

∞∑

k=1

θk−1

(k − 1)!

= e−θθ
∞∑

j=0

θj

j!
= e−θθeθ = θ ,

E
[
X2 −X

]
= e−θ

∞∑

k=0

(
k2 − k

) θk

k!
= e−θ

∞∑

k=2

k (k − 1)
θk

k!

= e−θθ2
∞∑

k=2

θk−2

(k − 2)!
= e−θθ2

∞∑

j=0

θj

j!
= e−θθ2eθ = θ2 ,

Var (X) = E
[
X2

]
−E [X]2

= E
[
X2 −X

]
+ E [X]− E [X]2 = θ2 + θ − θ2 = θ .

�

Example 2.2.10: Sums of independent Poisson variables. Let X1 and
X2 be two independent Poisson random variables with respective means θ1 > 0 and
θ2 > 0. Then X = X1 +X2 is a Poisson random variable with mean θ = θ1 + θ2.

Proof. For k ≥ 0,

P (X = k) = P (X1 +X2 = k) = P

(
k∑

i=0

{X1 = i, X2 = k − i}
)

=

k∑

i=0

P (X1 = i, X2 = k − i) =

k∑

i=0

P (X1 = i)P (X2 = k − i)

=

k∑

i=0

e−θ1
θi1
i!
e−θ2

θk−i
2

(k − i)!
=

e−(θ1+θ2)

k!

k∑

i=0

k!

i!(k − i)!
θi1θ

k−i
2

= e−(θ1+θ2)
(θ1 + θ2)

k

k!
.

�
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Hypergeometric

In Example 1.4.1 we met the following distribution;

pk =

(
N1

k

)(
N2

n−k

)

(
N1+N2

n

) (0 ≤ k ≤ inf(N1, n)) .

It is called the hypergeometric distribution.

Multinomial

Consider a random vector X = (X1, . . . , Xn) where all the random variables Xi

take their values in the same denumerable space E (this restriction is not essential,
but it simplifies the notation). Let p : En → R+ be a function such that

∑

x∈En

p(x) = 1 .

Definition 2.2.11 The discrete random vector X above is said to admit the prob-
ability distribution p(x) (x ∈ En) if for all sets C ⊆ En,

P (X ∈ C) =
∑

x∈C
p(x) .

In fact, there is nothing new here since X is a discrete random variable taking
its values in the denumerable set X := En.

Consider the situation where k balls are placed in n boxes B1, . . . , Bn, inde-
pendently of one another, with the probability pi for a given ball to be assigned
to box Bi. Of course,

∑n
i=1 pi = 1 .

After placing all the balls in the boxes, there are Xi balls in box Bi, where
∑n

i=1Xi = k .

Then

P (X1 = m1, . . . , Xn = mn) =
k!

∏n
i=1(mi)!

n∏

i=1

pmi
i . (2.14)

Proof. Observe that (α): there are k!/
∏n

i=1(mi)! distinct ways of placing k balls
in n boxes in such a manner that m1 balls are in box B1, m2 are in B2, etc., and
(β): each of these distinct ways occurs with the same probability

∏n
i=1 p

mi
i . �
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Definition 2.2.12 If the random vector X = (X1, . . . , Xn) admits the probability
distribution given by (2.14), it is called a multinomial (random) vector of size
(n,K) and parameters p1, . . . , pn.

2.3 Generating Functions

Computations relative to discrete probability models often require an enumeration
of all the possible outcomes realizing a particular event. Generating functions are
very useful for this task and, more generally, for obtaining distribution functions
of integer-valued random variables.

In order to introduce this versatile tool, we must first define the expectation
of a complex-valued function of an integer-valued variable. Let X be a discrete
random variable with values in N, and let ϕ : N→ C be a complex function with
real and imaginary parts ϕR and ϕI respectively. The expectation E[ϕ(X)] is then
defined by

E[ϕ(X)] := E[ϕR(X)] + iE[ϕI(X)] ,

provided that the expectations on the right-hand side are well defined and finite.

Definition 2.3.1 Let X be an N-valued random variable. Its generating function
(gf) is the function g : D(0; 1) := {z ∈ C; |z| ≤ 1} → C defined by

g(z) := E[zX ] =

∞∑

k=0

P (X = k)zk . (2.15)

Since
∑∞

n=0 P (X = n) = 1 <∞, the power series associated with the sequence
{P (X = n)}n≥0 has a radius of convergence R ≥ 1. The domain of definition of g
could be, in specific cases, larger than the closed unit disk centered at the origin.

In the next two examples below, the domain of absolute convergence is the
whole complex plane.

Example 2.3.2: gf of the binomial variable. For the binomial random
variable of size n and parameter p,

g(z) =
n∑

k=0

(
n

k

)

(zp)k(1− p)n−k = (1− p+ pz)n .
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Example 2.3.3: gf of the Poisson variable. For the Poisson random
variable of mean θ,

g(z) = e−θ

∞∑

k=0

(θz)k

k!
= eθ(z−1) .

Here is an example where the radius of convergence is finite.

Example 2.3.4: gf of the geometric variable. For the geometric random
variable of parameter p ∈ (0, 1),

g(z) =

∞∑

k=0

p(1− p)k−1 zk =
pz

1− (1− p)z
.

The radius of convergence of the above power series is 1
1−p

.

Theorem 2.3.5 The generating function characterizes the distribution of a ran-
dom variable.

This means the following. Suppose that, without knowing the distribution of
X, you have been able to compute its generating function g, and that, moreover,
you are able to give its power series expansion in a neighborhood of the origin:3

g(z) =

∞∑

n=0

anz
n.

Since g is the generating function of X,

g(z) =

∞∑

n=0

P (X = n)zn,

and since the power series expansion around the origin is unique, the distribution
of X is identified as

P (X = n) = an

for all n ≥ 0. Similarly, if two N-valued random variables X and Y have the same
generating function, they have the same distribution. Indeed, the identity in a
neighborhood of the origin of the power series:

∞∑

n=0

P (X = n)zn =

∞∑

n=0

P (Y = n)zn

3 This is a common situation; see Theorem 2.3.12 for instance.
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implies the identity of their coefficients.

Theorem 2.3.6 Let X and Y be two independent integer-valued random variables
with respective generating functions gX and gY respectively. Then the sum X + Y
has the gf

gX+Y (z) = gX(z)× gY (z) . (2.16)

Proof. Use the product formula for expectations:

gX+Y (z) = E
[
zX+Y

]
= E

[
zXzY

]
= E

[
zX

]
E
[
zY

]
.

�

Example 2.3.7: Sum of independent Poisson variables. Let X and Y
be two independent Poisson random variables of means α and β respectively. We
shall prove that the sum X +Y is a Poisson random variable with mean α+β. In
fact, according to (2.16),

gX+Y (z) = gX(z)× gY (z) = eα(z−1) eβ(z−1) = e(α+β)(z−1) ,

and the assertion follows directly from Theorem 2.3.5 since gX+Y is the gf of a
Poisson random variable with mean α + β.

Moments from the Generating Function

Generating functions can be used to obtain the moments of a discrete random
variable.

Theorem 2.3.8 We have
g′(1) = E[X] (2.17)

and
g′′(1) = E[X(X − 1)] . (2.18)

Proof. Inside the open disk centered at the origin and of radius R, the power
series defining the generating function g is continuous, and differentiable at any
order term by term. In particular, differentiating twice both sides of (2.15) inside
the open disk D(0;R) gives

g′(z) =
∞∑

n=1

nP (X = n)zn−1 (2.19)

and

g′′(z) =
∞∑

n=2

n(n− 1)P (X = n)zn−2 . (2.20)
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When the radius of convergence R is strictly larger than 1, we obtain the announced
results by letting z = 1 in the previous identities.

If R = 1, the same is basically true but the mathematical argument is more
subtle. The difficulty is not with the right-hand side of (2.19), which is always well
defined at z = 1, being equal to

∑∞
n=1 nP (X = n), a non-negative and possibly

infinite quantity. The difficulty is that g may be not differentiable at z = 1, a
border point of the disk (here of radius 1) on which it is defined. However, by
Abel’s theorem 4, the limit of

∑∞
n=1 nP (X = n)xn−1 as the real variable x increases

to 1 is
∑∞

n=1 nP (X = n). Therefore g′, as a function defined on the real interval
[0, 1), can be extended to [0, 1] by (2.17), and this extension preserves continuity.
With this definition of g′(1), Formula (2.17) holds true. Similarly, when R = 1,
the function g′′ defined on [0, 1) by (2.20) is extended to a continuous function on
[0, 1] by defining g′′(1) by (2.18). �

Another useful result is Wald’s formula below, which gives the expectation of
a random sum of independent and identically distributed integer-valued variables.
By taking derivatives in (2.21) of Theorem 2.3.12,

E [X] = g′X(1) = g′Y (1)g
′
T (gY (1)) = E[Y1]E[T ] .

A stronger version of this result is given in Exercise 2.5.18.

The next technical result gives details concerning the shape of the generating
function restricted to the interval [0, 1].

Theorem 2.3.9 (α) Let g : [0, 1]→ R be defined by g(x) = E[xX ], where X is a
non-negative integer-valued random variable. Then g is non-decreasing and convex.
Moreover, if P (X = 0) < 1, then g is strictly increasing, and if P (X ≤ 1) < 1, it
is strictly convex.

(β) Suppose P (X ≤ 1) < 1. If E[X] ≤ 1, the equation x = g(x) has a unique
solution x ∈ [0, 1], namely x = 1. If E[X] > 1, it has two solutions in [0, 1], x = 1
and x = x0 ∈ (0, 1).

4 Let {an}n≥1 be a sequence of real numbers such that the radius of convergence of the
power series

∑∞
n=0 anz

n is 1. Suppose that the sum
∑∞

n=0 an is convergent. Then the power
series

∑∞
n=0 anx

n is uniformly convergent in [0, 1] and

lim
x↑1

∞∑

n=0

anx
n =

∞∑

n=0

an ,

where x ↑ 1 means that x tends to 1 strictly from below.
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Proof. Just observe that for x ∈ [0, 1],

g′(x) =
∞∑

n=1

nP (X = n)xn−1 ≥ 0 ,

and therefore g is non-decreasing, and

g′′(x) =
∞∑

n=2

n(n− 1)P (X − n)xn−2 ≥ 0 ,

and therefore g is convex. For g′(x) to be null for some x ∈ (0, 1), it is necessary
to have P (X = n) = 0 for all n ≥ 1, and therefore P (X = 0) = 1. For g′′(x) to be
null for some x ∈ (0, 1), one must have P (X = n) = 0 for all n ≥ 2, and therefore
P (X = 0) + P (X = 1) = 1.

1

P (X = 0)

0 1
E[X] ≤ 1

0

P (X = 0)

1

1

E[X] > 1

Two aspects of the generating function

The graph of g : [0, 1] → R has, in the strictly increasing strictly convex case
P (X = 0) + P (X = 1) < 1, the general shape shown in the figure, where we
distinguish two cases: E[X] = g′(1) ≤ 1, and E[X] = g′(1) > 1. The rest of the
proof is then easy. �

The next two examples are typical of the use of generating functions in com-
binatorics.

Example 2.3.10: The Lottery. We compute the probability that in a 6-
digit lottery the sum of the first three digits equals the sum of the last three digits.
(The digits from 0 to 9 are drawn equiprobably and independently and the result
is presented in the order they appear.)

Let X1, X2, X3, X4, X5, and X6 be independent random variables uniformly
distributed over {0, 1, . . . , 9}. We first compute the generating function of
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Y = 27 +X1 +X2 +X3 −X4 −X5 −X6. We have

E[zXi ] =
1

10
(1 + z + · · ·+ z9) =

1

10

1− z10

1− z
,

E[z−Xi ] =
1

10

(

1 +
1

z
+ · · ·+ 1

z9

)

=
1

10

1− z−10

1− z−1
=

1

10

1

z9
1− z10

1− z
,

and

E[zY ] = E[
[
z27+

∑3
i=1 Xi−

∑6
i=4 Xi

]

= E

[

z27
3∏

i=1

zXi

6∏

i=4

z−Xi

]

= z27
3∏

i=1

E[zXi ]
6∏

i=4

E[z−Xi ] .

Therefore,

gY (z) =
1

106
(1− z10)

6

(1− z)6
.

But P (X1 + X2 + X3 = X4 + X5 + X6) = P (Y = 27) is the factor of z27 in the
power series expansion around the origin of gY . Since

(1− z10)6 = 1−
(
6

1

)

z10 +

(
6

2

)

z20 + · · ·

and

(1− z)−6 = 1 +

(
6

5

)

z +

(
7

5

)

z2 +

(
8

5

)

z3 + · · ·

(recall the negative binomial formula (1.18):

(1− z)−p = 1 +

(
p

p− 1

)

z +

(
p+ 1

p− 1

)

z2 +

(
p+ 2

p− 1

)

z3 + · · · ),

we find that

P (Y = 27) =
1

106

((
32

5

)

−
(
6

1

)(
22

5

)

+

(
6

2

)(
12

5

))

.
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Example 2.3.11: Biased dice. Does there exist two biased dice such that,
when tossed independently, the sum of their values is uniformly distributed on
{2, 3, . . . , 12}? The answer is no.

To see this, let us call X1 and X2 the values obtained by tossing the first and
the second die respectively, and g1 and g2 the corresponding generating functions.
The generating function of X := X1 + X2 is g(z) = g1(z) × g2(z) since the dice
are supposed to be tossed independently. If the sum was uniformly distributed on
{2, 3, . . . , 12}, then we would have

g1(z)× g2(z) =
1

11
(z2 + · · ·+ z12) =

z2

11

z11 − 1

z − 1
.

Equivalently,

P1(z)P2(z) =
1

11
(1 + z + · · ·+ z10) , (�)

where the polynomials

Pi(z) :=
1

z
gi(z) =

5∑

k=0

P (Xi = k + 1)zk (i = 1, 2)

have common degree 5. Being of odd degree they each have at least one real root,
whereas the right-hand side of (�) has no real roots (its roots are the ten eleventh
roots of unity not equal to 1). Hence a contradiction.

Random Sums

How to compute the distribution of random sums? Here again, generating func-
tions help.

Theorem 2.3.12 Let {Yn}n≥1 be an iid sequence of integer-valued random vari-
ables with the common generating function gY . Let T be another random variable,
integer-valued, independent of the sequence {Yn}n≥1, and let gT be its generating
function. The generating function of

X =
∑T

n=1 Yn ,

where by convention
∑0

n=1 = 0, is

gX(z) = gT (gY (z)) . (2.21)
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Proof. Since {{T = k}}k≥0 is a sequence of mutually exclusive and exhaustive
subsets of Ω,

1 =

∞∑

k=0

1{T=k} ,

and

zX = z
∑T

n=1 Yn =

( ∞∑

k=0

1{T=k}

)

z
∑T

n=1 Yn

=

∞∑

k=0

(
z
∑T

n=1 Yn

)
1{T=k} =

∞∑

k=0

(
z
∑k

n=1 Yn

)
1{T=k} .

Therefore,

E[zX ] =

∞∑

k=0

E
[
1{T=k}

(
z
∑k

n=1 Yn

)]
=

∞∑

k=0

E[1{T=k}]E[z
∑k

n=1 Yn] ,

where we have used the assumption of independence of T and {Yn}n≥1. Now,
E[1{T=k}] = P (T = k), and

E[z
∑k

n=1 Yn ] = E[

k∏

n=1

zYn ] =

k∏

n=1

E[

k∏

n=1

zYn ] = gY (x)
k ,

and therefore

E[zX ] =

∞∑

k=0

P (T = k)gY (z)
k = gT (gY (z)) .

�

Example 2.3.13: Thinning of a Poisson Random Variable. Let {Xn}n≥1

be a Bernoulli sequence of parameter p, and let T be a Poisson random variable
with mean θ > 0, independent of {Xn}n≥1. We show that

S := X1 + · · ·+XT

is a Poisson random variable with mean pθ. (In other words, if one “thins out” with
thinning probability 1 − p a population sample of Poissonian size, the remaining
sample also has a Poissonian size, with the obvious mean, that is, p times that of
the original sample.) Indeed, in this case,

gT (z) = eθ(z−1)



58 CHAPTER 2. DISCRETE RANDOM VARIABLES

and

gY (z) = pz + (1− p) ,

so that

gS(z) = gT (gY (z)) = epθ(z−1) .

Compare with a direct proof:

P (S = k) = P (X1 + · · ·+XT = k)

= P (∪∞n=k{X1 + · · ·+Xn = k, T = n})

=
∞∑

n=k

P (X1 + · · ·+Xn = k, T = n)

=
∞∑

n=k

P (X1 + · · ·+Xn = k)P (T = n) ,

that is

P (S = k) =
∞∑

n=k

n!

k!(n− k)!
pkqn−ke−θ θ

n

n!

= e−θ (pθ)
k

k!

∞∑

n=k

(qθ)n−k

(n− k)!

= e−θ (pθ)
k

k!

∞∑

i=0

(qθ)i

i!

= e−θ (pθ)
k

k!
eqθ = epθ

(pθ)k

k!
.

Branching Trees

Francis Galton, a cousin of Darwin, was interested in the survival probability of
a given line of English peerage. He posed the problem in the Educational Times
in 1873. In the same year and the same journal, Watson proposed the method of
solution that has become a textbook classic, and thereby initiated an important
domain of probability called branching process theory.

Here is the description of the Galton–Watson model, the statement of Galton’s
purpose and Watson’s solution.
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Let Zn = (Z
(1)
n , Z

(2)
n , . . .), where the random variables {Z(j)

n }n≥1,j≥1 are iid and
integer-valued. The recurrence equation

Xn+1 =
∑Xn

k=1 Z
(k)
n+1 , (2.22)

with the convention Xn+1 = 0 if Xn = 0, receives the following interpretation: Xn

is the number of individuals in the nth generation of a given population (humans,

particles, etc.). Individual number k of the nth generation gives birth to Z
(k)
n+1

descendants, and this accounts for Eqn. (2.22). The number X0 of ancestors is
assumed to be independent of {Zn}n≥1. The sequence of random variables {Xn}n≥0

is called a branching process because of the genealogical tree that it generates (see
Figure 2.1). The branching process is also known as the Galton–Watson process.

X6 = 2

X1 = 2

X2 = 5

X3 = 8

X4 = 7

X5 = 6

X0 = 1

Figure 2.1: Sample tree of a branching process

With the purpose of obtaining the probability of extinction of the population,
first observe that the event E = “an extinction occurs” is just “at least one gener-
ation is empty”, that is,

E = ∪∞n=1{Xn = 0} ,

In order to discard trivial cases, assume that P (Z = 0) < 1 and P (Z ≥ 2) > 0.

Let g be the common generating function of the variables Z
(k)
n . Let

ψn(z) := E[zXn ]

be the generating function of the number of individuals in the nth generation. We
prove successively that

(a) P (Xn+1 = 0) = g(P (Xn = 0)),

(b) P (E) = g(P (E)), and
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(c) if E[Z1] < 1 the probability of extinction is 1; and if E[Z1] > 1, the proba-
bility of extinction is < 1 but nonzero.

Proof.

(a) In Equation (2.22), Xn is independent of the Z
(k)
n+1’s. Therefore, by Theorem

2.3.12,
ψn+1(z) = ψn(g(z)) .

Iterating this equality, we obtain ψn+1(z) = ψ0(g
(n+1)(z)), where g(n) is the nth

iterate of g. If there is only one ancestor, then ψ0(z) = z, and therefore ψn+1(z) =
g(n+1)(z) = g(g(n)(z)), that is,

ψn+1(z) = g(ψn(z)) .

In particular, since ψn(0) = P (Xn = 0), we have (a).

(b) Since Xn = 0 implies Xn+1 = 0, the family {Xn = 0} is non-decreasing,
and by monotone sequential continuity,

P (E) = lim
n↑∞

P (Xn = 0) .

The generating function g is continuous, and therefore from (a) and the last equa-
tion, the probability of extinction satisfies (b).

(c) Let Z be any of the random variables Z
(k)
n . Excluding the trivial cases

where P (Z = 0) = 1 or P (Z ≥ 2) = 0, we have by Theorem 2.3.9 that:

(α) if E[Z] ≤ 1, the only solution of x = g(x) in [0, 1] is 1, and therefore
P (E) = 1. The branching process eventually becomes extinct, and

(β) if E[Z] > 1, there are two solutions of x = g(x) in [0, 1], 1 and x0 such that
0 < x0 < 1. From the strict convexity of g : [0, 1]→ [0, 1], it follows that the
sequence yn = P (Xn = 0) that satisfies y0 = 0 and yn+1 = g(yn) converges to
x0. Therefore, when the mean number of descendants E[Z] is strictly larger
than 1, P (E) ∈ (0, 1).

�

Example 2.3.14: Extinction probability for a Poisson offspring.

Take for the offspring distribution the Poisson distribution with mean λ > 0, whose
generating function is g(x) = eλ(x−1). Suppose that λ > 1 (the supercritical case).
The probability of extinction P (E) is the unique solution in (0, 1) of x = eλ(x−1).
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Example 2.3.15: Extinction probability for a binomial offspring.

Take for the offspring distribution the binomial distribution B(N, p), with 0 < p <
1. Its mean is m = Np and its generating function is g(x) = (px + (1 − p))N .
Suppose that Np > 1 (the supercritical case). The probability of extinction P (E)
is the unique solution in (0, 1) of x = (px+ (1− p))N .

Example 2.3.16: Poisson branching as the limit of binomial branch-

ing. Suppose now that p = λ
N

with λ > 1 (therefore we are in the supercritical
case) and the probability of extinction is given by the unique solution in (0, 1) of

x =

(
λ

N
x+ (1− λ

N
)

)N

=

(

1− λ

N
(1− x)

)N

.

Letting N ↑ ∞, we see that the right-hand side tends from below (1−x ≤ e−x) to
the generating function of a Poisson variable with mean λ. Using this fact and the
concavity of the generating functions, it follows that the probability of extinction
also tends to the probability of extinction relative to the Poisson distribution of
the offspring.

Let T be the extinction time of the Galton–Watson branching process. The
distribution of T is fully described by

P (T ≤ n) = P (Xn = 0) = ψn(0) (n ≥ 0)

and P (T =∞) = 1− P (E). In particular

lim
n↑∞

P (T ≤ n) = P (E) . (�)

Theorem 2.3.17 In the supercritical case (m > 1 and therefore 0 < P (E) < 1),

P (E)− P (T ≤ n) ≤ (g′(P (E)))n . (2.23)

Proof. The probability of extinction P (E) is the limit of the sequence xn =
P (Xn = 0) satisfying the recurrence equation xn+1 = g(xn) with initial value
x0 = 0. We have that

0 ≤ P (E)− xn+1 = P (E)− g(xn) = g(P (E))− g(xn) ,
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that is,
P (E)− xn+1

P (E)− xn
=

g(P (E))− g(xn)

P (E)− xn
≤ g′(P (E)) ,

where we have taken into account the convexity of g and the inequality xn < P (E).
The result follows from there by recurrence. �

Example 2.3.18: Convergence rate for the Poisson offspring dis-

tribution. For a Poisson offspring with mean m = λ > 1, g′(x) = λg(x) and
therefore g′(P (E)) = λP (E). Therefore

P (E)− P (T ≤ n) ≤ (λP (E))n .

Example 2.3.19: Convergence rate for the binomial offspring dis-

tribution. For a B(N, p) offspring with mean m = Np > 1, g′(x) = Np g(x)
1−p(1−x)

and therefore

g′(P (E)) = Np
P (E)

1− p(1− P (E)) .

Taking p = λ
N
,

g′(PN(E)) = λ
PN(E)

1− λ
N
(1− PN(E))

,

where the notation stresses the dependence of the extinction probability on N .

2.4 Conditional Expectation I

Conditioning is the most important concept of probability theory after indepen-
dence. We have already encountered this notion under the form of the conditional
probability of an event given an event and the Bayes formulas. This book intro-
duces the conditional expectation of a random variable given a random variable
progressively, starting from the discrete case and then proceeding to the absolutely
continuous case (Chapter 3), and finally giving the general theory in Chapter 5.

We start with the notion of conditional expectation of a random variable given
an event. Let Z be a discrete random variable with values in E, and let f : E → R
be a non-negative function. Let A be some event of positive probability. The con-
ditional expectation of f(Z) given A, denoted by E [f(Z) |A], is by definition the



2.4. CONDITIONAL EXPECTATION I 63

expectation when the distribution of Z is replaced by its conditional distribution
given A:

E [f(Z) |A] :=
∑

z

f(z)P (Z = z |A).

Let {Ai}i∈N be a partition of the sample space. The following formula is then a
direct consequence of Bayes’ formula of total causes:

E [f(Z)] =
∑

i∈N
E [f(Z) |Ai]P (Ai) .

Example 2.4.1: Random quicksort. We want to sort a sequence of numbers
in increasing order, say 7, 6, 4, 2, 9, 3, 1, 8, 5. The quicksort algorithm proposes to
choose one of these numbers at random, say 4, called the pivot. It then scans the
list from left to right, comparing each number to the pivot, placing the ones that
are smaller than the pivot to the left, the others to the right. This creates three
sets:

{2, 3, 1}, 4, {7, 6, 9, 8, 5}

It operates likewise on the two subsets of size > 1 of this list. For instance, starting
with subset {2, 1, 3}, and choosing at random the pivot for this sublist, say 1, and
then continuing with the subset {7, 6, 9, 8, 5} with the pivot 7, we obtain:

1, {2, 3}, 4, {6, 5}, 7, {9, 8}.

Keep doing this until all the subsets have only one member. In this example just
one more iteration is needed. The number of comparisons used in this specific
example is 8 + (2 + 4) + (1 + 1 + 1) = 17. One would like to know how well this
algorithm performs (in terms of the number of comparisons) in the general case.
The ideal situation would be if at each splitting the median number is chosen,
resulting in a number of comparisons approximately equal to

n+ 2
n

2
+ 4

n

4
+ · · ·

where there are approximately log2 n terms in the sum.

In the random quicksort algorithm, pivots are chosen randomly uniformly
among the existing possibilities. We will compare the average number of com-
parisons in the random quicksort to the ideal n log2 n.

Let Cn be the number of comparisons needed and let X be the rank of the
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initial pivot selected. We have, with Mn = E [Cn],

Mn =
n∑

j=1

E [Cn|X = j]P (X = j)

=
n∑

j=1

(n− 1 +Mj−1 +Mn−j)×
1

n
= n− 1 +

2

n

n−1∑

k=1

Mk ,

and therefore

nMn = n(n− 1) + 2
n−1∑

k=1

Mk .

Subtracting the same expression with n− 1 instead of n, we have

nMn = (n+ 1)Mn−1 + 2(n− 1) ,

or
Mn

n+ 1
=

Mn−1

n
+

2(n− 1)

n(n+ 1)
.

By iteration,
Mn

n + 1
= 2

n∑

k=1

k − 1

k(k + 1)
= 2

n∑

k=1

(
2

k + 1
− 1

k

)

and therefore, finally
Mn ∼ 2n lnn .

The conditional expectation of a discrete random variable Z given another dis-
crete random variable Y is the expectation of Z using the probability measure
modified by the observation of Y . For instance, if Y = y, instead of the origi-
nal probability assigning the mass P (A) to the event A, we use the conditional
probability given Y = y assigning the mass P (A|Y = y) to this event.

Definition 2.4.2 Let X and Y be two discrete random variables taking their val-
ues in the denumerable sets F and G, respectively, and let g : F×G→ R+ be either
non-negative, or such that E[|g(X, Y )|] <∞. For y ∈ G such that P (Y = y) > 0,
let

ψ(y) :=
∑

x∈F
g(x, y)P (X = x | Y = y) , (2.24)

and otherwise, if P (Y = y) = 0, let ψ(y) = 0. This quantity is called the condi-
tional expectation of g(X, Y ) given Y = y, and is denoted by EY=y[g(X, Y )], or
E[g(X, Y ) | Y = y]. The random variable ψ(Y ) is called the conditional expecta-
tion of g(X, Y ) given Y , and is denoted by EY [g(X, Y )] or E[g(X, Y ) | Y ].
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The sum in (2.24) is well defined (possibly infinite however) when g is non-
negative. Note that in the non-negative case, we have that

∑

y∈G
ψ(y)P (Y = y) =

∑

y∈G

∑

x∈F
g(x, y)P (X = x | Y = y)P (Y = y)

=
∑

x

∑

y

g(x, y)P (X = x, Y = y) = E[g(X, Y )] .

In particular, if E[g(X, Y )] <∞, then

∑

y∈G
ψ(y)P (Y = y) <∞ ,

which implies that ψ(y) < ∞ for all y ∈ G such that P (Y = y) > 0. We observe
(for reference in a few lines) that in this case, ψ(Y ) <∞ almost surely, that is to
say P (ψ(Y ) <∞) = 1 (in fact, P (ψ(Y ) =∞) =

∑
y;ψ(y)=∞ P (Y = y) = 0).

Let now g : F×G→ R be a function of arbitrary sign such that E[|g(X, Y )|] <
∞, and in particular E[g±(X, Y )] < ∞. Denote by ψ± the functions associated
to g± as in (2.24). As we just saw, for all y ∈ G, ψ±(y) < ∞, and therefore
ψ(y) = ψ+(y)− ψ−(y) is well defined (not an indeterminate ∞−∞ form). Thus,
the conditional expectation is well defined also in the integrable case. From the
observation made a few lines above, in this case, |EY [g(X, Y )]| <∞.

Example 2.4.3: Binomial random variables and conditioning. Let X1

and X2 be independent binomial random variables of the same size N and same
parameter p. We show that

EX1+X2 [X1] = h(X1 +X2) :=
X1 +X2

2
.

We have

P (X1 = k|X1 +X2 = n) =
P (X1 = k)P (X2 = n− k)

P (X1 +X2 = n)

=

(
N
k

)
pk(1− p)N−k

(
N

n−k

)
pn−k(1− p)N−n+k

(
2N
n

)
pn(1− p)N−n

=

(
N
k

)(
N

n−k

)

(
2N
n

) ,

where we have used the fact that the sum of two independent binomial random
variables with size N and parameter p is a binomial random variable with size
2N and parameter p. The right-hand side of the last display is the probability of
obtaining k black balls when a sample of n balls is randomly selected from an urn
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containing N black balls and N red balls. This is the hypergeometric distribution.
The mean of such a distribution is (by symmetry) n

2
, therefore

EX1+X2=n[X1] =
n

2
= h(n)

and this gives the announced result.

Exercise 5.7.14 will give a more elegant solution to the above example, and the
reader will discover there that the result is more general.

Example 2.4.4: Poisson variables and conditioning. Let X1 and X2

be two independent Poisson random variables with respective means θ1 > 0 and
θ2 > 0. We compute EX1+X2[X1], that is E

Y [X], where X := X1, Y := X1 +X2.

Following the instructions of Definition 2.4.2, we must first compute (only for
y ≥ x, why?)

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
=

P (X1 = x,X1 +X2 = y)

P (X1 +X2 = y)

=
P (X1 = x,X2 = y − x)

P (X1 +X2 = y)
=

P (X1 = x)P (X2 = y − x)

P (X1 +X2 = y)

=
e−θ1 θx1

x!
e−θ2 θy−x

2

(y−x)!

e−(θ1+θ2)
(θ1+θ2)

y

y!

=

(
y

x

)(
θ1

θ1 + θ2

)x (
θ2

θ1 + θ2

)y−x

.

Therefore, with α := θ1
θ1+θ2

,

ψ(y) = EY=y[X] =

y∑

x=0

x

(
y

x

)

αx(1− α)y−x = αy .

Finally, EY [X] = ψ(Y ) = αY , that is,

EX1+X2[X1] =
θ1

θ1 + θ2
(X1 +X2) .

We now give the main properties of conditional expectation:

The first one, linearity, is obvious from the definitions: For all λ1, λ2 ∈ R,

EY [λ1g1(X, Y ) + λ2g2(X, Y )] = λ1E
Y [g1(X, Y )] + λ2E

Y [g2(X, Y )]
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whenever the conditional expectations thereof are well defined and do not produce
∞−∞ forms. Monotonicity is equally obvious: if g1(x, y) ≤ g2(x, y), then

EY [g1(X, Y )] ≤ EY [g2(X, Y )] .

Theorem 2.4.5 If g is non-negative or such that E[|g(X, Y )|] <∞, we have

E[EY [g(X, Y )]] = E[g(X, Y )] .

Proof. We have

E[EY [g(X, Y )]] = E[ψ(Y )]] =
∑

y∈G
ψ(y)P (Y = y)

=
∑

y∈G

∑

x∈F
g(x, y)P (X = x | Y = y)P (Y = y)

=
∑

x

∑

y

g(x, y)P (X = x, Y = y)

= E[g(X, Y )] .

�

Theorem 2.4.6 If w is non-negative or such that E[|w(Y )|] <∞,

EY [w(Y )] = w(Y ) , (2.25)

and more generally,

EY [w(Y )h(X, Y )] = w(Y )EY [h(X, Y )] , (2.26)

assuming that the left-hand side of (2.26) is well defined.

Proof. We prove (2.26) ((2.25) follows by setting h(x, y) ≡ 1). We consider only
the case where w and h are non-negative, since the general case follows easily from
this special case. We have,

EY=y[w(Y )h(X, Y )] =
∑

x∈F
w(y)h(x, y)P (X = x | Y = y)

= w(y)
∑

x∈F
h(x, y)P (X = x | Y = y)

= w(y)EY=y[h(X, Y )] .

�
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Theorem 2.4.7 If X and Y are independent and if v is non-negative or such that
E[|v(X)|] <∞, then

EY [v(X)] = E[v(X)] .

Proof. We have

EY=y[v(X)] =
∑

x∈F
v(x)P (X = x | Y = y)

=
∑

x∈F
v(x)P (X = x) = E[v(X)] .

�

Theorem 2.4.8 If X and Y are independent and if g : F×G→ R is non-negative
or such that E[|g(X, Y )|] <∞, then, for all y ∈ G,

E[g(X, Y | Y = y] = E[g(X, y)] .

Proof. Applying formula (2.24) with P (X = x | Y = y) = P (X = x) (by inde-
pendence), we obtain

ψ(y) =
∑

x∈F
g(x, y)P (X = x) = E [g(X, y)] .

�

We now give the successive conditioning rule. Suppose that Y = (Y1, Y2), where
Y1 and Y2. In this situation, we use the more developed notation

EY [g(X, Y )] = EY1,Y2[g(X, Y1, Y2] .

Theorem 2.4.9 Suppose that Y = (Y1, Y2) as above. If g is non-negative or such
that E[|g(X, Y )|] <∞, then

EY2 [EY1,Y2 [g(X, Y1, Y2)]] = EY2 [g(X, Y1, Y2)] . (2.27)

Proof. Let
ψ(Y1, Y2) := EY1,Y2 [g(X, Y1, Y2)] .

We have to show that

EY2 [ψ(Y1, Y2)] = EY2[g(X, Y1, Y2)] .

Here
ψ(y1, y2) =

∑

x

g(x, y1, y2)P (X = x | Y1 = y1, Y2 = y2)
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and

EY2=y2[ψ(Y1, Y2)] =
∑

y1

ψ(y1, y2)P (Y1 = y1 | Y2 = y2) ,

that is,

EY2=y2 [ψ(Y1, Y2)]

=
∑

y1

∑

x

g(x, y1, y2)P (X = x | Y1 = y1, Y2 = y2)P (Y1 = y1 | Y2 = y2) .

But

P (X = x | Y1 = y1, Y2 = y2)P (Y1 = y1 | Y2 = y2)

=
P (X = x, Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y2 = y2)

= P (X = x, Y1 = y1 | Y2 = y2) .

Therefore

EY2=y2 [ψ(Y1, Y2)] =
∑

y1

∑

x

g(x, y1, y2)P (X = x, Y1 = y1 | Y2 = y2)

= EY2=y2[g(X, Y1, Y2)] .

�

We shall see later that the above rules are very general.
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2.5 Exercises

Exercise 2.5.1. An alternative proof of Poincaré’s formula

Let A1, . . . , An be events and let X1, . . . , Xn be their indicator functions. From
the developed expression of E [Πn

i=1(1−Xi)], deduce the formula:

P (∪ni=1Ai) =
∑

i

P (Ai)−
∑

i<j

P (Ai ∩ Aj)

+
∑

i<j<k

P (Ai ∩ Aj ∩Ak)− · · ·+ (−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An) .

Exercise 2.5.2. Non-essential set

Let X be a discrete random variable taking its values in E, with probability
distribution (p(x), x ∈ E). Let A := {ω; p(X(ω)) = 0}. Show that P (A) = 0.

Exercise 2.5.3. The mean is the center of inertia

Let X be a discrete random variable taking real values, with mean μ and finite
variance σ2. Show that, for all a ∈ R, a �= μ,

E[(X − a)2] > E[(X − μ)2] = σ2 .

Exercise 2.5.4. Null variance

Prove for an integer-valued random variable that a null variance implies that this
random variable is almost surely constant.

Exercise 2.5.5. Gibbs’s inequality

Let (p(x), x ∈ X ) and (q(x), x ∈ X ) be two probability distributions on the finite
space X . Prove the Gibbs inequality

−
∑

x∈X
p(x) log p(x) ≤ −

∑

x∈X
p(x) log q(x) , (2.28)

with equality if and only if p(x) = q(x) for all x ∈ X .

Exercise 2.5.6. The arithmetic-geometric inequality

Let xi (1 ≤ i ≤ n) be positive numbers, and let pi (1 ≤ i ≤ n) be non-negative
numbers such that

∑n
i=1 pi = 1. Prove that

p1x1 + p2x2 + · · ·+ pnxn ≥ xp1
1 xp2

2 · · ·xpn
n .



2.5. EXERCISES 71

Exercise 2.5.7. The geometric distribution is memoryless

Show that a geometric random variable T with parameter p ∈ (0, 1) is memoryless
in the sense that for all integers k, k0 ≥ 1, P (T = k + k0 | T > k0) = P (T = k).

Exercise 2.5.8. Sum of independent geometric variables

Let T1 and T2 be two independent geometric random variables with the same
parameter p ∈ (0, 1). Give the probability distribution of the sum X = T1 + T2.

Exercise 2.5.9. Factorial of Poisson

1. Let X be a Poisson random variable with mean θ > 0. Compute the mean of
the random variable X! (factorial, not exclamation mark).

2. Compute E
[
θX

]
.

3. What is the probability that X is odd?

Exercise 2.5.10. Professor Nebulous

Professor Nebulous travels from Los Angeles to Paris with stopovers in New York
and London. In each airport, his luggage is transferred to the departing plane.
In each airport, with probability p, his luggage will not be placed in the right
plane. Professor Nebulous finds that his suitcase has not reached Paris. What are
the chances that the mishap took place in Los Angeles, New York and London
respectively?

Exercise 2.5.11. The return of the coupon collector

In the coupon’s collector problem of Example 2.2.6, prove that for all c > 0,
P (X > �n lnn + cn�) ≤ e−c. Hint: you might find it useful to define Ai to be the
event that a Type i coupon has not shown up during in first �n lnn+ cn� tablets.

Exercise 2.5.12. More Bernoulli

Let X1, . . . , X2n be independent random variables taking the values 0 or 1, and
such that P (Xi = 1) = p ∈ (0, 1) (1 ≤ i ≤ 2n). Let Z :=

∑n
i=1 Xi Xn+i. Compute

P (Z = k) (1 ≤ k ≤ n).

Exercise 2.5.13. Stochastically larger

Let X and Y be two integer-valued random variables. Then X is said to be
stochastically larger than Y if for all n ≥ 0, P (X ≥ n) ≥ P (Y ≥ n). Show
that in this case E[u(X)] ≥ E[u(Y )] whenever u : N → R is a non-negative
non-decreasing function.



72 CHAPTER 2. DISCRETE RANDOM VARIABLES

Exercise 2.5.14. The matchbox

A smoker has a matchbox containing N matches in each pocket. He reaches at
random for one box or the other. What is the probability that, having eventually
found an empty matchbox, there will be k matches left in the other box?

Exercise 2.5.15. The entomologist

Each individual of a specific breed of insects has, independently of the others, the
probability θ of being a male.

(a) An entomologist seeks to collect exactly M > 1 males, and therefore stops
hunting as soon as M males are captured. What is the distribution of X, the
number of insects that must be caught in order to collect exactly M males?

(b) What is the distribution of X, the smallest number of insects that the ento-
mologist must catch to collect at least M males and N females?

Exercise 2.5.16. The entomologist strikes again!

Recall the setting of Exercise 2.5.15. Each individual of a specific breed of insects
has, independently of the others, the probability θ of being a male. An entomol-
ogist seeks to collect exactly M > 1 males, and therefore stops hunting as soon
as she captures M males. She has to capture an insect in order to determine its
gender. What is the expectation of X, the number of insects she must catch to
collect exactly M males? (In Exercise 2.5.15, you computed the distribution of
X, from which you can of course compute the mean. However you can find the
solution more quickly, and this is what is required in the present exercise.)

Exercise 2.5.17. The blue pinko

The blue pinko, an extravagant and yet unregistered bird, lays T eggs, each egg
blue or pink, with probability p for each given egg to be blue. The colors of
the successive eggs are independent, and independent of the number of eggs laid.
Example 2.3.13 showed that if the number of eggs is Poisson with mean θ, then
the number of blue eggs is Poisson with mean θp and the number of pink eggs is
Poisson with mean θq. Show that the number of blue eggs and the number of pink
eggs are independent random variables.

Exercise 2.5.18. Wald’s expectation formula

Let {Yn}n≥1 be a sequence of integer-valued integrable random variables such that
E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable such that
for all n ≥ 1, the event {T ≥ n} is independent of Yn. Let X :=

∑T
n=1 Yn. Prove

that

E [X] = E[Y1]E[T ] .
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Exercise 2.5.19. Fake symmetry!

Let {Xn}n≥1 be an independent sequence of {H, T}-valued (H= heads, T= tails)
random variables such that

P (Xn = H) =
1

2
(n ≥ 1) .

Suppose “heads” first appears at the n-th toss. Is it true that the probability that
n is even is equal to the probability that n is odd, and therefore equal to 1

2
, “by

symmetry”?

Exercise 2.5.20. αg1 + (1− α)g2
Show that if g1 and g2 are the generating functions of some integer-valued random
variables, then αg1+ (1−α)g2 is also the generating function of an integer-valued
random variable. Which one?

Exercise 2.5.21. Mean and variance via generating functions

(a) Compute the mean and variance of the binomial random variable of size n and
parameter p from its generating function. Do the same for the Poisson random
variable of mean θ.

(b) What is the generating function of the geometric random variable T with
parameter p ∈ (0, 1). Compute its first two derivatives and deduce from the result
the variance of T .

(c) What is the n-th factorial moment (E [X(X − 1) · · · (X − n+ 1)]) of a Poisson
random variable X of mean θ > 0?

Exercise 2.5.22. From the generating function to the distribution

What is the probability distribution of the integer-valued random variable X with
generating function g(z) = 1

(2−z)2
(|z| < 2)?

Exercise 2.5.23. Throw a die

You perform three independent tosses of an unbiased die. What is the probability
that one of these tosses results in a number that is the sum of the two other
numbers? (You are required to find a solution using generating functions.)

Exercise 2.5.24. Residual time

Let X be a random variable with values in N and with finite mean m. Show that
pn := 1

m
P (X > n) (n ∈ N) defines a probability distribution on N. Compute its

generating function G in terms of the generating function g and the mean m of X.
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Exercise 2.5.25. A recurrence equation, take 1

Recall the notation a+ = max(a, 0). Consider the recurrence equation,

Xn+1 = (Xn − 1)+ + Zn+1 (n ≥ 0) ,

where X0 is a random variable taking its values in N, and {Zn}n≥1 is a sequence
of independent random variables taking their values in N, and independent of X0.
Express the generating function ψn+1 of Xn+1 in terms of the generating function
ϕ of Z1.

Exercise 2.5.26. Poisson and multinomial

Suppose we have N bins in which we place balls in such a manner that the number
of balls in any given bin is a Poisson variable of mean m

N
and is independent of

numbers in the other bins. In particular, the total number of balls Y1+ · · ·+YN is,
as the sum of independent Poisson random variables, a Poisson random variable
whose mean is the sum of the means, that is m.

For a given arbitrary integer k, compute the conditional probability that there are
k1 balls in bin 1, k2 balls in bin 2, etc, given that the total number of balls is
k1 + · · ·+ kN = k .

Exercise 2.5.27. Conditioned Poisson

Let X1 and X2 be two independent Poisson random variables with respective
means θ1 > 0 and θ2 > 0. Compute EX1+X2 [X1], that is EY [X], where X = X1,
Y = X1 +X2.

Exercise 2.5.28. Multinomial distribution and conditioning

Let (X1, . . . , Xk) be a multinomial random vector with size n and parameters
p1, . . . , pk. Compute EX1[X2].

Exercise 2.5.29. Several ancestors

Give the survival probability of the branching process of Section 2.3 (subsection
Branching Trees, page 58) with k ancestors, k > 1.

Exercise 2.5.30. Variance of the branching process

Give the mean and variance of the size Xn of the branching process of Section
2.3 (subsection Branching Trees, page 58) with one ancestor, and then with k
ancestors.

Exercise 2.5.31. Branching with immigration

The branching model with one ancestor is modified as follows. The n-th generation
(n ≥ 1) is augmented by a random number of immigrants In. The sequence {In}n≥1
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is iid with common generating function gI , and each In is independent of the state
of the population before (<) time n. The immigrants and the other members of
the population are indistinguishable. Show that the generating function Ψn of the
number Xn of members of the total population satisfies the recurrence equation

Ψn+1(z) = Ψn(g(z))gI(z) ,

where g is the common generating function corresponding to the progeny of the
members of the population (indigenous or immigrants).

Exercise 2.5.32. Extinction time

Consider the branching process with a single ancestor and typical progeny geo-
metrically distributed (P (Z = k) = qpk (k ≥ 0, p ∈ (0, 1), q = 1 − p). Find the
distribution of the extinction time T := inf{n ; Xn = 0}. For what values of p is
E [T ] <∞?

Exercise 2.5.33. Conditional independence of two variables given an

event

Let A be some event of positive probability, and let PA denote the probability P
conditioned by A, that is,

PA(·) = P (· | A).
The random variables X and Y are said to be conditionally independent given A
if they are independent with respect to probability PA. Prove that this is the case
if and only if for all u, v ∈ R,

P (A)E[eiuXeivY 1A] = E[eiuX1A]E[eivY 1A].



Chapter 3

Continuous Random Vectors

Having studied discrete random variables, that is, random variables taking their
values in a finite or countable set, we now introduce random variables taking real
(possibly infinite) values, and random vectors with a probability density (the so-
called “continuous” random vectors).

3.1 Random Variables with Real Values

We start with the definitions of a random variable and of its cumulative distribution
function. Recall the notation R := R ∪ {−∞+∞}.

Definition 3.1.1 A random variable is a function X : Ω → R such that for all
a ∈ R,

{X ≤ a} ∈ F .

This is a minimal requirement if one wants to assign a probability to {X ≤ a}.

If X does not take infinite values, we say more precisely that X is a real random
variable.

Example 3.1.2: Random point on the square, take 2. (Example 1.2.4
ct’d) Here ω = (x, y), where x, y ∈ [0, 1]. Define the coordinate functions of Ω, X,
and Y by

X(ω) = x, Y (ω) = y .

Since {ω;X(ω) ≤ a} = [0, a]× [0, 1] is a set for which the area can be defined, X
is a random variable. So is Y for similar reasons.
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Definition 3.1.3 ¿From the probabilistic point of view, a random variable X is
described by its cumulative distribution function (for short: cdf)

F (x) = P (X ≤ x) . (3.1)

In particular, for all a, b ∈ R such that a ≤ b,

P (a < X ≤ b) = F (b)− F (a)

(watch the inequality signs). Indeed, {a < X ≤ b} + {X ≤ a} = {X ≤ b}, and
therefore P (a < X ≤ b) + P (X ≤ a) = P (X ≤ b), from which the announced
identity follows.

Theorem 3.1.4 The cumulative distribution function F has the following prop-
erties:

(i) F : R→ [0, 1].

(ii) F is non-decreasing.

(iii) F is right-continuous.

(iv) For each x ∈ R there exists F (x−) := limh↓0 F (x− h).

(v) F (+∞) := lima↑∞ F (a) = P (X <∞) = 1− P (X = +∞).

(vi) F (−∞) := lima↓−∞ F (a) = P (X = −∞).

(vii) P (X = a) = F (a)− F (a−) for all a ∈ R.

Proof. (i) is obvious; (ii) If a ≤ b, then {X ≤ a} ⊆ {X ≤ b}, and therefore
P (X ≤ a) ≤ P (X ≤ b); (iii) Let Bn =

{
X ≤ a+ 1

n

}
. Since ∩n≥1

{
X ≤ a + 1

n

}
=

{X ≤ a} (see Exercise 4.5.2), we have, by sequential continuity,

lim
n↑∞

P

(

X ≤ a+
1

n

)

= P (X ≤ a).

(iv) We know from Analysis that a non-decreasing function from R to R has
at any point a limit to the left; (v) Let An = {X ≤ n} and observe that
∪∞n=1{X ≤ n} = {X < ∞}. The result again follows by sequential continuity;
(vi) Apply (1.6) with Bn = {X ≤ −n} and observe that ∩∞n=1{X ≤ −n} =
{X = −∞}. The result follows by sequential continuity. (vii) The sequence
Bn =

{
a− 1

n
< X ≤ a

}
is decreasing, and ∩∞n=1Bn = {X = a}. Therefore, by

sequential continuity,

P (X = a) = lim
n

P

(

a− 1

n
< X ≤ a

)

= lim
n

(

F (a)− F

(

a− 1

n

))

,
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that is to say, P (X = a) = F (a)− F (a−). �

Remember in particular that

P (X = −∞) = F (−∞) and P (X = +∞) = 1− F (+∞) .

From (vii), we see that the cdf is continuous at a ∈ R if and only if P (X = a) = 0.

Being a non-decreasing right-continuous function, F has at most a countable
set of discontinuity points on R, say {dn, n ∈ D}, where D ⊆ N. Define the
discontinuous part Fd of F by

Fd(x) := F (−∞) +
∑

n∈D
(F (dn)− F (dn−)) 1{dn≤x} + (1− F (+∞))1{+∞}(x)

= P (X = −∞) +
∑

n∈D
P (X = dn)1{dn≤x} + P (X = +∞)1{+∞}(x) .

In particular, when a random variable takes its values in a denumerable subset (D
to which one must possibly add−∞ and +∞), its cdf reduces to the discontinuous
part Fd, and the sequence p(dn) = P (X = dn) (n ∈ D) together with the values
F (−∞) and F (+∞) suffice to describe the probabilistic behavior of X.

An important special case is when X is a real random variable and

F (x) =

∫ x

−∞
f(y) dy (3.2)

for some function f ≥ 0 called the probability density function of X. The random
variable and its cdf are then called (absolutely) continuous.

Note that, if X is real (no infinite values),
∫ ∞

−∞
f(y) dy = 1 .

Definition 3.1.5 Two random variables X and Y are called independent if for
all a ∈ R, b ∈ R,

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b) . (3.3)

Example 3.1.6: Random point in the square, take 3. Recall the model:
Ω = [0, 1]2, P (A) = area of A. Let X and Y be the coordinate random variables
defined as follows; ω = (x, y), X(ω) = x and Y (ω) = y. We are going to prove
that these random variables are independent. Indeed,

{(x, y) ∈ R2; x ≤ a, y ≤ b} = {X ≤ a} ∩ {Y ≤ b},
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and therefore (with 0 ≤ a , b ≤ 1)

P ({X ≤ a} ∩ {Y ≤ b}) = a× b

= P (X ≤ a)P (Y ≤ b).

Expectation

For a function g : R→ R, the symbol

∫ +∞

−∞
g(x) dF (x) (3.4)

denotes the Stieltjes–Lebesgue integral of the function g with respect to F .

The precise definition of this integral will be given in Chapter 4. For practical
purposes, it suffices to mention that this integral is well defined for a large class
of functions g, comprising the non-negative “measurable functions”. The class of
measurable functions is extremely large and one can say that for practical purposes,
“all functions are measurable”. The reader who does not feel comfortable with
this provisional lack of precision is referred to Section 4.1 where these objects
and the Stieltjes–Lebesgue integral are rigorously defined and where all the formal
manipulations performed in the chapters preceding Chapter 4 will be shown to be
licit. In this chapter, it will also be shown that a measurable function of a random
variable is in turn a random variable, a result that we shall use a number of times.

In the special case of a real random variable for which the continuous component
of the cdf is absolutely continuous, that is,

Fc(x) =

∫ x

−∞
fc(y) dy, (3.5)

the integral in Eqn. (3.4) is

∑

n∈D
g(dn)(F (dn)− F (dn−)) +

∫ +∞

−∞
g(x)fc(x)dx.

The most frequent cases arising are the purely discontinuous case where F (t) =
Fd(t), for which (in the case where X can take infinite values and when the values
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g(−∞) and g(+∞) are defined)
∫ +∞

−∞
g(x) dF (x) =

F (−∞)g(−∞) +
∑

n∈D
g(dn){F (dn)− F (dn−)}+ (1− F (+∞))g(+∞),

and the absolutely continuous case, for which
∫ +∞

−∞
g(x) dF (x) =

∫ +∞

−∞
g(x)f(x) dx. (3.6)

Definition 3.1.7 Let X be a random variable with the cumulative distribution
function F and let the function g : R → R be either non-negative, or such that∫ +∞
−∞ |g(x)|dF (x) < ∞ (one then says that g(X) is integrable). The expectation
of g(X) is the quantity

E[g(X)] :=
∫ +∞
−∞ g(x) dF (x) . (3.7)

For a complex function g = gR + igI : R→ C, we let

E[g(X)] := E[gR(X)] + E[gI(X)]

as long as E[gR(X)] and E[gI(X)] are finite quantities.

Theorem 3.1.8 Let g, g1, g2 be (measurable) functions from R to R. We have
(linearity)

E[λ1g1(X) + λ2g2(X)] = λ1E[g1(X)] + λ2E[g2(X)], (3.8)

whenever

(a) λ1, λ2 ∈ R+ and g1 and g2 are non-negative, or

(b) either λ1, λ2 ∈ R, and g1 and g2 satisfy the integrability condition (3.5).

Also (monotonicity),
E[g1(X)] ≤ E[g2(X)], (3.9)

whenever both sides are well defined and g1 ≤ g2.

Also (triangle inequality),

|E[g(X)]| ≤ E[|g(X)|] . (3.10)

Proof. These properties follow from the corresponding properties of the Stieltjes–
Lebesgue integral and will be admitted for the time being until Chapter 4. �
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Mean and Variance

Definition 3.1.9 Let X be a real random variable such that E[|X|] < ∞. Then
X is said to be integrable, and in this case (only in this case) we define the mean
of X as the (finite) number

m := E[X] .

From the inequality |a| ≤ 1+a2, true for all a ∈ R, we have that |X| ≤ 1+X2,
and therefore, by the monotonicity and linearity properties, E[|X|] ≤ 1 + E[X2]
(we also used the fact that E[1] = 1). Therefore if E[X2] < ∞ (in which case
we say that X is square-integrable), then X is integrable. The following definition
then makes sense.

Definition 3.1.10 Let X be a square-integrable random variable. The variance
σ2 of X is the quantity

σ2 := E[(X −m)2] .

The variance is also denoted by Var (X). From the linearity of expectation, it
follows that E[(X −m)2] = E[X2]− 2mE[X] +m2, that is,

Var (X) = E[X2]−m2 . (3.11)

In a sense, “the mean is the center of inertia of X”. By this unprecise remark,
the following is meant:

Theorem 3.1.11 For every square integrable random variable X with mean m,

E[(X − c)2] ≥ E[(X −m)2] for all c.

Proof.

E[(X − c)2] = E[(X −m)2] + 2(m− c)E[X −m] + (m− c)2

= E[(X −m)2] + 0 + (m− c)2 ≥ E[(X −m)2] .

�

Theorem 3.1.12 Let Z be a non-negative real random variable and let a be a
positive number. Then (Markov’s inequality):

P (Z ≥ a) ≤ E[Z]

a
.

The proof is the same as in the discrete case (Theorem 2.1.23).
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Taking Z = (X−m)2 in Markov’s inequality and a = ε2, we obtain Chebyshev’s
inequality:

P (|X −m| ≥ ε) ≤ Var (X)

ε2
.

Again, the proof is the same as the one in the discrete case.

The following analogue of Theorem 2.5.3 has the same proof.

Theorem 3.1.13 Let X be a real random variable with mean m and variance σ2.
Then, for all a ∈ R,

σ2 ≤ E[(X − a)2] .

The following analogue of Theorem 2.1.25 has the same proof.

Theorem 3.1.14 Let I be as above and let ϕ : I → R be a convex function. Let
X be an integrable real-valued random variable such that P (X ∈ I) = 1. Assume
moreover that either ϕ is non-negative, or that ϕ(X) is integrable. Then (Jensen’s
inequality)

E [ϕ(X)] ≥ ϕ(E [X]) .

Example 3.1.15: Examples. Let X be integrable. Then E [X2] ≥ E [X] and
E

[
eX

]
≥ eE[X].

Remarkable Continuous Random Variables

Definition 3.1.16 Let a and b be real numbers. A real random variable X with
probability density function

f(x) =
1

b− a
1[a,b](x) (3.12)

is called a uniform random variable on [a, b]. This is denoted by X ∼ U([a, b]).

Theorem 3.1.17 The mean and the variance of a uniform random variable on
[a, b] are given by

E[X] =
a+ b

2
, Var (X) =

(b− a)2

12
. (3.13)

Proof. Direct computation. �
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Definition 3.1.18 A real random variable X with probability density function

f(x) =
1

σ
√
2π

e−
1
2

(x−m)2

σ2 , (3.14)

where m ∈ R and σ > 0, is called a Gaussian random variable with mean m and
variance σ2. This is denoted by X ∼ N (m, σ2).

One can check that E[X] = m and Var (X) = σ2 (Exercise 3.6.13).

Definition 3.1.19 A random variable X with probability density function

f(x) = λe−λx1{x≥0} (3.15)

for some λ > 0 is called an exponential random variable with parameter λ. This
is denoted by X ∼ E(λ).

The cdf of the exponential random variable is

F (x) =
∫ x

0
λe−λu du = (1− e−λx)1{x≥0} .

Theorem 3.1.20 The mean of an exponential random variable with parameter λ
is

E[X] = λ−1 . (3.16)

Proof. Direct computation. Or, see the Gamma distribution below. �

The exponential distribution is memoryless in the following sense:

Theorem 3.1.21 Let X ∼ E(λ). For all t, t0 ∈ R+, we have

P (X ≥ t0 + t | X ≥ t0) = P (X ≥ t).

Proof.

P (X ≥ t0 + t | X ≥ t0) =
P (X ≥ t0 + t , X ≥ t0)

P (X ≥ t0)

=
P (X ≥ t0 + t)

P (X ≥ t0)

=
e−λ(t0+t)

e−λ(t0)
= e−λt = P (X ≥ t).

�
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In preparation for the next definition, recall the definition of the gamma func-
tion Γ:

Γ(α) :=
∫∞
0

xα−1 e−x dx .

Integration by parts yields, for α > 0,

0 = uαe−u

∣
∣
∣
∣

∞

0

=

∫ ∞

0

αuα−1e−udu−
∫ ∞

0

e−uuαdu

= αΓ(α)− Γ(α + 1).

Therefore
Γ(α+ 1) = αΓ(α),

from which it follows in particular, since Γ(1) =
∫∞
0

e−λxdx = 1, that for all
integers n ≥ 1,

Γ(n) = (n− 1)!

Definition 3.1.22 Let α and β be two positive real numbers. A non-negative
random variable X with the probability density function

f(x) =
βα

Γ(α)
xα−1 e−βx1{x>0} (3.17)

is called a Gamma random variable of parameters α and β. This is denoted by
X ∼ γ(α, β).

We must check that (3.17) defines a probability density of a real random vari-
able (that is, the integral of f is 1).

Proof. Indeed:
∫ +∞

−∞
f(x)dx =

βα

Γ(α)

∫ ∞

0

xα−1e−βxdx

=
1

Γ(α)

∫ ∞

0

yα−1e−ydy

=
Γ(α)

Γ(α)
= 1 ,

where the second equality has been obtained with the change of variable y = βx.
�

Theorem 3.1.23 If X ∼ γ(α, β), then

E [X] =
α

β
and Var (X) =

α

β2
. (3.18)
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Proof.

E [X] =

∫ ∞

0

βα

Γ(α)
xxα−1 e−βx dx

=
βα

Γ(α)

∫ ∞

0

xα e−βx dx

=
Γ(α + 1)

Γ(α)

1

β
=

α

β
.

Similarly,

E
[
X2

]
=

Γ(α + 2)

Γ(α)

1

β2
=

α(α+ 1)

β2
.

Therefore

Var (X) = E
[
X2

]
− E [X]2

=
α(α+ 1)

β2
−

(
α

β

)2

=
α

β2
.

�

The exponential distribution is a particular case of the Gamma distribution.
In fact, γ(1, λ) ≡ E(λ).

Definition 3.1.24 A chi-square random variable with n degrees of freedom is, by
definition, a random variable X with the γ(n

2
, 1
2
) distribution. This is denoted by

X ∼ χ2
n.

Its probability density function is therefore

f(x) =
1

2
n
2Γ(n

2
)
x

n
2
−1 e−

1
2
x1{x>0} . (3.19)

This distribution plays an important role in Statistics.

Definition 3.1.25 A random variable X with probability density function

f(x) = 1
π(1+x2)

(3.20)

is called a Cauchy random variable.

It is important to observe that the mean of X is not defined since
∫

R

|x|
π(1 + x2)

dx = +∞ .

Of course, a fortiori, X does not have a variance.
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Characteristic Functions

The notion of characteristic function brings Fourier analysis into the picture of
probability theory. It provides a technique for manipulating probability distri-
butions, just as the generating function does for integer-valued random variables,
only this time for real random variables. It is also a fundamental tool for the study
of convergence in distribution of a sequence of random variables, a notion that will
be introduced in Chapter 7.

Definition 3.1.26 The characteristic function (for short: cf) of a real random
variable X is the function ψ : R→ C given by

ψ(u) := E[eiuX ] . (3.21)

Alternatively,

ψ(u) =

∫

R

eiuxdF (x) ,

where F is the cumulative distribution function of X. In particular, if X is an
absolutely continuous random variable with probability density function f ,

ψ(u) =

∫

R

eiuxf(x) dx,

that is, ψ is the Fourier transform of f .

In the case of integer-valued random variables the generating function g and
the characteristic function ψ of such a variable X are linked by ψ(u) = g(eiu).

Example 3.1.27: Uniform. Let X be a random variable uniformly distributed
on [a, b]. Its cf is given by the integral 1

b−a

∫ b

a
eiux dx, and therefore

X ∼ U([a, b]) : ψ(u) = eiub−eiua

iu(b−a)
.

In the frequent special case where X is uniformly distributed on [−T, +T ],

X ∼ U([−T,+T ]) : ψ(u) = sin(Tu)
Tu

.

Example 3.1.28: Exponential, Gamma and Chi-square. One can check
that the following table gives the characteristic function of the corresponding ran-
dom variables:
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(i) Exponential

X ∼ E(λ) : ψ(u) =
λ

λ− iu
.

Indeed, integrating by parts:

1 =
(
−eiuxe−λx

)∞
0

= −
∫ ∞

0

iueiuxe−λx dx+

∫ ∞

0

eiuxλe−λx dx

= −iu
λ
ψ(u) + ψ(u) ,

from which the result follows.

(ii) Gamma A standard computation gives

X ∼ γ(α, β) : ψ(u) =

(

1− i
u

β

)−α

.

In particular, with β = λ and α = 1, we recover the result for the exponential
distribution. Also, with β = 1

2
and α = n

2
:

(iii) Chi-square with n degrees of freedom

X ∼ χ2
n : ψ(u) = (1− 2iu)−

n
2 .

(This follows from (ii) since χ2
n = γ(n

2
, 1
2
).)

Example 3.1.29: Cauchy. An elementary computation gives

ψ(u) =

∫ +∞

−∞

1

π

1

1 + x2
eiuxdx = e−|u| .

Theorem 3.1.30 The characteristic function of a real random variable charac-
terizes its distribution.

This means that if two random variables X and Y have the same characteristic
function, then P (X ≤ x) = P (Y ≤ x) for all x ∈ R. The proof is omitted
at this stage since a more general result is available in Section 5.2 (subsection
Characteristic Functions, page 185).

Note that if f is continuous, and if ψ is integrable, a classical result of Fourier
analysis tells us that

f(x) =
1

2π

∫

R

e−iuxψ(u) du .
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This is a proof, in a particular case often encountered in practice, of the general
result that the characteristic functions indeed characterize the distribution of a
random variable.

Laplace Transforms

For non-negative random variables or random vectors with non-negative coordi-
nates, one can also work with Laplace transforms rather than with characteristic
functions.

Definition 3.1.31 The Laplace transform of a non-negative random variable X
(resp., of a cumulative probability distribution function F on R+) is the function
t ∈ R+ �→ E

[
e−tX

]
(resp. t ∈ R+ �→

∫
R+

e−tx dF (x)).

The Laplace function characterizes the distribution of a non-negative random
variable, in the sense that

Theorem 3.1.32 Two non-negative random variables X and Y with the same
Laplace transforms have the same distribution.

The proof will be based on the following lemma of intrinsic interest.

Lemma 3.1.33 Two bounded random variables X and Y such that E [Xn] =
E [Y n] for all n = 0, 1, . . . have the same distribution.

Proof. Let M < ∞ be a common bound of these variables. The hypothesis
implies that for any polynomial P , E [P (X)] = E [P (Y )]. By the Weierstrass
approximation theorem1 if h : [0,M ] → R is a continuous function, there exists
for any ε > 0 a polynomial Pε such that sup0≤x≤M |h(x)− Pε(x)| ≤ ε. Therefore

E [|h(X)− Pε(X)|] ≤ ε and E [|h(Y )− Pε(Y )|] ≤ ε

and

E [|h(X)− h(Y )|]
≤ E [|h(X)− Pε(X)|] + E [|Pε(X)− Pε(Y )|] + E [|h(Y )− Pε(Y )|]
= E [|h(X)− Pε(X)|] + E [|h(Y )− Pε(Y )|] ≤ 2ε .

Since ε can be chosen arbitrarily small, E [h(X)] = E [h(Y )]. By uniformly ap-
proximating the indicator function of any interval (a, b] ⊆ [0,M ] by a continuous
function, we deduce that

P (X ∈ (a, b]) = E
[
1(a,b](X)

]
= E

[
1(a,b](Y )

]
= P (Y ∈ (a, b]) ,

1 A refinement of this fundamental result was given in Example 2.1.24.
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that is, X
D
= Y . �

We now prove Theorem 3.1.32.

Proof. The variables U := e−X and V := e−Y are bounded and such that for all
n = 0, 1, . . ., E [Un] = E [V n], so that U

D
= V , and therefore X = − logU and

Y = − log V have the same distribution. �

Random Vectors

We now consider random vectors, at first sight a notion not quite novel with respect
to random variables. However it introduces dependency between two (or more)
random variables.

Definition 3.1.34 A random vector of dimension n is a collection of n real ran-
dom variables

X := (X1, . . . , Xn) .

From a probabilistic point of view, each of the random variables X1, . . . , Xn

can be characterized by its cumulative distribution function. However, the cdf of
each coordinate of a random vector does not completely describe the probabilistic
behavior of the whole vector. See Exercise 3.6.16.

Throughout this book we shall use compact notations for multiple integrals,
for instance

∫

Rn

g(x) dx :=

∫ +∞

−∞
· · ·

∫ +∞

−∞
g(x1, . . . , xn) dx1 · · ·dxn .

.

A. The absolutely continuous case. Let X = (X1, . . . , Xn) be a random vector
taking its values in Rn and let f : Rn → R+ be a function such that

∫ +∞

−∞
· · ·

∫ +∞

−∞
f(x1, . . . , xn) dx1 · · ·dxn = 1 . (3.22)

Definition 3.1.35 The random vector X taking its values in Rn is said to admit
the probability density f : Rn → [0, 1] if

P (X ∈ C) =

∫

C

f(x) dx (C ∈ B(Rn)) .
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A random vector admitting a probability density is also called absolutely con-
tinuous.

B. Discrete random vectors. For convenience, we recall here a previously given
definition with a slight change in the notation. Consider the random vector X =
(X1, . . . , Xn) where all the random variables Xi take their values in the same (this
restriction is not essential, but it simplifies the notation) denumerable space E.
Let f : En → R+ be a function such that

∑

x∈En

f(x) = 1 .

Definition 3.1.36 The discrete random vector X above is said to admit the prob-
ability distribution f if for all sets C ⊆ En,

P (X ∈ C) =
∑

x∈C
f(x) .

In fact, as we already observed, there is nothing new here with respect to
discrete random variables since X is a discrete random variable taking its values
in the denumerable set X := En.

C. The mixed case. Let X = (X1, . . . , Xn) be a random vector of the form
X = (Z, Y ) where Z = (X1, . . . , Xk) (k < n) is a discrete random variable taking
its values in Z = Ek for some integer k ≥ 1, where E is a denumerable set, and
where Y = (Xk+1, . . . , Xn) is a random vector with values in Y = Rn−k. Let
f : Z × Y → R+ be a function such that

∑

z∈Z

∫

Rn−k

f(z, y) dy = 1 .

Definition 3.1.37 The random vector X above is said to admit the mixed density
f if

P (X ∈ A, Y ∈ B) =
∑

z∈A

∫

B

f(z, y) dy (A ⊆ Ek, B ∈ B(Rn)) .

3.2 Continuous Random Vectors

The results below have obvious counterparts concerning discrete random vectors
and random vectors with a mixed density, sums replacing integrals when necessary.
The corresponding statements and proofs are left to the reader.
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Theorem 3.2.1 Let X = (X1, X2) ∈ R2 be a two-dimensional vector with prob-
ability density function fX1,X2. The probability density function of X1 is obtained
by integrating out x2:

fX1(x1) =
∫ +∞
−∞ fX1,X2(x1, x2) dx2 .

Proof. Indeed,

P (X1 ≤ a) = P ((X1, X2) ∈ (−∞, a]×R)

=

∫ a

−∞

∫ +∞

−∞
fX,X2(x1, x2) dx1dx2

=

∫ a

−∞

(∫ +∞

−∞
fX1,X2(x1, x2) dx2

)

dx1 .

�

Theorem 3.2.1 extends in an obvious way to the case where X1 and X2 are
random vectors.

Example 3.2.2: The butterfly distribution. Let X = (X1, X2) be an ab-
solutely continuous two-dimensional random vector with probability density func-
tion

fX1,X2(x1, x2) = 2× 1C(x1, x2)

where C :=
(
[0, 1

2
]× [0, 1

2
]
)
∪
(
[1
2
, 1]× [1

2
, 1]

)
. (The support of this distribution has

a “butterfly shape”, hence the name.) Then X1 ∼ U [0, 1]. Indeed, if x1 ∈ [0, 1
2
],

fX1(x1) =

∫ 1
2

0

2 dx2 = 1 ,

and if x1 ∈ [1
2
, 1],

fX1(x1) =

∫ 1

1
2

2 dx2 = 1 .

Similarly, X2 ∼ U [0, 1].

Definition 3.2.3 For a function g : Rn → R, the expectation of g(X) when X
admits a probability density f is, by definition, the quantity

E[g(X)] :=
∫
Rn g(x)f(x) dx , (3.23)

where it is required that either g be non-negative, or that
∫
Rn |g(x)|f(x) dx <∞. (3.24)
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In the case that (3.24) holds, one says that g(X) is integrable. Expectation so
defined enjoys, mutatis mutandis, the properties mentioned for the scalar case: lin-
earity (see (3.8)), monotonicity (see (3.9)), and the triangle inequality (see (3.10)).

In the following theorem the hypothesis of absolute continuity is crucial.

Theorem 3.2.4 For any two independent absolutely continuous random variables
X and Y , P (X = Y ) = 0.

More generally, if (X1, . . . , Xn) is an absolutely continuous random vector, the
probability of the event

C := {ω ; Xi(ω) = Xj(ω) for some i, j possibly depending on ω}

is null.

Proof. We first do the proof for two random variables. Recall that for any event
A, E [1A] = P (A). In particular,

P (X = Y ) = E[1{X=Y }] =
∫ +∞

−∞

∫ +∞

−∞
g(x, y)dx dy,

where g(x, y) = 1{x=y}fX(x)fY (y) is null outside the diagonal. Since the diagonal
has a null area, the integral is null.

For the general case, we first observe that

C = ∪i�=j{Xi = Xj} ,

and therefore, by sub-σ-additivity,

P (C) ≤
n∑

i,j=1

P (Xi = Xj) =

n∑

i,j=1

0 = 0 .

�

Independence

For random vectors, we shall use the following type of abbreviation: P (X ≤ a) is
short for P (X1 ≤ a1, . . . , Xn ≤ an), where X = (X1, . . . , Xn) and a = (a1, . . . , an)

Definition 3.2.5 Two random vectors X and Y of respective dimensions n and
p are called independent vectors if for all a ∈ Rn, b ∈ Rp,

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b) . (3.25)



94 CHAPTER 3. CONTINUOUS RANDOM VECTORS

Definition 3.2.6 A sequence {Xn}n∈N of real random vectors is called an inde-
pendent sequence if for any finite collection of distinct random variables
Xi1 , . . . , Xir from this sequence,

P ({Xi1 ≤ a1} ∩ {Xi2 ≤ a2} ∩ · · · ∩ {Xir ≤ ar})
= P (Xi1 ≤ a1)× P (Xi2 ≤ a2)× · · · × P (Xir ≤ ar) (3.26)

for all vectors (of appropriate dimensions) a1, . . . , ar.

Definition 3.2.7 The sequences of random vectors {Xn}n∈N and {Yn}n∈N are
called independent sequences if

P ((∩r�=1{Xi� ≤ a�}) ∩ (∩sm=1{Yjm ≤ bm}))

= P (∩r�=1{Xi� ≤ a�})P (∩sm=1{Yjm ≤ bm}) (3.27)

for all indices i1, . . . , ir and j1, . . . , js ∈ N, and all vectors (of appropriate dimen-
sions) a1, . . . , ar and b1, . . . , bs.

Theorem 3.2.8 A. If X1, . . . , Xn are absolutely continuous random vectors with
probability density functions f1, . . . , fn respectively, and if, moreover, X1, . . . , Xn

are independent, then the probability density function of the vector (X1, . . . , Xn) is
the product of the probability density functions of its components:

fX(x1, . . . , xn) = f1(x1) · · ·fn(xn) . (3.28)

B. Conversely, if the vector X has a probability density function factoring as in
(3.28), where f1, . . . , fn are probability density functions, then X1, . . . , Xn are in-
dependent random vectors with respective probability density functions f1, . . . , fn.

Proof. To simplify the writing we only consider the case n = 2 for random
variables. A. IfX1, X2 are absolutely continuous random variables with probability
density functions f1, f2 respectively, and if, moreover, X1, X2 are independent, then

P (X1 ≤ x1, X2 ≤ x2) = P (X1 ≤ x1)P (X2 ≤ x2)

=

(∫ x1

−∞
f1(y1) dy1

)(∫ x2

−∞
f2(y) dy2

)

=

∫ x1

−∞

∫ x2

−∞
f1(y1)f2(y2) dy1 dy2 .

B. We have

P (X1 ≤ x1, X2 ≤ x2) =

∫ x1

−∞

∫ x2

−∞
f1(y1)f2(y2) dy1 dy2 ,
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that is, by Fubini’s theorem,

P (X1 ≤ x1, X2 ≤ x2) =

(∫ x1

−∞
f1(y1) dy1

)

×
(∫ x2

−∞
f2(y2) dy2

)

.

Letting x2 = +∞ in the last identity yields

P (X1 ≤ x1) =

∫ x1

−∞
f1(y1) dy1 ,

which proves that X1 has the probability density function f1. Similarly,
P (X2 ≤ x2) =

∫ x2

−∞ f2(y2) dy2, and therefore

P (X1 ≤ x1, X2 ≤ x2) = P (X1 ≤ x1)P (X2 ≤ x2) ,

which proves independence. �

Example 3.2.9: The uniform distribution on the square. Let X =
(X1, X2) be an absolutely continuous two-dimensional random vector with proba-
bility density function

fX1,X2(x1, x2) = 1[0,1]2(x1, x2) .

Since this probability density function factors as the product 1[0,1](x1)× 1[0,1](x2)
of two probability density functions of uniform distributions on [0, 1], X1 ∼ U [0, 1],
X2 ∼ U [0, 1] and they are independent.

Example 3.2.10: The uniform distribution on the disk. Let X =
(X1, X2) be an absolutely continuous two-dimensional random vector uniformly
distributed on the disk D = {(x1, x2); x

2
1 + x2

2 ≤ 1}. Its probability density func-
tion is

fX1,X2(x1, x2) =
1

π
1D(x1, x2) .

Clearly, this probability density function does not factor as the product of two
probability density functions and therefore X1 X2 are not independent.

Here again, a discrete and a mixed version of Theorem 3.2.8 are available.

Product Formula for Expectations

The following result was already given in particular cases in Theorems 2.1.27 and
2.3.6.
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Theorem 3.2.11 Let Y and Z be independent random vectors of dimension p
and q respectively. If g1 : R

p → C and g2 : R
q → C are such that g1(Y ) and g2(Z)

are integrable, then the product g1(Y )g2(Z) is integrable and

E[g1(Y )g2(Z)] = E[g1(Y )]E[g2(Z)] . (3.29)

Formula (3.29) holds true without condition if g1 and g2 are real non-negative
functions.

Proof. We consider the case where Y and Z admit probability densities fY and
fZ . (The fully general result will be given in Theorem 5.4.4.) By Theorem 3.2.8,
the vector X = (Y, Z) admits the probability density

fY,Z(y, z) = fY (y)fZ(z) (3.30)

and the result follows by Fubini’s theorem:

E[g1(Y )g2(Z)] =

∫ ∫

g1(y)g2(z)fY (y)fZ(z) dy dz

=

∫

g1(y)fY (y) dy ×
∫

g2(z)fZ(z) dz .

�

Freeze and Integrate

The next result is convenient for computing expectations of functions of two in-
dependent vectors. It says that one may fix one of these vectors, compute the
expectation with respect to the other vector, and take the expectation of the result
with respect to the previously fixed vector. In other words: freeze and integrate.

Theorem 3.2.12 Let X1, X2 be independent random vectors of dimensions n1

and n2, and with probability density functions f1 and f2 respectively. Then for any
function g : Rn1 ×Rn2 → R that is either non-negative or such that g(X1, X2) is
integrable,

E[g(X1, X2)] =
∫ +∞
−∞ E[g(y,X2)]f1(y)dy .

Proof. We have

E[g(X1, X2)] =

∫ +∞

−∞

∫ +∞

−∞
g(x1, x2)f1(x1)f2(x2)dx1dx2

=

∫ +∞

−∞
f1(x1)

{∫ +∞

−∞
g(x1, x2)f2(x2)dx2

}

dx1

=

∫ +∞

−∞
f1(x)E[g(x,X2)]dx .
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�

Example 3.2.13: The computation of P (X1 > X2). Let X1, X2 be as in
Theorem 3.2.12. Then

P (X1 > X2) =

∫ +∞

−∞
P (y > X2)f1(y)dy =

∫ +∞

−∞
(1− F2(y))f1(y)dy .

To prove this, it suffices to apply Theorem 3.2.12 with g(x1, x2) = 1{x1>x2} and to
observe that E[g(y,X2)] = E[1{y>X2}] = P (y > X2).

If for instance X1 ∼ E(λ1) and X2 ∼ E(λ2), we obtain by application of the
last displayed formula,

P (X1 > X2) =

∫ +∞

−∞
e−λ2yλ1e

−λ1ydy

=

∫ +∞

−∞
e−λ2yλ1e

−(λ1+λ2)ydy =
λ1

λ1 + λ2

.

We now give the convolution formula for the probability density function of a
random vector that is the sum of two independent absolutely continuous random
vectors.

Theorem 3.2.14 The probability density function of the random vector
Z = X + Y , where X and Y are independent random vectors with the same
dimension n and with respective probability densities fX and fY , is given by the
convolution formula

fZ(z) =
∫
Rn fY (z − y)fX(y)dy . (3.31)

Proof. (n = 1 for simplicity) The probability density function of the vector (X, Y )
is fX(x)fY (y), and therefore, for all a ∈ R,

P (Z ≤ a) = P (X + Y ≤ a) = E[1{X+Y≤a}]

=

∫ +∞

−∞

∫ +∞

−∞
1{x+y≤a}fX(x)fY (y)dxdy .

The latter integral can be written, by Fubini’s theorem,
∫ +∞

−∞

{∫ +∞

−∞
1{y≤a−x}fY (y)dy

}

fX(x)dx

=

∫ +∞

−∞

{∫ a−x

−∞
fY (y)dy

}

fX(x)dx ,
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that is, after an obvious change of variable,

P (Z ≤ a) =

∫ a

−∞

{∫ +∞

−∞
fY (z − x)fX(x)dx

}

dz .

�

Example 3.2.15: Sum of independent uniform random variables. Let
X ∼ U [0, 1] and Y ∼ U [0, 1] be two independent random variables. Then Z =
X + Y admits the “triangular” probability density function

fZ(z) = z 1[0,1](z) + (1− z)1[1,2](z) .

This is an immediate application of (3.31) with fX(x) = 1[0,1](x) and fY (y) =
1[0,1](y).

Characteristic Functions and Laplace Transforms of Random Vectors

The definition and properties of characteristic functions readily extend to the case
of random vectors.

Definition 3.2.16 The characteristic function of the real random vector X =
(X1, . . . , Xn) is the function ψ : Rn → C defined by

ψ(u) = E[eiu
TX ] . (3.32)

In the case where theX is an absolutely continuous random vector with continuous
probability density f ,

ψ(u) =

∫

Rn

eiu
T xf(x) dx .

If moreover, ∫

Rn

|ψ(u)| du <∞ ,

a theorem of analysis tells us that the probability density function of X is then
given by the Fourier inversion formula

f(x) =
1

2π

∫

Rn

ψ(u) e−iuTx du .

(The proof is given in Corollary 5.3.3.)

Theorem 3.2.17 If two random vectors X and Y have the same characteristic
function, they have the same distribution.

The proof is postponed until Corollary 5.3.2.
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Definition 3.2.18 The Laplace transform of a vector of non-negative random
variables (X1, . . . , Xm) is the function (t1, . . . , tm) ∈ R

m
+ �→ E

[
e−(t1X1+tmXm)

]
∈

[0, 1].

The following result, which will be admitted,2 generalizes Theorem 3.1.32.

Theorem 3.2.19 Two non-negative random vectors

(X1, . . . , Xm) and (Y1, . . . , Ym)

with the same Laplace transforms have the same distribution.

Characteristic Function Test for Independence

Characteristic functions give one of the most useful criteria for testing indepen-
dence of random vectors.

Theorem 3.2.20 Suppose that Y and Z are two random vectors of respective
dimensions p and q, and that for all v ∈ Rp, w ∈ Rq, it holds that

E[ei(v
T Y+wTZ)] = ψ1(v)ψ2(w) , (3.33)

where ψ1(v) and ψ2(w) are the characteristic functions of some random vectors Ỹ
and Z̃ of respective dimensions p and q. Then Y and Z are independent, Y has
the same distribution as Ỹ , and Z has the same distribution as Z̃.

Proof. Define X = (Y, Z) and u = (v, w), so that (3.33) reads

E[eiu
TX ] = ψ(u) = ψ1(v)ψ2(w) .

Consider two independent random vectors Ŷ and Ẑ, where Ŷ is distributed as Y ,
and Ẑ is distributed as Z. Let X̂ = (Ŷ , Ẑ). Then, by the product formula for
expectations,

E[eiu
T X̂ ] = E[eiv

T Ŷ eiw
T Ẑ ] = E[eiv

T Ŷ ]E[eiw
T Ẑ ]

= E[eiv
T Y ]E[eiw

TZ ] = ψ1(v)ψ2(w) .

Therefore, (Y, Z) has the same distribution as (Ŷ , Ẑ) and in particular, Y and Z
are independent. �

2 See Chapter 6 of [11].
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Example 3.2.21: Convolution formula via Fourier. We give an alter-
native proof of Theorem 3.2.14. Define

(fY ∗ fZ)(x) :=
∫
Rn fY (x− z) fZ(z) dz .

First observe that f := fY ∗ fZ is a probability density function, that is, a non-
negative function integrating to 1:

∫

Rn

f(x) dx =

∫

Rn

(∫

Rn

fY (x− z) fZ(z) dz

)

dx

=

∫

Rn

(∫

Rn

fY (x− z) dx

)

fZ(z) dz

=

∫

Rn

1× fZ(z) dz = 1 .

By a classical result of Fourier analysis, the Fourier transform of fY ∗ fZ is the
product of the Fourier transforms of fY and fZ , that is

∫

Rn

eiu
T x f(x) dx = E[eiu

T Y ]E[eiu
TZ ] = E[eiu

T (Y+Z)] ,

where we have used the independence of Y and Z for the second equality. Thus
E[eiu

T (Y+Z)] is the characteristic function of Y + Z and of a random vector with
probability density function f(x). Therefore f is the probability density function
of Y + Z.

Random Sums and Wald’s Identity

The next two results concerning random sums were already proved in the discrete
case (Theorems 2.3.12 and 2.5.18).

Theorem 3.2.22 Let {Yn}n≥1 be an iid sequence of random variables with the
common characteristic function ϕY . Let T be a random variable, integer-valued,
independent of the sequence {Yn}n≥1, and let gT be its generating function. The
characteristic function of the random variable

X :=
∑T

n=1 Yn ,

where by convention
∑0

n=1 = 0, is

ϕX(u) = gT (ϕY (u)) . (3.34)



3.2. CONTINUOUS RANDOM VECTORS 101

Proof. We need only to adapt the proof of Theorem 2.3.12. We have

eiuX = eiu
∑T

n=1 Yn =

( ∞∑

k=0

1{T=k}

)

eiu
∑T

n=1 Yn

=
∞∑

k=0

{(
eiu

∑T
n=1 Yn

)
1{T=k}

}
=

∞∑

k=0

(
eiu

∑k
n=1 Yn

)
1{T=k} .

Therefore,

E[eiuX ] =

∞∑

k=0

E
[
1{T=k}

(
eiu

∑k
n=1 Yn

)]
=

∞∑

k=0

E[1{T=k}]E[eiu
∑k

n=1 Yn ] ,

where we have used independence of T and {Yn}n≥1. Now, E[1{T=k}] = P (T = k),

and E[eiu
∑k

n=1 Yn] = ϕY (u)
k, and therefore

E[eiuX ] =
∞∑

k=0

P (T = k)ϕY (u)
k = gT (ϕY (u)) .

�

Theorem 3.2.23 Let {Yn}n≥1 be a sequence of integrable random variables such
that E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable such
that for all n ≥ 1, the event {T ≥ n} is independent of Yn. Let

X :=
∑T

n=1 Yn .

Then
E [X] = E[Y1]E[T ] . (3.35)

Proof. Same as that of Theorem 2.5.18. �

Smooth Change of Variables

Let X = (X1, . . . , Xn) be a random vector with the probability density function
fX , and define the random vector Y = g(X), where g : Rn → Rn. More explicitly,

⎧
⎪⎨

⎪⎩

Y1 = g1(X1, . . . , Xn),
...

Yn = gn(X1, . . . , Xn).

Under smoothness assumptions on g, the random vector Y is absolutely continuous,
and its probability density function can be explicitly computed from g and the
probability density function fX . These assumptions are the following:
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A1: The function g : U → Rn, where U is an open subset of Rn, is one-to-one
(injective).

A2: The coordinate functions gi (1 ≤ i ≤ n) are continuously differentiable.

A2: Moreover, denoting the Jacobian matrix of the function g by

Jg(x1, . . . , xn) :=
{

∂gi
∂xj

(x1, . . . , xn)
}

1≤i,j≤n
,

we assume that on U ,

| det Jg(x1, . . . , xn)| > 0 .

A standard result of Analysis says that V = g(U) is an open subset of Rn, and
that the invertible function g : U → V admits an inverse g−1 : V → U with the
same properties as the direct function g. In particular, on V ,

| det Jg−1(y1, . . . , yn)| > 0 .

Moreover,
Jg−1(y) = Jg(g

−1(y))−1 .

Also, under conditions A1 − A3, we have the basic rule of change of variables of
calculus: For any function u : Rn → Rn,

∫

U

u(x)dx =

∫

g(U)

u(g−1(y))| detJg−1(y)|dy .

Theorem 3.2.24 Under the conditions just stated for X, g, and U , and if more-
over P (X ∈ U) = 1, then Y admits the probability density

fY (y) = fX(g
−1(y))| detJg(g

−1(y))|−11V (y) . (3.36)

Proof. The proof consists in checking that for any bounded function h : R→ R,

E[h(Y )] =

∫

Rn

h(y)ψ(y)dy , (3.37)

where ψ is the function on the right-hand side of (3.36). Indeed, taking h(y) =
1y≤a = 1y1≤a1 · · · 1yn≤an , (3.37) reads

P (Y1 ≤ a1, . . . , Yn ≤ an) =

∫ a1

−∞
· · ·

∫ an

−∞
ψ(y1, . . . , yn)dy1 · · ·dyn .
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To prove that (3.37) holds with the appropriate ψ, one just uses the basic rule of
change of variables:

E[h(Y )] = E[h(g(X))] =

∫

U

h(g(x))fX(x)dx

=

∫

V

h(y)fX(g
−1(y))| det Jg−1(y)|dy.

�

Corollary 3.2.25 Let X be an n-dimensional random vector with probability den-
sity fX . Let A be an invertible n×n real matrix and b an n-dimensional real vector.
Then, the random vector Y = AX + B admits the density

fY (y) = fX(A
−1(y − b)) 1

|detA| . (3.38)

Proof. Here U = Rn, g(x) = Ax+ b, and | det Jg−1(y)| = 1
|detA| . �

Example 3.2.26: Polar coordinates. Let (X1, X2) be a 2-dimensional ran-
dom vector with probability density fX1,X2(x1, x2), and let (R,Θ) be its polar
coordinates. The probability density of (R,Θ) is given by the formula

fR,Θ(r, θ) = fX1,X2(r cos θ, r sin θ) r .

Proof. Here g is the bijective function from the open set U consisting of R2

without the half-line {(x1, 0) ; x1 ≥ 0} to the open set V = (0,∞)× (0, 2π). The
inverse function is

x = r cos θ y = r sin θ ,

with Jacobian

Jg−1(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)

of determinant det Jg−1(r, θ) = r. Applying formula (3.36), we obtain the an-
nounced result. �

There are cases of practical interest where the function g does not admit
an inverse but where its domain U can be decomposed into disjoint open sets
(say, 2): U = U1 + U2, such that the restrictions of g to U1 and U2, respectively
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g1 and g2, satisfy the conditions of smoothness and of injectivity of the standard
case. In this case the same method applies, but one must dissociate the integrals:

∫

U

h(g(x))fX(x) dx =

∫

U1

h(g1(x))fX(x) dx+

∫

U2

h(g2(x))fX(x) dx

and apply the formula of smooth change of variables to each part separately. This
gives

E [h(Y )] =

∫

g1(U1)

h(y)fX(g
−1
1 (y))

∣
∣
∣Jg−1

1
(y)

∣
∣
∣ dy+

∫

g2(U2)

h(y)fX(g
−1
2 (y))

∣
∣
∣Jg−1

2
(y)

∣
∣
∣ dy

and therefore

fY (y) = fX(g
−1
1 (y))

∣
∣
∣Jg−1

1
(y)

∣
∣
∣ 1g1(U1)(y) + fX(g

−1
2 (y))

∣
∣
∣Jg−1

2
(y)

∣
∣
∣ 1g2(U1)(y) .

Order Statistics

We now give a formula which allows us to compute the probability density function
of the random vector obtained by reordering the coordinates of a given absolutely
continuous random vector.

Let X1, . . . , Xn be independent random variables with the same probability
density function f . We know (see Theorem 3.2.4) that the probability of two or
more among X1, . . . , Xn taking the same value is null. Therefore one can define
unambiguously the random variables Z1, . . . , Zn obtained by arranging X1, . . . , Xn

in increasing order:

{
Zi ∈ {X1, . . . , Xn},
Z1 ≤ Z2 ≤ · · · ≤ Zn.

In particular, Z1 = min (X1, . . . , Xn) and Zn = max (X1, . . . , Xn).

Theorem 3.2.27 The probability density of the reordered vector Z = (Z1, . . . , Zn)
(defined above) is

fZ(z1, . . . , zn) = n!
{∏n

j=1 f(zj)
}
1C(z1, . . . , zn) , (3.39)

where C := {(z1, . . . , zn) ∈ Rn ; z1 ≤ z2 ≤ · · · ≤ zn}.
Proof. Let σ be the permutation of {1, . . . , n} that ordersX1, . . . , Xn in ascending
order, that is,

Xσ(i) = Zi
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(note that σ is a random permutation). For any set A ⊆ Rn,

P (Z ∈ A) = P (Z ∈ A ∩ C)

= P (Xσ ∈ A ∩ C) =
∑

σo

P (Xσo ∈ A ∩ C, σ = σo) ,

where the sum is over all permutations of {1, . . . , n}. Observing that Xσo ∈ A∩C
implies σ = σo,

P (Xσo ∈ A ∩ C, σ = σo) = P (Xσo ∈ A ∩ C)

and therefore since the probability distribution ofXσo does not depend upon a fixed
permutation σo (here we invoke the independence and equidistribution assumption
for the Xi’s),

P (Xσo ∈ A ∩ C) = P (X ∈ A ∩ C) .

Therefore,

P (Z ∈ A) =
∑

σo

P (X ∈ A ∩ C) = n!P (X ∈ A ∩ C)

= n!

∫

A∩C
fX(x)dx =

∫

A

n!fX(x)1C(x)dx .

�

Example 3.2.28: Volume of a right-angled pyramid. We shall apply
the above result to prove the formula

∫ b

a

· · ·
∫ b

a

1C(z1, . . . , zn)dz1 · · ·dzn =
(b− a)n

n!
. (3.40)

Indeed, when the Xi’s are uniformly distributed over [a, b],

fZ(z1, . . . , zn) =
n!

(b− a)n
1[a,b]n(z1, . . . , zn)1C(z1, . . . , zn) . (3.41)

The result follows since
∫
Rn fZ(z) dz = 1.

Example 3.2.29: The i-th smallest uniform. We seek the probability
density function of the random variable Zi, the ith smallest among X1, . . . , Xn,
when the Xi’s are independent random variables uniformly distributed on [0, 1].
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By Theorem 3.2.27, the distribution of Z = (Z1, . . . , Zn) is

fZ (z1, . . . , zn) =
1

n!
1[0,1]n∩C (z1, . . . , zn) ,

where C = {x1 ≤ x2 ≤ · · · ≤ xn}. The density of Zi is obtained by integrating fZ
with respect to z1, . . . , zi−1, zi+1, . . . , zn:

fZi
(z) = n!

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
n−1

1(z1≤···≤zi−1≤z≤zi+1≤···≤zn)dz1 . . .dzi−1dzi+1 . . .dzn

= n!

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
i−1

1(z1≤···≤zi−1≤z)dz1 . . .dzi−1 × · · ·

· · ·
∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
n−i

1(z≤zi+1≤···≤zn)dzi+1 . . .dzn ,

that is, in view of the result of Example 3.2.28,

fZi
(z) = n!

zi−1

(i− 1)!

(1− z)n−i

(n− i)!
= n

(
n− 1

i− 1

)

zi−1 (1− z)n−1 .

Sampling a Distribution

We now address a problem that arises in the context of simulation of stochastic
systems. It consists in generating a random variable with prescribed cdf, or in
other terms, sampling the said cdf. For this, one is allowed to use a random gen-
erator that produces a sequence U1, U2, . . . of independent real random variables,
uniformly distributed on [0, 1]. In practice, the numbers that such random gener-
ators produce are not quite random, but they look as if they are (they are called
pseudo-random generators). The topic of how to devise a good pseudo-random
generator is out of our scope, and we shall admit that we can trust our favorite
computer to provide us with an iid sequence of random variables uniformly dis-
tributed on [0, 1] (from now on we call them random numbers).

We now give two methods for constructing a random variable Z with cdf

F (z) = P (Z ≤ z).

In the case where Z is a discrete random variable with distribution
P (Z = ai) = pi (0 ≤ i ≤ K), the basic principle of the sampling algorithm is
the following



3.2. CONTINUOUS RANDOM VECTORS 107

(α) Draw U ∼ U([0, 1]).

(β) Set Z = a� if p0 + p1 + · · ·+ p�−1 ≤ U ≤ p0 + p1 + · · ·+ p�.

This method is called the method of the inverse.

A crude generation algorithm would successively perform the tests U ≤ p0?,
U ≤ p0 + p1?, . . ., until the answer is positive. The average number of iterations
required would therefore be

∑
i≥0(i+ 1)pi = 1 + E [Z]. This number may be too

large, but there are ways of improving this, as Example 7.2.2 will show for the
Poisson distribution.

The above method can be generalized to real random variables. Since for
u ∈ (0, 1), the set {x ; F (x) ≥ u} is an unbounded interval of R, it admits a
smallest element denoted by F←(u):

{x ; F (x) ≥ u} = [F←(u),+∞) .

The function F← so defined on (0, 1) is non-decreasing. It is called the pseudo-
inverse of F and coincides with the inverse function F−1 when F is continuous
and strictly increasing.

Theorem 3.2.30 If U is a uniform random variable on (0, 1), then F←(U) has
the same probability distribution as X.

Proof. First note that for all u ∈ (0, 1), F←(u) ≤ t implies F (t) ≥ u. Indeed,
in this case, for all s > t there exists an x < s such that F (x) > u and therefore
F (s) > u; and consequently, by right-continuity of F , F (t) ≥ u. Conversely,
F (t) ≥ u implies that t ∈ {x ; F (x) ≥ u} and therefore F←(u) ≤ t. Taking all this
into account,

F (t) = P (U < F (t)) ≤ P (F←(U) ≤ t)

≤ P (F (t) ≥ U) = F (t) .

This forces P (F←(U) ≤ t) to equal F (t). �

Example 3.2.31: Exponential distribution. We want to sample from E(λ).
The corresponding cdf is

F (z) = 1− e−λz (z ≥ 0) .

The solution of y = 1 − e−λz is z = − 1
λ
ln(1 − y) = F−1(y), and therefore, Z =

− 1
λ
ln(1− U) will do, or since U and 1− U have the same distribution,

Z = − 1
λ
lnU .
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Here is an often useful trick.

Example 3.2.32: Symmetric exponential distribution. We want to sam-
ple from the symmetric exponential distribution with probability density function

f(x) =
1

2
e−λ|x| .

One way is to generate two independent random variables Y and Z where Z ∼ E(λ)
and P (Y = +1) = P (Y = −1) = 1

2
. Taking X = Y Z we have that

P (X ≤ x) = P (U = +1, Z ≤ x) + P (U = −1, Z ≥ −x)

=
1

2
(FZ(x) + 1− FZ(−x)) ,

and therefore, taking derivatives,

fX(x) =
1

2
(fZ(x) + fZ(−x)) =

1

2
fZ(|x|) .

The computation of the inverse of the cumulative distribution function of the
random variable to be generated may be difficult. An alternative method is the
method of acceptance-rejection below.

Let {Yn}n≥1 be a sequence of iid random variables with probability density g
that satisfies the two requirements below:

(i) it is easy (or at least feasible) to sample it, and

(ii) for all x ∈ R
f(x)
g(x)
≤ c (3.42)

for some finite constant c (necessarily larger or equal to 1).

Let {Un}n≥1 be a sequence of iid random variables uniformly distributed on
[0, 1].
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Theorem 3.2.33 Let τ be the first index n ≥ 1 for which

Un ≤ f(Yn)
cg(Yn)

and let Z = Yτ . Then

(a) Z admits the probability density function f , and

(b) E[τ ] = c.

Proof. We have

P (Z ≤ x) = P (Yτ ≤ x) =
∑

n≥1

P (τ = n, Yn ≤ x) .

Denote by Ak the event {Uk > f(Yk)
cg(Yk)

}. Then

P (τ = n, Yn ≤ x) = P (A1, . . . , An−1, An, Yn ≤ x)

= P (A1) · · ·P (An−1)P (An, Yn ≤ x) ,

P
(
Ak

)
=

∫

R

P

(

Uk ≤
f(y)

cg(y)

)

g(y) dy

=

∫

R

f(y)

cg(y)
g(y) dy =

∫

R

f(y)

c
dy =

1

c
,

P
(
Ak, Yk ≤ x

)
=

∫

R

P

(

Uk ≤
f(y)

cg(y)

)

1y≤xg(y) dy

=

∫ x

−∞

f(y)

cg(y)
g(y) dy =

∫ x

−∞

f(y)

c
dy =

1

c

∫ x

−∞
f(y) dy .

Therefore

P (Z ≤ x) =
∑

n≥1

(

1− 1

c

)n−1
1

c

∫ x

−∞
f(y)dy =

∫ x

−∞
f(y)dy .

Also, using the above calculations,

P (τ = n) = P
(
A1, . . . , An−1, An

)

= P (A1) · · ·P (An−1)P
(
An

)
=

(

1− 1

c

)n−1
1

c
,

from which it follows that E[τ ] = c. �

We see that the method depends on our ability to easily generate random
vectors with the probability density g. Also we have to select a probability density
function satisfying the constraint (3.42), with c as small as possible.
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3.3 Square-integrable Random Variables

Definition 3.3.1 A complex random variable X is said to be square-integrable if
E[|X|2] <∞.

Theorem 3.3.2 The set of complex square-integrable random variables, denoted
L2

C(P ), is a vector space with scalar field C. Similarly, the set of real square-
integrable random variables, denoted L2

R(P ), is a vector space with scalar field
R.

Proof. We show that if X and Y are complex square-integrable random variables
and λ ∈ C, then λX andX+Y are square-integrable. The first assertion is obvious.
For the last assertion use (for instance) the inequality (a + b)2 ≤ 2a2 + 2b2, true
for all a, b ∈ R, to obtain

E[|X + Y |2] ≤ E[(|X|+ |Y |)2]
≤ E[(|X|+ |Y |)2] ≤ 2E[(|X|)2] + 2E[(|Y |)2] <∞ .

�

Lemma 3.3.3 A non-negative random variable Z such that E[Z] = 0 is almost
surely equal to 0.

Proof. By Markov’s inequality, P (Z ≥ 1
n
) ≤ nE[Z] = 0, and therefore, by the

sequential continuity of probability

P (Z > 0) = P

( ∞⋃

n=1

{

Z ≥ 1

n

})

= lim
n↑∞

P

(

Z ≥ 1

n
)

)

= 0 ,

that is, P (Z = 0) = 1. �

Inner Product and Schwarz’s Inequality

Definition 3.3.4 Let H be a vector space with scalar field K = C or R, endowed
with a mapping from H×H to K associating to the pair (x, y) of vectors of H the
scalar 〈x, y〉, and such that for all x, y, z ∈ H and all λ ∈ K,

1. 〈y, x〉 = 〈x, y〉∗,
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2. 〈λy, x〉 = λ〈y, x〉,

3. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.
The map (x, y) �→ 〈x, y〉 is called an inner product, and 〈x, y〉 is called the inner
product of x and y. The vector space H, when endowed with such an inner product,
is called a pre-Hilbert space.

If we take
〈X, Y 〉 := E [XY ∗]

for inner product of L2
C(P ), the three conditions above are obviously satisfied.

Two vectors x and y in H are called orthogonal if 〈x, y〉 = 0.

For any x ∈ H , let
‖x‖2 := 〈x, x〉 .

Theorem 3.3.5 For all x, y ∈ H,

|〈x, y〉| ≤ ‖x‖ × ‖y‖ ,

with equality if and only if x and y are colinear.

Proof. Say K = C. If x and y are colinear, that is x = λy for some λ ∈ C, the
inequality is obviously an equality. If x and y are linearly independent, then for
all λ ∈ C, x+ λy �= 0. Therefore

0 < ‖x+ λy‖2 = ‖x‖2 + |λy|2‖λy‖2 + λ∗〈x, y〉+ λ〈x, y〉∗

= ‖x‖2 + |λ|2‖y‖2 + 2Re(λ∗〈x, y〉) .
Take u ∈ C, |u| = 1, such that u∗〈x, y〉 = |〈x, y〉|. For t ∈ R, let λ := tu. Then

0 < ‖x‖2 + t2‖y‖2 + 2t|〈x, y〉| .
This is true for all t ∈ R. Therefore the discriminant of this second degree equation
in t must be strictly negative, that is, 4|〈x, y〉|2 − 4‖x‖2 × ‖y‖2 < 0. �

The Correlation Coefficient

Schwarz’s inequality for square-integrable random variables reads:

|E[XY ]| ≤ E[|XY |] ≤ E[|Y |2] 12 × E[|X|2] 12 . (3.43)

In particular, with Y = 1,

E[|X|] ≤ E[|X|2] 12 <∞ . (3.44)
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Definition 3.3.6 Two complex square-integrable random variables are said
to be orthogonal if E[XY ∗] = 0. They are said to be uncorrelated if
E[(X −mX)(Y −mY )

∗] = 0.

Definition 3.3.7 The covariance of the two complex square integrable variables
X and Y is, by definition, the complex number E [(X −mX)(Y −mY )

∗]. It will
be denoted by σXY .

Definition 3.3.8 Let X and Y be square-integrable real random variables with
respective means mX and mY , and respective variances σ2

X > 0 and σ2
Y > 0. Their

correlation coefficient is the quantity

ρXY :=
σXY

σX σY
,

where σXY is the covariance.

By Schwarz’s inequality, |σXY | ≤ σX σy, and therefore

|ρXY | ≤ 1 ,

with equality if and only if X and Y are colinear. Recall that when ρXY = 0
X and Y are said to be uncorrelated. If ρXY > 0, they are said to be positively
correlated, whereas if ρXY < 0, they are said to be negatively correlated.

The next result provides an interesting interpretation of the correlation coeffi-
cient.

Theorem 3.3.9 Let X be a square-integrable real random variable. Among all
variables Z = aX + b, where a and b are real numbers, the one that minimizes the
error E[(Z − Y )2] is

Ŷ = mY +
σXY

σ2
X

(X −mX)

and the error is then
E[(Ŷ − Y )2] = σ2

Y (1− ρ2XY ) .

This is a particular case of the forthcoming Theorem 3.3.16.

We see that if the variables are not correlated, then the best prediction is
the trivial one Ŷ = mY and the (maximal) error is then σ2

Y . In imprecise but
suggestive terms, high correlation implies high predictability.
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Covariance Matrices

Recall the notation in use in this book for vectors and matrices: an asterisk super-
script (∗) denotes complex conjugates, a T superscript (T ) is for vector transposi-
tion, and the dagger superscript (†) is for conjugation-transposition. When x is a
vector of Rn, we shall always assume in the notation that it is a column vector,
and therefore xT will be the corresponding line vector.

Definition 3.3.10 A random vector X = (X1, . . . , Xn)
T such that X1, . . ., Xn are

square-integrable complex random variables is called a square-integrable complex
vector.

In particular, by (3.44),

E[|Xi|] <∞ (1 ≤ i, j ≤ n)

and by Schwarz’s inequality (3.43),

E[|XiXj|] <∞ (1 ≤ i, j ≤ n) .

Therefore, the mean

mX := E[X] = (E[X1], . . . , E[Xn])
T

and the covariance matrix of X

ΓX := E[(X −mX)(X −mX)
†]

=
{
E
[
(Xi −mXi

)(Xj −mXj
)∗
]}

1≤i,j≤n

= { cov (Xi, Xj)}1≤i,j≤n

are well defined.

Theorem 3.3.11 The matrix ΓX is symmetric Hermitian, that is,

Γ†
X = ΓX , (3.45)

and it is non-negative definite, that is,

α†ΓXα ≥ 0 , (3.46)

for all α ∈ Cn. This is denoted by ΓX ≥ 0.
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Proof.

α†Γα = αTΓα∗

=

n∑

i=1

n∑

j=1

αiα
∗
jE[(Xi −E[Xi])(Xj − E[Xj ])

∗]

= E

[
n∑

i=1

n∑

j=1

αiα
∗
j (Xi − E[Xi])(Xj − E[Xj])

∗
]

= E

[(
n∑

i=1

αi(Xi −E[Xi])

)(
n∑

j=1

αj(Xj −E[Xj ])

)∗]

= E[|αT (X − E[X])|2] ≥ 0 . �

Theorem 3.3.12 Let X be a square-integrable real random vector of dimension
n ≥ 2 with a covariance matrix ΓX which is degenerate, that is,

αTΓXα = 0 ,

for some α ∈ Rn, α �= 0. Then, X lies almost surely in a hyperplane of Rn

of dimension strictly less than n, and cannot have a probability density.

Proof. For such α, E[|αT (X−E[X])|2] = αTΓXα = 0, and therefore, by Theorem
3.3.3,

αT (X − E[X]) = 0 ,

almost surely. Suppose the existence of such a probability density f . Then, de-
noting by Π the hyperplane in question,

P (X ∈ Π) =

∫

Π

f(x) dx ,

a null quantity since the n-volume of an hyperplane of Rn is null. �

If ΓX is non-degenerate, we write ΓX > 0. A vector X with degenerate covari-
ance matrix is also called degenerate.

We now examine the effects of an affine transformation of a random vector on
its covariance matrix. LetX be a square-integrable n-dimensional complex random
vector, with mean mX and covariance matrix ΓX . Let A be an (n×k)-dimensional
complex matrix, and b a k-dimensional real vector.



3.3. SQUARE-INTEGRABLE RANDOM VARIABLES 115

Theorem 3.3.13 The k-dimensional complex vector Z = AX + b has mean

mZ = AmX + b

and covariance matrix

ΓZ = AΓXA
†.

Proof. The formula giving the mean is immediate. As for the other one, it suffices
to observe that (Z −mZ) = A(X −mX) and to write

ΓZ = E
[
(Z −mZ)(Z −mZ)

†]

= E
[
A(X −mX)(A(X −mX))

†]

= E
[
A(X −mX)(X −mX)

†A†]

= AE
[
(X −mX)(X −mX)

T
]
A† = AΓXA

†.

�

Let X and Y be square-integrable complex random vectors of respective di-
mensions n and q. We define the covariance matrix of X and Y—in this order—by

ΓXY = E[(X −mX)(Y −mY )
†] .

Note that
ΓY X = Γ†

XY .

Also, for the (n + q)-dimensional vector

Z = (X1, . . . , Xn, Y1, . . . , Yq)
T

the covariance matrix takes the block diagonal form

ΓZ =

(
ΓX ΓXY

ΓY X ΓY

)

.

Linear Regression

Let Y,X1, . . . , XN be square-integrable real random variables. We now consider
the problem of the best linear-quadratic approximation of Y based on X1, . . . , XN .
More precisely, we seek a real vector a = (a1, . . . , aN)

T such that the linear com-
bination Ŷ := aTX =

∑N
i=1 aiXi satisfies

E
[
‖Y − Ŷ ‖2

]
≤ E

[
‖Y − Z‖2

]

for every linear combination Z =
∑N

i=1 biXi, where b = (b1, . . . , bN )
T is a real

vector.



116 CHAPTER 3. CONTINUOUS RANDOM VECTORS

Definition 3.3.14 The random variable Ŷ achieving the minimum is called the
linear regression of Y on X1, . . . , XN , or, again, the best linear-quadratic approx-
imation of Y as a function of X1, . . . , XN . The vector a is called the regression
vector.

Letting

F (b) := E
[
‖Y − Z‖2

]
= E

[

(Y −
N∑

i=1

biXi)(Y −
N∑

i=1

biXi)

]

,

we have

∂F

∂bi
(b) = − 2E

[

(Y −
N∑

i=1

biXi)Xi

]

= − 2E [(Y − Z)Xi] .

On writing ∂F/∂bi = 0 (1 ≤ i ≤ N), we see that a vector a realizing an extremum
of F and the corresponding approximation Ŷ = aTX satisfy the system

E
[
(Y − Ŷ )Xi

]
= 0 (1 ≤ i ≤ N). (3.47)

The N preceding equations may be written as a function of the unknowns
a1, . . . , aN ,

N∑

i=1

ajE [XjXi] = E [Y Xi] (1 ≤ i ≤ N) , (3.48)

or, in matrix form:
⎛

⎜
⎜
⎜
⎝

E [X1X1] E [X1X2] . . . E [X1XN ]
E [X2X1] E [X2X2] . . . E [X2XN ]

...
...

...
...

E [XNX1] E [XNX2] . . . E [XNXN ]

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

a1
a2
...
aN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

E [Y X1]
E [Y X2]

...
E [Y XN ]

⎞

⎟
⎟
⎟
⎠

.

More compactly,
ΓXa = ΓXY . (3.49)

In view of (3.47), we have E
[
(Y − Ŷ )Ŷ

]
= 0, and therefore,

d2 := E
[
(Y − Ŷ )2

]
= E

[
(Y − Ŷ )Y

]
. (3.50)

The covariance matrix ΓX is non-singular if and only if X1, . . . , XN are linearly
independent vectors. In this case (3.48) admits a unique solution. Thus under the
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condition ΓX > 0, we have a unique extremum, which we know to be a minimum
because the coefficients of the squares of the quadratic form F are positive (at least
if we assume, without loss of generality, that none of the Xi is the null vector).

In summary,

Theorem 3.3.15 Let Y,X1, . . . , XN be real square-integrable centered random
variables. A necessary and sufficient condition for Ŷ = a1X1 + . . . aNXN to be
a best quadratic approximation of Y by a linear function of X1, . . . , XN is

E
[
(Y − Ŷ )Xi

]
= 0 (1 ≤ i ≤ N) .

The regression vector is given by (3.51)

ΓXa = ΓXY (3.51)

and the minimum quadratic error d2 = E
[
|Y − Ŷ |2

]
is given by d2 = 〈Y − Ŷ , Y 〉.

We now assume linear independence (in the algebraic sense) of X1, . . . , XN ,
which is expressed by the condition

ΓX > 0 , (3.52)

in which case Γ−1
X exists and therefore there exists a unique regression vector

a = Γ−1
X ΓXY , so that

Ŷ = ΓY XΓ
−1
X X . (3.53)

We now consider the case where the random variables Y and X1, . . . , XN are
no longer assumed to be centered (but we keep the condition (3.52)). The problem
is now to find the affine combination of X1, . . . , XN which best approximates Y
in the least-squares sense. In other words, we seek to minimize

E[(Y − b0 − b1X1 − . . .− bNXN)
2]

with respect to the scalars b0, . . . , bN . This problem can be reduced to the pre-
ceding one as follows. In fact, for every square integrable random variable U with
mean m,

E[(U − c)2] ≥ E[(U −m)2] for all c.

(Exercise 3.1.11.) Therefore

E[Y − bTX − b0]
2 ≥ E[(Y − bTX − E[Y − bTX])2] ,

where
bT = (b1, . . . , bN ) .
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This shows that b0 is necessarily of the form b0 = mY − bTmX . Therefore we have
reduced the original problem to that of minimizing with respect to b the quantity
E[((Y −mY )− bT (X −mX))

2], and for this we can use the result obtained in the
case of centred random variables.

Theorem 3.3.16 If X is nondegenerate, the best linear-quadratic approximation
of Y as an affine function of X is

Ŷ = mY + ΓY XΓ
−1
X (X −mX) . (3.54)

The minimum quadratic error is then given by

E[(Ŷ − Y )2] = σ2
Y − ΓY XΓ

−1
X ΓXY . (3.55)

Proof. It remains to prove (3.55). From (3.54), we have

E[(Ŷ − Y )2] = E[(Y −mY − ΓY XΓ
−1
X (X −mX))

2]

= E[(Y −mY )
2]− 2E[(ΓY XΓ

−1
X (X −mX))(Y −mY )]

+ E[(ΓY XΓ
−1
X (X −mX))

2] .

But

E[(ΓY XΓ
−1
X (X −mX))(Y −mY )] = ΓY XΓ

−1
X E[((X −mX))(Y −mY )]

= ΓY XΓ
−1
X ΓXY .

Also

E[(ΓY XΓ
−1
X (X −mX))

2] = E[(ΓY XΓ
−1
X (X −mX))(ΓY XΓ

−1
X (X −mX))

T ]

= E[ΓY XΓ
−1
X (X −mX)(X −mX)

TΓ−1
X ΓY X ]

= ΓY XΓ
−1
X E[(X −mX)(X −mX)

T ]Γ−1
X ΓY X

= ΓY XΓ
−1
X ΓXΓ

−1
X ΓY X = ΓY XΓ

−1
X ΓXY .

�

When X is centered, we shall denote P (Y |X) by Ŷ .

3.4 Gaussian Vectors

The importance of Gaussian vectors is due to their mathematical tractability, their
stability with respect to linear transformations, and the fact that their distribution
is entirely characterized by their mean vector and their covariance matrix.

We begin by slightly extending the definition of a Gaussian random variable.
This extension will be useful in the definition of a Gaussian vector:
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Definition 3.4.1 An extended Gaussian variable X is any real random variable
with a characteristic function of the form

φX(u) = exp{imu− 1
2
σ2u2} , (3.56)

where m ∈ R and σ2 ∈ R+.

The only difference with the standard definition is that a null variance σ2 is
allowed, in which case the random variable is (almost surely) a constant.

Definition 3.4.2 A standard Gaussian variable is a Gaussian variable with mean
0 and variance 1: X ∼ N (0, 1).

Definition 3.4.3 An n-dimensional real random vector X is called a Gaussian
random vector if the random variable αTX is an extended Gaussian random vari-
able for all α ∈ Rn.

Definition 3.4.4 A standard Gaussian vector is a Gaussian vector with mean
vector 0 and covariance matrix I (the identity matrix): X ∼ N (0, I).

The next result is an immediate consequence of the above definition and of
Theorem 3.3.13.

Theorem 3.4.5 Let X be an n-dimensional Gaussian vector with mean vector
mX and covariance matrix ΓX . Let A be an (n× k)-dimensional real matrix, and
b a k-dimensional real vector. The k-dimensional vector Z = AX + b is then a
Gaussian vector with mean vector

mZ = AmX + b ,

and covariance matrix

ΓZ = AΓXA
T .

We now make the connection with the classical definition of Gaussian vectors
in terms of characteristic functions.

Theorem 3.4.6 For a real n-dimensional random vector X to be a Gaussian vec-
tor it is necessary and sufficient that its characteristic function φX be of the fol-
lowing form:

φX(u) = exp{iuTmX − 1
2
uTΓXu} , (3.57)

where mX ∈ Rn and where ΓX is a symmetric and non-negative definite n × n
matrix. In this case the parameters mX and ΓX are respectively the mean vector
and the covariance matrix of X.
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Proof. Necessary condition. The characteristic function of a Gaussian vector as
defined in Definition 3.4.3 is

E[eiu
TX ] = ϕZ(1) ,

where ϕZ is the cf of Z := uTX. The random variable Z being an extended
Gaussian variable,

φZ(1) = exp{imZ − 1
2
σ2
Z} ,

where

mZ := E[Z] = uTE[X] = uTmX

and

σ2
Z := E[(uT (X −mX))(u

T (X −mX))
T ]

= uTE[(X −mX)(X −mX)
T ]u = uTΓXu .

Therefore, finally,

φX(u) = exp{iuTmX − 1
2
uTΓXu} .

Sufficient condition. Let X be a random vector with characteristic function given
by (3.57). Let Z = αTX, where α ∈ Cn. The characteristic function of the random
variable Z is

φZ(v) = E[exp{ivZ}] = E[exp{ivαTX}]
= exp{iv(αTmX)− 1

2
v2(αTΓXα)} .

Therefore Z is an extended Gaussian random variable. �

Mixed Moments of Gaussian Vectors

We shall give two useful formulas concerning the moments of a centered (0-mean)
n-dimensional Gaussian vector X = (X1, . . . , Xn)

T with the covariance matrix
Γ = {σij}.

First, we have

E[Xi1Xi2 , . . . , Xi2k ] =
∑

(j1,...,j2k)
j1<j2,...,j2k−1<j2k

σj1j2σj3j4 . . . σj2kj2k , (3.58)

where the summation extends over all permutations (j1, . . . , j2k) of {i1, . . . , i2k}
such that j1 < j2, . . . , j2k−1 < j2k. There are 1 · 3 · 5 . . . (2k − 1) terms in the
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right-hand side of Eq. (3.58). The indices i1, . . . , i2k are in {1, . . . , n} and they
may occur with repetitions. For instance

E[X1X2X3X4] = σ12σ34 + σ13σ24 + σ14σ23

E[X2
1X

2
2 ] = σ11σ22 + σ12σ12 + σ12σ12 = σ2

1σ
2
2 − 2σ2

12

E[X4
1 ] = 3σ2

11 = 3σ4
1

E[X2k
1 ] = 1 · 3 . . . (2k − 1)σ2k

1 .

Also the odd moments of a centered gaussian vector are null, that is:

E[Xi1 . . .Xi2k+1
] = 0 , (3.59)

for all (i1, . . . , i2k+1) ∈ {1, 2, . . . , n}2k+1.

The proof of the formulas above is required in Exercise 5.7.11.

Independence and Non-Correlation

In general, non-correlation does not imply independence. However, this is nearly
(see Example 3.4.9 below) true in the case of Gaussian vectors. We start with a
definition in view of correctly stating the announced result.

Definition 3.4.7 Two random real vectors X and Y of respective dimensions n
and q are said to be jointly Gaussian if the vector Z defined by

ZT = (XT , Y T ) = (X1, . . . , Xn, Y1, . . . , Yq)

is a Gaussian vector.

Theorem 3.4.8 Two jointly Gaussian random vectors X and Y of respective di-
mensions n and q are independent if and only if they are uncorrelated (that is
ΓXY = 0).

Proof. Necessity: If X and Y are independent then, by the product formula for
expectations,

E[(X −mX)(Y −mY )
T ] = E[X −mX ]E[Y −mY ]

T = 0 .

Sufficiency: If X and Y are uncorrelated the vector Z has for covariance matrix

ΓZ =

(
ΓX 0
0 ΓY

)

,
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and the mean

mZ =

(
mX

mY

)

.

It is a Gaussian vector by hypothesis and therefore, with

w := (u1, . . . , un, v1, . . . , vq)
T ,

we have that

E[exp{i(uTX + vTY )}] = E[exp{iwTZ}]

= exp{iwTmZ −
1

2
wTΓZw}

= exp{i(uTmX + vTmY )−
1

2
uTΓXu−

1

2
vTΓY v}

= E[exp{iuTX}]E[exp{ivTY }] ,

and the conclusion follows from the factorization theorem of characteristic func-
tions (Theorem 3.2.20). �

Example 3.4.9: Gaussian, uncorrelated, not jointly Gaussian. Let X
and U be two independent random variables, where X ∼ N (0, 1) and U ∈ {− 1, 1},
P (U = ± 1) = 1

2
. We show that

Y = UX ∼ N (0, 1)

and therefore X and Y are separately Gaussian. However, we also show that they
are not jointly Gaussian, and that they are uncorrelated, and yet, not independent.
The proof of the above statements is as follows:

P (Y ≤ x) = P (UX ≤ x) = P (U = 1, X ≤ x) + P (U = −1, X ≥ −x)
= P (U = 1)P (X ≤ x) + P (U = −1)P (X ≥ −x)

=
1

2
P (X ≤ x) +

1

2
P (X ≥ −x) = P (X ≤ x) .

Also, E[Y X] = E[UX2] = E[U ]E[X2] = 0, that is Y and Z are uncorrelated.
We show that they are not independent. We have P (X2 = Y 2) = 1. If X and
Y were independent, since they are absolutely continuous, (X, Y ) would admit a
probability density, say, fX,Y (x, y). Then

P (X2 = Y 2) =

∫

R

∫

R

1{x2=y2} fX,Y (x, y) dx dy = 0 ,

since the set {(x, y); x2 = y2} has a null area. Hence a contradiction.



3.4. GAUSSIAN VECTORS 123

The reason why Theorem 3.4.8 cannot be applied is that (X, Y ) is not a Gaus-
sian vector. If it were, then X − Y would be an extended Gaussian random
variable. Obviously X − Y is not a constant. The only case remaining is that in
which X−Y has a probability distribution, and therefore P (X−Y = 0) = 0. But
this is incompatible with P (X − Y = 0) = P (U = − 1) = 1

2
.

Probability Density of a Non-degenerate Gaussian Vector

A Gaussian vector with a degenerate covariance matrix cannot have a probability
density (Theorem 3.3.12). However:

Theorem 3.4.10 Let X be an n-dimensional Gaussian vector with mean vector
m and non-degenerate covariance matrix ΓX (in particular, if uTΓu = 0, then
u = 0). Then X admits the probability distribution function

fX(x) =
1

(2π)n/2(det ΓX)1/2
exp{− 1

2
(x−m)TΓ−1

X (x−m)} . (3.60)

Proof. Since ΓX > 0, there exists a non-singular matrix A of the same dimension
such that ΓX = AAT . Let Z := A−1(X−m). By Definition (3.4.3), it is a Gaussian
vector with mean 0 and covariance matrix

ΓZ = A−1ΓXA
−T = A−1AATA−T = I .

Therefore its characteristic function is

E[exp{iuTZ}] = exp

{

− 1

2

n∑

i=1

u2
i

}

.

This is the characteristic function of a centered Gaussian vector having indepen-
dent coordinates, and therefore Z1, . . . , Zn are independent standard Gaussian
random variables. In particular, the probability density of Z has the form of a
product:

fZ(z) =

n∏

i=1

1√
2π

e−
1
2
z2i /2 =

1

(2π)n/2
exp{− 1

2
‖z‖2} .

Now, X = AZ+m and therefore, by the formula for a smooth change of variables,

fX(x) =
1

| detA| fY (A
−1(x−m))

=
1

(det ΓX)1/2
1

(2π)n/2
exp{− 1

2
‖A−1(x−m)‖2} ,
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and this is precisely (3.60) since

‖A−1(x−m)‖2 =
(
A−1(x−m)

)T (
A−1(x−m)

)

= (x−m)TA−TA−1(x−m)

= (x−m)TΓ−1
X (x−m) .

�

Empirical Mean and Variance of the Gaussian Distribution

A Gaussian sample of size n is, by definition, a random vector X = (X1, . . . , Xn) of
iid N (m, σ2) Gaussian variables. Any random variable of the form f(X1, . . . , Xn)
is called a statistic of this sample. The two main statistics are the empirical mean

X :=
X1 + . . .+Xn

n

and the empirical variance

S2 =
1

n− 1

n∑

i=1

(Xi −X)2 .

The perhaps surprising factor 1
n−1

(instead of 1
n
) is motivated by the result of

Exercise 3.6.36.

Theorem 3.4.11 The empirical means and the empirical variance of the above
Gaussian sample are independent and [(n− 1)/σ2]S2 has a chi-square distribution
with n− 1 degrees of freedom.

Proof. We first treat the case where m = 0 and σ2 = 1. For this, we rely on the
next lemma (Cochran’s lemma).

Recall that a unitary square complex matrix is one for which the conjugate
transpose is its inverse.

Lemma 3.4.12 There exists an n×n unitary matrix C such that if the n-vectors
x and y are related by y = Cx, then (with the obvious notation)

yn =
√
nx and y21 + · · ·+ y2n−1 = (n− 1)s2 , (3.61)

where

x :=
x1 + . . .+ xn

n
and s2 =

1

n− 1

n∑

i=1

(xi − x)2 . (3.62)
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The random vector Y = CX is a Gaussian vector, and a standard one since

ΓY = CΓXC
T = CICT = CCT = I

(the transpose of a unitary matrix is its inverse). According to (3.61) and (3.62)

X =
Yn√
n

and S2 =
1

n− 1
(Y 2

1 + · · ·Y 2
n−1) .

The independence of X and S2 then follows from the independence of Yn and
(Y1, . . . , Yn−1).

For the general case, apply the above result to the variables X ′
i := Xi−m

σ

(1 ≤ i ≤ n) and observe that X ′ = X−m
σ

and (S ′)2 = S2

σ2 . �

3.5 Conditional Expectation II

The difference with the discrete case is that for all y, P (Y = y) = 0, and this calls
for a new definition, that of conditional probability density. Otherwise, this case
is completely similar to the discrete case, with integrals replacing sums.

Definition 3.5.1 Let X and Y be the random vectors of dimensions p and n
respectively, with joint probability density fX,Y , and let fY be the probability density

function of Y . Let y ∈ Rn be fixed. The function fY=y
X : RP → R defined by

fY=y
X (x) =

fX,Y (x, y)

fY (y)
,

with the convention fY=y
X (x) = 0 (or any other arbitrary value) when fY (y) = 0,

is called the conditional probability density of X given Y = y.

Note that when fY (y) > 0, fX,Y (x, y) = fY=y
X (x)fY (y).

Example 3.5.2: Correlated Gaussian variables, take 1. Let X1 and
X2 be two random variables with the joint probability density

fX1,X2(x1, x2) =
1

2πσ1 σ2

√
1−ρ2

exp
{
− 1

2(1−ρ2)

(
x2
1

σ2
1
− 2ρx1x2

σ1σ2
+

x2
2

σ2
2

)}
.

The random variable X2 is Gaussian random with mean 0 and variance σ2
2 , that is

fX2(x2) =
1√
2πσ2

exp
{
−1

2

x2
2

σ2
2

}
.
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We then find that

fX2=x2
X1

(x1) =
1√

2πσ1

√
1−ρ2

exp
{
− 1

2σ2
1(1−ρ2)

(x1 − ρσ1

σ2
x2)

}
.

Note that this is the probability density (in x1) of a Gaussian random variable
with mean ρσ1

σ2
x2 and variance σ2

1(1− ρ2).

Definition 3.5.3 Let X and Y be two random vectors of dimensions p and n
respectively, with joint probability density fX,Y , and let g : Rp × Rn → R+ be
either non-negative or such that E[|g(X, Y )|] < ∞. One defines the function
ψ : Rn → R by

ψ(y) =

∫

Rp

g(x, y)fY=y
X (x)dx (3.63)

on the set C = {y ∈ Rn ; fY (y) > 0}, 0 otherwise. For each y ∈ Rn, ψ(y)
is called the conditional expectation of g(X, Y ) given Y = y, and is denoted by
EY=y[g(X, Y )], or E[g(X, Y ) | Y = y]:

EY=y[g(X, Y )] = ψ(y) . (3.64)

The random variable ψ(Y ) is called the conditional expectation of g(X, Y ) given
Y , and is denoted by EY [g(X, Y )] or E[g(X, Y ) | Y ].

The integral in (3.63) is well defined (possibly infinite however) when g is non-
negative. It remains to check that it is also well defined when g is of arbitrary sign
and satisfies the integrability condition E[|g(X, Y )|] < ∞. For this we proceed
just as in the discrete case. First we note that in the non-negative case, we have
that

∫

Rn

ψ(y)fY (y) dy =

∫

Rn

∫

y∈Rp

g(x, y)fY=y
X (x)fY (y)1C(y) dx dy

=

∫

Rn

∫

Rp

g(x, y)fX,Y (x, y)1C(y) dx dy

≤
∫

Rn

∫

Rp

g(x, y)fX,Y (x, y) dx dy = E[g(X, Y )] .

Therefore, if E[g(X, Y )] <∞, then

∫

Rn

ψ(y)fY (y) dy <∞ ,
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which implies that ψ(y) < ∞ for all y ∈ Rn such that fY (y) > 0. In particular
ψ(Y ) < ∞ almost surely (that is, P (ψ(Y ) < ∞) = 1). Indeed, P (ψ(Y ) = ∞) =∫
{y;ψ(y)=∞} fY (y) dy = 0.

Let now g : Rp × Rn → R+ be a function of arbitrary sign such that
E[|g(X, Y )|] < ∞, and in particular E[g±(X, Y )] < ∞. Denote by ψ± the func-
tions associated to g± as in (3.63). As we just saw, for all y ∈ C, ψ±(y) < ∞,
and therefore ψ(y) = ψ+(y)− ψ−(y) is not an indeterminate form ∞−∞. Thus
the conditional expectation is well defined in the integrable case, and moreover
|EY [g(X, Y )]| <∞.

Properties of the Conditional Expectation

The properties will be given without proofs since they are easy adaptations of the
proofs given in the discrete case, integrals replacing sums.

The first property of conditional expectation, linearity, is obvious from the
definitions: For all λ1, λ2 ∈ R,

EY [λ1g1(X, Y ) + λ2g2(X, Y )] = λ1E
Y [g1(X, Y )] + λ2E

Y [g2(X, Y )]

whenever the conditional expectations thereof are well defined and do not produce
∞−∞ forms. Monotonicity is equally obvious: if g1(x, y) ≤ g2(x, y), then

EY [g1(X, Y )] ≤ EY [g2(X, Y )] .

Theorem 3.5.4 If g is non-negative or such that E[|g(X, Y )|] <∞, we have

E[EY [g(X, Y )]] = E[g(X, Y )] .

Proof. Same as in Theorem 2.4.5. �

Theorem 3.5.5 If w is non-negative or such that E[|w(Y )|] <∞,

EY [w(Y )] = w(Y ) , (3.65)

and more generally,

EY [w(Y )h(X, Y )] = w(Y )EY [h(X, Y )] , (3.66)

assuming that the left-hand side of (3.66) is well defined.

Proof. Same as in Theorem 2.4.6. �
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Theorem 3.5.6 If X and Y are independent and if v is non-negative or such that
E[|v(X)|] <∞, then

EY [v(X)] = E[v(X)] .

Proof. Same as in Theorem 2.4.7. �

Theorem 3.5.7 If X and Y are independent and if g : F×G→ R is non-negative
or such that E[|g(X, Y )|] <∞, then, for all y ∈ G,

E[g(X, Y | Y = y] = E[g(X, y)] .

Proof. Same as in Theorem 2.4.8. �

We now give the successive conditioning rule. Suppose that Y = (Y1, Y2), where
Y1 and Y2. In this situation, we use the more developed notation

EY [g(X, Y )] = EY1,Y2[g(X, Y1, Y2] .

Theorem 3.5.8 Suppose that Y = (Y1, Y2) as above. If g is non-negative or such
that E[|g(X, Y )|] <∞, then

EY2 [EY1,Y2 [g(X, Y1, Y2)]] = EY2 [g(X, Y1, Y2)] . (3.67)

Proof. Same as in Theorem 2.4.9. �

Example 3.5.9: Correlated Gaussian variables, take 2. In the situation
of Example 3.5.2, we have

EX2 [X1] = ρ
σ1

σ2
X2 .

This follows from the remark at the end of the Example 3.5.2, because

EX2 [X1] = ψ(X2)

where

ψ(x2) =

∫

Rp

x1f
X2=x2
X1

(x1)dx1 = ρ
σ1

σ2

x2 .

Similarly,

EX2 [X2
1 ] = σ2

1(1− ρ2) + ρ2
σ2
1

σ2
2

X2
2 .

Indeed

EX2 [X2
1 ] = γ(X2)
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where

γ(x2) =

∫

RP

x2
1f

X2=x2
X1

(x1)dx1 .

This is the second moment of a Gaussian random variable of mean ρσ1

σ2
x2 and

variance σ2
1(1− p2), and therefore

γ(x2) = σ2
1(1− ρ2) +

(

ρ
σ1

σ2

x2

)2

.

Bayesian Tests of Hypotheses

Let Θ be a discrete random variable with values in {1, 2, ..., K} and let X be a
random vector with values in Rm. The joint distribution of Θ and X is specified
as follows:

P (Θ = i) = π(i), P (X ∈ C|Θ = i) =

∫

C

fi(x)dx (1 ≤ i ≤ K) ,

where the fi’s are probability densities on Rm.

The interpretation in terms of tests of hypotheses is the following. The random
variable Θ represents the state of Nature, and X — called the observation — is
the (random) result of an experiment that depends on the actual state of Nature.
If Nature happens to be in state i, then X admits a distribution with probability
density fi.

In view of the observation X, we wish to infer the actual value of Θ. For
this, we design a guess strategy, that is a function g : Rm → {1, 2, ..., K} with the

interpretation that Θ̂ := g(X) is our guess (based only on the observationX) of the
(not directly observed) state Θ of Nature. An equivalent description of the strategy
g is the partition A = {A1, . . . , AK} of Rm given by Ai := {x ∈ Rm; g(x) = i}.

The decision rule is then

X ∈ Ai ⇒ Θ̂ = i .

The probability of error associated with this strategy is, by the Bayes rule of total
causes,

PE(A) = P
(
Θ �= Θ̂

)
=

K∑

i=1

P
(
Θ̂ �= i|Θ = i

)
π(i)

=

K∑

i=1

P (X /∈ Ai|Θ = i) π(i) .
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Equivalently, the probability of correct decision is

1− PE(A) =
K∑

i=1

P (X ∈ Ai|Θ = i) π(i)

=

∫

Rn

(
K∑

i=1

π(i)1Ai
fi(x)

)

dx .

The following result is then obvious in view of the above expression for the
probability of correct decision:

Theorem 3.5.10 Any partition A∗ such that

x ∈ A∗
i ⇒ π(i)fi(x) = max

k
(π(k)fk(x))

minimizes the probability of error.

Example 3.5.11: Two Gaussian hypotheses, take 1. In this example, the
hypotheses are Gaussian. More specifically, there are two equiprobable Gaussian
hypotheses: Nature chooses its state Θ equiprobably in {1, 2}, and the observa-
tion X is a Gaussian random variable, and X ∼ N (mi, σ

2) (i = 1, 2). The two
hypotheses differ only by the mean of the observation. Since the hypotheses are
equiprobable, an optimal strategy is

f1(X) > f2(X)⇒ Θ̂ = 1, f1(X) ≤ f2(X)⇒ Θ̂ = 2.

Since

fi(x) =
1√
2πσ2

e−
1
2

(x−mi)
2

σ2 (i = 1, 2) ,

the optimal rule is
(X −m1)

2 < (X −m2)
2 ⇒ Θ̂ = 1 .

Equivalently, supposing that m1 < m2,

X <
m1 +m2

2
⇒ Θ̂ = 1 .

The probability of error can be expressed as

PE(A) =
K∑

i=1

P
(
X ∈ Ai|Θ = i

)
π(i) =

K∑

i=1

PEi
(A) ,
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where PEi
(A) is the probability of making a wrong decision when Nature is in

state i.

Example 3.5.12: Two Gaussian hypotheses, take 2. This is the continu-
ation of Example 3.5.11. The probability of error PE is given by

PE = Q

(
|m2 −m1|

2σ

)

,

where the function Q is the tail of the standard normal distribution:

Q(x) :=
1√
2π

∫ ∞

x

e−
1
2
y2dy .

Proof. We evaluate PE1, the probability of error when X ∼ N (m1, σ
2) supposing

that m1 < m2:

PE1 =
1

2

∫ ∞

m1+m2
2

f1(x)dx .

By symmetry, PE1 = PE2 = PE. Therefore, with X1 ∼ N (m1, σ
2), and observing

thatX1 then has the same distribution as the variable σZ+m1, where Z ∼ N (0, 1),

PE = P

(

X1 ≥
m1 +m2

2

)

= P

(

σZ +m1 ≥
m1 +m2

2

)

= P

(

Z ≥ m2 −m1

2σ

)

= Q

(
|m2 −m1|

2σ

)

.

�

Let now the observation be a discrete random variable taking its values in some
finite set E, and suppose that

fi(x) = Pr(X = x|Θ = i) (i = 1, 2) .

The result of the continuous observations case applies mutatis mutandis. Any
partition A∗ of E such that:

x ∈ A∗
i ⇒ π(i)fi(x) = max

k
(π(k)fk(x))

minimizes the probability of error.
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Example 3.5.13: The binary channel with flip noise. In this exam-
ple E = {0, 1}n.The addition ⊕ defined on E being the componentwise addition
modulo 2, the observation is X = mΘ ⊕ Z where

mi = (mi(1), ..., mi(n)) ∈ {0, 1}n , Z = (Z1, ..., Zn) ,

where Z and Θ are independent, the Zi’s (1 ≤ i ≤ n) are independent and iden-
tically distributed with Pr(Zi = 1) = p. A possible interpretation is in terms
of digital communications, when one wishes to transmit the information Θ chosen
among a finite set of “messages” which are binary strings of length n: m1, . . . , mK .
The vector Z is the “noise” inherent to all digital communications channels: if
Zk = 1 the k-th bit of the message Θ is flipped. In the simplest model, this error
occurs with probability p, independently for all the bits of the message, and the
hypotheses are equiprobable. One may suppose without loss of generality that
p < 1

2
. We have:

P (X = x|Θ = i) = P (Z ⊕mi = x) = P (Z = mi ⊕ x) .

Denoting by h(y) the Hamming weight of y ∈ {0, 1}n (equal to the number of
components of y that are equal to 1), and by

d(x, y) :=
n∑

i=1

1{xi �=y1} =
n∑

i=1

xi ⊕ yi = h(x⊕ y)

the Hamming distance between x and y in En, we have

P (Z = y) = p
∑n

i=1 yi(1− p)n−
∑n

i=1

=

(
p

1− p

)∑n
i=1 yi

(1− p)n = (1− p)n
(

p

1− p

)h(y)

.

Therefore

fi(x) = (1− p)n
(

p

1− p

)h(mi⊕y)

= (1− p)n
(

p

1− p

)d(mi,y)

.

Therefore the optimal strategy consists in choosing the hypothesis corresponding
to the message closest to the observation in terms of the Hamming distance.
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3.6 Exercises

Exercise 3.6.1. Sum of iid uniform variables

A point inside the unit square [0, 1]2 = [0, 1]×[0, 1] is chosen at random according to
the following model: Ω = [0, 1]2, P (A) = area of A. In other words, ω = (x, y) ∈ Ω
is a point uniformly distributed on the unit square. Let X(ω) := x and Y (ω) = x.

1. Compute the probability density function of Z = X + Y .

2. Compute E[Z2].

Exercise 3.6.2. Uniform distribution on a disk

Consider the following probability model: Ω = {(x, y) ∈ R2, x2+y2 ≤ 1}, P (A) =
1
π
× (area of A). In other words, ω = (x, y) ∈ Ω is a point uniformly distributed

on the unit disk. Letting X(ω) := x and Y (ω) = x, show that X and Y are not
independent random variables.

Exercise 3.6.3. Square root of a random variable

Let X be a non-negative real random variable with probability density function
fX . What is the probability density function of Z, the non-negative square root
of X?

Exercise 3.6.4. Quantization noise

In the digital world, measurements are not recorded in continuous form, but in
quantized form. For instance, a random variable X taking its values in the range
[0,+A] will be recorded as Y = iΔ if X ∈ [iΔ, (i+1)Δ), where Δ = A

2n
. Therefore

there are 2n possible values for Y , and it is then said that X has been quantized on
n bits. In the applied literature, the error X − Y ∈ [0,Δ) is often assumed to be
uniformly distributed on this interval. Compute its variance under this (generally
wrong) assumption.

Exercise 3.6.5. Cauchy distribution

(a) Show that the characteristic function of a Cauchy random variable (that is,
with the probability density function f(x) := 1

π
1

1+x2 ) is ψX(u) = e−|u|.

(b) Let {Xn}n≥1 be a sequence of independent Cauchy random variables. Let T
be a positive integer-valued random variable, independent of this sequence. Define
Y =

∑T
n=1 Xn. What is the probability distribution of Z = Y

T
?

Exercise 3.6.6. Continuous × Discrete

1) Let X be a real-valued random variable with the probability density function
fX . Let Y be a positive integer-valued random variables (Y ∈ {1, 2, ...}) with the



134 CHAPTER 3. CONTINUOUS RANDOM VECTORS

distribution P (Y = k) = pk, k ≥ 1. Suppose that X and Y are independent.
Show that the random variable Z = XY is absolutely continuous and give its
probability density function fZ .
2) Consider the same setting as in 1) except that Y may take the value 0, with
positive probability p0. What is the cumulative distribution function of Z?

Exercise 3.6.7. Continuous + discrete

Let X be a real-valued random variable with probability density function fX(x)
and let Y be an integer-valued random variable with distribution P (Y = k) = pk,
k ≥ 0. Suppose thatX and Y are independent. Show that the sum Z = X+Y is an
absolutely continuous random variable, and give its probability density function.

Exercise 3.6.8. Hazard rate, I

The hazard rate function λ : N→ [0, 1] of an integer-valued function X is defined
by λ(n) = P (X = n|X ≥ n).

(i) Compute P (X ≥ n) and P (X = n) in terms of λ(0), · · · , λ(n).

(ii) Let {Un}n≥0 be a sequence of iid random variables uniformly distributed on
[0, 1]. Show that the random variable Z := min{n ≥ 0 : Un ≤ λ(n)} has the same
distribution as X.

Exercise 3.6.9. Hazard rate, II

Let F be the cdf of a non-negative random variable with a probability density
function f . Let I := [−∞, t0) (t0 possibly infinite) be the set of t ∈ R+ such that
F (t) < 1. Define, for t ∈ I, the hazard rate

λ (t) :=
f (t)

1− F (t)
.

1. Show that for t ∈ I,

f (t) = λ (t) e−
∫ t
0
λ(s)ds .

2. Compute the hazard rate of the exponential variable.

Exercise 3.6.10. More hazard rates

Alle 1. Let T1 and T2 be two non-negative random variables admitting a probability
density function and with respective hazard rates (see Exercise 3.6.9) λ1 (t) and
λ2 (t). What is the hazard rate of T = min(T1, T2)?

2. Show that the property P (T2 > t) = P (T1 > t)α (for some α > 0) is equivalent
to: λ2 (t) = αλ1 (t).
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Exercise 3.6.11. cos(Φ)

Let Φ be a random variable uniformly distributed on the interval [0, 2π] and define
X = cos(Φ). Compute the mean and the variance of X.

Exercise 3.6.12. Maximum of iid variables

Let X1, X2, . . . , Xn be independent random variables uniformly distributed on
[0, 1], that is to say, with the probability density f(x) = 1[0,1](x). Compute the
expectation of Z = max(X1, . . . , Xn).

Exercise 3.6.13. Gaussian mean and variance

Let σ, m ∈ R, σ > 0.

i) Prove that
∫
R
e−

1
2
x2
dx = 2π, and deduce that f(x) = 1√

2πσ2
e−

x2

2σ2 is a probability
density function on R.

ii) Prove that 1√
2πσ2

∫
R
xe−

1
2(

x−m
σ )

2

dx = m.

iii) Prove that 1√
2πσ2

∫
R
(x−m)2 e−

1
2(

x−m
σ )

2

dx = σ2.

Exercise 3.6.14. Square of a Gaussian variable

Let X be a real random variable with the probability density function fX(x) =
1

(2πσ2)
1
2
e−

x2

2σ2 . Compute the probability density function fY of Y = X2.

Exercise 3.6.15. Two random numbers in [0, 1]

Two numbers are drawn independently and completely at random on [0, 1]. The
smaller is larger than 1

3
. Given this information, what is the probability that the

larger number exceeds 3
4
.

Exercise 3.6.16. Counterexample

Give a simple example showing that the cumulative distributions of each coordinate
of a random vector does not completely describe the probabilistic behavior of the
whole vector.

Exercise 3.6.17. Polar coordinates

Let (X, Y ) be a random vector uniformly distributed on D\{0}, the closed unit
disk of R2 centered at the origin without the origin. Let (Z,Θ) be its polar
coordinates (Z ∈ (0, 1],Θ ∈ (0, 2π]). Show that Z and Θ are independent.

Exercise 3.6.18. Quotient of uniform random variables

Let X1 and X2 be two independent random variables uniformly distributed over
(0, 1]. Find the probability density function of X1/X2.
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Exercise 3.6.19. Product of uniform variables

Let U and V be two independent random variables uniformly distributed on [0, 1].
Show that the variable Z = UV has a probability density and compute it.

Exercise 3.6.20. Random roots

The numbers A and B are selected independently and uniformly on the segment
[−1,+1]. Find the probability that the roots of the equation x2 + 2Ax + B are
real.

Exercise 3.6.21. Isn’t this puzzling?

Some guy uses his wild imagination to preselect two different numbers, and he
does not tell you which ones. Then he chooses one of the two preselected numbers
at random (probability 1

2
, 1
2
). He shows this number to you and asks you to guess

if it is the largest of the 2 numbers he preselected. Are you interested in playing
(meaning: do you think that you have a better guess than a random guess (yes-
no probability 1

2
, 1
2
)? Hint: you might fix for yourself a “reference number”, and

compare it with the showned number.

Exercise 3.6.22. Infimum of independent exponentials

Let X1, . . . , Xn be independent exponential random variables with the respective
parameters λi, i ∈ [0, n]. Define Z = inf(X1, . . . , Xn) and let J be the (random)
index such that XJ = Z (J is for almost all ω ∈ Ω unambiguously defined be-
cause, P -almost surely, X1, . . . , Xn take different values). Show that Z and J are
independent, and give their respective distributions.

Exercise 3.6.23. Random sum of exponential variables

Let {Xn}n≥1 be a sequence of iid exponential random variables with common
mean λ−1 > 0, and let T be a geometric random variable with mean p−1 > 0,
and independent of the above sequence. Show that Z := X1 + · · ·+XT admits a
probability density function. Which one?

Exercise 3.6.24. Sum of iid exponentials

Let {Xn}n≥1 be an iid sequence of exponential random variables with mean 1/θ,
where θ ∈ (0,∞). What is the distribution of Z = X1 + · · ·+Xn?

Exercise 3.6.25. Characteristic function of Y = AX + b

Let ψX(u) be the characteristic function of the random vector X. What is the
characteristic function of the random vector Y = AX+ b, where A is a matrix and
b is a vector of appropriate dimensions?
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Exercise 3.6.26. Characteristic function of the multinomial random

vector

Let (X1, . . . , Xk) be a multinomial random vector of size k and parameters p1, . . . , pk
(pi > 0, p1+ · · ·+ pk = 1). Compute the characteristic function of (X1, . . . , Xk−1).

Exercise 3.6.27. Product of uniform variables

Let U1, . . . , Un be independent uniform random variables on [0, 1]. Give the cdf of
the random variable U1 × U2 × · · · × Un. (Hint: logarithms and Exercise 3.6.24.)

Exercise 3.6.28. Quotient of exponential random variables

Let X1 and X2 be two independent random variables with a common exponential
distribution of mean θ−1. Give the probability density function of the variable
X1/X2.

Exercise 3.6.29. Correlation coefficient

LetX and Y be square-integrable random variables. Let a, b, c, d be real numbers,
a �= 0, d �= 0. Give the correlation coefficient of aX + b and cY + d in terms of the
correlation coefficient ρXY of X and Y .

Exercise 3.6.30. Signal plus noise on two channels

Let Y, Z1, Z2 be square-integrable centered real random variables, and suppose that
Y is independent of Z1 and Z2. A useful interpretation is that Y represents an
informative “signal” that is observed via two channels, one producing the observa-
tion Y +Z1 and the other the observation Y +Z2, where Z1 and Z2 are considered
as “noises”. The following questions are then natural.

What is the best linear-quadratic estimate of Y in terms of (Y +Z1, Y +Z2)? Give
the minimum quadratic error. Write this error in the following particular cases:
(a): Z1 and Z2 are uncorrelated, and (b): Z1 and Z2 have the same variance.

Exercise 3.6.31. Covariance matrix of the multinomial vector

Compute the covariance matrix of a multinomial random vector of size k and with
parameters p1 . . . , pk.

Exercise 3.6.32. Autoregressive Gaussian model, take 1

Consider the stochastic sequence {Xn}n≥0 defined by

Xn+1 = aXn + εn+1 (n ≥ 0) ,

where X0 is a Gaussian random variable of mean 0 and variance c2, and {εn}n≥0 is
a sequence of iid Gaussian variables of mean 0 and variance σ2, and independent
of X0.
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1. Show that for all n ≥ 1, the vector (X0, . . . , Xn) is a Gaussian vector.

2. Express Xn in terms of X0, ε1, . . . , εn (and a). Give the mean and variance of
Xn.

Exercise 3.6.33. Probability of the quadrant

Let (X, Y ) be a 2-dimensional Gaussian vector with probability density

f (x, y) = 1

2π(1−ρ2)1/2
exp

{
− 1

2(1−ρ2)
(x2 − 2ρxy + y2)

}
,

where |ρ| < 1. Show that X and (Y − ρX) / (1− ρ2)
1/2

are independent Gaussian
random variables with mean 0 and variance 1. Deduce from this that

P (X > 0, Y > 0) = 1
4
+ 1

2π
sin−1(ρ) .

Exercise 3.6.34. X+Y√
2

and
X−Y√

2
LetX and Y be two independent Gaussian random variables with mean 0 and vari-
ance 1. Show that the random variables X+Y√

2
and X−Y√

2
are independent Gaussian

random variables, and give their means and variances.

Exercise 3.6.35. Quotient of χ2
distributions

Let X and Y be two independent random variables such that

X ∼ χ2
n and Y ∼ χ2

m .

Compute the probability density function of (Z, Y ) where Z := X
Y

and deduce
from the result the probability density function of Z.

Exercise 3.6.36. Unbiasedness of the empirical variance

Let {Xn}n≥1 be an iid sequence of square integrable random variables with mean
θ and variance σ2. Show that the variance estimate

σ̂2
N :=

∑N
i=1(Xi − θ̂N )

2

n− 1
,

where θ̂N := 1
N

∑N
i=1Xi, is unbiased, that is E [σ2

N ] = σ2.

Exercise 3.6.37. X1 −X2

Let X1 and X2 be two independent random variables admitting the probability
density functions f1 and f2 respectively. What is the probability density function
of X1 −X2?
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Exercise 3.6.38. Cumulative distribtion functions

Let X be a real-valued random variable with cdf F , and let g be a strictly
increasing function. Find the cdfs of the random variables X2,

√
X (X assumed

non-negative), F (X), g−1(X) and g−1(F (X)).

Exercise 3.6.39. Sum of iid exponentials

Let X1, . . . , Xn be iid exponential random variables with mean λ−1. Give the
characteristic function of X1+ · · ·+Xn, and deduce from the result its probability
density function.

Exercise 3.6.40. (S, T − S)
Let {Xn}n≥1 be independent random variables taking the values 0 and 1 with
probability q = 1 − p and p, respectively, where p ∈ (0, 1). Let T be a Poisson
random variable with mean θ > 0, independent of {Xn}n≥1. Define

S = X1 + · · ·+XT .

Compute the characteristic function of the vector (S, T − S). Deduce from this
that S and T −S are independent Poisson random variable with respective means
pθ and qθ.

Exercise 3.6.41. probability density function of X1 −X2

Let X1 and X2 be two independent random variables admitting the probability
density functions f1 and f2 respectively. What is the probability density function
of X1 −X2?

Exercise 3.6.42. The first box

Let X = (X1, · · · , XK) be a multinomial vector of size (n,K) and parameters
p1, . . . , pK . Show that X1 is a binomial random variable of size n and parameter
p1.

Exercise 3.6.43. Sum of multinomials

Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be two independent multinomial ran-
dom vectors of sizes (n,K) and (m,K), respectively, and with the same parameters
p1, . . . , pK . What is the distribution of Z = X + Y ?

Exercise 3.6.44. Poisson covariance matrix

Let Z1, Z2, . . . , Zn be independent Poisson random variables with respective means
θ1, θ2, . . . , θn. Let

Xi := Z1 + · · ·+ Zi (1 ≤ i ≤ n) .

Give the covariance matrix of X = (X1, . . . , Xn)
T .
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Exercise 3.6.45. Uncorrelated, yet dependent

Let X and Y be iid random variables with the equiprobable values 0 or 1. Show
that X + Y and |X − Y | are uncorrelated, yet dependent.

Exercise 3.6.46. Useless information

In the theory of Bayesian tests of hypotheses of Section 3.5 (page 129), suppose
that the observation is of the form X = (Y, Z) ∈ Rm = Rn+p where Y ∈ Rn

and Z ∈ Rp, and that under each hypothesis Θ = i, the probability density of X
admits the factorization

fi(y, z) = gi(y)h(z) ,

where gi and h are probability densities on Rn and Rp respectively. Show that the
optimal test based on X does not use the information on Z, and is the same as
the optimal test based on Y alone.

Exercise 3.6.47. Two Gaussian hypotheses, take 3

We consider a Bayesian test of hypotheses with two equiprobable hypotheses. The
observation X ∈ Rm is a random vector. For i = 1, 2, X ∼ N (mi,Γ) where Γ is
an invertible covariance matrix (the two hypotheses differ only by the mean of X).
Describe the optimal Bayesian test of hypotheses in this situation. Give details
for the case where the coordinate of the observation vector X are independent
and identically distributed. In the latter case, compute the probability of error.
Compare with Examples 3.5.11 and 3.5.12.

Exercise 3.6.48. Bayesian test and variation distance

(a) LetX and Y be two absolutely continuous random variables with the respective
probability densities f and g. Define their distance in variation by

dV (X, Y ) := sup
A∈R

(P (X ∈ A)− P (Y ∈ A)) .

Show that

dV (X, Y ) =
1

2

∫

R

|f(x)− g(x)| dx .

(b) In the Bayesian test with an observation X ∈ Rn and two equiprobable hy-
potheses for the probability density function of the observation: f1 and f2, compute
the probability of error of the optimal test.



Chapter 4

The Lebesgue Integral

The previous chapters concerned what one may call the basic “calculus of prob-
ability”, that is, the acquisition of the skills that suffice to deal with elementary
stochastic models involving discrete random variables and absolutely continuous
random vectors. This chapter will considerably increase the expertise of the reader
at the expense of a reasonable amount of abstraction. It contains a short sum-
mary of the abstract Lebesgue integral that will then be interpreted in probabilistic
terms in the next chapter.

4.1 Measurable Functions and Measures

σ-fields

Denote by P(X) the collection of all subsets of an arbitrary set X. Recall the
definition of a σ-field:

Definition 4.1.1 A family X ⊆ P(X) of subsets of X is called a σ-field on X if:

(α) X ∈ X ;

(β) A ∈ X =⇒ Ā ∈ X ;

(γ) An ∈ X for all n ∈ N =⇒ ∪∞n=0An ∈ X .

One then says that (X,X ) is a measurable space.

Also recall:

Definition 4.1.2 The σ-field generated by a non-empty collection of subsets C ⊆
P(X) is, by definition, the smallest σ-field on X containing all the sets in C. It is
denoted by σ(C).
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The Borel σ-field on Rn, B(Rn), already briefly introduced in the first chapter,
receives a convenient definition in terms of the Euclidean topology.

First recall that a set O ⊆ Rn is called open if for any x ∈ O, one can find a
non-empty open ball centered on x and contained in O.

Definition 4.1.3 The Borel σ-field B(Rn) on Rn is, by definition, the σ-field
generated by the open sets of Rn.

The next result gives a more convenient way of defining the Borel σ-field, of
the type given in the first chapter.

Theorem 4.1.4 The σ-field B(Rn) is also generated by the collection C of all
rectangles of the type

∏n
i=1(−∞, ai], where ai ∈ Q (the rationals) for all i ∈

{1, . . . , n}.
Proof. Exercise 4.5.4. �

Definition 4.1.5 B(R) is, by definition, the σ-field on R := Rn ∪ {+∞,−∞}
generated by the intervals of type (−∞, a] (a ∈ R).

It can be readily checked that it consists of the collection of sets of the form

A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} (A ∈ B(R))

Measurable Functions

This is the first fundamental notion of Lebesgue’s integration theory.

Definition 4.1.6 Let (X,X ) and (E, E) be two measurable spaces. A function
f : X → E is called a measurable function with respect to X and E if

f−1(C) := {x ∈ X ; f(x) ∈ C} ∈ X for all C ∈ E .

This is denoted by

f : (X,X )→ (E, E) or f ∈ E/X .

A function f : (X,X ) → (R,B(R), where (X,X ) is an arbitrary measur-
able space, is called an extended measurable function. Functions f : (X,X ) →
(R,B(R)) are called real measurable functions.
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Definition 4.1.7 A measurable function f : (X,X )→ (R,B(R)) of the type

f(x) =
k∑

i=1

ai 1Ai
(x) , (4.1)

where k ∈ N+, a1, . . . , ak ∈ R, A1, . . . , Ak ∈ X , is called a simple measurable
function (defined on X).

It seems difficult to prove measurability since most σ-fields are not defined
explicitly (see the definition of B(Rn) for instance). However, the following result
renders the task feasible.

Theorem 4.1.8 Let (X,X ) and (E, E) be two measurable spaces, where E = σ(C)
for some collection C of subsets of E. Then f : (X,X ) → (E, E) if and only
if f−1(C) ∈ X for all C ∈ C.
Proof. We shall first make two obvious preliminary observations. Let X and E
be arbitrary sets, f : X → E an arbitrary function from X to E, G an arbitrary
σ-field on E, and let C, C1, C2 be arbitrary non-empty collections of subsets of E.
Then

(i) σ(G) = G,

(ii) C1 ⊆ C2 ⇒ σ(C1) ⊆ σ(C2).

Now, the collection G := {C ⊆ E; f−1(C) ∈ X} is a σ-field and, by hypothesis,
C ⊆ G. Therefore, by (ii) and (i), E = σ(C) ⊆ σ(G) = G. �

An immediate application of this result and Theorem 4.1.4 is:

Corollary 4.1.9 Let (X,X ) be a measurable space and let n ≥ 1 be an integer.
Then f = (f1, . . . , fn) : (X,X )→ (Rn,B(Rn)) if and only if for all i (1 ≤ i ≤ n),
{fi ≤ ai} ∈ X for all ai ∈ Q.

A function f : Rk → Rm is said to be continuous if the inverse image of an
open set is open,1 that is, for all open sets Om ⊂ Rm, the set {x ∈ Rk ; f(x) ∈ Om}
is an open set of Rk. The following result is then a direct application of Theorem
4.1.8 in view of the Definition 4.1.3 of B(Rn).

It follows from this definition of continuity and Theorem 4.1.8 that

1 This definition is equivalent to the usual ε− δ definition of continuity, which we shall admit
here.
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Corollary 4.1.10 Any continuous function f : Rk → Rm is measurable with
respect to B(Rk) and B(Rm).

Another nice feature of the notion of measurability is its stability under com-
position.

Theorem 4.1.11 Let (X,X ), (Y,Y) and (E, E) be three measurable spaces, and
let φ : (X,X )→ (Y,Y), g : (Y,Y)→ (E, E). Then g ◦ φ : (X,X )→ (E, E).
Proof. Let f = g ◦ φ (meaning: f(x) = g(φ(x)) for all x ∈ X). For all C ∈ E ,

f−1(C) = φ−1(g−1(C)) = φ−1(D) ∈ X ,

because D = g−1(C) is a set in Y since g ∈ E/Y , and therefore φ−1(D) ∈ X since
φ ∈ Y/X . �

Corollary 4.1.12 Let ϕ = (ϕ1, . . . , ϕn) be a measurable function from (X,X ) to
(Rn,B(Rn)), and let g : Rn → R be a continuous function. Then g ◦φ : (X,X )→
(R,B(R)).

Proof. Follows directly from Theorem 4.1.11 and Corollary 4.1.10. �

This corollary in turn allows us to show that the elementary operations (addi-
tion, multiplication and quotient) preserve measurability.

Corollary 4.1.13 Let ϕ1, ϕ2 : (X,X ) → (R,B(R)), and let λ ∈ R. Then ϕ1 ×
ϕ2, ϕ1 + ϕ2, λϕ1, (ϕ1/ϕ2)1ϕ2 �=0 are real measurable functions. Moreover, the set
{ϕ1 = ϕ2} is a measurable set.

Proof. For the first three functions, take in the previous corollary g(x1, x2) =
x1 × x2, = x1 + x2, = λx1 successively.

For (ϕ1/ϕ2)1ϕ2 �=0, define ψ2 =
1ϕ2 �=0

ϕ2
, check that the latter function is measur-

able, and use the just proven fact that the product ϕ1ψ2 is then measurable.

Finally, {ϕ1 = ϕ2} = {ϕ1 − ϕ2 = 0} = (ϕ1 − ϕ2)
−1({0}) is a measurable set

since ϕ1 − ϕ2 is a measurable function and {0} is a measurable set. �

Finally, and most importantly, taking limits preserves measurability. By con-
trast, it is far from being true that limits of continuous functions are continuous
functions.



4.1. MEASURABLE FUNCTIONS AND MEASURES 145

Theorem 4.1.14 Let fn : (X,X ) → (R,B(R), n ∈ N. Then lim infn↑∞ fn and
lim supn↑∞ fn are measurable functions, and the set

{lim sup
n↑∞

fn = lim inf
n↑∞

fn} = {∃ lim
n↑∞

fn}

belongs to X . In particular, if {∃ limn↑∞ fn} = X, the function limn↑∞ fn is a
measurable function.

Proof. We first prove the result in the particular case when the sequence of
functions is non-decreasing. Denote by f the limit of this sequence. By Theorem
4.1.8 it suffices to show that {f ≤ a} ∈ X for all a ∈ R. But since the sequence
{fn}n≥1 is non-decreasing, we have that {f ≤ a} = ∩∞n=1 {fn ≤ a}, which is indeed
in X , being a countable intersection of sets in X .

Now recall that, by definition,

lim inf
n↑∞

fn = lim
n↑∞

gn,

where gn = infk≥n fk. The function gn is measurable since for all a ∈ R,
{infk≥n fk ≤ a} is a measurable set, being the complement of {infk≥n fk > a} =
∩k≥n{fk > a}, a measurable set, being the countable intersection of measur-
able sets. Since the sequence {gn}n≥1 is non-decreasing, the measurability of
lim infn↑∞ fn follows from the particular case of non-decreasing functions.

Similarly, lim supn↑∞ fn = − lim infn↑∞(−fn) is measurable.

The set {lim supn↑∞ fn = lim infn↑∞ fn} is the set on which two measurable
functions are equal, and therefore, by the last assertion of Corollary 4.1.13, it is a
measurable set.

Finally, if limn↑∞ fn exists, it is equal to lim supn↑∞ fn, which is, as we just
proved, a measurable function. �

The results above give substance to the assertion that “basically all functions
are measurable”. However, beware! One can prove (not in this book) that there
exist functions from R to R that are not measurable with respect to B(R). Hence
all the fuss. In fact, there are subsets of R that are not in B(R).

The basis of the construction of the Lebesgue integral is the following funda-
mental approximation theorem.

Theorem 4.1.15 Let f : (X,X )→ (R,B(R) be a non-negative measurable func-
tion. There exists a non-decreasing sequence {fn}n≥1 of non-negative simple mea-
surable functions that converges pointwise to f .
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Proof. Take

fn(x) =

n2−n−1∑

k=0

k2−n 1Ak,n
(x) + n1An(x) ,

where

Ak,n = {x ∈ X : k2−n < f(x) ≤ (k + 1)2−n}, An = {x ∈ X : f(x) > n} .

This sequence of functions has the announced properties. In fact, for any x ∈ X
such that f(x) <∞, and n large enough,

|f(x)− fn(x)| ≤ 2−n ,

and for any x ∈ X such that f(x) =∞, fn(x) = n indeed converges to f(x) = +∞.
�

Measure

Definition 4.1.16 Let (X,X ) be a measurable space and let μ : X → [0,∞] be a
set function such that μ(∅) = 0 and such that for any countable family {An}n≥1

of mutually disjoint sets in X ,

μ (∪∞n=1An) =

∞∑

n=1

μ(An) . (4.2)

The set function μ is called a measure on (X,X ), and (X,X , μ) is called a mea-
sure(d) space.

Property (4.2) is the sigma-additivity property.

Example 4.1.17: The Dirac measure. Let a ∈ X and let X be an arbitrary
σ-field on X. The measure εa defined on (X,X ) by εa(C) = 1C(a) is called the
Dirac measure at a ∈ X. The set function μ : X → [0,∞] defined by

μ(C) :=

∞∑

i=0

αi1ai(C) ,

where αi ∈ R+ for all i ∈ N, is a measure on (X,X ) denoted by
∑∞

i=0 αiεai.

Example 4.1.18: Weighted counting measure. Let {αn}n≥1 be a sequence
of non-negative numbers. The set function μ : P(Z)→ [0,∞] defined by μ(C) :=
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∑
n∈C αn is a measure on (Z,P(Z)). When αn ≡ 1, it is called the counting

measure on Z.

Example 4.1.19: The Lebesgue measure. The measure � on (R,B(R)) such
that

�((a, b]) = b− a

is called the Lebesgue measure on R. Measure theory tells us that there exists one
and only one such measure. (See the more general result below, Theorem 4.1.27.)

The proofs of existence and uniqueness of measures are in general not given.
They are usually very technical and tedious, and their omission has no bearing in
the rest of the book. See Theorem 4.1.27 and the comment following it.

Definition 4.1.20 Let μ be a measure on (X,X ). If μ(X) <∞ the measure μ is
called a finite measure. If μ(X) = 1 the measure μ is called a probability measure.
If there exists a sequence {Kn}n≥1 of X such that μ(Kn) < ∞ for all n ≥ 1, and
∪∞n=1Kn = X, the measure μ is called a sigma-finite measure. A measure μ on
(Rn,B(Rn)) such that μ(C) <∞ for all bounded sets in B(Rn) is called a locally
finite measure.

For instance, the Dirac measure εa is a probability measure, the counting mea-
sure ν on Z is a sigma-finite measure, the Lebesgue measure is a locally finite
measure, and any locally finite measure on (Rn,B(Rn)) is sigma-finite.

The following result is the sequential continuity theorem for measures.

Theorem 4.1.21 Let (X,X , μ) be a measure space. Let {An}n≥1 be a sequence
of X , non-decreasing (that is, An ⊆ An+1 for all n ≥ 1). Then

μ(
⋃∞

n=1 An) = limn↑∞ μ(An) . (4.3)

Proof. The proof is the same as that of Theorem 1.2.8. �

μ-negligible sets

The notion of a negligible set of Definition 1.2.10 will be repeated in a more general
setting.

Definition 4.1.22 Let (X,X , μ) be a measure space. A μ-negligible set is a set
contained in a measurable set N ∈ X such that μ(N) = 0. One says that some
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property P relative to the elements x ∈ X holds μ-almost everywhere (μ-a.e.) if
the set {x ∈ X : x does not satisfy P} is a μ-negligible set.

For instance, if f and g are two measurable functions defined on X, the ex-
pression

f ≤ g μ-a.e.

means that μ({x : f(x) > g(x)}) = 0.

Theorem 4.1.23 A countable union of μ-negligible sets is a μ-negligible set.

Proof. Same proof as for Theorem 1.2.11. �

Example 4.1.24: Continuous functions. We show that two continuous
functions f, g : R→ R that are �-a.e. equal, are in fact everywhere equal.

Proof. Let t ∈ R be such that f(t) �= g(t). For any c > 0, there exists an
s ∈ [t − c, t + c] such that f(s) = g(s) (Otherwise, the set {t; f(t) �= g(t)} would
contain the whole interval [t− c, t+ c], and therefore could not be of null Lebesgue
measure. Therefore, one can construct a sequence {tn}n≥1 converging to t and
such that f(tn) = g(tn) for all n ≥ 1. Letting n tend to ∞ yields f(t) = g(t), a
contradiction. �

Cumulative Distribution Function

Definition 4.1.25 A function F : R → R is called a cumulative distribution
function (cdf) if the following properties are satisfied:

1. F is non-decreasing;

2. F is right-continuous;

3. F admits a left-hand limit, denoted by F (x−), at all x ∈ R.

Example 4.1.26: The cdf of a measure. Let μ be a locally finite measure
on (R,B(R)) and define

Fμ(t) :=

{
+μ((0, t]) if t ≥ 0,

−μ((t, 0]) if t < 0.



4.1. MEASURABLE FUNCTIONS AND MEASURES 149

This is a cumulative distribution function (cdf), and moreover,

Fμ(b)− Fμ(a) = μ((a, b]) ,

Fμ(a)− Fμ(a−) = μ({a}) .

The proof that this function is indeed a cdf follows the same lines as the proof of
Theorem 3.1.4. The function Fμ is called the cdf of μ.

Theorem 4.1.27 Let F : R → R be a cdf. There exists a unique locally finite
measure μ on (R,B(R)) such that Fμ = F .

The last result is easily stated, but it is not trivial, even in the case of the
Lebesgue measure (Example 4.1.19). It is typical of the existence and uniqueness
results which answer the following type of question:

Let C be a collection of subsets of X with C ⊆ X , where X is a σ-field on
X. Given a set function u : C → [0,∞], does there exist a measure μ on (X,X )
such that μ(C) = u(C) for all C ∈ C, and is it unique? As mentioned in the
introduction, this issue will not be treated in this book.2

However, we shall now quote a fundamental result that we shall need in the
chapter on martingales (Chapter 8).

Caratheodory’s Theorem

Definition 4.1.28 Let X be a set. The collection A ⊆ P(X) is called an algebra
if

(α) X ∈ A;

(β) A, B ∈ A =⇒ A ∪ B ∈ A;

(γ) A ∈ A =⇒ A ∈ A.

The only difference with a σ-field is that we require it to be closed under finite
(instead countable) unions. (This is why a σ-field is also called a σ-algebra.) Note
that, similarly to the σ-field case, ∅ ∈ A and A is closed under finite intersections.

Example 4.1.29: Finite unions of disjoint intervals. On R, the collection
of finite sums of disjoint intervals is an algebra. (By interval, we mean any type
of interval: open, closed, semi-open, semi-closed, infinite, etc., in other words a
connected subset of R.3)

2 See [1], [3], or [11].
3 A subset C of R is called connected if for all a, b ∈ C, the segment [a, b] ⊆ C.
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Definition 4.1.30 Let X be a set. The collection C ⊆ P(X) is called a semi-
algebra if

(α) X ∈ C,

(β) A, B ∈ C =⇒ A ∪ B ∈ C, and

(γ) when A ∈ C, A can be expressed as a finite union of disjoint sets of C.

Example 4.1.31: The collection of intervals. On R, the collection of
intervals is a semi-algebra.

Theorem 4.1.32 Let C be either an algebra or a semi-algebra defined on X. Let
μ be a σ-finite measure on (X, C). Then there exists a unique extension of μ to
(X, σ(C)) that is a measure.

The proof is omitted 4.

4.2 The Integral

We are now in a position to define (when it exists) the Lebesgue integral of a
measurable function f : (X,X ) → (R,B(R)) with respect to a measure μ. This
integral will be denoted by

∫
X
f dμ, or

∫
X
f(x)μ(dx), or μ(f) .

Let S+(X) (or S+ if the context is clear) be the set of non-negative simple
functions f : (X,X )→ (R,B(R)), and byM+(X) (orM+) the set of non-negative
functions f : (X,X )→ (R,B(R)).

The integral is defined in three steps. Firstly for simple functions, where the
definition imposes itself. Secondly for non-negative measurable functions, by a
natural limiting procedure involving the approximation theorem (Theorem 4.1.15),
and finally for (some) functions of arbitrary sign by considering their negative and
positive parts.

STEP 1. One first defines the integral for integrands in S+. Let f : X → R

be a non-negative simple Borel function as in Definition 4.1.7. The integral of f
with respect to μ is defined by

∫

X

f dμ :=
k∑

i=1

ai μ(Ai) . (4.4)

4See for instance [12], Theorem 1.41
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In order to check that this definition does not depend on the representation of f ,
one must show that if f admits another representation

f(x) =
m∑

j=1

bj 1Bj
(x) ,

where m ∈ N+, b1, . . . , bm ∈ R, and B1, . . . , Bm are sets in X , then

m∑

j=1

bj μ(Bj) =
k∑

i=1

ai μ(Ai) . (4.5)

This verification is easy and left for the reader.

The next lemma collects a few intermediary results.

Lemma 4.2.1 Let f, f1, f2, . . . be in S+. Then

(a) for all λ ≥ 0, λf ∈ S+ and
∫
X
(λf) dμ = λ

∫
X
f dμ,

(b) f1 + f2 ∈ S+ and
∫
X
(f1 + f2) dμ =

∫
X
f1 dμ+

∫
X
f2 dμ,

(c) f1 ≤ f2 implies
∫
X
f1 dμ ≤

∫
X
f2 dμ,

(d) f1 ∧ f2 and f1 ∨ f2 are in S+, and

(e) if fn ≤ fn+1 ≤ f for all n ≥ 1 and limn↑∞ fn = f , then limn↑∞
∫
X
fn dμ =∫

X
f dμ.

Proof. Properties (a)–(d) are immediate. For (e), first consider the case f = 1A.
Fix m ≥ 1. For all n ≥ 1, define An,m = {x : fn(x) ≥ 1 − 1

m
}. Since {fn}n≥1

is non-decreasing, we have that An,m ⊆ An+1,m; and since fn ↑ 1A, we have that
∪∞n=1An,m = A. Note that

(

1− 1

m

)

1An,m ≤ fn ≤ 1A ,

and therefore (

1− 1

m

)

μ(An,m) ≤
∫

X

fn dμ ≤ μ(A) ,

from which the announced result follows in this particular case by first letting
n ↑ +∞ and then m ↑ +∞.
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Consider now the general case where f =
∑k

i=1 ai1Ai
. We may suppose that

{Ai}ki=1 is a partition of X, so that fn =
∑k

i=1 fn1Ai
and therefore, by (a),

∫

X

fn dμ =
k∑

i=1

∫

X

fn1Ai
dμ =

k∑

i=1

ai

∫

X

fn
ai
1Ai

dμ .

Passing to the limit n ↑ ∞ yields the desired result, since fn
ai
1Ai
↑ 1Ai

. �

STEP 2. The integral will now be defined for integrands f ∈ M+. For such
f , let

μ(f) := sup

{∫

X

ϕ dμ ; ϕ ≤ f, ϕ ∈ S+

}

.

The function f is called μ-integrable if μ(f) <∞.

We first check that if f ∈ S+, μ(f) =
∫
X
f dμ. For this, let

Af :=

{∫

X

ϕ dμ ; ϕ ≤ f, ϕ ∈ S+

}

.

Since f ∈ S+,
∫
X
f dμ ∈ Af and therefore μ(f) ≥

∫
X
f dμ. On the other hand,

for all ϕ ∈ S+ such that ϕ ≤ f ,
∫
X
ϕ dμ ≤

∫
X
f dμ and therefore μ(f) ≤

∫
X
f dμ.

Therefore μ(f) =
∫
X
f dμ.

Having checked this point, it is now safe to call μ(f) the integral of f with
respect to μ, and denote it also by

∫
X
f dμ. Indeed the two ways of defining∫

X
f dμ for f ∈ S+ (as in Step 1 and Step 2) give the same result.

The next result, due to Beppo Levi, is the monotone convergence theorem.

Theorem 4.2.2 Let {fn}n≥1 be a non-decreasing sequence of non-negative mea-
surable functions from X to R. Then

limn↑∞
∫
X
fn dμ =

∫
X
(limn↑∞ fn) dμ .

Proof. We shall use the following monotonicity property: if f1, f2 inM+ are such
that f1 ≤ f2, then

∫
X
f1 dμ ≤

∫
X
f2 dμ. In fact, Af1 ⊆ Af2 , and therefore

μ(f1) = supAf1 ≤ supAf2 = μ(f2) .

We now turn to the proof of the theorem. Denote limn↑∞ fn by f . By the just
proved monotonicity property of the integral of functions inM+,

∫

X

fn dμ ≤
∫

X

fn+1 dμ ≤
∫

X

f dμ .
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Being a non-decreasing sequence, {
∫
X
fn dμ}n≥1 has a limit, and by the previous

inequality

lim
n↑∞

∫

X

fn dμ ≤
∫

X

f dμ .

It remains to prove the converse inequality. For ϕ ∈ S+ such that ϕ ≤ f , λ ∈ (0, 1)
and n ≥ 1, define the (measurable) set En = {fn ≥ λϕ}. We have that En ⊆ En+1.
Moreover ∪n≥1En = X. Since λϕ1En ≤ fn,

∫

X

λϕ1En dμ ≤
∫

X

fn dμ ≤ lim
k↑∞

∫

X

fk dμ .

On the other hand, since En ⊆ En+1 and ∪n≥1En = X, we have that 1En ↑ 1 and
in particular 1Enϕ ↑ ϕ. Therefore by (e) of Lemma 4.2.1, limn↑∞

∫
X
λϕ1En dμ =∫

X
λϕ dμ. Passing to the limit n ↑ ∞ in the last displayed inequalities, we have

that for all λ ∈ (0, 1),

λ

∫

X

ϕ dμ ≤ lim
n↑∞

∫

X

fn dμ .

This equality remains true at the limit λ = 1. This being true of all ϕ ∈ S+ such
that ϕ ≤ f , we have ∫

X

f dμ ≤ lim
n↑∞

∫

X

fn dμ .

�

Here is another collection of intermediary results that we group in a lemma for
later reference:

Lemma 4.2.3 Let f, f1, f2 be inM+. Then

(i) for all λ ≥ 0,
∫
X
(λf) dμ = λ

∫
X
f dμ,

(ii)
∫
X
(f1 + f2) dμ =

∫
X
f1 dμ +

∫
X
f2 dμ, and

(iii) if f1 ≤ f2, then
∫
X
f1 dμ ≤

∫
X
f2 dμ.

Proof. (iii) was obtained in the proof of Theorem 4.2.2. Properties (i) and (ii)
are satisfied for functions in S+ (Lemma 4.2.1). Using non-decreasing sequences
of functions in S+, {f1,n}n≥1 and {f2,n}n≥1, converging respectively to f1 and f2,
we have that for all n ≥ 1,

∫

X

(λf1,n) dμ = λ

∫

X

f1,n dμ
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and ∫

X

(f1,n + f2,n) dμ =

∫

X

f1,n dμ+

∫

X

f2,n dμ .

Letting n ↑ ∞, the monotone convergence theorem 4.2.2 yields (i) and (ii). �

The next result is a fundamental technical tool, called Fatou’s lemma:

Theorem 4.2.4 Let {fn}n≥1 be a sequence of non-negative measurable functions
from X to R+. Then

∫

X

(lim inf
n↑∞

fn) dμ ≤ lim inf
n↑∞

∫

X

fn dμ .

Proof. Define f := lim infn↑∞ fn := limn↑∞ (infk≥n fk). By the monotone conver-
gence theorem (Theorem 4.2.2) for the second equality, we obtain

∫

X

f dμ =

∫

X

(lim
n↑∞

inf
k≥n

fk) dμ = lim
n↑∞

∫

X

(inf
k≥n

fk) dμ .

On the other hand, since for all i ≥ n,
∫
X
(infk≥n fk) dμ ≤

∫
X
fi dμ, we have that∫

X
(infk≥n fk) dμ ≤ inf i≥n(

∫
X
fi dμ). Therefore

∫

X

f dμ ≤ lim
n↑∞

inf
i≥n

(∫

X

fi dμ

)

= lim inf
n↑∞

∫

X

fn dμ .

�
STEP 3. Integrals of functions of arbitrary sign.

Definition 4.2.5 A measurable function f : (X,X )→ (R,B(R)) satisfying
∫

X

|f | dμ <∞

is called a μ-integrable function.

Define f+ := max(f, 0) and f− := max(−f, 0). In particular, f = f+−f− and
f± ≤ |f |. Therefore, by monotonicity (Property (iii) of Lemma 4.2.3),

∫
X
f± dμ ≤

∫
X
|f | dμ .

Thus, if f is integrable, the right-hand side of

∫
X
f dμ :=

∫
X
f+ dμ−

∫
X
f− dμ (4.6)
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is meaningful (no −∞ +∞ form) and defines the integral of the left-hand side.
Moreover, the integral of f with respect to μ defined in this way is finite.

The integral can be defined for some non-integrable measurable functions, for
instance, as we have seen, for all measurable non-negative functions. More gener-
ally, if f : (X,X ) → (R,B(R)) is such that at least one of the integrals

∫
X
f+ dμ

or
∫
X
f− dμ is finite, one defines the integral as in (4.6). This leads to one of the

forms “finite minus finite”, “finite minus infinite”, and “infinite minus finite”. The
case which is rigorously excluded is that in which μ(f+) = μ(f−) = +∞.

Let A ∈ X . The following equality is a definition of the left-hand side provided
the right-hand side is well defined:

∫

A

f(x)μ(dx) :=

∫

X

1A(x) f(x)μ(dx) .

For a complex Borel function f : X → C (that is, f = f1 + if2, where
f1, f2 : (X,X )→ (R,B(R))) such that μ(|f |) <∞, let

∫

X

f dμ :=

∫

X

f1 dμ+ i

∫

X

f2 dμ .

Example 4.2.6: Integral with respect to the Dirac measure. Let
(X,X ) be an arbitrary measurable space and let εa be the Dirac measure at a
point a ∈ X. Let f : (X,X ) → (R,B(R)). We shall prove formally that it is
εa-integrable and that

εa(f) = f(a) .

For a simple function f as in (4.1), we have

εa(f) =
k∑

i=1

ai εa(Ai) =
k∑

i=1

ai 1Ai
(a) = f(a) .

For a non-negative function f , and any non-decreasing sequence of simple non-
negative measurable functions {fn}n≥1 converging to f , we have

εa(f) = lim
n↑∞

εa(fn) = lim
n↑∞

fn(a) = f(a) .

Finally, for any f : (X,X )→ (R,B(R))

εa(f) = εa(f
+)− εa(f

−) = f+(a)− f−(a) = f(a)

is a well defined quantity.
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What we have finally obtained is the formula

∫

X

f(x) εa(dx) = f(a) .

The aficionados of the so-called Dirac “function” δ like to write the left-hand side

∫

X

f(x) δa(x) dx or

∫

X

f(x) δ(x− a) dx .

Example 4.2.7: Lebesgue-integrable but not Riemann-integrable.

The function f defined by f := 1Q (Q is the set of rational numbers) is a
Borel function and it is Lebesgue integrable with its integral equal to zero because
{f �= 0} is the set of rational numbers, which has null Lebesgue measure. However,
f is not Riemann integrable.

We finally define the Stieljes–Lebesgue integral.

Definition 4.2.8 Let F be cumulative distribution function on (R,B(R)) and let
μF be the associated locally finite measure on (R,B(R))) (see Example 4.1.26). By
definition, the Stieltjes–Lebesgue integral of the measurable function
g : (R,B(R)) → (R,B(R)) with respect to F is the integral of g with respect
to μF . It is denoted by

∫
R
g(x) dF (x). Therefore

∫

R

g(x) dF (x) :=

∫

R

g(x)μF (dx) .

4.3 Basic Properties of the Integral

We first state and prove one of the most important results of integration theory,
the Lebesgue theorem, also called the dominated convergence theorem.

Theorem 4.3.1 Let {fn}n≥1 be a sequence of measurable functions from (X,X )
to (R,B(R)) that converges to a (necessarily) measurable function f . Suppose
moreover that for all n ≥ 1, |fn| ≤ g, where g is integrable. Then

lim
n↑∞

∫

X

fn dμ =

∫

X

(lim
n↑∞

fn) dμ .
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Proof. By Fatou’s lemma applied to the sequence of non-negative functions
{g + fn}n≥1,

∫

X

(g + f) dμ =

∫

X

lim
n↑∞

(g + fn) dμ

≤ lim inf
n↑∞

∫

X

(g + fn) dμ =

∫

X

g dμ+ lim inf
n↑∞

∫

X

fn dμ .

Therefore, ∫

X

f dμ ≤ lim inf
n↑∞

∫

X

fn dμ .

Similarly, replacing f and fn by −f and −fn respectively,
∫

X

f dμ ≥ lim sup
n↑∞

∫

X

fn dμ .

In particular, limn↑∞
∫
X
fn dμ exists and is equal to

∫
X
f dμ. �

Recall that for all A ∈ X ,
∫

X

1A dμ = μ(A) (4.7)

by definition and that the notation
∫
A
f dμ stands for

∫
X
1Af dμ.

Theorem 4.3.2 Let f, g : (X,X ) → (R,B(R)) be μ-integrable functions, and let
a, b ∈ R. Then

(a) af + bg is μ-integrable and μ(af + bg) = aμ(f) + bμ(g),

(b) if f = 0 μ-a.e., then μ(f) = 0; if f = g μ-a.e., then μ(f) = μ(g),

(c) if f ≤ g μ-a.e., then μ(f) ≤ μ(g),

(d) |μ(f)| ≤ μ(|f |),

(e) if f ≥ 0 μ-a.e. and μ(f) = 0, then f = 0 μ-a.e.,

(f) if μ(1Af) = 0 for all A ∈ X , then f = 0 μ-a.e., and

(g) if f is μ-integrable, then |f | <∞ μ-a.e.

Proof. The (easy) proofs of (a)–(c) are omitted.

(d) μ(f) = μ(f+) − μ(f−). Therefore |μ(f)| ≤ μ(f+) + μ(f−) = μ(f+ + f−) =
μ(|f |).



158 CHAPTER 4. THE LEBESGUE INTEGRAL

(e) Define An = {f ≥ 1
n
}. Since f is non-negative, f ≥ 1

n
1An, and therefore,

μ(f) ≥ 1

n
μ(An) ,

from which it follows that, since μ(f) = 0, μ(An) = 0, and limn↑∞ μ(An) = 0. But
the sequence of sets {An}n≥1 increases to {f > 0} and therefore, by sequential
continuity, μ({f > 0}) = 0, that is, f ≤ 0, μ-a.e. On the other hand, by hypothesis,
f ≥ 0, μ-a.e. Therefore f = 0, μ-a.e.

(f) With A = {f > 0}, 1Af is a non-negative measurable function. By (e),
1Af = 0, μ-a.e. This implies that 1A = 0, μ-a.e., that is to say f ≤ 0, μ-a.e.
Similarly, f ≥ 0, μ-a.e. Therefore, f = 0, μ-a.e.

(g) It is enough to consider the case f ≥ 0. Since f ≥ n1{f=∞} for all n ≥ 1,
we have

∞ > μ(f) ≥ nμ({f =∞}) ,

and therefore nμ({f = ∞}) < ∞. This cannot be true for all n ≥ 1 unless
μ({f =∞}) = 0. �

The extension to complex Borel functions of the properties (a), (b), (d) and
(f) is immediate.

Beppo Levi, Fatou and Lebesgue

The following versions of the theorems of Beppo Levi, Fatou and Lebesgue dif-
fer from the previous ones by the introduction of “μ-almost everywhere” in the
statements of the conditions. No other proofs are needed since integrals of almost
everywhere equal functions are equal and countable unions of negligible sets are
negligible. Only a convention must be stated: if the limit of a sequence of real
measurable functions exists μ-almost everywhere, that is, outside a μ-negligible
set, then the limit is typically assigned some arbitrary value on this μ-negligible
set.

Remember that we are looking for conditions guaranteeing that

∫

X

lim
n↑∞

fn dμ = lim
n↑∞

∫

X

fn dμ . (4.8)

We start by restating the monotone convergence theorem.
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Theorem 4.3.3 Let fn : (X,X )→ (R,B(R)) (n ≥ 1) be such that

(i) fn ≥ 0 μ-a.e., and

(ii) fn+1 ≥ fn μ-a.e.

Then, there exists a non-negative function f : (X,X )→ (R,B(R)) such that

lim
n↑∞

fn = f μ-a.e. ,

and (4.8) holds true.

Next, we restate Fatou’s lemma.

Theorem 4.3.4 Let fn : (X,X ) → (R,B(R)) (n ≥ 1) be such that fn ≥ 0 μ-a.e.
(n ≥ 1). Then

∫

X

(lim inf
n↑∞

fn) dμ ≤ lim inf
n↑∞

(∫

X

fn dμ

)

. (4.9)

Finally, we restate the Lebesgue or dominated convergence theorem.

Theorem 4.3.5 Let fn : (X,X ) → (R,B(R)) (n ≥ 1) be such that, for some
function f : (X,X ) → (R,B(R)) and some μ-integrable function g : (X,X ) →
(R,B(R)):

(i) lim
n↑∞

fn = f , μ-a.e., and

(ii) |fn| ≤ |g| μ-a.e. for all n ≥ 1.

Then, (4.8) holds true.

Example 4.3.6: The classical counterexample.

Let (X,X , μ) = (R,B(R), �), and let

fn(x) := n 1(0, 1
n
](x).

One has limn↑∞ fn = 0. Therefore μ(limn↑∞ fn) = 0. However, μ(fn) = 1 for all
n ≥ 1.

Differentiation under the Integral Sign

Let (X,X , μ) be a measure space and let (a, b) ⊆ R. Let f : (a, b) × X → R

and for all t ∈ (a, b), define ft : X → R by ft(x) := f(t, x). Suppose that for
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all t ∈ (a, b), ft is measurable with respect to X , and define, when possible, the
function I : (a, b)→ R by the formula

I(t) =
∫
X
f(t, x)μ(dx) . (4.10)

Theorem 4.3.7 Assume that for μ-almost all x the function t �→ f(t, x) is con-
tinuous at t0 ∈ (a, b) and that there exists a μ-integrable function g : (X,X ) →
(R,B(R)) such that |f(t, x)| ≤ |g(x)| μ-a.e. for all t in a neighborhood V of t0.
Then:

A. I is well defined and is continuous at t0.

B. We now assume in addition that

(α) t→ f(t, x) is continuously differentiable on V for μ-almost all x, and

(β) for some μ-integrable function h : (X,X )→ (R,B(R)) and all t ∈ V ,

|(df/dt) (t, x)| ≤ |h(x)| μ-a.e.

Then I is differentiable at t0 and

I ′(t0) =
∫
X
(df/dt) (t0, x)μ(dx) . (4.11)

Proof. A. Let {tn}n≥1 be a sequence in V \ {t0} such that limn↑∞ tn = t0, and
define fn(x) = f(tn, x), f(x) = f(t0, x). By dominated convergence,

lim
n↑∞

I(tn) = lim
n↑∞

μ(fn) = μ(f) = I(t0) .

B. Let {tn}n≥1 be a sequence in V \ {t0} such that limn↑∞ tn = t0, and define
fn(x) = f(tn, x), f(x) = f(t0, x). By dominated convergence,

lim
n↑∞

I(tn) = lim
n↑∞

μ(fn) = μ(f) = I(t0) .

Also
I(tn)− I(t0)

tn − t0
=

∫

X

f(tn, x)− f(t0, x)

tn − t0
μ(dx) ,

and for some θ ∈ (0, 1), possibly depending upon n,

∣
∣
∣
∣
f(tn, x)− f(t0, x)

tn − t0

∣
∣
∣
∣ ≤ |(df/dt) (t0 + θ(tn − t0), x)| .
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The latter quantity is bounded by |h(x)|. Therefore, by dominated convergence,

lim
n↑∞

I(tn)− I(t0)

tn − t0
=

∫

X

(

lim
n↑∞

f(tn, x)− f(t0)

tn − t0

)

μ(dx)

=

∫

X

(df/dt) (t0, x)μ(dx) .

�

4.4 The Big Theorems

The Image Measure Theorem

Definition 4.4.1 Let (X,X ) and (E, E) be two measurable spaces, let
h : (X,X )→ (E, E) be a measurable function, and let μ be a measure on (X,X ).
The measure μ ◦ h−1 on (E, E), called the image of μ by h, is defined by

(μ ◦ h−1)(C) = μ(h−1(C)), C ∈ E .

(One easily checks that it is indeed a measure.)

In the proof of the following theorem, the combination of the approximation
theorem for measurable functions and of the monotone convergence theorem is
typical.

Theorem 4.4.2 For f : (X,X ) → (R,B(R) an arbitrary non-negative measur-
able function

∫

X

(f ◦ h)(x)μ(dx) =
∫

E

f(y)(μ ◦ h−1) (dy) . (4.12)

For functions f : (X,X )→ (R,B(R) of arbitrary sign either one of the conditions

(a) f ◦ h is μ-integrable, or

(b) f is μ ◦ h−1-integrable,

implies the other, and equality (4.12) then holds.

Proof. The equality (4.12) is readily verified when f is a non-negative simple
measurable function. In the general case one approximates f by a non-decreasing
sequence of non-negative simple measurable functions {fn}n≥1 and (4.12) then
follows from the same equality written with f = fn, by letting n ↑ ∞ and using
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the monotone convergence theorem. For the case of functions of arbitrary sign,
apply (4.12) with f+ and f−. �

The Radon–Nikodým Theorem

Definition 4.4.3 Let (X,X , μ) be a measure space and let h : (X,X )→ (R,B(R))
be a non-negative measurable function. Define the set function ν : X → [0,∞] by

ν(C) =

∫

C

h(x)μ(dx) .

Then ν is a measure on (X,X ) called the product of μ by the function h. This is
denoted by dν = h dμ.

That ν is a measure is easily checked. First of all, it is obvious that ν(∅) =
0. As for the σ-additivity property, write for any sequence of mutually disjoint
measurable sets {An}n≥1,

ν(∪n≥1An) =

∫

∪n≥1An

h dμ =

∫

X

1∪n≥1Anh dμ

=

∫

X

(
∑

n≥1

1An

)

h dμ =

∫

X

(

lim
k↑∞

k∑

n=1

1An

)

h dμ

= lim
k↑∞

∫

X

(
k∑

n=1

1An

)

h dμ = lim
k↑∞

k∑

n=1

∫

X

1Anh dμ

= lim
k↑∞

k∑

n=1

ν(An) =
∑

n≥1

ν(An) ,

where the fifth equality is by monotone convergence.
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Theorem 4.4.4 Let μ, h and ν be as in Definition 4.4.3.

(i) For non-negative f : (X,X )→ (R,B(R)),
∫
X
f(x) ν(dx) =

∫
X
f(x)h(x)μ(dx) . (4.13)

(ii) If f : (X,X )→ (R,B(R)) has arbitrary sign, then either one of the following
conditions

(a) f is ν-integrable,

(b) fh is μ-integrable,

implies the other, and the equality (4.13) then holds.

Proof. Verify (4.13) for elementary non-negative functions and, approximating
f by a non-decreasing sequence of such functions, use the monotone convergence
theorem as in the proof of (4.12). For the case of functions of arbitrary sign, apply
(4.13) with f = f+ and f = f−. �

Observe that in the situation of Theorem 4.4.4,

μ(C) = 0 =⇒ ν(C) = 0 (C ∈ X ) . (4.14)

Definition 4.4.5 Let μ and ν be two measures on (X,X ). If (4.14) holds, ν is
said to be absolutely continuous with respect to μ. This is denoted by ν  μ.

The proof of the next theorem is omitted 5

Theorem 4.4.6 Let μ and ν be two σ-finite measures on (X,X ) such that ν  μ.
Then there exists a non-negative function h : (X,X )→ (R,B(R)) such that

ν(dx) = h(x)μ(dx) .

The function h is called the Radon–Nikodým derivative of ν with respect to μ
and is denoted dν/dμ. With such a notation, we have that

∫
X
f(x) ν(dx) =

∫
X
f(x) dν

dμ
(x)μ(dx)

for all non-negative f = (X,X )→ (R,B(R)).

5 See Subsection 2.3.1 of [5].
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The Fubini–Tonelli Theorem

Let (X1,X1, μ1) and (X2,X2, μ2) be two measure spaces where μ1 and μ2 are sigma-
finite. Define the product set X = X1 ×X2 and the product σ-field X = X1 ⊗X2,
where by definition the latter is the smallest σ-field on X containing all sets of the
form A1 × A2, where A1 ∈ X1, A2 ∈ X2.

Theorem 4.4.7 There exists a unique measure μ on (X1×X2,X1⊗X2) such that

μ(A1 × A2) = μ1(A1)μ2(A2) (4.15)

for all A1 ∈ X1, A2 ∈ X2.

The proofs of this theorem and of the next one are omitted 6.

The measure μ is the product measure of μ1 and μ2, and is denoted μ1 × μ2.

The above result and the following ones are stated for products of two sigma-
finite measures, but extend in an obvious manner to a finite number of sigma-finite
measures.

The typical example of a product measure is the Lebesgue measure on the
space (Rn,B(Rn)): It is the unique measure �n on that space that is such that
�n(Πn

i=1Ai) = Πn
i=1�(Ai) for all A1, . . . , An ∈ B.

Theorem 4.4.8 Let (X1,X1, μ1) and (X1,X2, μ2) be two measure spaces in which
μ1 and μ2 are sigma-finite. Let (X,X , μ) := (X1 ×X2, X1 ⊗ X2, μ1 × μ2).

(A) Tonelli. If f is non-negative, then, for μ1-almost all x1, the function x2 �→
f(x1, x2) is measurable with respect to X2, and

x1 �→
∫

X2

f(x1, x2)μ2(dx2)

is a measurable function with respect to X1. Furthermore,

∫

X

f dμ =

∫

X1

[ ∫

X2

f(x1, x2)μ2(dx2)

]

μ1(dx1). (4.17)

(B) Fubini. If f is μ-integrable, then, for μ1-almost all x1, the function x2 �→
f(x1, x2) is μ2-integrable and x1 �→

∫
X2

f(x1, x2)μ2(dx2) is μ2-integrable, and
(4.17) is true.

We shall refer to the global result as the Fubini–Tonelli Theorem. Part (A)

6 See Subsection 2.3.2 of [5].
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says that one can integrate a non-negative measurable function in any order of its
variables. Part (B) says that the same is true of an arbitrary measurable function
if that function is μ-integrable. In general, in order to apply Part (B) one must use
Part (A) in order to ascertain whether or not f is μ-integrable. The next example
should convince the reader of the necessity of checking this integrability condition.

Example 4.4.9: When Fubini is not applicable. Consider the function f
defined on X1 ×X2 = (1,∞)× (0, 1) by the formula

f(x1, x2) = e−x1x2 − 2e−2x1x2 .

We have
∫

(1,∞)

f(x1, x2) dx1 =
e−x2 − e−2x2

x2
= h(x2) ≥ 0 ,

∫

(0,1)

f(x1, x2) dx2 = − e−x1 − e−2x1

x1
= −h(x1) .

However, ∫ 1

0

h(x2) dx2 �=
∫ ∞

1

(−h(x1)) dx1 ,

since h ≥ 0 �-a.e. on (0,∞). We therefore see that successive integrations yields
different results according to the order in which they are performed. As a matter
of fact, f is not integrable on (0, 1)× (1,∞).

The Formula of Integration by Parts

Theorem 4.4.10 Let μ1 and μ2 be two σ-finite measures on (R,B(R)). For any
interval (a, b) ⊆ R

μ1((a, b])μ2((a, b]) =

∫

(a,b]

μ1((a, t])μ2(dt) +

∫

(a,b]

μ2((a, t))μ1(dt) . (4.18)

Observe that the first integral features the interval (a, t] (closed on the right),
whereas in the second integral, the interval is of the type (a, t) (open on the right).

In terms of Lebesgue–Stieltjes integrals,

F1(b)F2(b)− F1(a)F1(a) =

∫

(a,b]

F1(x) dF2(x) +

∫

(a,b]

F2(x−) dF1(x) ,

where F1 and F2 are cdfs on R. This is the Lebesgue–Stieltjes version of the
integration by parts formula of calculus.
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Proof. The proof consists in computing the μ1 × μ2-measure of the square D :=
(a, b] × (a, b] in two ways. The first one is obvious and gives the left-hand side of
(4.18). The second one consists in observing that μ(D) = μ(D1) + μ(D2), where
D1 = {(x, y); a < y ≤ b, a < x ≤ y} and D2 = {(a, b]× (a, b]} ∩D1. Then μ(D1)
and μ(D2) are computed using Tonelli’s theorem. For instance,

μ(D1) =

∫

R

(∫

R

1D1(x, y)μ1(dx)

)

μ2(dy)

∫

R

(∫

R

1{a<x≤y}μ1(dx)

)

μ2(dy) =

∫

R

μ1((a, y])μ2(dy) .

�

Lp-spaces and the Riesz–Fischer Theorem

For a given integer p ≥ 1, Lp
C(μ) is, roughly speaking (see the details below),

the collection of complex-valued measurable functions f defined on X such that∫
X
|f |p dμ < ∞. We shall see that it is a complete normed vector space over C,

that is, a Banach space.

Let (X,X , μ) be a measure space and let f, g be two complex-valued measurable
functions defined on X. The relation R defined by

fRg if and only if f = g μ-a.e.

is an equivalence relation. Denote the equivalence class of f by {f}. Note that for
any p > 0 (using property (b) of Theorem 4.3.2),

fRg =⇒
∫
X
|f |p dμ =

∫
X
|g|p dμ .

The operations +, ×, ∗ and multiplication by a scalar α ∈ C are defined on the
equivalence class by

{f}+ {g} = {f + g} , {f} {g} = {fg} , {f}∗ = {f ∗} , α {f} = {αf} .

The first equality means that {f} + {g} is, by definition, the equivalence class
consisting of the functions f + g, where f and g are members of {f} and {g},
respectively. Similar interpretations hold for the other equalities.

By definition, for a given p ≥ 1, Lp
C(μ) is the collection of equivalence classes

{f} such that
∫
X
|f |p dμ < ∞. Clearly, it is a vector space over C (for the proof

recall that (
|f |+|g|

2

)p
≤ 1

2
|f |p + 1

2
|g|p
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since t → tp is a convex function when p ≥ 1). In order to avoid cumbersome
notation, in this section and in general whenever we consider Lp-spaces, we shall
write f for {f}. This abuse of notation is harmless since two members of the same
equivalence class have the same integral if that integral is defined. Therefore, using
this loose notation, we may write

Lp
C(μ) =

{
f :

∫
X
|f |p dμ <∞

}
. (4.19)

When the measure is the counting measure on the set Z of relative integers,
the traditional notation is �pC(Z). This is the space of random complex sequences
{xn}n∈Z such that

∑

n∈Z
|xn|p <∞.

The following is a simple and often used observation.

Theorem 4.4.11 Let p and q be positive real numbers such that p > q. If the
measure μ on (X,X , μ) is finite, then Lp

C(μ) ⊆ Lq
C(μ). In particular, L2

C(μ) ⊆
L1
C(μ).

Proof. From the inequality |a|q ≤ 1 + |a|p, true for all a ∈ C, it follows that
μ(|f |q) ≤ μ(1)+μ(|f |p). Since μ(1) = μ(R) <∞, μ(|f |q) <∞ whenever μ(|f |p) <
∞. �

This inclusion is not true in general if μ is not a finite measure, for instance
consider the Lebesgue measure � on R: there exist functions in L1

C(�) that are not
in L2

C(�) and vice versa.

In the case of the counting measure on Z, the order of inclusion is the reverse
of the one concerning finite measures:

Theorem 4.4.12 �pC inclusions. If p > q, �qC(Z) ⊂ �pC(Z). In particular, �1C(Z) ⊂
�2C(Z).

Proof. Exercise 4.5.19. �
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Theorem 4.4.13 Let p and q be positive real numbers in (0, 1) such that

1

p
+

1

q
= 1

(p and q are then said to be conjugate) and let f, g : (X,X ) �→ (R,B(R)) be
non-negative real functions. Then,

∫
X
fg dμ ≤

[∫
X
f p dμ

]1/p [∫
X
gq dμ

]1/q
. (4.20)

In particular, if f, g ∈ L2
C(R), then fg ∈ L1

C(R).

Proof. Let

A =

(∫

X

f p dμ

)1/p
, B =

(∫

X

gq dμ

)1/q
.

It may be assumed that 0 < A,B < ∞, because otherwise Hölder’s inequality is
trivially satisfied. Let F := f/A, G := g/B, so that

∫

X

F p dμ =

∫

X

Gq dμ = 1.

Suppose that we have been able to prove that

F (x)G(x) ≤ 1

p
F (x)p +

1

q
G(x)q . (4.21)

Integrating this inequality yields
∫

X

(FG) dμ ≤ 1

p
+

1

q
= 1,

and this is just (4.20).

Inequality (4.21) is trivially satisfied if x is such that F ≡ 0 or G ≡ 0. It is
also satisfied in the case when F and G are not μ-almost everywhere null. Indeed,
letting

s(x) := p ln(F (x)), t(x) := q ln(G(x)) ,

from the convexity of the exponential function and the assumption that 1/p+1/q =
1,

es(x)/p+t(x)/q ≤ 1

p
es(x) +

1

q
et(x),

and this is precisely inequality (4.21).

For the last assertion of the theorem, take p = q = 2. �
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Theorem 4.4.14 Let p ≥ 1 and let f, g : (X,X ) �→ (R,B(R)) be non-negative
functions in Lp

C(μ). Then,

[∫
X
(f + g)p

]1/p ≤
[∫

X
f p dμ

]1/p
+

[∫
X
gp dμ

]1/p
. (4.22)

Proof. For p = 1 the inequality (in fact an equality) is obvious. Therefore, assume
p > 1. From Hölder’s inequality

∫

X

f(f + g)p−1 dμ ≤
[∫

X

f p dμ

]1/p [∫

X

(f + g)(p−1)q

]1/q

and ∫

X

g(f + g)p−1 dμ ≤
[∫

X

gp dμ

]1/p [∫

X

(f + g)(p−1)q

]1/q
.

Adding up the above two inequalities and observing that (p− 1)q = p, we obtain
∫

X

(f + g)p dμ ≤
([∫

X

f p dμ

]1/p
+

[∫

X

gp dμ

]1/p
)[∫

x

(f + g)p
]1/q

.

One may assume that the right-hand side of (4.22) is finite and that the left-hand
side is positive (otherwise the inequality is trivial). Therefore

∫
X
(f + g)p dμ ∈

(0,∞) and we may therefore divide both sides of the last display by
[∫

X
(f + g)p dμ

]1/q
.

Observing that 1− 1/q = 1/p yields the announced inequality (4.22). �

Theorem 4.4.15 Let p ≥ 1. The mapping νp : L
p
C(μ) �→ [0,∞) defined by

νp(f) :=
(∫

X
|f |p dμ

)1/p
(4.23)

is a norm on Lp
C(μ).

Proof. Clearly, νp(αf) = |α|νp(f) for all α ∈ C, f ∈ Lp
C(μ). Also, νp(f) = 0 if

and only if
(∫

X
|f |p dμ

)1/p
= 0, which in turn is equivalent to f = 0, μ-a.e. Finally,

νp(f + g) ≤ νp(f) + νp(g) for all f, g ∈ Lp
C(μ), by Minkowski’s inequality. �

Denoting νp(f) by ‖f‖p, Lp
C(μ) is a normed vector space over C, with the norm

‖ · ‖p and the induced metric dp(f, g) := ‖f − g‖p.

Theorem 4.4.16 Let p ≥ 1. The metric dp makes of Lp
C(μ) a complete normed

vector space.

In other words, Lp
C(μ) is a Banach space for the norm ‖ · ‖p.

Proof. To show completeness one must prove that for any sequence {fn}n≥1 of
Lp
C(μ) that is a Cauchy sequence (that is, such that limm,n↑∞ dp(fn, fm) = 0), there

exists an f ∈ Lp
C(μ) such that limn↑∞ dp(fn, f) = 0.
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Since {fn}n≥1 is a Cauchy sequence, one can select a subsequence {fni
}i≥1 such

that

dp(fni+1
− fni

) ≤ 2−i. (4.24)

Let

gk =

k∑

i=1

|fni+1
− fni

|, g =

∞∑

i=1

|fni+1
− fni

|.

By (4.24) and Minkowski’s inequality, ‖gk‖p ≤ 1. Fatou’s lemma applied to the
sequence {gpk}k≥1 gives ‖g‖p ≤ 1. In particular, any member of the equivalence
class of g is μ-almost everywhere finite and therefore

fn1(x) +

∞∑

i=1

(
fni+1

(x)− fni
(x)

)

converges absolutely for μ-almost all x. Call the corresponding limit f(x) (set
f(x) = 0 when this limit does not exist). Since

fn1 +
k−1∑

i=1

(
fni+1

− fni

)
= fnk

we see that
f = lim

k↑∞
fnk

μ-a.e.

One must show that f is the limit in Lp
C(μ) of {fnk

}k≥1. Let ε > 0. There exists an
integer N = N(ε) such that ‖fn − fm‖p ≤ ε whenever m,n ≥ N . For all m > N ,
by Fatou’s lemma we have

∫

X

|f − fm|p dμ ≤ lim inf
i→∞

∫

x

|fni
− fm|p dμ ≤ εp.

Therefore f − fm ∈ Lp
C(μ) and consequently f ∈ Lp

C(μ). It also follows from the
last inequality that

lim
m→∞

‖f − fm‖p = 0.

�

The next result is a by-product of the proofs of Theorems 4.4.16.

Theorem 4.4.17 Let p ≥ 1 and let {fn}n≥1 be a convergent sequence in Lp
C(μ).

Let f be the corresponding limit in Lp
C(μ). Then, there exists a subsequence

{fni
}i≥1 such that

limi↑∞ fni
= f μ-a.e. (4.25)
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Note that the statement in (4.25) is about functions and not about equivalence
classes. The functions thereof are any members of the corresponding equivalence
class. In particular, when a given sequence of functions converges μ-a.e. to two
functions, these two functions are necessarily equal μ-a.e. Therefore,

Theorem 4.4.18 If {fn}n≥1 converges both to f in Lp
C(μ) and to g μ-a.e., then

f = g μ-a.e.

Of special interest for applications is the space L2
C(μ) of complex measurable

functions f : X → R such that
∫

X

|f(x)|2 μ(dx) <∞,

where two functions f and f ′ such that f(x) = f ′(x), μ-a.e. are not distinguished.
We have by the Riesz–Fischer theorem:

Theorem 4.4.19 L2
C(μ) is a vector space with scalar field C, and when endowed

with the inner product

〈f, g〉 :=
∫

X

f(x)g(x)∗ μ(dx) , (4.26)

it is a Hilbert space.

The norm of a function f ∈ L2
C(μ) is

‖f‖ =
(∫

X
|f(x)|2 μ(dx)

) 1
2

and the distance between two functions f and g in L2
C(μ) is

d(f, g) =
(∫

X
|f(x)− g(x)|2 μ(dx)

) 1
2 .

The completeness property of L2
C(μ) reads in this case as follows. If {fn}n≥1 is a

sequence of functions in L2
C(μ) such that

lim
m,n↑∞

∫

X

|fn(x)− fm(x)|2 μ(dx) = 0,

then, there exists a function f ∈ L2
C(μ) such that

lim
n↑∞

∫

X

|fn(x)− f(x)|2 μ(dx) = 0.

In L2
C(μ), Schwarz’s inequality reads as follows:

∣
∣
∣
∣

∫

X

f(x)g(x)∗ μ(dx)
∣
∣
∣
∣ ≤

(∫

X

|f(x)|2 μ(dx)
) 1

2
(∫

X

|g(x)|2 μ(dx)
) 1

2

.
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Example 4.4.20: Complex sequences. The set of complex sequences a =
{an}n∈Z such that

∑

n∈Z
|an|2 <∞

is, when endowed with the inner product

〈a, b〉 =
∑

n∈Z
anb

∗
n ,

a Hilbert space, denoted by �2C(Z). This is indeed a particular case of a Hilbert
space L2

C(μ), where X = Z and μ is the counting measure. In this example,
Schwarz’s inequality takes the form

∣
∣
∣
∣
∣

∑

n∈Z
anb

∗
n

∣
∣
∣
∣
∣
≤

(
∑

n∈Z
|an|2

) 1
2

×
(
∑

n∈Z
|bn|2

) 1
2

.

4.5 Exercises

Exercise 4.5.1. Set inverse function

Let U and E be arbitrary sets and let f be some function from U to E. For any
subset A ⊆ E, let

f−1(A) := {u ∈ U ; f(u) ∈ A} .
(i) Show that for all u ∈ U , 1A(f(u)) = 1f−1(A)(u).

(ii) Prove that if E is a σ-field on E, then the collection of subsets f−1(E) :=
{f−1(A) ; A ∈ E} is a σ-field on U .

Exercise 4.5.2. No title

Let f be a function from R to R. Prove that for any a ∈ R,

∩n≥1{x ; f(x) ≤ a + 1/n} = {x ; f(x) ≤ a} .

Exercise 4.5.3. σ-field generated by a collection of sets

Let I be an arbitrary non-empty index set.

(1) Let {Fi}i∈I be an arbitrary non-empty family of σ-fields on some set Ω. Show
that the family F := ∩i∈IFi (A ∈ F if and only if A ∈ Fi for all i ∈ I) is a σ-field.
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(2) Let C be an arbitrary family of subsets of some set Ω. Prove the existence of
a smallest σ-field F containing C. (This means, by definition, that F is a σ-field
on Ω containing C, such that if F ′ is a σ-field on Ω containing C, then F ⊆ F ′.)

Exercise 4.5.4. B(Rn)

Prove that B(Rn) is generated by the collection C of all rectangles of the type∏n
i=1(−∞, ai], where ai ∈ Q (i ∈ {1, . . . , n}). (Q is the set of rational numbers.)

Exercise 4.5.5. Gross sigma-field

Show that a function f : X → R that is measurable with respect to the gross
sigma-field on X and the Borel sigma-field on R is a constant (takes only one
value).

Exercise 4.5.6. |f | measurable, f not measurable

Let (X,X ) be a measurable space such that X �≡ P(X) (for instance if (X,X ) =
(R,B(R)), a fact that we shall admit here). Let f : X → E be a function. Is it
true that if |f | is measurable with respect to X and E , then so is f itself?

Exercise 4.5.7. Sequential continuity

In Theorem 4.1.21, show by means of a counterexample the necessity of the con-
dition μ(Bn0) <∞ for some n0.

Exercise 4.5.8. The rationals are Lebesgue-negligible

Prove that any singleton {a} (a ∈ R) is a Borel set of null Lebesgue measure and
that the set of rationals Q is a Borel set of null Lebesgue measure.

Exercise 4.5.9. Integral of a simple function

Prove (4.5).

Exercise 4.5.10. Integral with respect to the weighted counting

measure

Any function f : Z→ R is measurable with respect to P(Z) and B(R). With the
measure μ defined in Example 4.1.18, and with f ≥ 0 for instance, show that

μ(f) =
∞∑

n=1

αnf(n)

by following exactly the steps of the general construction.
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Exercise 4.5.11. Fourier transform

The Fourier transform of a function f : R→ R that is integrable with respect to
Lebesgue measure is the function f̂ : R→ C defined by:

f̂(ν) :=

∫

R

f(t) e−2iπνt dt .

This is denoted by F : f → f̂ .

Prove that f̂ is bounded and uniformly continuous.

Exercise 4.5.12. Convolution of integrable functions

Let h, f : R → R be functions that are integrable with respect to Lebesgue
measure. Prove that the right-hand side of

g(t) :=

∫

R

h(t− s)f(s) ds

is well defined almost everywhere (for the Lebesgue measure), and defines an in-
tegrable function. (The function g is the convolution of h with f , and is denoted
by g = h ∗ f .)

Exercise 4.5.13. The Fourier convolution–multiplication rule.

(Continuation of Exercise 4.5.12) Prove that

F : h ∗ f → ĥf̂ .

Exercise 4.5.14. Image measure

What is the measure on (R,B(R)) that is the image of the Lebesgue measure �
on (R,B(R)) by the map x �→ |x|?

Exercise 4.5.15. Scheffé’s lemma

Let f and fn (n ≥ 1) be μ-integrable non-negative functions such that limn↑∞ fn =
f μ-a.e. and limn↑∞

∫
X
fn dμ =

∫
X
f dμ. Show that limn↑∞

∫
X
|fn − f | dμ = 0.

(Hint: |a− b| = a+ b− inf(a, b).)

Exercise 4.5.16. Fubini tiles
Consider any bounded closed rectangle of R2. We say that it has Property (A) if at
least one of its sides “is an integer” (meaning: its length is an integer). Now you are
given a bounded closed rectangle Δ that is the union of a finite number of disjoint
closed rectangles with Property (A). Show that Δ itself must have Property (A).
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Exercise 4.5.17. Integrals and sums

Prove that for all a, b ∈ R,

∫

R+

t e−at

1− e−bt
dt =

+∞∑

n=0

1

(a+ nb)2
.

Exercise 4.5.18. Fubini again
Define f : [0, 1]2 → R by

f(x, y) =
x2 − y2

(x2 + y2)2
1{(x,y)�=(0,0)} .

Compute
∫
[0,1]

(∫
[0,1])f(x,y) dx

)
dy and

∫
[0,1]

(∫
[0,1])f(x,y) dy

)
dx. Is f Lebesgue inte-

grable on [0, 1]2?

Exercise 4.5.19. �pC(Z)
Prove that �1C(Z) ⊂ �2C(Z)

4.6 Solutions

Solution (Exercise 4.5.1).
(i) 1A(f(u)) = 1⇐⇒ f(u) ∈ A⇐⇒ u ∈ f−1(A)⇐⇒ 1f−1(A)(u) = 1.
(ii) is a direct consequence of the definition of a σ-field and of the following set
identities: for any subsets A,A1, A2, . . . of E,

f−1(Ā) = f−1(A) ,

f−1

( ∞⋂

n=1

An

)

=
∞⋂

n=1

f−1(An) ,

f−1

( ∞⋃

n=1

An

)

=
∞⋃

n=1

f−1(An) .

Solution (Exercise 4.5.2).
If f(x) ≤ a+ 1

n
for all n ≥ 1, one cannot have f(x) > a, because if it were the case,

there would certainly exist a sufficiently large n such that f(x) > a+ 1
n
. Therefore

∩n≥1{x ; f(x) ≤ a+
1

n
} ⊆ {x ; f(x) ≤ a} .
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If f(x) ≤ a, then obviously f(x) ≤ a+ 1/n for all n ≥ 1. therefore

{x ; f(x) ≤ a} ⊆ ∩n≥1{x ; f(x) ≤ a+ 1/n} .

Solution (Exercise 4.5.3).
Obvious.

Solution (Exercise 4.5.4).
It suffices to show that B(Rn) is generated by the collection C′ of all rectangles∏n

i=1(ai, bi) with rational endpoints. Note that C′ is a countable collection and
that all its elements are open sets for the Euclidean topology (the latter we denote
by O). It follows that C′ ⊆ O and therefore σ(C′) ⊆ σ(O) = B(Rn).

It remains to show that O ⊆ σ(C′), since this implies that σ(O) ⊆ σ(C ′). For
this it suffices to show that any set O ∈ O is a countable union of elements in C′.
Take x ∈ O. By definition of the Euclidean topology, there exists a non-empty
open ball B(x, r) centered at x and contained in O. Now we can always choose a
rational rectangle Rx ∈ C′ that contains x and that is contained in B(x, r). Clearly
∪x∈ORx = O. Since the Rx are chosen in a countable family of sets, the union
∪x∈ORx is in fact countable. As a countable union of sets in C′ it is in σ(C′).
Therefore O ∈ σ(C ′).

Solution (Exercise 4.5.5).
Suppose it takes two distinct values a and b. Then {f = a} := {x ∈ X ; f(x) = a}
and {f = b} are two distinct members of the gross sigma-field on X. One of them
must therefore be X itself, say {f = a} = Ω. Therefore f is the constant function
equal to a.

Solution (Exercise 4.5.6).
No. Take f = 1A − 1A where A is a non-measurable set. This function is clearly
non-measurale (for instance {f = 1} = A /∈ X ), but |f | ≡ 1 is measurable.

Solution (Exercise 4.5.7).
Let ν be the counting measure on Z and let Bn := {i ∈ Z : |i| ≥ n} (n ≥ 1). Then
ν(Bn) = +∞ for all n ≥ 1, whereas

ν

( ∞⋂

n=1

Bn

)

= ν(∅) = 0.
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Solution (Exercise 4.5.8).
The Borel σ-field B(R) is generated by the intervals Ia = (−∞, a], a ∈ R (Theorem
4.1.4), and therefore {a} = ∩n≥1(Ia − Ia−1/n) is also in B(R). Denoting by � the
Lebesgue measure, �(Ia − Ia−1/n) = 1/n, and therefore �({a}) = limn≥1 �(Ia −
Ia−1/n) = 0. Q is a countable union of sets in B(R) (singletons) and is therefore in
B(R). It has Lebesgue measure 0 as a countable union of sets of Lebesgue measure
0.

Solution (Exercise 4.5.9).
This follows from the following chain of equalities, where it is noted that if Ai∩Bj �=
∅, then ai = bj :

m∑

j=1

bj μ(Bj) =
m∑

j=1

bj

(
k∑

i=1

μ(Bj ∩ Ai)

)

=
k∑

i=1

m∑

j=1

bj μ(Bj ∩Ai)

=
k∑

i=1

m∑

j=1

ai μ(Bj ∩ Ai)

=
k∑

i=1

ai

(
m∑

j=1

μ(Bj ∩Ai)

)

=
k∑

i=1

ai μ(Ai).

Solution (Exercise 4.5.10).
It suffices to consider the approximating sequence of simple functions

fn(k) =
+n∑

j=−n

f(j)1{j}(k)

whose integral is

ν(fn) =

+n∑

j=−n

f(j)μ({j}) =
+n∑

j=−n

f(j)αj

and to let n tend to ∞. When αn ≡ 1, the integral reduces to the sum of a series:

ν(f) =
∑

n∈Z
f(n) .

In this case, integrability means that the series is absolutely convergent.
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Solution (Exercise 4.5.11).
From the definition, we have that

|f̂(ν)| ≤
∫

R

|f(t) e−2iπνt| dt =
∫

R

|f(t)| dt,

where the last term does not depend on ν and is finite. Also, for all h ∈ R,

|f̂(ν + h)− f̂(ν)| ≤
∫

R

|f(t)| |e−2iπ(ν+h)t − e−2iπνt| dt

=

∫

R

|f(t)| |e−2iπht − 1| dt .

The last term is independent of ν and tends to 0 as h→ 0 by dominated conver-
gence.

Solution (Exercise 4.5.12).

By Tonelli’s theorem and the integrability assumptions
∫

R

∫

R

|h(t− s)| |f(s)| dt ds =
(∫

R

|h(t)| dt
)(∫

R

|f(t)| dt
)

<∞ .

This implies that, for �-almost all t,
∫

R

|h(t− s)f(s)| ds <∞ .

The integral
∫
R
h(t− s)f(s) ds is therefore well defined for �-almost all t. Also
∫

R

|g(t)| dt =

∫

R

∣
∣
∣
∣

∫

R

h(t− s)f(s) ds

∣
∣
∣
∣dt

≤
∫

R

∫

R

|h(t− s)f(s)| dt ds <∞ ,

that is, g is integrable.

Solution (Exercise 4.5.13).
We have

∫

R

(∫

R

h(t− s)f(s) ds

)

e−2iπνt dt

=

∫

R

∫

R

h(t− s)e−2iπν(t−s)f(s)e−2iπνs ds dt

=

∫

R

f(s)e−2iπνs

(∫

R

h(t− s)e−2iπν(t−s)dt

)

ds = ĥ(ν)f̂(ν) ,



4.6. SOLUTIONS 179

by Fubini’s theorem, which is applicable here because the function

(t, s) �→
∣
∣h(t− s)f(s)e−2iπνt

∣
∣ = |h(t− s)f(s)|

is integrable with respect to the product measure dt× ds (Exercise 4.5.12).

Solution (Exercise 4.5.14).
21x≥0�(dx).

Solution (Exercise 4.5.15).
The function inf(fn, f) is bounded by the (μ-integrable) function f (this is where
the non-negativeness assumption is used). Moreover, it converges to f . Therefore,
by dominated convergence, limn↑∞

∫
X
inf(fn, f) dμ =

∫
X
f dμ. The rest of the

proof follows from
∫

X

|fn − f | dμ =

∫

X

fn dμ+

∫

X

f dμ−
∫

X

inf(fn, f) dμ .

Solution (Exercise 4.5.16).
Let I be a finite interval of R. Observe that

∫
I
e2iπxdx = 0 if and only if the length

of I is an integer. Let now I × J be a finite rectangle. It has Property (A) if and
only if

∫ ∫
I×J

e2iπ(x+y)dx dy =
∫
I
e2iπxdx ×

∫
J
e2iπydy = 0. (This is where we use

Fubini.) Now
∫ ∫

Δ

e2iπ(x+y)dx dy =

∫ ∫

∪K
n=1Δn

e2iπ(x+y)dx dy

=

K∑

n=1

∫ ∫

Δn

e2iπ(x+y)dx dy = 0 ,

since the Δn’s form a partition of Δ and all have Property (A).

Solution (Exercise 4.5.17).

∫

R+

t e−at

1− e−bt
dt =

∫

R+

(
+∞∑

n=0

t e−(a+nb)

)

dt

=
+∞∑

n=0

∫

R+

t e−(a+nb) dt =
+∞∑

n=0

1

(a+ nb)2
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where the second equality is justified by Tonelli’s theorem applied to the product
of the Lebesgue measure by the counting measure.

Solution (Exercise 4.5.18).
If y �= 0, the function x �→ f(x, y) is continuous on [0, 1] and therefore Lebesgue
integrable, being bounded. We have

∫

[0,1]

f(x, y) dx =

(
x

x2 + y2

)1

0

=
1

1 + y2

For y = 0,
∫
[0,1]

f(x, 0) dx =
∫
[0,1]

1
x2 dx = +∞. Therefore,

∫

[0,1]

f(x, y) dx =
1

1 + y2
, l − a.e,

and ∫

[0,1]

(∫

[0,1]

f(x, y) dx

)

dy =

∫

[0,1]

1

1 + y2
dy =

π

4
.

Observing that f(x, y) = −f(y, x) we obtain

∫

[0,1]

(∫

[0,1]

f(x, y) dy

)

dx = −π
4
.

f cannot be integrable on [0, 1]2, otherwise the two integrals would be the same,
by Fubini’s theorem.

Solution (Exercise 4.5.19).
If

∑
n |an| < ∞, there exists n0 such that if n ≥ n0, |an| < 1. In particular, for

n ≥ n0, |an|2 < |an|. Therefore
∑

n≥n0
|an|2 <

∑
n≥n0
|an| < ∞, from which it

follows that
∑

n |an|2 <∞.



Chapter 5

From Integral to Expectation

Probability theory is from a formal point of view, a particular chapter of measure
and integration theory. Since the terminologies of the two theories are different,
we shall first proceed to the “translation” of the theory of measure and integration
into the theory of probability and expectation.

5.1 Translation

Recall the probabilistic trinity, the triple (Ω,F , P ), where P (the probability) is a
measure on the measurable space (Ω,F) with total mass P (Ω) = 1.

Most of the results of the present section follow from those of the previous
chapter by a mere change of notation: X � Ω, X � F , μ � P and f � X, so
that for instance ∫

X

f(x)μ(dx) �
∫

Ω

X(ω)P (dω) .

(Of course, the reader is aware that the “X’s” in both sides are of a different
nature. But this notational collision will not happen any more in the sequel.)

Definition 5.1.1 A measurable function X from (Ω,F) to a measurable space
(E, E) is called a random element with values in (E, E) (or in E, for short, when
the context is unambiguous).

When (E, E) = (R,B(R)) or (R,B(R)), X is also called a random variable
(r.v.) (real r.v. if E = R, extended r.v. if E = R). If (E, E) = (Rn,B(Rn)), X
is called a random vector (of dimension n), and then X = (X1, . . . , Xn) where the
Xi are random variables. A complex random variable is a function X : Ω → C of
the form X = XR + iXI where XR and XI are real random variables.
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If X is a random element with values in (E, E) and if g is a measurable function
from (E, E) to (R,B(R)), then g(X) is, by the composition theorem for measurable
functions (Theorem 4.1.11), a random variable.

Since a random variable X is a measurable function, we can define, under
rather general circumstances, its integral with respect to the probability measure
P , called the expectation of X. Therefore

E [X] :=

∫

Ω

X(ω)P (dω) .

Recall the construction of the integral given in Section 4.2 in the special case of a
probability. First, if A ∈ F ,

E[1A] := P (A)

and, more generally, ifX is a simple random variable, that is, X(ω) =
∑N

i=1 αi1Ai
(ω)

where N ∈ N+, αi ∈ R and Ai ∈ F (1 ≤ i ≤ N), then

E[X] :=

N∑

i=1

αiP (Ai) .

For a non-negative random variable X, the expectation is defined by

E[X] := lim
n↑∞

E[Xn] ,

where {Xn}n≥1 is any non-decreasing sequence of non-negative simple random
variables that converges to X.

This definition is consistent, that is, it does not depend on the approximating
non-decreasing sequence of non-negative simple random variables admitting X
for limit. When X is of arbitrary sign, the expectation is defined by E[X] :=
E[X+]−E[X−] if E[X+] and E[X−] are not both infinite. If E[X+] and E[X−] are
infinite, the expectation is not defined. If E[|X|] <∞, X is said to be integrable,
and then E[X] is a finite number.

The basic properties of expectation follow from the general case of the integral
with respect to an arbitrary measure. These are linearity and monotonicity: If X1

and X2 are random variables with expectations, then for all λ1, λ2 ∈ R,

E[λ1X1 + λ2X2] = λ1E[X1] + λ2E[X2] ,

whenever the right-hand side has meaning (i.e., is not an ∞−∞ form). Also, if
X1 ≤ X2, P-a.s., then

E[X1] ≤ E[X2] .
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It follows from this that if E[X] is well defined, then

|E[X]| ≤ E[|X|] .

Given a sequence {Xn}n≥1 of random variables, one seeks conditions guaran-
teeing that, provided the limits thereafter exist,

lim
n↑∞

E [Xn] = E

[

lim
n↑∞

Xn

]

. (5.1)

The next theorem (monotone convergence theorem) is, again, nothing but a
rephrasing of the general result of the previous chapter (Theorem 4.3.3) in terms
of expectations.

Theorem 5.1.2 Let {Xn}n≥1 and X be real random variables such that

(i) P (limn↑∞Xn = X) = 1, and

(ii) P (Xn ≤ Xn+1 = 1) for all n ≥ 1.

Then (5.1) holds true.

Finally, we have the dominated convergence theorem, which is a rephrasing of
Theorem 4.3.5 in terms of expectations:

Theorem 5.1.3 Let {Xn}n≥1 and X be real random variables such that

(i) P (limn↑∞Xn = X) = 1, and

(ii) there exists a non-negative real random variable Z with finite expectation
such that P (|Xn| ≤ Z) = 1 for all n ≥ 1.

Then (5.1) holds true.

5.2 The Distribution of a Random Element

Definition 5.2.1 Let X be a random element with values in (E, E). Its (probabil-
ity) distribution is, by definition, the probability measure QX on (E, E), the image
of the probability measure P by the mapping X from (Ω,F) to (E, E), that is,

QX(C) = P (X ∈ C) (C ∈ E) .

Example 5.2.2: Distribution of X + a. Let X be a random vector with
values in Rm and distribution QX , and let a ∈ Rm. The distribution QX+a of the
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random vector X + a is given by

QX+a(C) := P (X + a ∈ C) = P (X ∈ C − a) = QX(C − a) (C ∈ B(Rm)) .

In particular, for all measurable non-negative functions f : E → R,

E [f(X + a)] =

∫

E

f(x)Qx(dx− a) .

As a special case of Theorem 4.4.2, we have:

Theorem 5.2.3 If g is a measurable function from (E, E) to (R,B(R)), then

E [g(X)] =

∫

E

g(x)QX(dx) ,

this formula requiring that one of the sides of the equality be well defined, in which
case the other is also well defined.

In the particular case where (E, E) = (R,B(R)), taking C = (−∞, x],

QX((−∞, x]) = P (X ≤ x) = FX(x) ,

where FX is the cumulative distribution function (c.d.f.) of X, and

E[g(X)] =

∫

R

g(x) dFX(x) ,

by definition of the Stieltjes–Lebesgue integral.

In the particular case where (E, E) = (Rn,B(Rn)) and the random vector X
admits a probability density fX (that is, if QX is the product of the Lebesgue
measure on (Rn,B(Rn)) with the function fX), Theorem 4.4.4 tells us that

E[g(X)] =

∫

Rn

g(x)fX(x) dx .

The following result is an example of the efficiency of Tonelli’s theorem.

Theorem 5.2.4 (The telescope formula) For any non-negative random vari-
able X, we have the so-called telescope formula

E[X] =

∫ ∞

0

[1− F (x)]dx .
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Proof. This follows from Tonelli’s theorem applied to the product measure �×P .
Indeed,

E[X] = E

[∫ ∞

0

1{X>x} dx
]

=

∫ ∞

0

E
[
1{X>x}

]
dx =

∫ ∞

0

[1− F (x)]dx .

�

5.3 Characteristic Functions

Recall that the characteristic function ϕ : Rd → C of a real random vector X ∈ R
d

is defined by

ϕ(u) := E
[
eiu

TX
]

(u ∈ R
d) .

Theorem 5.3.1 Let X ∈ R
d be a random vector with characteristic function ϕ.

Then (Paul Lévy’s formula) for all 1 ≤ j ≤ d, all aj , bj ∈ R
d such that aj < bj,

lim
c↑+∞

1

(2π)d

∫ +c

−c

· · ·
∫ +c

−c

(
d∏

j=1

e−iujaj − e−iujbj

iuj

)

ϕ(u1, . . . , ud) du1 · · ·dud

= E

[
d∏

j=1

(
1

2
1{Xj=aj or bj} + 1{aj<Xj<bj}

)]

.

Proof. We prove this result in the univariate case. The multivariate case is a
straightforward adaptation of it. Let X be a real-valued random variable with
cumulative distribution function F and characteristic function ϕ. We show that
for any pair of points a, b (a < b),

lim
c↑+∞

1

2π

∫ +c

−c

e−iua − e−iub

iu
ϕ(u) du = E

[(
1

2
1{X=a or b} + 1{a<X<b}

)]

. (�)

For this, write

Φc : =
1

2π

∫ +c

−c

e−iua − e−iub

iu
ϕ(u) du

=
1

2π

∫ +c

−c

e−iua − e−iub

iu

(∫ +∞

−∞
eiux dF (x)

)

du

=
1

2π

∫ +∞

−∞

(∫ +c

−c

e−iua − e−iub

iu
eiux du

)

dF (x) =

∫ +∞

−∞
Ψc(x) dF (x) ,
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where

Ψc(x) :=
1

2π

∫ +c

−c

e−iua − e−iub

iu
e+iux du .

The above computations are justified by Fubini’s theorem. The conditions of this
theorem are satisfied since, observing that

∣
∣
∣
∣
e−iua − e−iub

iu

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ b

a

e−iuxdx

∣
∣
∣
∣ ≤ (b− a) ,

we have
∫ +c

−c

∫ +∞

−∞

∣
∣
∣
∣
e−iua − e−iub

iu
eiux

∣
∣
∣
∣ dF (x) du

=

∫ +c

−c

∫ +∞

−∞

∣
∣
∣
∣
e−iua − e−iub

iu

∣
∣
∣
∣ dF (x) du

≤
∫ +c

−c

∫ +∞

−∞
(b− a) dF (x) du = 2c(b− a) <∞ .

Since the function u→ cos(au)
u

is antisymmetric,
∫ +c

−c
cos(au)

u
du = 0, and therefore

Ψc(x) =
1

2π

∫ +c

−c

sin u(x− a)− sin u(x− b)

u
du

=
1

2π

∫ +c(x−a)

−c(x−a)

sin u

u
du− 1

2π

∫ +c(x−b)

−c(x−b)

sin u

u
du .

The function c �→
∫ c

0
sinu
u

du =
∫ 0

−c
sinu
u

is uniformly continuous in c and tends to
∫ +∞
0

sinu
u

du = 1
2
π as c ↑ +∞. Therefore the function (c, x) → Ψc(x) is uniformly

bounded. Moreover, in view of the above expression for Ψc,

lim
c↑∞

Ψc(x) := Ψ(x) =

⎧
⎨

⎩

0 if x < a or x > b
1
2

if x = a or x = b
1 if a < x < b .

Therefore, by dominated convergence,

lim
c↑∞

Φc =

∫ +∞

−∞
lim
c↑∞

Ψc(x) dF (x)

=

∫ +∞

−∞
Ψ(x) dF (x) = E

[(
1

2
1{X=a or b} + 1{a<X<b}

)]

.

�
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Note that, in the univariate case, denoting by F the cumulative distribution
function of the random variable X,

E

[(
1

2
1{X=a or b} + 1{a<X<b}

)]

=
F (b) + F (b−)

2
− F (a) + F (a−)

2
,

so that formula (�) takes the perhaps more familiar form

F (b) + F (b−)
2

− F (a) + F (a−)
2

= lim
c↑+∞

1

2π

∫ +c

−c

e−iua − e−iub

iu
ϕ(u) du .

Corollary 5.3.2 The distribution of a random vector of Rd is uniquely determined
by its characteristic function.

Corollary 5.3.3 If the random variable X admits a probability density f and if
moreover its characteristic function ϕ is integrable, then

f(x) = 1
2π

∫ +∞
−∞ ϕ(u)e−iux du . (5.2)

Proof. With f defined as in (5.2), we have, by Fubini,

∫ b

a

f(x) dx =

∫ b

a

1

2π

∫ +∞

−∞
ϕ(u)e−iux du dx

=
1

2π

∫ +∞

−∞
ϕ(u)

(∫ b

a

e−iux du

)

dx

= lim
c↑∞

1

2π

∫ +c

−c

ϕ(u)

(∫ b

a

e−iux du

)

dx

= lim
c↑∞

1

2π

∫ +c

−c

ϕ(u)
e−iua − e−iub

iu
dx = F (b)− F (a) ,

by Paul Lévy’s inversion formula. This proves that f is a probability density of
X. �

The next result says in particular how under certain conditions of integrability,
the moments of a random variable can be extracted from its characteristic function.
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Theorem 5.3.4 Let X be a real random variable with characteristic function ψ,
and suppose that E [|X|n] < ∞ for some integer n ≥ 1. Then for all integers
r ≤ n, the r-th derivative ψ(r) of ψ exists and is given by

ψ(r)(u) = irE
[
XreiuX

]
, (5.3)

and in particular E [Xr] = ψ(r)(0)
ir

. Moreover,

ψ(u) =
∑n

r=0
(iu)r

r!
E [Xr] + (iu)n

n!
εn(u) , (5.4)

where limn↑∞ εn(u) = 0 and |εn(u)| ≤ 3E [|X|n].
Proof. First we observe that for any non-negative real number a, and all integers
r ≤ n, ar ≤ 1 + an (indeed, if a ≤ 1, then ar ≤ 1, and if a ≥ 1, then ar ≤ an). In
particular,

E [|X|r] ≤ E [1 + |X|n] = 1 + E [|X|n] <∞ .

Suppose that for some r < n,

ψ(r)(u) = irE
[
XreiuX

]
.

In

ψ(r)(u+ h)− ψ(r)(u)

h
= irE

[

Xr e
i(u+h)X − eiuX

h

]

= irE

[

XreiuX
eihX − 1

h

]

,

the quantity under the expectation sign tends toXr+1eiuX as h→ 0, and moreover,
it is bounded in absolute value by an integrable function since

∣
∣
∣
∣X

reiuX
eihX − 1

h

∣
∣
∣
∣ ≤

∣
∣
∣
∣X

r e
ihX − 1

h

∣
∣
∣
∣ ≤ |X|

r+1 .

(For the last inequality, use the fact that |eia − 1|2 = 2(1−cos a) ≤ a2.) Therefore,
by dominated convergence,

ψ(r+1)(u) = lim
h→0

ψ(u+ h)− ψ(u)

h

= irE

[

lim
h→0

XreiuX
eihX − 1

h

]

= irE
[
Xr+1eiuX

]
.

Equality (5.3) follows since the induction hypothesis is trivially true for r = 0.
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We now prove (5.4). By Taylor’s formula, for y ∈ R,

eiy = cos y + i sin y =

n−1∑

k=0

(iy)k

k!
+

(iy)n

n!
(cos(θ1y) + i sin(θ2y))

for some θ1, θ2 ∈ [−1,+1]. Therefore

eiuX =
n−1∑

k=0

(iuX)k

k!
+

(iuX)n

n!
(cos(θ1uX) + i sin(θ2uX)) ,

where θ1 = θ1(ω), θ2 = θ2(ω) ∈ [−1,+1], and

E
[
eiuX

]
=

n−1∑

k=0

(iu)k

k!
E[Xk] +

(iu)n

n!
(E [Xn] + εn(u)) ,

where
εn(u) = E [Xn (cos θ1uX + i sin θ2uX − 1)] .

Clearly |εn(u)| ≤ 3E [|X|n]. Also, since the random variable

Xn (cos θ1uX + i sin θ2uX − 1)

is bounded in absolute value by the integrable random variable 3 |X|n and tends
to 0 as u→ 0, we have by dominated convergence limu→0 εn(u) = 0. �

Theorem 5.3.4 can be extended to random vectors, with a proof similar to that
of the univariate case. We just quote the formula giving the mixed moments of a
random vector in terms of its characteristic function:

Let X = (X1, · · · , Xd) ∈ Rd be a random vector with characteristic function

ϕ(u) := E
[
eu

TX
]

(u = (u1, · · · , ud)) .

Theorem 5.3.5 Suppose that E [|Xi|n] < ∞ (1 ≤ i ≤ d) for some n ≥ 1. Then
for all ν = (ν1, · · · , νd) such that ν1 + · · ·+ νd ≤ n, the partial derivative

∂ν1+···+νd

∂uν1
1 · · ·∂uνd

1

ϕ(u1, · · · , ud)

exists and is continuous, and

E [Xν1
1 · · ·Xνd

d ] =
∂ν1+···+νd

∂uν1
1 · · ·∂uνd

1

ϕ(0, · · · , 0) . (5.5)

The proof is required in Exercise 5.7.11.
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5.4 Independence

This section revisits the notion of independence an rigorous and more general way
than was done in the first three chapters.

Recall that two events A and B are said to be independent if

P (A ∩ B) = P (A)P (B) .

More generally, a family {Ai}i∈I of events, where I is an arbitrary index, is called
an independent family if, for every finite subset J ∈ I,

P

(
⋂

j∈J
Aj

)

=
∏

j∈J
P (Aj) .

Two random elements X : (Ω,F) → (E, E) and Y : (Ω,F) → (G,G) are called
independent if for all C ∈ E , D ∈ G

P ({X ∈ C} ∩ {Y ∈ D}) = P (X ∈ C)P (Y ∈ D) .

More generally, a family {Xi}i∈I (where I is an arbitrary index) of random elements
Xi : (Ω,F) → (Ei, Ei) (i ∈ I) is said to be independent if, for every finite subset
J ∈ I,

P

(
⋂

j∈J
{Xj ∈ Cj}

)

=
∏

j∈J
P (Xj ∈ Cj)

for all Cj ∈ Ej (j ∈ J).

The σ-fields F1 and F2 on Ω are called independent if for any k1, k2 ≥ 1, any
A1, . . . , Ak1 ∈ F1, and any B1, . . . , Bk2 ∈ F2,

P (A1, . . . , Ak1, B1, . . . , Bk2) = P (A1, . . . , Ak1)P (B1, . . . , Bk2) .

This definition extends in an obvious way to the independence of a finite number
of σ-fields.

By definition, the σ-field generated by a random element X with values in the
measurable space (E, E) is the σ-field σ(X) generated by the collection of events
{X ∈ C} (C ∈ E).

Therefore a family {Xi}i∈I , where I is an arbitrary index, of random elements
Xi : (Ω,F)→ (Ei, Ei) (i ∈ I), is an independent family of random elements if for
every finite subset J ∈ I, the family of σ-fields {σ(Xi)}i∈I is independent.

The next result says that the independence property is preserved when taking
functions of the random elements and is an immediate consequence of the definition
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of independent random elements. This “natural” result was used without further
justification in the first three chapters.

Theorem 5.4.1 If the random elements X and Y , taking their values in (E, E)
and (G,G) respectively, are independent, then so are the random elements ϕ(X)
and ψ(Y ), where ϕ : (E, E)→ (E ′, E ′), ψ : (G,G)→ (G′,G ′).

Proof. For all C ′ ∈ E ′, D′ ∈ G ′, the sets C = ϕ−1(C ′) and D = ψ−1(D′) are in E
and G respectively, since ϕ and ψ are measurable. We have

P (ϕ(X) ∈ C ′, ψ(Y ) ∈ D′) = P (X ∈ C, Y ∈ D)

= P (X ∈ C)P (Y ∈ D)

= P (ϕ(X) ∈ C ′)P (ψ(Y ) ∈ D′) .

�

The above result is stated for two random elements for simplicity, and it extends
in the obvious way to a finite number of independent random elements.

In order to prove that two σ-fields are independent, it suffices to prove that
certain subclasses of these σ-fields are independent.

More precisely:

Theorem 5.4.2 Let (Ω,F , P ) be a probability space, and let S1 and S2 be two
collections of events that are stable under finite intersections. If S1 and S2 are
independent, then so are σ(S1) and σ(S2).

This is not proved in this book.1

The next corollary brings us back to the elementary definition of independence
of two random variables.

Corollary 5.4.3 Let (Ω,F , P ) be a probability space on which are given two real
random variables X and Y . For these two random variables to be independent, it is
necessary and sufficient that for all a, b ∈ R, P (X ≤ a, Y ≤ b) =
P (X ≤ a)P (Y ≤ b).

Proof. This follows from Theorem 5.4.2, since the collection {(−∞, a]; a ∈ R} is
stable under finite intersection and generates B(R). �

Similar arguments lead to a similar result for several random variables.

1 See for instance Theorem 3.1.39 of [7].
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The Product Formula

The independence of two random variables X and Y is equivalent to the factori-
sation of their joint distribution:

Q(X,Y ) = QX ×QY ,

where Q(X,Y ), QX , and QY are the distributions of (X, Y ), X, and Y , respectively.
Indeed, for all sets of the form C ×D, where C ∈ E , D ∈ G,

Q(X,Y )(C ×D) = P ((X, Y ) ∈ C ×D) = P (X ∈ C, Y ∈ D)

= P (X ∈ C)P (Y ∈ D) = QX(C)QY (D) .

In particular, by the Fubini–Tonelli theorem,

Theorem 5.4.4 Let X and Y be independent random elements taking their val-
ues in (E, E) and (G,G) respectively. Then for all g : (E, E) → (R,B(R)),
h : (G,G) → (R,B(R)) such that E [|g(X)|] < ∞ and E [|h(Y )|] < ∞, or g ≥ 0
and h ≥ 0, we have the product formula for expectations

E [g(X)h(Y )] = E [g(X)]E [h(Y )] .

Example 5.4.5: Convolution Product. Let X and Y be two independent
random vectors with values in Rm and with respective distributions QX and QY .
We compute the distribution of the random vector Z := X + Y :

P (Z ∈ C) = P (X + Y ∈ C) = E [1C(X + Y )]

=

∫

Rm

∫

Rm

1C(x+ y)QX(dy)QY (dy)

=

∫

Rm

(∫

Rm

1C(x+ y)QX(dx)

)

QY (dy)

=

∫

Rm

(∫

Rm

1C−y(x)QX(dx)

)

QY (dy)

=

∫

Rm

QX(C − y)QY (dy) ,

that is,

QZ(C) =

∫

Rm

QX(C − y)QY (dy) .

This probability distribution is called the convolution product of QX and QY .
In the scalar case m = 1, and with C := (−∞, z], we have the following version

of the convolution product formula in terms of cumulative distribution functions
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and Stieltjes–Lebesgue integrals:

FZ(z) =

∫

R

FX(z − y)FY (dy) .

The next result generalizes Theorem 3.2.20, with a similar proof.

Theorem 5.4.6 For the random vectors X1, . . . , Xd to be independent, a nec-
essary and sufficient condition is that the characteristic function ϕX of X =
(X1, . . . , Xd) factorizes as

ϕX(u1, . . . , ud) =
d∏

j=1

ϕj(uj) ,

where for all 1 ≤ j ≤ d, ϕj is a characteristic function. In this case, for all
1 ≤ j ≤ d, ϕj = ϕXj

, the characteristic function of Xj.

Proof. Exercise 5.7.7. �

5.5 Conditional Expectation III

In Chapters 2 and 3, the theory of conditional expectation was developed in the
discrete and the absolutely continuous cases respectively. This chapter now gives
the theory of conditional expectation of a random variable with respect to another
random variable when the joint distribution is arbitrary.

We start with a preliminary observation. Let X and Y be two random vectors
of dimensions p and n respectively, with the joint probability density fX,Y (x, y).
Let the function g : Rp ×Rn → R+ be either non-negative or such that g(X, Y )
is integrable. For any non-negative bounded function ϕ : Rn → R, we have

E
[
EY [g(X, Y )]ϕ(Y )

]
= E [g(X, Y )ϕ(Y )] . (5.6)

Indeed,

E
[
EY [g(X, Y )]ϕ(Y )

]
= E [ψ(Y )ϕ(Y )] =

∫
Rn ψ(y)ϕ(y)fY (y) dy

=
∫
Rn

(∫
Rp g(x, y)

fX,Y (x,y)

fY (y)
dx

)
ϕ(y)fY (y) dy

=
∫
Rn

∫
Rp g(x, y)ϕ(y)fX,Y (x, y) dx dy

= E [g(X, Y )ϕ(Y )] .
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In the discrete case, a similar computation yields a similar result. This suggests
to adopt, in the general case (not necessarily discrete or absolutely continuous),
(5.6) as a definition of conditional expectation, where X and Y are random ele-
ments taking their values in spaces E and F respectively that can be either discrete
or some Rk. This would include mixed cases of the type discrete/absolutely con-
tinuous, but also more complex situations, such as the following: E = Rp and
F = Rn, X and Y admit a probability density function, but the couple (X, Y )
does not admit a probability density function (for instance, in the univariate case,
if Y = X2).

We shall now give more generality to the study (but only in appearance) and
take for the conditioned variable a real random variable Z (previously, we chose
Z = g(X, Y )).

Definition 5.5.1 A Y -measurable random variable is a random variable U of the
form U = ϕ(Y ) where ϕ : Rn → R is a measurable function.

Definition 5.5.2 Let Z and Y be as above, and suppose that Z is either non-
negative or integrable. The conditional expectation EY [Z] is by definition the
“essentially unique” variable of the form ψ(Y ), where ψ is measurable, such that
equality

E [ψ(Y )U ] = E [ZU ] (5.7)

holds for any non-negative bounded Y -measurable real random variable U = ϕ(Y ).

By “essentially unique” the following is meant: If there are two functions ψ1

and ψ2 that meet the requirement, then ψ1(Y ) = ψ2(Y ) almost surely, that is,
P (ψ1(Y ) = ψ2(Y )) = 1. We then say that ψ1(Y ) and ψ2(Y ) are two “versions” of
EY [Z].

Theorem 5.5.3 In the situation described in the above definition, the conditional
expectation exists and is essentially unique.

Proof. The proof of existence is omitted at this point (see Section 5.6). In practice,
one is usually able to find “a” function ψ by construction, as the examples and the
exercises will show. The uniqueness part that we now agree to prove will guarantee
that it is “the” function ψ.

Indeed, suppose that ψ1 and ψ2 meet the requirement. In particular,

E [ψ1(Y )ϕ(Y )] = E [ψ2(Y )ϕ(Y )] (= E [Zϕ(Y )])

and therefore
E [(ψ1(Y )− ψ2(Y ))ϕ(Y )] = 0
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for a non-negative bounded measurable functions ϕ : Rn → R. Choosing ϕ(Y ) =
1{ψ1(Y )−ψ2(Y )>0}, we obtain

E
[
(ψ1(Y )− ψ2(Y ))1{ψ1(Y )−ψ2(Y )>0}

]
= 0 .

Since the random variable (ψ1(Y )−ψ2(Y ))1{ψ1(Y )−ψ2(Y )>0} is non-negative and has
a null expectation, it must be almost surely null (Lemma 3.3.3). In other terms
ψ1(Y )−ψ2(Y ) ≤ 0 almost surely. Exchanging the roles of ψ1 and ψ2, we have that
ψ1(Y )− ψ2(Y ) ≥ 0 almost surely. Therefore ψ1(Y )− ψ2(Y ) = 0 almost surely. �

Example 5.5.4: The discrete case revisited. If Y is a positive integer-
valued random variable, then

EY [Z] =

∞∑

n=1

E[Z1{Y=n}]
P (Y = n)

1{Y=n} ,

where, by convention,
E[Z1{Y=n}]
P (Y=n)

= 0 when P (Y = n) = 0.

Proof. We must verify (5.7) for all bounded measurable ϕ : R → R. The right-
hand side is equal to

E

[(
∑

n≥1

E[Z1{Y=n}]
P (Y = n)

1{Y=n}

)(
∑

k≥1

ϕ(k)1{Y=k}

)]

=E

[
∑

n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)1{Y=n}

]

=
∑

n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)E[1{Y=n}]

=
∑

n≥1

E[Z1{Y=n}]
P (Y = n)

ϕ(n)P (Y = n) =
∑

n≥1

E[Z1{Y=n}]ϕ(n) = E[Zϕ(Y )] .

�

Example 5.5.5: The absolutely continuous case revisited. Let X
and Y be random vectors of dimensions p and n respectively, admitting the joint
probability density fX,Y (x, y). Let g : Rp+n → R be a measurable function, and
suppose that the random variable Z = g(X, Y ) is integrable. The conditional
expectation of Z given Y is the random variable ψ(Y ), where

ψ(y) =

∫

RP

g(x, y)fY=y
X (x)dx .
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Proof. We first verify that ψ(Y ) is integrable. We have

|ψ(y)| ≤
∫

RP

|g(x, y)|fY=y
Z (x)dx

and therefore

E[|ψ(Y )|] =
∫

Rn

|ψ(y)|fY (y)dy ≤
∫

Rn

(∫

RP

|g(x, y)|fY=y
Z (x)dx

)

fY (y)dy

=

∫

RP

∫

Rn

|g(x, y)|fY=y
X (x)fY (y)dxdy

=

∫

RP

∫

Rn

|g(x, y)|fX,Y (x, y) dx dy = E[|g(X, Y )|] = E[|Z|] <∞ .

We check that (5.7) is true, with U = ϕ(Y ) bounded. The right-hand side is

E[ψ(Y )ϕ(Y )] =

∫

Rn

ψ(y)ϕ(y)fY (y)dy

=

∫

Rn

(∫

RP

g(x, y)fY=y
X (x)dx

)

ϕ(y)fY (y)dy

=

∫

RP

∫

Rn

g(x, y)ϕ(y)fY=y
X (x)fZ(y) dx dy

=

∫

RP

∫

Rn

g(x, y)ϕ(y)fX,Y (x, y) dx dy

= E[g(X, Y )ϕ(Y )] = E[Zϕ(Y )] .

�

Example 5.5.6: Mixed case, I. We shall consider the situation, often encoun-
tered in practice, where X is a random vector of dimension p and where Y takes
its values in N+. We denote P (Y = k) by π(k). We suppose that for all k ≥ 1,
there is a probability density function fk such that

P (X ∈ A|Y = k) =

∫

A

fk(x) dx (A ∈ B(Rp)) .

Then, for any function g : RP ×N+ → R that is non-negative or such that g(X, Y )
is integrable, we have

EX [g(X, Y )] = ψ(Y ) ,

where

ψ(k) :=

∫

Rp

g(x, k)fk(y)dy .
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The proof is similar to the proof when (X, Y ) has a joint probability distribution
and is left to the reader.

Example 5.5.7: Mixed case, II. We now treat the second type of mixed
case, where the conditioning variable Y is a random vector of dimension n, X is a
N+-valued random variable, with the joint distribution of (X, Y ) given by

P (X = k) = π(k) (k ≥ 1)

and

P (Y ∈ A|X = k) =

∫

A

fk(y)dy (k ≥ 1, A ∈ B(Rn)) .

For all k ≥ 1, y ∈ Rn, let

πX|Y (k|y) :=
π(k)fk(y)

fY (y)

if fY (y) =
∑

k≥1 π(k)fk(y) > 0, and π(k|y) = 0 otherwise. We let the reader verify
that for all g : N×Rn → R such that E[|g(X, Y )| <∞,

EX [g(X, Y )] = ψ(Y ) ,

where
ψ(y) =

∑

k≥1

g(k, y)πX|Y (k|y) .

We now list, in the more general setting, the main rules that are useful in
computing conditional expectations.

Let Y be a random variable, and let Z,Z1, Z2 be integrable (resp. non-negative
finite) random variables, λ1, λ2 ∈ R (resp. ∈ R+).

Theorem 5.5.8 Rule 1 (linearity)

EY [λ1Z1 + λ2Z2] = λ1E
Y [Z1] + λ2E

Y [Z2] .

Proof. We consider only the integrable case. The non-negative case follows,
mutatis mutandis. We must check that λ1E

Y [Z1] + λ2E
Y [Z2] is Y -measurable

(which is part of the definition of a conditional expectation with respect to Y ) and
that for all bounded Y -measurable random variables U

E[(λ1E
Y [X1] + λ2E

Y [X1])U ] = E[(λ1Z1 + λ2Z2)U ] .
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This follows immediately from the definition of EY [Zi], which says that E[EY [Zi]U ]
= E[ZiU ] (i = 1, 2). �

Theorem 5.5.9 Rule 2. If Z is independent of Y , then

EY [Z] = E[Z] .

Proof. (Non-negative case.) The constant E[Z] (as any constant) is Y -measurable.
Moreover, for all bounded Y -measurable random variable U , E[E[Z]U ] = E[ZU ].
In fact, Z and U are independent and therefore E[ZU ] = E[Z]E[U ]. �

Theorem 5.5.10 Rule 3. If Z is Y -measurable, then

EY [Z] = Z .

Proof. (Non-negative case.) In fact, Z is Y -measurable by hypothesis and
E[ZU ] = E[ZU ]! �

Theorem 5.5.11 Rule 4. If Z1 ≤ Z2 P -a.s. Then

EY [Z1] ≤ EY [Z2], P -a.s.

In particular, if Z is a non-negative random variable EY [Z] ≥ 0, P - a.s.

Proof. We consider only the integrable case. For any bounded Y -measurable
random variable U ,

E[EY [Z1]U ] = E[Z1U ] ≤ E[Z2U ] = E[EY [Z2]U ] .

Therefore
E[(EY [Z2]− EY [Z1])U ] ≥ 0 .

In particular,
E[(EY [Z2]− EY [Z1])1{EY [Z2]<EY [Z1]}] ≥ 0 .

Since the left-hand side is non-positive, it follows that P (EY [Z2] < EY [Z1]). �

Theorem 5.5.12 Rule 5. Let Y1 and Y2 be random variables, and let Z be either
integrable or non-negative. Then

EY2 [EY1,Y2 [Z]] = EY2 [Z] .

Proof. We just have to check that EY2 [EY1,Y2[Z]] is a version of EY2 [Z]. Since it
is a Y2-measurable variable it remains to show that it satisfies

E[EY2 [EY1,Y2[Z]]U ] = E[ZU ] ,
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for any bounded (resp. bounded non-negative) Y2-measurable variable U . Since
such a variable is a fortiori (Y1, Y2)-measurable,

E[[EY1,Y2[Z]U ] = E[ZU ] .

Moreover
E[EY2 [EY1,Y2[Z]]U ] = E[[EY1,Y2 [Z]U ] ,

by definition of EY2 [EY1,Y2[Z]]. �

Theorem 5.5.13 Let Y be a random vector and let Z be of the form Z = V Z ′,
where V is a Y -measurable bounded (resp. non-negative finite) random variable,
and Z ′ is an integrable (resp. non-negative finite) random variable. Then

EY [V Z ′] = V EY [Z ′] .

Proof. We consider only the integrable case. We observe that V EY [Z] is Y -
measurable, and it remains to prove that for all bounded Y -measurable random
variables U ,

E[V Z ′U ] = E[V EY [Z ′]U ].

But, since V U is bounded, by definition of EY [Z ′],

E[V EY [Z ′]U ] = E[V Z ′U ] .

�

The theorems allowing interversion of limit and integral (monotone convergence
theorem and dominated convergence theorem) have conditional versions.

We start with the monotone convergence theorem:

Theorem 5.5.14 Let X be some random vector and let {Yn}n≥1 be a P -a.s. non-
decreasing sequence of non-negative random variables converging P -a.s. to the ran-
dom variable Y . Then {EX [Yn]}n≥1 is a P -a.s. non-decreasing sequence of random
variables converging P -a.s. to EX [Y ].

Proof. By monotonicity of conditional expectation, {EX [Yn]}n≥1 is a P -a.s. non-
decreasing sequence of X-measurable random variables. In particular, there exists
a P -a.s. limit W , X-measurable, of this sequence. By monotone convergence, for
any bounded non-negative X-measurable random variable U ,

lim
n↑∞

E[YnU ] = E[Y U ],

and
lim
n↑∞

E[EX [Yn]U ] = E[WU ].
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Therefore, since E[YnU ] = E[EX [Yn]U ] for all n ≥ 1, E[Y U ] = E[WU ]. This
being true for all bounded X-measurable random variables U , W = E [Y | X]. �

We now turn to the conditioned version of the dominated convergence theorem:

Theorem 5.5.15 Let X be some random vector, and let {Yn}n≥1 be a sequence
of random variables converging P -a.s. to the random variable Y , and such that
|Yn| ≤ Z for some integrable random variable Z. Then {EX [Yn]}n≥1 converges
P -a.s. to EX [Y ].

Proof. Let Wn := supm≥n |Ym − Y |. The sequence {Wn}n≥1 decreases P -a.s. to
0. We have

|EX [Yn]− EX [Y ]| = |EX [Yn − Y ]|
≤ EX [|Yn − Y |] ≤ EX [Wn].

The non-negative sequence {EX [Wn]}n≥1 decreases P -a.s. (rule 4). Let H ≥ 0 be
its limit. Then

0 ≤ |E[H ]| ≤ E
[
EX [Wn]

]
= E[Wn] ,

where the latter quantity tends to 0 by dominated convergence (because 0 ≤Wn ≤
2Z). Therefore E[H ] = 0, which implies that P (H = 0) = 1 since H is P-a.s non-
negative. �

5.6 General Theory of Conditional Expectation

We shall need later a more general and abstract theory of conditional expectation.
Previously, the conditioning was with respect to random variables or vectors. We
now condition with respect to σ-fields.

Definition 5.6.1 Let Y be an integrable (resp. finite non-negative) random vari-
able, and let G be a sub-σ-field of F . A version of the conditional expectation of Y
given G is any integrable (resp. finite non-negative) G-measurable random variable
Z such that

E[Y U ] = E[ZU ] (5.8)

for all bounded (resp. bounded non-negative) G-measurable random variables U .

Theorem 5.6.2 Let Y and G be as above. There exists at least one version of the
conditional expectation of Y given G, and it is essentially unique, that is, if Z ′ is
another version of the conditional expectation of Y given G, then Z = Z ′, P -a.s.
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There will be no problem in representing two versions of this conditional expec-
tation by the same symbol, since, as we just saw, they are P -almost surely equal.
We choose the symbol E[Y |G] or EG [Y ] indifferently. From now on we say: EG [Y ]
(or E[Y |G]) is the conditional expectation of Y given G. The defining equality
(5.8) reads

E[Y U ] = E[EG [Y ]U ]

for all bounded (resp. bounded non-negative) G-measurable random variables U .

Proof. Uniqueness. The integrable case will be treated, the other case being
similar. First observe that

0 = E[ZU ]−E[Z ′U ] = E[(Z − Z ′)U ]

for all bounded G-measurable random variable U . In particular, with U = 1{Z>Z′},

E[(Z − Z ′)1{Z>Z′}] = 0 .

Since the random variable in the expectation is non-negative, it can have a null
expectation only if it is P -a.s. null, that is if P -a.s., Z ≤ Z ′. By symmetry, P -a.s.,
Z ≥ Z ′, and therefore, as announced, Z = Z ′, P-a.s.

Existence. We do this for the non-negative integrable case, the general case
following easily from this special case. Consider the measure ν on (Ω,G) defined
by

ν(A) =

∫

A

Y dP (A ∈ G) .

It is finite (resp. σ-finite) since Y is assumed integrable (resp. finite non-negative).
Moreover, if P (A) = 0 then ν(A) = 0. Therefore the measure μ on (Ω,G) that is
the restriction of P to (Ω,G) is absolutely continuous with respect to ν, so that, by
the Radon–Nikodým theorem (Theorem 4.4.6), there exists an integrable (resp. fi-
nite non-negative) random variable of (Ω,G), that is, an integrable (resp. finite non-
negative)
G-measurable random variable Z of (Ω,F), such that

ν(A) =

∫

A

ZdP (A ∈ G) .

In particular, ∫

Ω

U Y dP =

∫

Ω

U Z dP

for all bounded (resp. non-negative bounded) G-measurable random variables U .
�
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A Special Case

Let

G := σ(X) , (5.9)

where X = (X1, . . . , XN) is an arbitrary random vector defined on (Ω, F) and
σ(X) is, by definition, the smallest σ-field that contains all the sets of the form
{X ∈ C} where C ∈ B(RN). In this situation, we adopt the notation EX [Y ]
for EG [Y ] (or E[Y |X] for E[Y |G]), and we call this (equivalence class of) random
variable(s) the conditional expectation of Y given X.

Theorem 5.6.3 Let X be a random vector with values in the measurable space
(Rk,B(Rk)). A random variable Z : (Ω,F) → (R,B(R)) is σ(X)-measurable
if and only if there exists a measurable function g : (Rk,B(Rk))→ (R,B(R)) such
that Z = g(X).

Proof. The “if” part is just the stability of measurability under composition (The-
orem 4.1.11). For the necessity, first observe that this is true of simple random
variables. It therefore remains to show that it is true for a non-negative ran-
dom variable Z (from which the general case straightforwardly follows). Such
a random variable is the limit of a non-decreasing sequence {Zn}n≥1 of non-
negative simple random variables of the form gn(X) for some measurable func-
tion gn : (Rk,B(Rk)) → (R,B(R)). Let M be the (measurable) set on which the
sequence {gn}n≥1 admits a limit. Define g(x) = lim gn(x)1M(x) (a measurable
function). For each ω, Z(ω) = lim gn(X(ω)), which implies that Z(ω) ∈ M and
that Z(ω) = lim gn(X(ω)) = g(X(ω)). �

Properties of the Conditional Expectation

The main rules that are useful in computing conditional expectations will be given
once more, but this time in the general abstract framework.

Let G be a sub-σ-field of F , and let Y, Y1, Y2 be integrable (resp. non-negative
finite) random variables, λ1, λ2 ∈ R (resp. ∈ R+).

Theorem 5.6.4 Rule 1. (linearity)

EG [λ1Y1 + λ2Y2] = λ1E
G [Y1] + λ2E

G [Y2] .

Proof. We consider the integrable case. We must check that λ1EG[X1]+λ2EG[X2]
is G-measurable (which is part of the definition of a conditional expectation with
respect to G) and that for all bounded G-measurable random variables U

E[(λ1EG[X1] + λ2EG[X1])U ] = E[(λ1Y1 + λ2Y2)U ].
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This follows immediately from the definition of EG[Xi], which says that
E[EG[Xi]U ] = E[YiU ] (i = 1, 2). �
Theorem 5.6.5 Rule 2. If Y is independent of G, then

EG [Y ] = E[Y ] .

Proof. We consider the integrable case. First recall that the constant E[Y ] is
G-measurable. It remains to prove that for all bounded G-measurable random
variables U , E[E[Y ]U ] = E[Y U ]. This is the case since Y and U are independent
and therefore E[Y U ] = E[Y ]E[U ]. �

Theorem 5.6.6 Rule 3. If Y is G-measurable,

EG [Y ] = Y .

Proof. We consider the integrable case. We must check that Y is G-measurable
and that E[Y U ] = E[Y U ]. �

Theorem 5.6.7 Rule 4. If Y1 ≤ Y2 P -a.s., then

EG [Y1] ≤ EG [Y2] P -a.s. (5.10)

In particular, if Y is a non-negative random variable, then EG [Y ] ≥ 0, P -a.s.

Proof. We consider the integrable case. The non-negative case follows mutatis
mutandis. For any bounded G-measurable random variable U ≥ 0,

E[EG [Y1]U ] = E[Y1U ] ≤ E[Y2U ] = E[EG [Y2]U ] .

Therefore
E[(EG [Y2]−EG [Y1])U ] ≥ 0 .

Taking U = 1{EG [Y2]<EG[Y2]}, we obtain (5.10). �

Theorem 5.6.8 Rule 5. (successive conditioning). Let H be a sub-σ-field of F
such that H ⊆ G. Then

EH[EG [Y ]] = EH[Y ] .

Proof. We just have to check that EH[EG [Y ]] is a version of EH[Y ]. Since it is
an H-measurable variable, it remains to show that it satisfies the equality

E[EH[EG [Y ]]U ] = E[Y U ] ,

for any bounded (resp. bounded non-negative) H-measurable variable U . Since
such a variable is a fortiori G-measurable,

E[[EG [Y ]]U ] = E[Y U ] .
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Moreover,

E[EH[EG [Y ]]U ] = E[[EG [Y ]]U ] ,

by definition of EH[EG [Y ]]. �

Theorem 5.6.9 Let Y be of the form Y = V Z, where V is a G-measurable
bounded (resp. non-negative finite) random variable, and Z is an integrable (resp.
non-negative finite) random variable. Then

EG [V Z] = V EG [Z] .

Proof. We consider the integrable case. We observe that V EG [Z] is G-measurable,
and it remains to prove that for all bounded G-measurable random variables U ,

E[V ZU ] = E[V EG[Z]U ] .

But, since V U is bounded, by definition of EG [Z],

E[V EG [Z]U ] = E[V ZU ] .

�

The theorems allowing interversion of limit and integral (monotone convergence
theorem and dominated convergence theorem) have conditional versions.

We start with the monotone convergence theorem:

Theorem 5.6.10 Let G be a sub-σ-field of F , and let {Yn}n≥1 be a P -a.s. non-
decreasing sequence of non-negative random variables converging P -a.s. to the ran-
dom variable Y . Then {EG [Yn]}n≥1 is a P -a.s. non-decreasing sequence of random
variables converging P -a.s. to EG [Y ].

Proof. By monotonicity of conditional expectation, {EG [Yn]}n≥1 is a P -a.s. non-
decreasing sequence of G-measurable random variables. In particular, there exists
a P -a.s. limit W , G-measurable, of this sequence. By monotone convergence, for
any bounded non-negative G-measurable random variable U ,

lim
n↑∞

E[YnU ] = E[Y U ] ,

and

lim
n↑∞

E[EG [Yn]U ] = E[WU ] .

Therefore, since E[YnU ] = E[EG [Yn]U ] for all n ≥ 1, E[Y U ] = E[WU ]. This being
true for all bounded X-measurable random variables U , W = E [Y | G]. �
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We now turn to the conditioned version of the dominated convergence theorem:

Theorem 5.6.11 Let G be a sub-σ-field of F , and let {Yn}n≥1 be a sequence of
random variables converging P -a.s. to the random variable Y , and such that |Yn| ≤
Z for some integrable random variable Z. Then {EG [Yn]}n≥1 converges P -a.s. to
EG [Y ].

Proof. Let Wn := supm≥n |Ym − Y |. The sequence {Wn}n≥1 decreases P -a.s. to
0. We have

|EG [Yn]−EG [Y ]| = |EG [Yn − Y ]|
≤ EG [|Yn − Y |] ≤ EG [Wn] .

The non-negative sequence {EG [Wn]}n≥1 decreases P -a.s. (rule 4). Let H ≥ 0 be
its limit. Then

0 ≤ |E[H ]| ≤ E
[
EG [Wn]

]
= E[Wn] ,

where the latter quantity tends to 0 by dominated convergence (because 0 ≤Wn ≤
2Z). Therefore E[H ] = 0, which implies that P (H = 0) = 1 since H is P-a.s non-
negative. �

The L2-theory of Conditional Expectation

This paragraph gives another approach to conditional expectation that avoids the
use of Radon–Nikodỳm’s theorem (that was admitted in this book).

Conditional expectation will be first defined for square-integrable random vari-
ables in terms of projection from a Hilbert space onto a Hilbert subspace of the
latter 2. More precisely, let (Ω,F , P ) be a probability space and let G be a sub-σ-
field of F . Denote by L2

R
(F , P ) and L2

R
(G, P ) the Hilbert spaces of F -measurable

(resp. G-measurable) square-integrable real random variables. Clearly, L2
R
(G, P ) is

a Hilbert subspace of L2
R
(F , P ), and therefore, one can define the projection of an

F -measurable square-integrable variable X on L2
R
(G, P ), denoted by P G(X). From

the general theory of projection (see Theorems A.0.12 and A.0.11), this random
variable is the unique (in the L2-sense) variable Y such that

(i) Y ∈ L2
R
(G, P ), and

(ii) 〈U, Y 〉L2
R
(F ,P ) = 〈U,X〉L2

R
(F ,P ) for all U ∈ L2

R
(G, P ).

In other terms, P G(X) is the unique (in the L2-sense) square-integrable random
variable Y such that

2 See Appendix A for a review of Hilbert spaces.
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(a) Y is G-measurable, and

(b) E [UY ] = E [UX] for all square-integrable G-measurable variables U .

This shows that P G(X) = E [X | G].

Starting from there, a proof of Theorem 5.6.2 is easy and left as an exercise.

Nonlinear Regression

We have previously obtained in Section 3.3 the best linear least-squares estimator
of the square-integrable random variable Y in terms of the second-order random
vector X = (X1, . . . , XN). We shall now obtain the best non-linear least-square
estimator of Y in terms of X, that is to say the square integrable random vari-
able of the form g(X), where g : RN → R is measurable, which minimizes the
quadratic risk E[|Y − g(X)|2]. Whereas the best nonlinear estimator is chosen
among all square integrable variables g(X), g : RN → R measurable, the best
linear estimator is chosen among the variables g(X) where g(x) = a0+

∑N
j=1 ajXj.

In particular if ĝ(X) is the best nonlinear estimator, and Ŷ is the best linear esti-
mator E[|Y − ĝ(X)|2] ≤ E[|Y − Ŷ |]2. It is therefore theoretically advantageous to
use a nonlinear estimator. However, as we have seen, the construction of Ŷ only
requires the knowledge of the covariance structure of the vector (Y,X), whereas
the construction of ĝ(X) requires the knowledge of the joint distribution of (Y,X).

As we shall now see, the best nonlinear estimator is

ĝ(X) = EX [Y ] .

Since Y is square-integrable, and in particular integrable, the conditional expec-
tation of Y given X is well is square-integrable.

Theorem 5.6.12 Let X be a random vector and let Y be a square integrable
random variable. Then, for all measurable g : Rn → R such that g(X) is square
integrable,

E[|Y − EX [Y ]|2] ≤ E[|Y − g(X)|2] .
Proof. Developing both sides of this inequality, we have to show that,

E[EX [Y ]2]− 2E[Y EX [Y ]] ≤ E[g(X)2]− 2E[Y g(X)] .

Since EX [Y ] is a square-integrable function of X,

E[EX [Y ]2] = E[EX [Y ]EX [Y ]] = E[Y EX [Y ]] .



5.6. GENERAL THEORY OF CONDITIONAL EXPECTATION 207

The left-hand side of the last inequality therefore equals−E[EX [Y ]2]. But E[Y g(X)] =
E[EX [Y ]g(X)] therefore have to show that

−E[EX [Y ]2] ≤ E[g(X)2]− 2E[EX [Y ]g(X)] .

But this is just

E[(g(X)− EX [Y ])2] ≥ 0 .

�

If (Y,X) is jointly Gaussian, then the best linear estimator and the best non-
linear estimator, of Y given X, coincide.

Theorem 5.6.13 Let Y be a random variable and let X be an n-dimensional ran-
dom vector. Suppose that (Y,X) is jointly Gaussian, and that X is non-degenerate
(its covariance matrix is strictly positive). Then

EX [Y ] = mY + ΓY XΓ
−1
X (X −mX) .

Proof. Consider the random variable

U = Y − (mY + ΓY XΓ
−1
X (X −mX)) .

We have E[U ] = 0 and

E[U(X −mX)
T ]

= E[(Y −mY )(X −mX)
T ]ΓY XΓ

−1
X E[(X −mX)(X −mX)

T ]

= ΓY X + ΓY XΓ
−1
X ΓX = ΓY X − ΓY X = 0 .

Therefore U and X are uncorrelated. Since (U,X) is jointly Gaussian, this implies
that U and X are independent. In particular (Theorem 5.5.13),

EX [U ] = E[U ] = 0 .

Also, by linearity,

EX [U ] = EX [Y ]− EX [mY + ΓY XΓ
−1
X (X −mX)] .

By (Theorem 5.5.10),

EX [mY + ΓY XΓ
−1
X (X −mX)] = mY + ΓY XΓ

−1
X (X −mX) .

�
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5.7 Exercises

Exercise 5.7.1. P (f(X) = 0) = 0
Let X be a random vector of Rd admitting the probability density function f .
Show that P (f(X) = 0) = 0.

Exercise 5.7.2. Extension of the telescope formula

Let X be a non-negative random variable and let G : R+ → C be the primitive
function of g : R+ → C, that is, for all x ≥ 0,

G(x) = G(0) +

∫ x

0

g(u) du .

Let X be a non-negative random variable with finite mean μ and such that
E [G(X)] <∞. Show that

E [G(X)] = G(0) +

∫ ∞

0

g(x)P (X ≥ x) dx .

Exercise 5.7.3. A formula for moments

Let X be a non-negative random variable with the probability density function f .
Let r > 0 be such that E [|X|r] <∞. Prove that

E [Xr] =

∫ ∞

0

rxr−1P (X > x) dx .

Exercise 5.7.4. Infinite sums and expectations

In the first chapters, we have sometimes surreptitiously taken for granted that the
expectation of an infinite sum of random variables is equal to the sum of their
expectations. The result (to be proved) that justifies this, when it is true, is the
following:
(a) Let {Sn}n≥1 be a sequence of non-negative random variables. Then:

E

[ ∞∑

n=1

Sn

]

=
∞∑

n=1

E[Sn] .

(b) Let {Sn}n≥1 be a sequence of real random variables such that
∑

n≥1 E[|Sn|] <
∞. Then:

E

[ ∞∑

n=1

Sn

]

=
∞∑

n=1

E[Sn] .



5.7. EXERCISES 209

Exercise 5.7.5. Laplace transform

Let X be a non-negative random variable. Prove that

lim
0<θ↑∞

E
[
e−θX

]
= P (X = 0) .

Exercise 5.7.6. Ladder random Variables

A real random variable X is called a ladder random variable if there exist a and h
in R such that ∑

n∈Z
P (X = a + nh) = 1 .

Let ϕ be the characteristic function of a real random variable X. Prove that if
|ϕ(t0)| = 1 for some t0 ∈ R, t0 �= 1, then X is a ladder random variable.

Exercise 5.7.7. Characteristic Functions and Independence

Prove Theorem 5.4.6.

Exercise 5.7.8. Radon–Nikodým

Let {Pn}n≥1 be a sequence of probability measures on (Ω,F). Show the existence
of a probability measure P on (Ω,F) and of a sequence {fn}n≥1 of P -integrable
non-negative measurable functions such that for all A ∈ F and all n ≥ 1,

Pn(A) =

∫

A

fn(ω)P (dω) .

Exercise 5.7.9. Conditional independence

Let A be some event of positive probability, and let PA denote the probability P
conditioned by A, that is,

PA(·) = P (· | A) .
The random variables X and Y are said to be conditionally independent given A
if they are independent with respect to probability PA. Prove that this is the case
if and only if for all u, v ∈ R,

P (A)E[eiuXeivY 1A] = E[eiuX1A]E[eivY 1A] .

Exercise 5.7.10. E [X]− E [Y ]
Let X and Y be real integrable random variables. Prove the following:

E [X]−E [Y ] =

∫

R

(P (X < t ≤ Y )− P (Y < t ≤ X)) dt .
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Exercise 5.7.11. Moments of Gaussian vectors

A. Give the proof of Theorem 5.3.5.

B. Let X = (X1, . . . , Xn)
T be a centered (0-mean) n-dimensional Gaussian vector

with the covariance matrix Γ = {σij}. Show that

E[Xi1Xi2 , . . . , Xi2k ] =
∑

(j1,...,j2k)
j1<j2,...,j2k−1<j2k

σj1j2σj3j4 . . . σj2kj2k , (5.11)

where the summation extends over all permutations (j1, . . . , j2k) of {i1, . . . , i2k}
such that j1 < j2, . . . , j2k−1 < j2k. There are 1 · 3 · 5 . . . (2k − 1) terms in the
right-hand side of Eq. (5.11). The indices i1, . . . , i2k are in {1, . . . , n} and they
may occur with repetitions. Show that the odd moments of X are null, that is:

E[Xi1 . . .Xi2k+1
] = 0 ,

for all (i1, . . . , i2k+1) ∈ {1, 2, . . . , n}2k+1.

Exercise 5.7.12. Conditioning by the square.

Let X be a real random variable with probability density fX . Let h : R → R be
a function such that h(X) is integrable. We prove that

E[h(X)|X2] = h(
√
X2) fX(

√
X2)

fX(
√
X2)+fX(−

√
X2)

+ h(−
√
X2) fX(−

√
X2)

fX(
√
X2)+fX(−

√
X2)

.

(Some people may find this result intuitive. Others will need a formal proof, which
is given below.)

Exercise 5.7.13. Mixed case: a specific example

Let Y be an N+-valued random variable, and let X be a real random variable of
the form

X = Y + ξ ,

where ξ is a random variable admitting a probability density fξ and independent
of Y . Let h : R → R be a measurable function such that E[|h(X)|] < ∞. Give
the function ψ such that ψ(Y ) = EY [h(X)].

Exercise 5.7.14. Conditioning by the sum

Let X1 and X2 be two integrable independent identically distributed random vari-
ables. Show that

EX1+X2 [X1] =
X1 +X2

2
.

Exercise 5.7.15. Min conditioned by max
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Let X1 and X2 be two independent random variables uniformly distributed on the
interval [0, 1]. Compute Emax(X1,X2)[min(X1, X2].

Exercise 5.7.16. Exponential distributions

Let {Sn}n≥1 be a sequence of iid non-negative real random variables with ex-
ponential distribution of parameter λ. Define T1 = S1, T2 = T1 + S2, . . . ,
Tn+1 = Tn + Sn+1, etc. Let f : R+ → R+ be a non-negative function. Give
for m ≥ 2 the conditional distribution of (T1, . . . , Tm) given Tm = s. Show that it
is the same as the distribution of the vector obtained by reordering (sU1, . . . , sUm),
where (U1, . . . , Um) is a vector of m independent variables uniformly distributed
on [0, 1]). Compute E

[
e−

∑∞
i=1 f(Ti)

]
.

Exercise 5.7.17. Will the sun rise next day?

At the beginning of time, God chose (a probabilist once claimed) a number p at
random in the interval [0, 1] and devised a biased coin with probability p for heads.
Since then, He tosses the same coin once every morning and decides to let the sun
rise this day if and only if the result is heads. The common belief, which will be
taken to be true in this exercise, is that the sun has never failed to rise in the n
days separating us from the beginning of time. What then is the probability that
the sun will rise the next day (n+ 1-th)?

Exercise 5.7.18.
Let X and Y be two real random variables, and let h : R → R be one-to-one
and onto. Show that for all v : R → R such that E[|v(X)|] < ∞, EY [v(X)] =
EZ [v(X)], where Z = h(Y ).

Exercise 5.7.19. The conditional variance formula

Prove the following formula

Var (X) = E [Var (X|Y )] + Var (E [X|Y ]) ,

where X is a square-integrable random variable, and

Var (X|Y ) := E
[
(X − E [X|Y ])2 |Y

]

is the so-called conditional variance of X given Y .

Exercise 5.7.20. Conditional Jensen’s inequality

Let I be a general interval of R (closed, open, semi-closed, infinite, etc.) and let
(a, b) be its interior, assumed non-empty. Let ϕ : I → R be a convex function. Let
X be an integrable real-valued random variable such that P (X ∈ I) = 1. Assume
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moreover that either ϕ is non-negative, or that ϕ(X) is integrable. Prove that for
any sub-σ-field G ⊆ F

E [ϕ(X) | G] ≥ ϕ(E [X | G]) .

5.8 Solutions

Solution (Exercise 5.7.1).

P (f(X) = 0) = E
[
1{f(X)=0}

]
=

∫

Rd

1{f(x)=0}f(x) dx =

∫

Rd

0 dx = 0 .

Solution (Exercise 5.7.2).

E [G(X)] = G(0) + E

[∫ X

0

g(u) du

]

= E

[∫ ∞

0

g(u)1{u≤X} du
]

= G(0) +

∫ ∞

0

g(u)E
[
1{u≤X}

]
du = G(0) +

∫ ∞

0

g(u)P (X ≥ u) du ,

where the third equality is due to Tonelli’s theorem applied to the product measure
P × �.

Solution (Exercise 5.7.3).

A direct consequence of Exercise 5.7.2 with G(x) = xr.

Solution (Exercise 5.7.4).

(a) Apply the monotone convergence theorem (Theorem 5.1.2) with Xn =
∑n

k=1 Sk

and X =
∑∞

n=1 Sn.

(b) Apply the dominated convergence theorem (Theorem 5.1.3 withXn =
∑n

k=1 Sk,
X =

∑∞
n=1 Sn and Z =

∑∞
k=1 |Sk|. (By (a), E[Z] =

∑∞
k=1E[|Sk|] <∞.)

Solution (Exercise 5.7.5).

E
[
e−θX

]
= E

[
1{X>0}e−θX

]
+ E

[
1{X=0}

]
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But since lim0<θ↑∞ 1{X>0}e−θX = 0, lim0<θ↑∞ E
[
1{X>0}e−θX

]
= 0 by dominated

convergence (1{X>0}e−θX ≤ 1, an integrable random variable). Therefore the limit
in question is E

[
1{X=0}

]
= P (f(X) = 0)

Solution (Exercise 5.7.6).
The hypothesis implies that there exists an a ∈ R such that eiat0 = E

[
eit0X

]
. In

particular (considering the real parts),

1−E [cos(t0(X − a))] = E [1− cos(t0(X − a))] = 0 .

Since 1− cos(t0(X − a)) ≥ 0, this implies that, P -a.s., 1 = cos(t0(X − a)), which
in turn implies the announced result.

Solution (Exercise 5.7.7).
Necessity. Write

ϕX(u) = E
[
ei

∑d
j=1 ujXj

]

= E

[
d∏

j=1

eiujXj

]

=
d∏

j=1

E
[
eiujXj

]
=

d∏

j=1

ϕXj
(uj) ,

by the product formula for expectations.

Sufficiency. Let X ′ := (X ′
1, . . . , X

′
d) ∈ R

d be a random vector whose independent
coordinate random variables X ′

1, . . . , X
′
d have the respective characteristic func-

tions ϕ1, . . . , ϕd. The characteristic function of X ′ is
∏d

j=1 ϕj(uj) and therefore
X and X ′ have the same distribution. In particular, X1, . . . , Xd are independent
random variables with respective characteristic functions ϕ1, . . . , ϕd.

Solution (Exercise 5.7.8).
Take P :=

∑
n≥1 2

−nPn, check that it is a probability measure and that Pn  P
(n ≥ 1). Then apply the Radon-Nikodým theorem.

Solution (Exercise 5.7.9).
By Theorem 3.2.20, a necessary and sufficient condition for this is that for all
u, v ∈ R,

EA[e
iuXeivY ] = EA[e

iuX ]EA[e
ivY ],

where EA denotes expectation with respect to PA. Then, observe that for an
integrable or non-negative random variable Z,

P (A)EA[Z] = E[Z1A].
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Solution (Exercise 5.7.10).
Observe that, by Fubini,

∫

R

P (X < t ≤ Y )dt = E

[∫

R

1X<t≤Y dt

]

and ∫

R

P (Y < t ≤ X)dt = E

[∫

R

1Y <t≤Xdt

]

, .

Solution (Exercise 5.7.11).
A. Apply Theorem 4.3.7.
B. Apply A with ϕ the characteristic function of this Gaussian vector.

Solution (Exercise 5.7.12).
The right-hand side is a function of X2. It remains to show that for all bounded
measurable functions ϕ,

E
[
h(X)ϕ(X2)

]

= E
[(

h(
√
X2) fX(

√
X2)

fX(
√
X2)+fX(−

√
X2)

+ h(−
√
X2) fX(−

√
X2)

fX(
√
X2)+fX(−

√
X2)

)
ϕ(X2)

]
.

It suffices to show that

E
[
h(X)1{X>0}ϕ(X2)

]
= E

[(
h(
√
X2) fX(

√
X2)

fX(
√
X2)+fX(−

√
X2)

)
ϕ(X2)

]

and

E
[
h(X)1{X<0}ϕ(X2)

]
= E

[(
h(−
√
X2) fX(−

√
X2)

fX(
√
X2)+fX(−

√
X2)

)
ϕ(X2)

]
.

We prove the first of these two equalities. Its right-hand side equals

∫ +∞

−∞

(

h(
√
x2)

fX(
√
x2)

fX(
√
x2) + fX(−

√
x2)

)

ϕ(x2)fX(x)dx

or (splitting the domain of integration)

∫ +∞

0

(

h(
√
x2)

fX(
√
x2)

fX(
√
x2) + fX(−

√
x2)

)

ϕ(x2)fX(x)dx

+

∫ 0

−∞

(

h(
√
x2)

fX(
√
x2)

fX(
√
x2) + fX(−

√
x2)

)

ϕ(x2)fX(x) dx ,
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that is, by the change of variable x �→ −x in the second term,

∫ +∞

0

(

h(
√
x2)

fX(
√
x2) + fX(−

√
x2)

fX(
√
x2) + fX(−

√
x2)

)

ϕ(x2)fX(x) dx

=

∫ +∞

0

h(
√
x2)ϕ(x2)fX(x) dx = E

[
h(X)1X>0ϕ(X

2)
]
.

Solution (Exercise 5.7.13).

EY [h(X)] = ψ(Y ), where

ψ(k) =

∫

R

h(x)fk(x)dx

and where fk is defined by

∫

A

fk(x) dx := P (X ∈ A|Y = k) (A ∈ B(R)) ,

that is,

∫

A

fk(x)dx =
P (X ∈ A, Y = k)

P (Y = k)

=
P (k + ξ ∈ A, Y = k)

P (Y = k)
=

P (k + ξ ∈ A)P (Y = k)

P (Y = k)

= P (k + ξ ∈ A) = P (ξ ∈ A− k) =

∫

A

fξ(x+ k) dx .

Therefore

fk(x) = fξ(x+ k)

and

ψ(k) =

∫

R

h(x)fξ(x+ k) dx =

∫

R

h(x+ k)fξ(x) dx ,

that is,

ψ(k) = E[h(ξ + k)] .

Finally:

EY [h(X)] =

∫

R

E[h(x+ Y )]fξ(x) dx .
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Solution (Exercise 5.7.14).
EX1+X2[X1] is of the form h(X1 +X2). By symmetry, EX1+X2 [X2] = h(X1 +X2).
But

EX1+X2[X1] + EX1+X2[X2] = EX1+X2[X1 +X2] = X1 +X2 .

Therefore 2h(X1 +X2) = X1 +X2.

Solution (Exercise 5.7.15).
We must find a measurable function h : [0, 1] such that for all bounded measurable
functions ϕ : [0, 1]

E [min(X1, X2)ϕ(max(X1, X2))] = E [h(max(X1, X2))ϕ(max(X1, X2))] ,

in which case Emax(X1,X2)[min(X1, X2] = h(max(X1, X2)). Now

E [min(X1, X2)ϕ(max(X1, X2))]

=

∫ 1

0

∫ 1

0

1{x1<x2} x1 ϕ(x2) dx1 dx2

+

∫ 1

0

∫ 1

0

1{x2≤x1} x2 ϕ(x1) dx1 dx2

= 2

∫ 1

0

(∫ x2

0

x1 dx1

)

ϕ(x2) dx2 =

∫ 1

0

x2ϕ(x) dx .

On the other hand, for x ∈ [0, 1],

P (max(X1, X2) ≤ x) = P (X1 ≤ x, X2 ≤ x) = P (X1 ≤ x)P (X2 ≤ x) = x2

and therefore, max(X1, X2) admits the probability density function 2x 1[0,1](x) and

E [h(max(X1, X2))ϕ(max(X1, X2))] =

∫ 1

0

h(x)ϕ(x)2x dx .

so that 2xh(x) = x2 and finally Emax(X1,X2)[min(X1, X2] =
1
2
max(X1, X2).

Solution (Exercise 5.7.16).
Let S := (S1, . . . , Sm) and T := (T1, . . . , Tm). The probability density function of
S is

fS(s1, . . . , sm) = λn
(
e−λ

∑n
i=1 si

)
1{s1>0,...,sm>0}} .

Since S1 = T1, S2 = T2−T1, . . . , Sn = Tn−Tn−1, the formula of smooth change
of variables gives

fT (t1, . . . , tm) = fS(t1, t2 − t1, . . . , tm − tm−1) = λme−λtm1C(t1, . . . , tm),
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where C := {(t1, . . . , tn); 0 < t1 < · · · < tm}. The probability density function
of Tm is obtained by integrating out t1, . . . , tm−1 in fT (t1, . . . , tm), which gives
fTm(s) = (λm/(m− 1)!)e−λs. Therefore

fT (t1, . . . , tm|Tm+1 = s) =
f(T1,...,Tm+1)(t1, . . . , tm, s)

fTm(s)

=
λm+1e−λs

(λm+1sm/m!)e−λs
1C(t1, . . . , tm)1{tm<s} =

m!

sm
1t1<t2<···<tm<s

This is indeed the probability density function of the vector obtained by reorder-
ing (sU1, . . . , sUm), where (U1, . . . , Um) is a vector of m independent variables
uniformly distributed on [0, 1] . In particular

E
[
e−

∑m
i=1 f(Ti)

]
= E

[
ETm+1

[
e−

∑m
i=1 f(Ti)

]]

=

∫ ∞

0

ETm+1=s
[
e−

∑m
i=1 f(Ti)

]
fTm+1(s) ds

=

∫ ∞

0

E
[
e−

∑m
i=1 f(sUi)

]
) fTm+1(s) ds

=

∫ ∞

0

(
E

[
e−f(sU1)

])m
fTm+1(s) ds

= E

[(∫ Tm+1

0

e−f(x) dx

Tm+1

)m]

= E

⎡

⎣

(

1−
∫ Tm+1

0
(1− e−f(x))dx

Tm+1

)Tm+1
m

Tm+1

⎤

⎦

By the law of large numbers, limm↑∞ m
Tm+1

= λ. Therefore, passing to the limit as

m ↑ ∞ (dominated convergence),

E
[
e−

∑∞
i=1 f(Ti)

]
= e−λ

∫∞
0 (1−e−f(x)) dx.

Solution (Exercise 5.7.17).
Letting Z be the (random) bias of the coin, and Xn = 1 if the sun rises on day n,
we have to compute

P (Xn+1 = 1 |X1 = 1, . . . , Xn = 1)

= P (X1 = 1, . . . , Xn = 1, Xn+1 = 1)/P (X1 = 1, . . . , Xn = 1) .
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But for all k ≥ 1,

P (X1 = 1, . . . , Xk = 1) =

∫ 1

0

P (X1 = 1, . . . , Xk = 1 |Z = p) dp

=

∫ 1

0

pk dp =
1

k + 1
,

and therefore

P (Xn+1 = 1 |X1 = 1, . . . , Xn = 1) =
n+ 1

n+ 2
.

Solution (Exercise 5.7.18).
Both EY [v(X)] and EZ [v(X)] are functions of Y (since a function of Z is a function
of Y !). To prove equality, it suffices therefore to show that for all bounded ϕ,

E
[
EY [v(X)]ϕ(Y )

]
= E

[
EZ [v(X)]ϕ(Y )

]
.

Now
E

[
EY [v(X)]ϕ(Y )

]
= E [v(X)ϕ(Y )]

for all bounded ϕ. On the other hand

E
[
EZ [v(X)]ψ(Z)

]
= E [v(X)ψ(Z)]

for all bounded ψ, and in particular

E
[
EZ [v(X)]ψ(Z)

]
= E [v(X)ϕ(Y ]

for all bounded ϕ (h is bijective).

Solution (Exercise 5.7.19).
Similarly to the unconditioned case

Var (X|Y ) = E
[
X2|Y

]
−E [X|Y ]2 ,

and therefore
E [Var (X|Y )] = E

[
X2

]
− E

[
E [X|Y ]2

]
.

On the other hand

Var (E[X|Y ]) = E
[
E [X|Y ]2

]
− E [E [X|Y ]]2

= E
[
E [X|Y ]2

]
− E [X]2 .
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Summing the last two equalities and using Var (X) = E [X2]−E [X]2, we obtain
the announced equality.

Solution (Exercise 5.7.20).
Just imitate the proof of Theorem 2.1.25.



Chapter 6

Convergence Almost Sure

Order hidden in chaos: an erratic sequence of coin tosses exhibits a remarkable
balance between heads and tails in the long run, at least “when the coin is fair and
fairly tossed”. This phenomenon is captured by the strong law of large numbers.
The relevant mathematical notion, which is the object of this chapter, is that of
almost-sure convergence of a sequence of random variables.

6.1 A Sufficient Condition and a Criterion

Consider a game of heads or tails with independent tosses of a single, possibly
biased, coin. In other words, we have an iid sequence {Xn}n≥1 of random variables
taking two values, 1 (heads) and 0 (tails), with

P (Xn = 1) = p ∈ (0, 1) .

Let
Sn := X1 +X2 + · · ·+Xn .

The random variable Sn/n is the empirical frequency of heads after n tosses. We are
interested in the limit of this quantity as n ↑ ∞. As we know “from experience”,
the empirical frequency tends to p. In fact, this is a theorem: Borel’s strong law
of large numbers, which asserts that

P

(

∃ lim
n↑∞

Sn

n
= p

)

= 1 . (6.1)

More explicitly: the probability that there exists a limit of the sequence {Sn

n
}n≥1

and that this limit is p is equal to 1. We shall in general avoid in similar statements
the use of the symbol ∃ and write (6.1) in the form P

(
limn↑∞ Sn

n
= p

)
= 1, or

limn↑∞ Sn

n
= p, P − a.s.
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Definition 6.1.1 A sequence {Zn}n≥1 of random variables with values in C (resp.
in R) is said to converge P-almost surely (P-a.s.) to the random variable Z with
values in C (resp. in R) if

P (lim
n↑∞

Zn = Z) = 1 . (6.2)

This is also denoted by

Zn
a.s.→ Z .

Paraphrasing: For all ω outside a negligible set, limn↑∞ Zn(ω) = Z(ω).

In the case where the sequence takes values in R, the limit may be infinite.
Otherwise, when P (Z <∞) = 1, one may add the precision: “converges to a finite
limit”.

The Borel–Cantelli Lemma

This is one of the fundamental tools in the study of almost sure convergence.

Consider a sequence of events {An}n≥1. We are interested in the probability
that An occurs infinitely often, that is, the probability of the event

{An i.o.} := {ω;ω ∈ An for an infinity of indices n},

where i.o. abbreviates infinitely often. We have (Borel–Cantelli lemma):

Theorem 6.1.2 For any sequence of events {An}n≥1,

∞∑

n=1

P (An) <∞ =⇒ P (An i.o.) = 0 .

Proof. We first observe that

{An i.o.} =
∞⋂

n=1

⋃

k≥n

Ak .

(Indeed, if ω belongs to the set on the right-hand side, then for all n ≥ 1, ω belongs
to at least one among An, An+1, . . ., which implies that ω is in An for an infinite
number of indices n. Conversely, if ω is in An for an infinite number of indices n,
it is for all n ≥ 1 in at least one of the sets An, An+1, . . ..)
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The set ∪k≥nAk decreases as n increases, so that by the sequential continuity
property of probability,

P (An i.o.) = lim
n↑∞

P

(
⋃

k≥n

Ak

)

. (6.3)

But by the sub-σ-additivity property of probability,

P

(
⋃

k≥n

Ak

)

≤
∑

k≥n

P (Ak) ,

and by the summability assumption, the right-hand side of this inequality vanishes
as n ↑ ∞. �

The next result is usually called the converse Borel–Cantelli lemma. It is in fact
a “pseudo-converse” since an additional assumption of independence is required.

Theorem 6.1.3 Let {An}n≥1 be a sequence of independent events. Then,

∞∑

n=1

P (An) =∞ =⇒ P (An i.o.) = 1 .

Proof. We may without loss of generality assume that P (An) > 0 for all n ≥ 1.
The divergence hypothesis implies, by the fundamental theorem of convergence of
infinite products,1 that for all n ≥ 1,

∞∏

k=n

(1− P (Ak)) = 0 .

This infinite product equals, in view of the independence assumption,

∞∏

k=n

P
(
Ak

)
= P

( ∞⋂

k=n

Ak

)

= 1− P

( ∞⋃

k=n

Ak

)

.

Therefore,

P

( ∞⋃

k=n

Ak

)

= 1

1 Let {an}n≥1 be a sequence of numbers in the interval [0, 1). Then: (a) if
∑∞

n=1 an < ∞,
then limn↑∞

∏n
k=1 (1− ak) > 0, and (b) if

∑∞
n=1 an =∞, then limn↑∞

∏n
k=1 (1− ak) = 0.
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and by (6.3),

P (An i.o.) = lim
n↑∞

P

( ∞⋃

k=n

Ak

)

= 1 .

�

Example 6.1.4: Binary sequence. Let {Xn}n≥1 be a sequence of random
variables with values in {0, 1}, with P (Xn = 1) = pn (n ≥ 1).

If
∑

n pn <∞, then, by the direct Borel–Cantelli lemma, P (Xn = 1 i.o.) = 0,
and therefore P (limn↑∞Xn = 0) = 1.

If
∑

n pn = ∞, and if moreover the sequence is independent, then, by the
converse Borel–Cantelli lemma, P (Xn = 1 i.o.) = 1, and therefore the sequence
cannot converge to 0. Therefore, in the independent case, a necessary and sufficient
condition for convergence to 0 is

∑
n pn <∞.

A Sufficient Condition

The following sufficient condition guaranteeing almost-sure convergence is the
most useful. It is a direct consequence of the Borel–Cantelli lemma.

Theorem 6.1.5 Let {Zn}n≥1 and Z be complex random variables. If

∑

n≥1

P (|Zn − Z| ≥ εn) <∞ (6.4)

for some sequence of positive numbers {εn}n≥1 converging to 0, then the sequence
{Zn}n≥1 converges P-a.s. to Z.

Proof. Obviously, if {εn}n≥1 is a sequence of positive real numbers converging to
0, then any sequence of non-negative real numbers {xn}n≥1 such that xn ≥ εn for
only a finite number of indices n ≥ 1 also converges to 0. Therefore it suffices to
prove that

P (|Zn − Z| ≥ εn i.o.) = 0 .

But this follows from hypothesis (6.4) and the Borel–Cantelli lemma. �

A Criterion

The result below is essentially of theoretical interest. It will be used later on for
comparing convergence in probability and almost-sure convergence.
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Theorem 6.1.6 The sequence {Zn}n≥1 of complex random variables converges
P-a.s. to the complex random variable Z if and only if for all ε > 0,

P (|Zn − Z| ≥ ε i.o.) = 0 . (6.5)

Proof. For the necessity, observe that

{|Zn − Z| ≥ ε i.o.} ⊆ {ω; lim
n↑∞

Zn(ω) = Z(ω)} ,

and therefore

P (|Zn − Z| ≥ ε i.o.) ≤ 1− P (lim
n↑∞

Zn = Z) = 0 .

For the sufficiency, let Nk be the last index n such that |Zn − Z| ≥ 1
k
(letting

Nk :=∞ if |Zn−Z| ≥ 1
k
for an infinity of indices n ≥ 1). By (6.5) with ε = 1

k
, we

have P (Nk =∞) = 0. By sub-σ-additivity, P (∪k≥1{Nk =∞}) = 0. Equivalently,
P (Nk <∞, for all k ≥ 1) = 1, which implies P (limn↑∞ Zn = Z) = 1. �

6.2 The Strong Law of Large Numbers

In order to prove Borel’s strong law of large numbers using Theorem 6.1.5, we
must have some adequate upper bound for the general term of the series occurring
in the left-hand side of (6.4). The basic tool for this is Markov’s inequality.

The proof of (6.1) indeed relies on the Borel–Cantelli lemma and the Markov
inequality. In fact, we shall apply Theorem 6.1.5, and for this we need to bound
the probability that

∣
∣Sn

n
− p

∣
∣ exceeds some ε > 0 where p := E[X1], which can be

done by application of Markov’s inequality as follows:

P

(∣
∣
∣
∣
Sn

n
− p

∣
∣
∣
∣ ≥ ε

)

= P

((
Sn

n
− p

)4

≥ ε4

)

≤
E
[(

Sn

n
− p

)4
]

ε4
≤

E
[
(
∑n

i=1 Yi)
4
]

n4ε4
,

where Yi := Xi − p. In view of the independence hypothesis,

E[Y1Y2Y3Y4] = E[Y1]E[Y2]E[Y3]E[Y4] = 0 ,

E[Y1Y
3
2 ] = E[Y1]E[Y 3

2 ] = 0 ,
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and the like. Finally, in the development

E

⎡

⎣

(
n∑

i=1

Yi

)4
⎤

⎦ =

n∑

i,j,k,�=1

E[YiYjYkY�] ,

only the terms of the form E[Y 4
i ] and E[Y 2

i Y
2
j ] (i �= j) remain. There are n

terms of the first type and 3n(n − 1) terms of the second type. Therefore, only
nE[Y 4

1 ] + 3n(n − 1)E[Y 2
1 Y

2
2 ] remains, which is less than Kn2 for some finite K.

Therefore

P

(∣
∣
∣
∣
Sn

n
− p

∣
∣
∣
∣ ≥ ε

)

≤ K

n2ε4
,

and in particular, with ε = n− 1
8 ,

P

(∣
∣
∣
∣
Sn

n
− p

∣
∣
∣
∣ ≥ n− 1

8

)

≤ K

n
3
2

,

from which it follows that

∞∑

n=1

P

(∣
∣
∣
∣
Sn

n
− p

∣
∣
∣
∣ ≥ n− 1

8

)

<∞ .

Therefore, by Theorem 6.1.5,
∣
∣Sn

n
− p

∣
∣ converges almost surely to 0.

Example 6.2.1: Patterns in a Bernoulli sequence. Let k be a positive
integer. Let {ni}1≤i≤k be a strictly increasing finite sequence of positive integers
with n1 = 1. Let {εi}1≤i≤k be a sequence of 0’s and 1’s. The sequence of pairs
{(ni, εi)}1≤i≤k is called a k-pattern. Patterns are represented by sequences of 0’s,
1’s and ·’s, where · is an “unspecified binary digit”. For instance, the 4-pattern

(1, 0), (3, 1), (4, 1), (6, 0)

is represented by 0 · 11 · 0, and this pattern is said to occur at position n in a
sequence x1, x2, . . . of binary digits if and only if

xn = 0, xn+2 = 1, xn+3 = 1, xn+5 = 0 .

Let now {Xn}n≥1 be an iid sequence of 0’s and 1’s such that P (X1 = 1) = p ∈
(0, 1). Define for all n ≥ 1 the random variable Yn with values 0 or 1 by

Yn := 1 iff Xn+ni
:= εi for all i (1 ≤ i ≤ k) ,
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that is, iff the pattern occurs at position n. Then (exercise):

Y1 + . . .+ Yn

n

a.s.→ phqk−h where h :=

k∑

i=1

εi . (�).

In particular, the empirical frequency of any k-pattern in a fair game of heads
or tails equals 1

2k
. Since the Bernoulli sequence with p = 1

2
(the random sequence

“par excellence”) satisfies (�) for all possible patterns, one is tempted to call a
deterministic sequence (xn, n ≥ 1) of 0’s and 1’s “random” if for all patterns

lim
n↑∞

y1 + · · ·+ yn
n

=
1

2k
,

where the yn’s are defined in the same way as the Yn’s above. Although this
definition seems reasonable, it is not satisfying. In fact, one can show that the
(rather deterministic!) Champernowne sequence:

0110111001011101111000 . . . ,

which consists of the succession of integers (starting with 0) written in base 2, is
random in this sense.

Kolmogorov’s Strong Law of Large Numbers

Borel’s proof is easily adapted to the case where the Xn’s are uniformly bounded.
In 1933, Kolmogorov gave the following more general form of the strong law of
large numbers that requires only that the Xn’s be integrable.

Theorem 6.2.2 Let {Xn}n≥1 be an iid sequence of random variables such that

E[|X1|] <∞ . (6.6)

Then,

P

(

lim
n↑∞

Sn

n
= E[X1]

)

= 1 . (6.7)

Proof. We may suppose, without loss of generality, that E [X1] = 0. The proof is
in two parts. In Part A the strong law is proved with the additional assumption
that σ2 := E [X2

1 ] <∞, and then Part B gets rid of this assumption.
A. Let

Zn := sup
1≤k≤2m+1

(|Xm2+1 + · · ·+Xm2+k|) .
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Defining for all n ≥ 1 the integer m(n) by

m(n)2 < n ≤ (m(n) + 1)2 ,

we have that

|Sn

n
| ≤ |

S2
m(n)

m(n)2
|+ Zm(n)

m(n)2
.

Since limn↑∞ m(n) = +∞, it suffices to prove that

lim
n↑∞
|
S2
m(n)

m(n)2
| = 0 (�)

and

lim
n↑∞

Zm(n)

m(n)2
= 0 . (��)

For all ε > 0, by Chebyshev’s inequality,

P

(

|S
2
m

m2
| ≤ ε

)

≤ Var (Sm2)

m4ε2
=

m2σ2

m4ε2
=

σ2

m2ε2
.

Therefore
∑

m≥1 P
(
|S2

m

m2 | ≥ ε
)

< ∞, which implies (�) (by the Borel–Cantelli

lemma and Theorem 6.1.6).

Let now

ξk := Xm2+1 + · · ·+Xm2+k .

If |Zm| ≥ m2ε, then for at least one k (1 ≤ k ≤ 2m + 1), |ξk| ≥ m2ε. In other
words,

{
Zm

m2
≥ ε

}

⊆
2m+1⋃

k=1

{
|ξk| ≥ m2ε

}
,

so that

P

(
Zm

m2
≥ ε

)

≤ P

(
2m+1⋃

k=1

{
|ξk| ≥ m2ε

}
)

≤
2m+1∑

k=1

P
(
|ξk| ≥ m2ε

)
,

and therefore, by Chebyshev’s inequality,

P

(
Zm

m2
≥ ε

)

≤
2m+1∑

k=1

Var (ξk)

m4ε2
.
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Now, when k ≤ 2m+ 1,

Var (ξk) =

k∑

i=1

Var (Xm2+i) ≤ (2m+ 1)σ2 ,

and therefore

P

(
Zm

m2
≥ ε

)

≤ (2m+ 1)2σ2

m4ε2
,

so that
∑

m≥1

P

(
Zm

m2
≥ ε

)

<∞ ,

and then (��) follows from the Borel–Cantelli lemma and the criterion of almost-
sure convergence.

B. It remains to get rid of the assumption of finiteness of the second moment.
The natural technique for this is truncation.

Let

X̃n :=

{
Xn if |Xn| ≤ n,
0 otherwise.

We proceed in three steps.

Step 1. We first show that

lim
n↑∞

1

n

n∑

k=1

(X̃k −E[X̃k]) = 0 .

In view of Part A, it suffices to prove that

∞∑

n=1

E[(X̃n − E[X̃n])
2]

n2
<∞ .

But
E[(X̃n − E[X̃n])

2] ≤ E[X̃2
n] = E[X2

11{|X1|≤n}] .

It is therefore enough to show that

∞∑

n=1

E[X2
11{|X1|≤n}]
n2

<∞ .

The left-hand side of the above inequality is equal to

∞∑

n=1

1

n2

n∑

k=1

E[X2
11{k−1<|X1|≤k}] =

∞∑

k=1

∞∑

n=k

1

n2
E[X2

11{k−1<|X1|≤k}] .
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Using the fact that

∞∑

n=k

1

n2
≤ 1

k2
+

∫ ∞

k

1

x2
dx =

1

k2
+

1

k
≤ 2

k

(draw the graph of x �→ x−2), this quantity is less than or equal to

∞∑

k=1

2

k
E[X2

11{k−1<|X1|≤k}] = 2

∞∑

k=1

E

[
X2

1

k
1{k−1<|X1|≤k}

]

≤ 2

∞∑

k=1

E[|X1|1{k−1<|X1|≤k}] = 2E[|X1|] <∞ .

Step 2. Since E[|X1|] <∞, we have by dominated convergence that

lim
n↑∞

E[X11{|X1|≤n}] = E[X1] = 0 .

Since Xn has the same distribution as X1,

lim
n↑∞

E[X̃n] = lim
n↑∞

E[Xn1{|Xn|≤n}] = lim
n↑∞

E[X11{|X1|≤n}] = E[X1] = 0 .

In particular, by Cesàro’s lemma,2

lim
n↑∞

1

n

n∑

k=1

E[X̃k] = 0 .

Step 3. We have

∞∑

n=1

P (|Xn| > n) =

∞∑

n=1

P (|X1| > n) ≤ E[|X1|] <∞ ,

and therefore, by the Borel–Cantelli lemma,

P (X̃n �= Xn i.o.) = P (Xn > n i.o.) = 0 ,

which implies that

lim
n↑∞

S̃n

n
= lim

n↑∞
Sn

n
.

2 Let {bn}n≥0 be a sequence of real numbers such that limn↑∞ bn = 0. Then

limn↑∞ b1+···+bn
n = 0.
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�

The next result shows that the integrability condition is, in a sense, also nec-
essary. See however Exercise 6.6.4.

Theorem 6.2.3 Let {Xn}n≥1 be a sequence of iid random variables such that

Sn

n
→ C <∞ P − a.s. ,

where Sn := X1 + · · ·Xn. Then E [|X1|] <∞ and C = E [X1].

Proof. Under these circumstances,

Xn

n
=

Sn

n
− n− 1

n

Sn−1

n− 1
→ 0

and therefore, P (|Xn| > n i.o.) = 0. By the converse Borel–Cantelli lemma,

∞∑

n=1

P (|Xn| > n) <∞

or, since the distribution of any Xn does not depend on n,

∞∑

n=1

P (|X1| > n) <∞ .

But, by the following inequalities concerning any non-negative random variable X
(Exercise 5.7.2) and |X1| in particular,

∞∑

n=1

P (X ≥ n) ≤ E [X] ≤ 1 +
∞∑

n=1

P (X ≥ n) ,

we have that E [|X1|] < ∞. The identification of C and E [|X1|] is then just the
strong law of large numbers. �

Large Deviations from the Strong Law of Large Numbers

The large deviations theory of random variables produces estimates for the devi-
ation of such variables from their means. When applied to sums of iid variables
Sn = X1 + · · ·Xn, these estimates complement the strong law of large numbers.

The type of result produced by this theory is, in the case where the Xi’s are
iid and integrable, with common mean m,

lim
n↑∞

1

n
logP

(∣
∣
∣
∣
Sn

n
−m

∣
∣
∣
∣ ≥ a

)

= −h(a) , (�)
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where a > 0 and h(a) > 0. Such bounds have important theoretical implications,
but they are somewhat imprecise in that the meaning of (�) is

P

(∣
∣
∣
∣
Sn

n
−m

∣
∣
∣
∣ ≥ a

)

= g(n)e−n(h(a)) ,

where n−1 log g(n) tends to 0 as n ↑ ∞, but perhaps too slowly and in an uncon-
trolled manner.

To obtain practical (upper) bounds, it is often useful to look at specific cases,
using the Chernoff bound below at the origin of the general abstract theory. These
powerful bounds are easy consequences of the elementary Markov inequality.

Theorem 6.2.4 Let X be a real-valued random variable and let a ∈ R. Then
(Chernoff’s bound)

P (X ≥ a) ≤ min
t>0

E
[
etX

]

eta
, (6.8)

and

P (X ≤ a) ≤ min
t<0

E
[
etX

]

eta
. (6.9)

Proof. By the ↑-monotony of x �→ ex and Markov’s inequality,

P (X ≥ a) = P (etX ≥ eta) ≤
E
[
etX

]

eta
(t > 0) ,

and

P (X ≤ a) = P (etX ≥ eta) ≤
E
[
etX

]

eta
(t < 0) .

The result follows by minimizing the right-hand sides with respect to t > 0 and
t < 0, respectively. �

Example 6.2.5: Large deviations for the Poisson variable. Let X be
a Poisson variable with mean θ and therefore E

[
etX

]
= eθ(e

t−1). We prove that
for c ≥ 0

P (X ≥ θ + c) ≤ exp

{

−1
e

(
θ + c

eθ

)θ+c
}

.

With a = θ + c in (6.8):

P (X ≥ θ + c) ≤ min
t>0

eθ(e
t−1)

et(θ+c)
= e−maxt>0{t(θ+c)−θ(et−1)}.
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The derivative of the function f : t �→ t(θ+c)−θ(et−1) at t ≥ 0 is θ+c−θet, and
it is null for et = θ+c

θ
or equivalently t = ln(θ+ c)− ln(θ), and this corresponds to

a maximum since the second derivative −et is negative. Therefore

max
t>0

{
t(θ + c)− θ(et − 1)

}
=

1

e

(
θ + c

eθ

)θ+c

and finally

P (X ≥ θ + c) ≤ exp

{

−1
e

(
θ + c

eθ

)θ+c
}

.

Theorem 6.2.6 Let X1, . . . , Xn be iid real-valued random variables and let a ∈ R.
Then,

P

(
n∑

i=1

Xi ≥ na

)

≤ e−nh+(a) ,

where
h+(a) = sup

t≥0
{at− lnE

[
etX1

]
} . (6.10)

Proof. For all t ≥ 0, Markov’s inequality gives

P

(
n∑

i=1

Xi ≥ na

)

= P

(

exp

{

t
n∑

i=1

Xi

}

≥ exp{nta}
)

≤ E

[

exp

{

t
n∑

i=1

Xi

}]

× e−nta

≤ exp{−n
(
at− lnE

[
etX1

])
} ,

from which the result follows by optimizing this bound over t ≥ 0. �

Suppose that E
[
etX1

]
< ∞ for all t ≥ 0. Differentiating t �→ at − lnE

[
etX1

]

yields a − E[X1etX1 ]
E[etX1]

, and therefore the function t �→ at − lnE
[
etX1

]
is finite and

differentiable on R, with derivative at 0+ equal to a− E [X1], which implies that
when a > E [X1], h

+(a) is positive.

Similarly to (6.10), we obtain that

P

(
n∑

i=1

Xi ≤ na

)

≤ e−nh−(a) ,
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where

h−(a) := sup
t≤0
{at− lnE

[
etX1

]
} .

Moreover, if a < E[X1], h
−(a) is positive.

The Chernoff bound can be interpreted in terms of large deviations from the
law of large numbers. Denote by μ the common mean of the Xn’s, and define for
ε > 0 the (positive) quantities

H+(ε) = sup
t≥0

{
εt− lnE

[
et(X1−μ)

]}
,

H−(ε) = sup
t≤0

{
εt− lnE

[
et(X1−μ)

]}
.

Then

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Xi

∣
∣
∣
∣
∣
≥ +ε

)

≤ e−nH+(ε) + e−nH−(ε).

The computation of the supremum in (6.10) may be fastidious. There are short-
cuts leading to practical bounds that are not as good but nevertheless satisfactory
for certain applications.

Example 6.2.7: Large deviations for the random walk. Suppose for
instance that {Xn}n≥1 is iid, the Xn’s taking the values −1 and +1 equiprobably

so that E
[
etX

]
= 1

2
e+t + 1

2
e−t. Replacing 1

2
e+t + 1

2
e−t by the upper bound e

t2

2 , we
have that, for a > 0,

P

(
n∑

i=1

Xi ≥ na

)

≤ e−n(at−lnE[etX1 ])

≤ e−n(at− 1
2
t2) ,

and therefore, with t = a,

P

(
n∑

i=1

Xi ≥ na

)

≤ e−n 1
2
a2 .

By symmetry of the distribution of
∑n

i=1Xi, we obtain for a > 0

P

(
n∑

i=1

Xi ≤ −na
)

= P

(
n∑

i=1

Xi ≥ na

)

≤ e−n 1
2
a2 ,
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and therefore, combining the two bounds,

P

(∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
≥ na

)

≤ 2e−n 1
2
a2 .

6.3 Kolmogorov’s Zero-one Law

(The result of this section will be used only in the chapter on martingales.)

Definition 6.3.1 Let {Xn}n≥1 be a sequence of random variables and let FX
n :=

σ(X1, . . . , Xn). The σ-field T X := ∩n≥1σ(Xn, Xn+1, . . .) is called the tail σ-field
of this sequence.

Example 6.3.2: For any a ∈ R, the event {limn↑∞ X1+···+Xn

n
≤ a} belongs to

the tail σ-field, since the existence and the value of the limit of X1+···+Xn

n
does not

depend on any fixed finite number of terms of the sequence. More generally, any
event concerning limn↑∞ X1+···+Xn

n
such as, for instance, the event that such limit

exists, is in the tail σ-field.

Recall the notation FX
∞ := ∨n≥1FX

n .

Theorem 6.3.3 The tail σ-field of a sequence {Xn}n≥1 of independent random
variables is trivial, that is, if A ∈ T X , then P (A) = 0 or 1.

Proof. The σ-fields FX
n and σ(Xn+k, Xn+k+1, . . .) are independent for all k ≥ 1

and therefore, since T X = ∩k≥1σ(Xn+k, Xn+k+1), the σ-fields FX
n and T X are

independent. Therefore the algebra ∪n≥1FX
n and T X are independent, and con-

sequently (Theorem 5.4.2) FX
∞ and T X are independent. But FX

∞ ⊇ T X , so that
T X is independent of itself. In particular, for all A ∈ T X , P (A∩A) = PA)P (A),
that is P (A) = P (A)2, which implies that P (A) = 0 or 1. �

6.4 Related Types of Convergence

Convergence in Probability

This type of convergence is closely related to almost-sure convergence, yet weaker,
as we shall see.
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Definition 6.4.1 A sequence {Zn}n≥1 of complex random variables is said to con-
verge in probability to the complex random variable Z if, for all ε > 0,

lim
n↑∞

P (|Zn − Z| ≥ ε) = 0 . (6.11)

Theorem 6.4.2 A. If the sequence {Zn}n≥1 of complex random variables con-
verges almost surely to some complex random variable Z, it also converges in
probability to the same random variable Z.

B. If the sequence of complex random variables {Xn}n≥1 converges in probability
to the complex random variable X, one can find a sequence of integers {nk}k≥1,
strictly increasing, such that {Xnk

}k≥1 converges almost surely to X.

B says, in other words: From a sequence converging in probability to some
random variable, one can extract a subsequence converging almost surely to the
same random variable.

Proof. A. Suppose almost-sure convergence. By Theorem 6.1.6 , for all ε > 0,

P (|Zn − Z| ≥ ε i.o.) = 0 ,

that is
P (∩n≥1 ∪∞k=n (|Zk − Z| ≥ ε)) = 0 ,

or (sequential continuity of probability)

lim
n↑∞

P (∪∞k=n (|Zk − Z| ≥ ε)) = 0 ,

which in turn implies that

lim
n↑∞

P (|Zn − Z| ≥ ε) = 0 .

B. By definition of convergence in probability, for all ε > 0,

lim
n↑∞

P (|Xn −X| ≥ ε) = 0 .

Therefore one can find n1 such that

P

(

|Xn1 −X| ≥ 1

1

)

≤
(
1

2

)1

Then, one can find n2 > n1 such that

P

(

|Xn2 −X| ≥ 1

2

)

≤
(
1

2

)2



6.4. RELATED TYPES OF CONVERGENCE 237

and so on, until we have a strictly increasing sequence of integers nk (k ≥ 1) such
that

P

(

|Xnk
−X| ≥ 1

k

)

≤
(
1

2

)k

.

It then follows from Theorem 6.1.5 that

lim
k↑∞

Xnk
= X a.s.

�

Exercise 6.6.6 gives an example of a sequence converging in probability, but
not almost surely. Thus, convergence in probability is in general a notion strictly
weaker than almost-sure convergence. However, Exercise 6.6.7 gives an important
example where both convergences occur simultaneously.

There exists a distance between random variables that metrizes convergence in
probability, namely

d(X, Y ) := E [|X − Y | ∧ 1] .

(The verification that d is indeed a metric is left as an exercise.) This means the
following:

Theorem 6.4.3 The sequence {Xn}n≥1 converges in probability to the variable X
if and only if

lim
n↑∞

d(Xn, X) = 0 .

Proof. If: By Markov’s inequality, for ε ∈ (0, 1],

P (|Xn −X| ≥ ε) = P (|Xn −X| ∧ 1 ≥ ε) ≤ d(Xn, X)

ε
.

Only if: For all ε > 0,

d(Xn, X) =

∫

{|Xn−X|≥ε}
(|Xn −X| ∧ 1) dP +

∫

{|Xn−X|<ε}
(|Xn −X| ∧ 1) dP

≤ P (|Xn −X| ≥ ε) + ε .

If the sequence converges in probability, there exists an n0 such that for n ≥ n0,
P (|Xn − X| ≥ ε) ≤ ε and therefore d(Xn, X) ≤ 2ε. Since ε > 0 is arbitrary, we
have shown that limn↑∞ d(Xn, X) = 0. �
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Convergence in the Quadratic Mean

This type of convergence concerns sequences of square-integrable random variables.

Definition 6.4.4 A sequence {Zn}n≥1 of square-integrable complex random vari-
ables is said to converge in the quadratic mean to the square-integrable complex
random variable Z if, for all ε > 0,

lim
n↑∞

E[|Zn − Z|2] = 0 . (6.12)

The next result follows from the fact that L2
C(P ), the collection of square-

integrable complex-valued random variables, is a Hilbert space when endowed
with the inner product

〈X, Y 〉 := E [XY ∗] .

(This is a particular case of Theorem 4.4.19.) In particular,

Theorem 6.4.5 For the sequence {Zn}n≥1 of square-integrable complex random
variables to converge in the quadratic mean to some square-integrable complex ran-
dom variable Z, it is necessary and sufficient that

lim
n,m↑∞

E[|Zn − Zm|2] = 0 . (6.13)

We now give the property of continuity of the inner product.

Theorem 6.4.6 Let {Xn}n≥1 {Yn}n≥1 be two sequences of square-integrable com-
plex random variables that converge in the quadratic mean to the square-integrable
complex random variables X and Y respectively. Then,

lim
n,m↑∞

E[XnY
∗
m] = E[XY ∗] . (6.14)

Proof. We have

|E[XnY
∗
m]− E[XY ∗]|

= |E[(Xn −X)(Ym − Y )∗] + E[(Xn −X)Y ∗] + E[X(Ym − Y )∗]|
≤ |E[(Xn −X)(Ym − Y )∗]|+ |E[(Xn −X)Y ∗]|+ |E[X(Ym − Y )∗]|

and the right-hand side of this inequality is, by Schwarz’s inequality, less than or
equal to

(
E[|Xn −X|2]

) 1
2
(
E[|Ym − Y |2]

) 1
2

+
(
E[|Xn −X|2]

) 1
2
(
E[|Y |2]

) 1
2

+
(
E[|X|2]

) 1
2
(
E[|Ym − Y |2]

) 1
2 ,
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which tends to 0 as n, m ↑ ∞. �
Theorem 6.4.7 If the sequence {Zn}n≥1 of square-integrable complex random
variables converges in the quadratic mean to the complex random variable Z, it
also converges in probability to the same random variable.

Proof. It suffices to observe that, by Markov’s inequality, for all ε > 0,

P (|Zn − Z| ≥ ε) ≤ 1

ε2
E[|Zn − Z|2] .

�

Example 6.4.8: Convergence in quadratic mean of series. Let {An}n∈Z
and {Bn}n∈Z be two sequences of centered square-integrable complex random vari-
ables such that ∑

j∈Z
E[|Aj |2] <∞,

∑

j∈Z
E[|Bj|2] <∞ .

Suppose, moreover, that

E
[
AiA

∗
j

]
= E

[
BiB

∗
j

]
= E

[
AiB

∗
j

]
= 0 (i �= j) .

Let

Un :=

n∑

j=−n

Aj , Vn :=

n∑

j=−n

Bj .

Then {Un}n≥1 (resp., {Vn}n≥1) converges in the quadratic mean to some square-
integrable random variable U (resp., V ) and

E [U ] = E [V ] = 0 and E[UV ∗] =
∑

j∈Z
E[AjB

∗
j ] .

Proof. We have

E[|Un − Um|2] = E

⎡

⎣

∣
∣
∣
∣
∣

m∑

j=n+1

Aj

∣
∣
∣
∣
∣

2
⎤

⎦ =

m∑

j=n+1

m∑

i=n+1

E[AjA
∗
i ] =

m∑

j=n+1

E[|Aj|2]

since E[AjA
∗
i ] = 0 when i �= j. The conclusion then follows from the Cauchy

criterion for convergence in the quadratic mean, since

lim
m,n↑∞

E[|Un − Um|2] = lim
m,n↑∞

m∑

j=n+1

E[|Aj |2] = 0 ,
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in view of hypothesis
∑

j∈ZE[|Aj|2] < ∞. By continuity of the inner product in

L2
C(P ),

E[UV ∗] = lim
n↑∞

E[UnV
∗
n ] = lim

n↑∞

n∑

j=1

n∑

�=1

E[AjB
∗
� ]

= lim
n↑∞

n∑

j=1

E[AjB
∗
j ] =

∑

j∈Z
E[AjB

∗
j ] .

�

6.5 Uniform Integrability

The monotone and dominated convergence theorems are not all the tools that we
have at our disposition giving conditions under which it is possible to exchange
limits and expectations. Uniform integrability, which will be introduced now, is
another such sufficient condition.

Definition 6.5.1 A collection {Xi}i∈I (where I is an arbitrary index) of integrable
random variables is called uniformly integrable if

lim
c↑∞

∫

{|Xi|>c}
|Xi| dP = 0 uniformly in i ∈ I .

Example 6.5.2: Collection Dominated by an Integrable Variable.

If, for some integrable random variable, P (|Xi| ≤ X) = 1 for all i ∈ I, then
{Xi}i∈I is uniformly integrable. Indeed, in this case,

∫

{|Xi|>c}
|Xi| dP ≤

∫

{X>c}
X dP

and by monotone convergence the right-hand side of the above inequality tends to
0 as c ↑ ∞.

Clearly, if one adds a finite number of integrable variables to a uniformly inte-
grable collection, the augmented collection will also be uniformly integrable.
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Theorem 6.5.3 The collection {Xi}i∈I of integrable random variables is uni-
formly integrable if and only if

(a) supiE [|Xi|] <∞, and

(b) for every ε > 0, there exists a δ(ε) > 0 such that

sup
n

∫

A

|Xi| dP ≤ ε whenever P (A) ≤ δ(ε) .

(In other words,
∫
A
|Xi| dP → 0 uniformly in i as P (A)→ 0.)

Proof. Assume uniform integrability. For any ε > 0, there exists a c such that∫
{Xi>c} |Xi| dP ≤ ε for all i ∈ I. For all A ∈ F , all i ∈ I,

∫

A

|Xi| dP ≤ cP (A) +

∫

{|Xi|>c}
|Xi| dP ≤ cP (A) +

1

2
ε .

Therefore we have (b) by taking δ(ε) = ε
2c

and (a) with A = Ω.

Conversely, let M := supi E [|Xi|] < ∞. Let ε and δ(ε) be as in (b). Let
c0 := M

δ(ε)
. For all c ≥ c0 and all i ∈ I, P (|Xi| > c) ≤ δε (Markov’s inequality).

Apply (b) with A = {|Xc| > c} to obtain that supn

∫
{|Xc|>c} |Xi| dP ≤ ε. �

Since the “collection” consisting of a single integrable variable X is uniformly
integrable, condition (b) of the theorem above reads

sup
A ;P (A)<δ

E [|X| 1A]→ 0 as δ → 0 . (6.15)

This simple observation will be used in the proof of the next result.

Theorem 6.5.4 Let Y be an integrable random variable and let {Fi}i∈I be a col-
lection of sub-σ fields of F . The collection Xi := E [Y | Fi] (i ∈ I) is uniformly
integrable.

Proof. By Jensen’s inequality,

|Xi| = |E [Y | Fi]| ≤ E [|Y | | Fi]

and therefore, for all a > 0,

E
[
|Xi| 1{|Xi|≥a}

]
≤ E [Zi] 1{Zi≥a} ,

where Zi := E [|Y | | Fi]. By definition of conditional expectation, since
{Zi ≥ a} ∈ Fi,

E
[
(|Y | − Zi) 1{Zi≥a}

]
= 0
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and therefore

E
[
|Xi| 1{|Xi|≥a}

]
≤ E

[
|Y | 1{Zi≥a}

]
. (�)

By Markov’s inequality,

P (Zi ≥ a) ≤ E [Zi]

a
=

E [|Y |]
a

,

and therefore P (Zi ≥ a)→ 0 as a→∞ uniformly in i. Use (6.15) to obtain that
E

[
|Y | 1{Zi≥a}

]
→ 0 as a→∞ uniformly in i. Conclude with (�). �

Theorem 6.5.5 A sufficient condition for the collection {Xi}i∈I of integrable ran-
dom variables to be uniformly integrable is the existence of a non-negative non-
decreasing function G : R→ R such that

lim
t↑∞

G(t)

t
= +∞

and
sup
i

E [G(|Xi|)] <∞ .

Proof. Fix ε > 0 and let a = M
ε

where M := supn(E [G(|Xi|)]). Take c large

enough so that G(t)/t ≥ a for t ≥ c. In particular, |Xi| ≤ G(|Xi|)
a

on {|Xi| > c}
and therefore

∫

{|Xi|>c}
|Xi| dP ≤

1

a
E

[
G(|Xi|)1{|Xi|>c}

]
≤ M

a
= ε

uniformly in i. �

Example 6.5.6: Two Sufficient Conditions for Uniform Integrabil-

ity. Two frequently used sufficient conditions guaranteeing uniform integrability
are

sup
i

E
[
|Xi|1+α] <∞ (α > 1)

and

sup
i

E
[
|Xi| log+ |Xi|

]
<∞ .

Almost-sure convergence of a sequence of integrable random variables to an
integrable random variable does not necessarily imply convergence in L1. However:
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Theorem 6.5.7 Let {Xn}n≥1 be a sequence of integrable random variables and let
X be some random variable. The following are equivalent:

(a) {Xn}n≥1 is uniformly integrable and Xn
Pr.→ X as n→∞.

(b) X is integrable and Xn
L1

→ X as n→∞.

Proof. (a) implies (b): Since Xn
Pr→ X, there exists a subsequence {Xnk

}k≥1 such

that Xnk

a.s.→ X. By Fatou’s lemma,

E [|X|] ≤ lim inf
k

E [|Xnk
|] ≤ sup

nk

E [|Xnk
|] ≤ sup

n
E [|Xn|] <∞ .

Therefore X ∈ L1
R(P ). Also for fixed ε > 0,

E [|Xn −X|] ≤
∫

{|Xn−X|<ε}
|Xn −X| dP + · · ·

· · ·+
∫

{|Xn−X|≥ε}
|Xn| dP +

∫

{|Xn−X|≥ε}
|X| dP

≤ ε+

∫

{|Xn−X|≥ε}
|Xn| dP +

∫

{|Xn−X|≥ε}
|X| dP .

Recall that adding an integrable random variable to a uniformly integrable collec-
tion retains uniformly integrability. Apply (b) of Theorem 6.5.3 to the uniformly
integrable family {Xn}n≥0 where X0 := X, denoting by δ′ the corresponding δ.
By hypothesis, P (|Xn −X| ≥ ε) ≤ δ′ for large enough n. By (b) of Theorem
6.5.3 with A := {|Xn −X| ≥ ε}, for large enough n,

∫
{|Xn−X|≥ε} |Xn| dP ≤ ε and

∫
{|Xn−X|≥ε} |X| dP ≤ ε. Therefore, E [|Xn −X|] ≤ 3ε for large enough n, thus

proving convergence in L1.

(b) implies (a): Let ε > 0 be given and let n0 be such that E [|Xn −X|] ≤ ε
for all n ≥ n0. The random variables X,X1, . . . , Xn0 being integrable, there exists
a δ > 0 such that if P (A) ≤ δ,

∫
A
|X| dP ≤ ε

2
and

∫
A
|Xn| dP ≤ ε

2
for n ≤ n0. If

n ≥ n0, by the triangle inequality,
∫

A

|Xn| dP ≤
∫

A

|X| dP +

∫

A

|Xn −X| dP ≤ 2ε ,

and therefore (b) of Theorem 6.5.3 is satisfied. Whereas (a) of Theorem 6.5.3 is
satisfied since E [|Xn|] ≤ E [|Xn −X|] + E [|X|]. �

6.6 Exercises

Exercise 6.6.1. In probability but not almost surely
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Let {Xn}n≥2 be an independent sequence of random variables such that

P (Xn = n) = P (Xn = −n) = 1

2n lnn
and P (Xn = 0) = 1− 1

n lnn
(n ≥ 2) .

Let Sn :=
∑n

i=2Xi. Prove that Sn

n
→ 0 in probability but not almost surely.

Exercise 6.6.2. A recurrence equation, take 2

Recall the notation a+ = max(a, 0). Consider the recurrence equation,

Xn+1 = (Xn − 1)+ + Zn+1 (n ≥ 0) ,

where X0 and Zn (n ≥ 1) are integer-valued random variables, and {Zn}n≥1 is iid
and independent of X0.

(a) Show that limn↑∞ Xn = +∞ if E [Z1] > 1.

(b) Let T0 be the first time n ≥ 1 for which Xn = 0. Show that if E [Z1] < 1, then
P (T0 <∞) = 1.

Exercise 6.6.3. Asymptotics of the renewal process

Let {Sn}n≥1 be an iid sequence of real random variables such that

P (0 < S1 < +∞) = 1 and E[S1] <∞ ,

and let for each t ≥ 0, N(t) =
∑

n≥1 1(0,t](Tn), where Tn = S1 + · · · + Sn. (The
sequence {Tn}n≥1 is called a renewal process.)

(a) Prove that P -almost surely limn↑∞ Tn =∞ and limt↑∞ N(t) =∞.

(b) Prove that P -almost surely limt→∞
N(t)
t

= 1
E[S1]

.

Exercise 6.6.4. slln for non-negative sequences

Let {Xn}n≥1, be an iid sequence of non-negative random variables such that
E [X1] =∞. Show that

lim
n↑∞

X1 + · · ·+Xn

n
=∞ (= E [X1]).

Exercise 6.6.5. A result from analysis

Let f : [0, 1]→ R be a continuous function. Prove that

lim
n↑∞

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + · · ·+ xn

n

)

dx1 · · ·dxn
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exists, and find it. (A probabilistic proof is required.)

Exercise 6.6.6. Convergence in probability but not almost-sure, II

Let {Xn}n≥1 be a sequence of independent random variables taking values in {0, 1}.

(A) Show that a necessary and sufficient condition for this sequence to converge
almost surely to 0 is

∑
n≥1 P (Xn = 1) <∞.

(B) Show that a necessary and sufficient condition for this sequence to converge
in probability to 0 is limn↑∞ P (Xn = 1) = 0.

(C) Deduce from the above that convergence in probability does not imply in
general almost-sure convergence.

Exercise 6.6.7. When convergence in probability implies almost-sure

convergence

Let {Xn}n≥1 be a sequence of non-negative random variables. Let Sn := X1+ · · ·+
Xn. Show that the convergence in probability of the sequence {Sn}n≥1 implies its
almost-sure convergence.

Exercise 6.6.8. In probability and in the quadratic mean

Let α > 0, and let {Zn}n≥1 be a sequence of random variables such that

P (Zn = 1) = 1− 1

nα
, P (Zn = n) =

1

nα
.

Show that {Zn}n≥1 converges in probability to some variable Z to be identified.
For what values of α does {Zn}n≥1 converge to Z in the quadratic mean?

Exercise 6.6.9. Continuity of the mean and variance.

Prove the following: If the sequence {Zn}n≥1 of square-integrable complex random
variables converges in the quadratic mean to the complex random variable Z, then

lim
n↑∞

E [Zn] = E [Z] and lim
n↑∞

E
[
|Zn|2

]
= E

[
|Z|2

]
.

Exercise 6.6.10. g(Zn)
Suppose the sequence of random variables {Zn}n≥1 converges to a in probability.
Let g : R→ R be a continuous function. Show that {g(Zn)}n≥1 converges to g(a)
in probability.



Chapter 7

Convergence in Distribution

The next fundamental notion of convergence after almost-sure convergence is con-
vergence in distribution, and the main result there is the central limit theorem, the
heart of statistics, which is the art of assessing probability models (is this coin
fair?). Although these notions are linked in various ways, they are fundamentally
different.

7.1 Paul Lévy’s Criterion

Let {Xn}n≥1 and X be real random variables with respective cumulative distribu-
tion functions {Fn}n≥1 and F . The “natural” definition of convergence in distri-
bution of {Xn}n≥1 to X could be the following:

lim
n↑∞

Fn(x) = F (x) (x ∈ R) . (�)

In this provisional definition, there is no restriction on the x’s in R for which
(�) is required. However, if it was adopted, one could not say that the “random”
(actually deterministic) sequence of random variables Xn ≡ a + 1

n
where a ∈ R

converges in distribution to X ≡ a. The following definition takes care of this
anomaly.

Definition 7.1.1 Let {Xn}n≥1 and X be real random variables with respective
cumulative distribution functions {Fn}n≥1 and F . The sequence {Xn}n≥1 is said
to converge in distribution to X if

lim
n↑∞

Fn(x) = F (x) for all continuity points of F , (7.1)

where the point x ∈ R is called a continuity point of the cumulative distribution
function F on R if F (x) = F (x−).
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This is denoted by:

Xn
D→ X .

Example 7.1.2: Magnified Minimum. Let {Yn}n≥1 be a sequence of iid

random variables uniformly distributed on [0, 1]. Then

Xn = nmin(Y1, . . . , Yn)
D→ E(1) ,

(the exponential distribution with mean 1). In fact, for all x ∈ [0, n],

P (Xn > x) = P
(
min(Y1, . . . , Yn) >

x

n

)
=

n∏

i=1

P
(
Yi >

x

n

)
=

(
1− x

n

)n

,

and therefore limn↑∞ P (Xn > x) = e−x1R+(x).

For random vectors, another definition (which in the univariate case turns out
to be equivalent; see Theorem 7.1.5) is needed.

Definition 7.1.3 Let {Xn}n≥1 and X be random vectors of Rd. The sequence
{Xn}n≥1 is said to converge in distribution to X if for all continuous and bounded
functions f : Rd → R,

lim
n↑∞

E[f(Xn)] = E[f(X)] .

The vectors X and Xn (n ≥ 1) need not be defined on the same probability
space. Convergence in distribution concerns only probability distributions. As
a matter of fact, very often, the Xn’s are defined on the same probability space
but there is no “visible” (that is, defined on the same probability space) limit
random vector X. Therefore one sometimes denotes convergence in distribution

as follows: Xn
D→ Q, where Q is a probability distribution onRd. IfQ is a “famous”

probability distribution, for instance a standard Gaussian variable, we then say,
that “{Xn}n≥1 converges in distribution to a standard Gaussian distribution”, and

denote this by: Xn
D→ N (0, 1).
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Theorem 7.1.4 Let {Xn}n≥1 be a sequence of random vectors of Rd with respec-
tive characteristic functions {ϕn}n≥1.

A. Suppose that there exists a function ϕ such that

lim
n↑∞

ϕn = ϕ . (7.2)

If ϕ(0) = 1, this function is the characteristic function of a random vector
X and {Xn}n≥1 converges in distribution to X.

B. In fact, a necessary and sufficient condition for {Xn}n≥1 to converge in dis-
tribution to some random vector X with characteristic function ϕ is that
(7.2) holds true.

This result is the Paul Lévy criterion for convergence in distribution. Its (very
technical) proof will be omitted as well as the proof of the next result.1

Theorem 7.1.5 In the univariate case (d = 1), the conditions (7.2) and (7.1) are
equivalent.

The following result, Slutsky’s lemma, is often used.

Theorem 7.1.6 Let {Xn}n≥1 and {Yn}n≥1 be sequences of real random variables

such that Yn
Pr→ 0 and Xn

D→ X for some real random variable X. Then Xn+Yn
D→

X.

Proof. By Lévy’s criterion, we must show that limn↑∞ ψXn+Yn(u)→ ψX(u) for all
u ∈ R. Since

|ψXn+Yn(u)− ψX(u)| ≤ |ψXn+Yn(u)− ψXn(u)|+ |ψXn(u)− ψX(u)| ,

and since by hypothesis (Xn
D→ X) the second member of the right-hand side of

the above inequality tends to 0, it remains to show that the first member tends to
0. But the latter equals

|E
[
eiuXn(eiuYn − 1)

]
| ≤ |E

[
(eiuYn − 1)

]
| .

Now, for any ε > 0 there exists a δ > 0 such that |y| ≤ δ ⇒ |eiuy − 1| ≤ ε.
Therefore

|E
[
(eiuYn − 1)

]
| = |E

[
(eiuYn − 1)1{|Yn|>δ}

]
|+ |E

[
(eiuYn − 1)1{|Yn|≤δ}

]
|

≤ 2P (|Yn| > δ) + ε .

1 The classic reference is [2].
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Since Yn
Pr→ 0, limn↑∞ P (|Yn| > δ) = 0. Therefore

lim sup
n↑∞

|E
[
(eiuYn − 1)

]
| ≤ ε ,

and since ε is arbitrary, limn↑∞ |E
[
(eiuYn − 1)

]
| = 0. �

Bochner’s Theorem

This result is of paramount importance in the theory of wide-sense stationary
processes (Chapter 12).

The characteristic function ϕ of a real random variable X has the following
properties:

A. it is hermitian symmetric (that is, ϕ(−u) = ϕ(u)∗) and uniformly bounded
(in fact, |ϕ(u)| ≤ ϕ(0));

B. it is uniformly continuous on R; and

C. it is definite non-negative, in the sense that for all integers n, all u1, . . . ,
un ∈ R, and all z1, . . . , zn ∈ C,

n∑

j=1

n∑

k=1

ϕ(uj − uk)zjz
∗
k ≥ 0

(just observe that the left-hand side equals E

[∣
∣
∣
∑n

j=1 zje
iujX

∣
∣
∣
2
]

).

It turns out that Properties A, B and C characterize characteristic functions
(up to a multiplicative constant). This is Bochner’s theorem:

Theorem 7.1.7 Let ϕ : R → C be a function satisfying properties A, B and C.
Then there exists a constant 0 ≤ β < ∞ and a real random variable X such that
for all u ∈ R,

ϕ(u) = βE
[
eiuX

]
.

Proof. We henceforth eliminate the trivial case where ϕ(0) = 0 (implying, in
view of condition A, that ϕ is the null function). For any continuous function
z : R→ C and any A ≥ 0,

∫ A

0

∫ A

0

ϕ(u− v)z(u)z∗(v) du dv ≥ 0 . (�)
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Indeed, since the integrand is continuous, the integral is the limit as n ↑ ∞ of

A2

4n

2n∑

j=1

2n∑

k=1

ϕ

(
A(j − k)

2n

)

z

(
Aj

2n

)

z

(
Ak

2n

)∗
,

a non-negative quantity by condition C. From (�) with z(u) := e−ixu, we have that

g(x,A) :=
1

2πA

∫ A

0

∫ A

0

ϕ(u− v)e−ix(u−v) du dv ≥ 0 .

Changing variables, we obtain the alternative expression

g(x,A) : =
1

2π

∫ A

−A

(

1− |u|
A

)

ϕ(u)e−iux du

=
1

2π

∫ +∞

−∞
h
( u

A

)
ϕ(u)e−iux du ,

where h(u) = (1− |u|) 1{|u|≤1}. Let M > 0. We have

∫ +∞

−∞
h
( x

2M

)
g(x,A) dx

=
1

2π

∫ +∞

−∞
h
( u

A

)
ϕ(u)

(∫ +∞

−∞
h
( x

2M

)
e−iux dx

)

du

=
1

π
M

∫ +∞

−∞
h
( u

A

)
ϕ(u)

(
sinMu

Mu

)2

du .

Therefore

∫ +∞

−∞
h
( x

2M

)
g(x,A) dx ≤ 1

π
M

∫ +∞

−∞
h
( u

A

)
|ϕ(u)|

(
sinMu

Mu

)2

du

≤ 1

π
ϕ(0)

∫ +∞

−∞

(
sin u

u

)2

du = ϕ(0) .

By monotone convergence,

lim
M↑∞

∫ +∞

−∞
h
( x

2M

)
g(x,A) dx =

∫ +∞

−∞
g(x,A) dx ,

and therefore ∫ +∞

−∞
g(x,A) dx ≤ ϕ(0) .
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The function x �→ g(x,A) is therefore integrable and it is the Fourier transform of
the integrable and continuous function u �→ h

(
u
A

)
ϕ(u). Therefore, by the Fourier

inversion formula:

h
( u

A

)
ϕ(u) =

∫ +∞

−∞
g(x,A)eiux dx .

In particular, with u = 0,
∫ +∞
−∞ g(x,A) dx = ϕ(0). Therefore, f(x,A) := g(x,A)

ϕ(0)
is

the probability density of some real random variable with characteristic function
h
(
u
A

) ϕ(u)
ϕ(0)

. But

lim
A↑∞

h
( u

A

) ϕ(u)

ϕ(0)
=

ϕ(u)

ϕ(0)
.

This limit of a sequence of characteristic functions is continuous at 0 and is there-
fore a characteristic function (Paul Lévy’s criterion, Theorem 7.1.4). �

7.2 The Central Limit Theorem

This is the emblematic theorem of Statistics.

Theorem 7.2.1 Let {Xn}n≥1 be an iid sequence of real random variables such
that

E[X2
1 ] <∞ . (7.3)

(In particular, E[|X1|] <∞.) Then, for all x ∈ R,

Sn − nE[X1]

σ
√
n

D→ N (0, 1) . (7.4)

The random variable in the left of (7.4) is obtained by centering the sum Sn

(subtracting its mean nE[X1]) and then normalizing it (dividing by the square
root of its variance so that the resulting variance equals 1).

Proof. Assume without loss of generality that E[X1] = 0. Let σ2 be the variance
of X1. By the characteristic function criterion for convergence in distribution, it
suffices to show that

lim
n↑∞

ϕn(u) = e−σ2u2/2,

where

ϕn(u) = E

[

exp

{

iu

∑n
j=1Xj√
n

}]

=

n∏

j=1

E

[

exp

{

i
u√
n
Xj

}]

= ψ

(
u√
n

)n
,
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where ψ is the characteristic function ofX1. From the Taylor expansion of ψ about
zero,

ψ(u) = 1 +
ψ′′(0)
2!

u2 + o(u2) ,

we have, for fixed u ∈ R,

ψ

(
u√
n

)

= 1− 1

n

σ2u2

2
+ o

(
1

n

)

,

and therefore

lim
n↑∞

ln {ϕn(u)} = lim
n↑∞

n

(

ln

{

1− σ2u2

2n
+ o

(
1

n

)})

= − 1

2
σ2u2 .

The result then follows by Theorem 7.1.4. �

Example 7.2.2: Fast sampling of the Poisson distribution. In the case
of a Poisson distribution with mean θ, the method of the inverse works as follows:
letting pi := e−θ θi

i!
, sample a random variable U uniformly distributed on [0, 1] and

set T = k if U falls in the interval Ii := [
∑k−1

i=0 pi,
∑k

i=0 pi]. The crude version of
this sampling algorithm consists in examining the intervals Ii sequentially until
one is found that contains U . This would require on average 1 + E[T ] = 1 + θ
trials. If θ is very large, a more economical procedure is available. It takes into
account the fact that the probability mass of a Poisson variable is maximal at a
value i0 near the average value and decreases as one get farther away from this
value. The exploration starts with the value i0, and then proceeds to i0−1, i0+1,
i0 − 2, i0 + 2, etc. The average number of trials is then roughly equal to

1 + E [|T − θ|] = 1 +
√
θE

[
|T − θ|√

θ

]

.

By the central limit theorem, Z := T−θ√
θ
is approximately distributed as a standard

Gaussian variable. Therefore the average number of trials for large θ is approxi-
mately

1 +
√
θE [|N (0, 1)|] # 1 + 0.82

√
θ .

The central limit theorem admits a multidimensional version.
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Theorem 7.2.3 Let {Xn}n≥1 be a sequence of independent random vectors of
dimension d, and let {an}n≥1 be a sequence of real numbers such that limn↑∞ an =
∞. Suppose that

Xn
a.s.→ m

and √
an(Xn −m)

D→ N (0,Γ) .

Let g : Rd → R
q be a function twice continuously differentiable in a neighborhood

U of m. Then
g(Xn)

a.s.→ g(m)

and √
an(g(Xn)− g(m))

D→ N
(
0, Jg(m)T Γ Jg(m)

)
,

where Jg(m) is the Jacobian matrix of g evaluated at m.

Proof. U can be chosen convex and compact. Let gj denote the j-th coordinate
of g, and let D2gj denote the second differential matrix of gj. By Taylor’s formula,

gj(x)− gj(m) = (x−m)T (grad gj(m)) +
1

2
(x−m)T D2gj(m

∗) (x−m)

for some m∗ in the closed segment linking m to x, denoted [m, x]. Therefore, if
Xn ∈ U

√
an(gj(Xn)− gj(m)) =

√
an(Xn −m)T (grad gj(m))

+
1

2
an(Xn −m)T

1
√
an

D2gj(m
∗
n) (Xn −m) ,

where m∗
n ∈ [m,Xn].

Suppose Xn ∈ U . Since U is convex and m ∈ U , also m∗
n ∈ U . Now since U is

compact, the continuous function D2gj is bounded in U . Therefore, since an ↑ ∞,
1√
an
D2gj(m

∗
n)1U(Xn) → 0. Since Xn

a.s.→ m, we deduce from the above remarks

that √
an(gj(Xn)− gj(m))−√an(Xn −m)T (grad gj(m))

a.s.→ 0 ,

and therefore

√
an(g(Xn)− g(m))− Jg(m)

√
an(Xn −m)

a.s.→ 0 .

But
√
an(Xn −m)

D→ N (0,Γ) and therefore

√
an(g(Xn)− g(m))

D→ Jg(m)N (0,Γ) = N
(
0, Jg(m)T Γ Jg(m)

)
.

�
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Confidence Intervals

We now briefly introduce a basic methodology of Statistics with the notion of
confidence interval.

The central limit theorem (7.2.1) implies that for x ≥ 0,

lim
n↑∞

P

(

E[X1]−
σ√
n
x ≤ Sn

n
≤ E[X1] +

σ√
n
x

)

= P (|N (0; 1)| ≤ x) .

Under the condition E [|X1|3] <∞, this limit is uniform in x ∈ R (we shall admit
this result, called the Berry–Essen theorem) and therefore, with σ√

n
x = a,

lim
n↑∞

P

(

E[X1]− a ≤ Sn

n
≤ E[X1] + a

)

= P

(

|N (0; 1)| ≤ a
√
n

σ

)

.

That is, for large n,

P

(

E[X1]− a ≤ Sn

n
≤ E[X1] + a

)

# P

(

|N (0; 1)| ≤ a
√
n

σ

)

.

In other words, for large n, the slln estimate of E[X1], that is Sn

n
, lies within

distance a of E[X1] with probability P
(
|N (0; 1)| ≤ a

√
n

σ

)
.

In statistical practice, this result is used in two manners.

(1) One wishes to know the number n of experiments that guarantee that with
probability, say 0.99, the estimation error is less than a. Choose n such that

P

(

|N (0; 1)| ≤ a
√
n

σ

)

= 0.99 .

Since
P (|N (0; 1)| ≤ 2.58) = 0.99 ,

we have

2.58 =
a
√
n

σ
, (7.5)

and therefore

n =

(
2.58a

σ

)2

.

(2) The (usually large) number n of experiments is fixed. We want to determine
the interval

[
Sn

n
− a, Sn

n
+ a

]
within which the mean E[X1] lies with probability at

least 0.99. From (7.5):

a =
2.58σ√

n
.
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If the standard deviation σ is unknown, it may be either replaced by an slln

estimate of it (but then of course. . . ), or the conservative method can be used,
which consists of replacing σ by an upper bound.

Example 7.2.4: Testing a coin. Consider the problem of estimating the
bias p of a coin. Here, Xn takes two values, 1 and 0 with probability p and 1− p
respectively, and in particular E[X1] = p, Var (X1) = σ2 = p(1 − p). Clearly,
since we are trying to estimate p, the standard deviation σ is unknown. Here the
upper bound of σ is the maximum of

√
p(1− p) for p ∈ [0, 1], which is attained

for p = 1
2
. Thus σ ≤ 1

2
.

Suppose the coin was tossed 10, 000 times and that the experiment produced
the estimate Sn

n
= 0.4925. Can we “believe 99 percent” that the coin is unbiased?

For this we would check that the corresponding confidence interval contains the
value 1

2
. Using the conservative method (not a big problem since obviously the

actual bias is not far from 1
2
), we have

a =
σ2.58√

n
= 0.0129 ,

and indeed 1
2
∈ [0.4925− 0.0129, 0.4925− 0.0129], so that we are at least 99 per-

cent confident that the coin is unbiased.

7.3 Convergence in Variation

This notion is introduced in the discrete time setting, since this will be sufficient
for the study of convergence (in variation) of a Markov chain (see Chapter 9).

Definition 7.3.1 Let E be a countable space. The distance in variation between
two probability distributions α and β on E is the quantity

dV (α, β) :=
1

2

∑

i∈E
|α(i)− β(i)| . (7.6)

That dV is indeed a distance is clear.

Lemma 7.3.2 Let α and β be two probability distributions on the same countable
space E. Then

dV (α, β) = sup
A⊆E
{|α(A)− β(A)|}

= sup
A⊆E
{α(A)− β(A)} .
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Proof. For the second equality observe that for each subset A there is a subset B
such that |α(A)− β(A)| = α(B)− β(B) (take B = A or Ā). For the first equality,
write

α(A)− β(A) =
∑

i∈E
1A(i){α(i)− β(i)}

and observe that the right-hand side is maximal for

A = {i ∈ E; α(i) > β(i)} .

Therefore, with g(i) = α(i)− β(i),

sup
A⊆E
{α(A)− β(A)} =

∑

i∈E
g+(i) =

1

2

∑

i∈E
|g(i)|

since
∑

i∈E g(i) = 0. �

The distance in variation between two random variables X and Y with values
in E is the distance in variation between their probability distributions, and it is
denoted (with a slight abuse of notation) by dV (X, Y ). Therefore

dV (X, Y ) :=
1

2

∑

i∈E
|P (X = i)− P (Y = i)| .

The distance in variation between a random variable X with values in E and a
probability distribution α on E denoted (again with a slight abuse of notation) by
dV (X,α) is defined by

dV (X,α) :=
1

2

∑

i∈E
|P (X = i)− α(i)| .

We now introduce the notion of coupling.

Definition 7.3.3 The coupling of two discrete probability distributions π′ on E ′

and π′′ on E ′′ consists, by definition, of the construction of a probability distribu-
tion π on E := E ′ × E ′′ such that the marginal distributions of π on E ′ and E ′′

respectively are π′ and π′′, that is,

∑

j∈E′′
π(i, j) = π′(i) and

∑

i∈E′
π(i, j) = π′′(j) .
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For two probability distributions α and β on the countable set E, let D(α, β)
be the collection of random vectors (X, Y ) taking their values in E ×E and with
given marginal distributions α and β, that is,

P (X = i) = α(i), P (Y = i) = β(i) . (7.7)

Theorem 7.3.4 For any pair (X, Y ) ∈ D(α, β), we have the fundamental cou-
pling inequality

dV (α, β) ≤ P (X �= Y ) ,

and equality is attained by some pair (X, Y ) ∈ D(α, β), which is then said to
realize maximal coincidence.

Proof. For arbitrary A ⊂ E,

P (X �= Y ) ≥ P (X ∈ A, Y ∈ Ā)

= P (X ∈ A)− P (X ∈ A, Y ∈ A)

≥ P (X ∈ A)− P (Y ∈ A) ,

and therefore

P (X �= Y ) ≥ sup
A⊂E
{P (X ∈ A)− P (Y ∈ A)} = dV (α, β) .

We now construct (X, Y ) ∈ D(α, β) realizing equality. Let U,Z, V , and {W (t)}t∈[0,1]
be independent random variables; U takes its values in {0, 1}, and Z, V,W take
their values in E. The distributions of these random variables is given by

P (U = 1) = 1− dV (α, β) ,

P (Z = i) = α(i) ∧ β(i)/ (1− dV (α, β)) ,

P (V = i) = (α(i)− β(i))+/dV (α, β) ,

P (W = i) = (β(i)− α(i))+/dV (α, β) .

Observe that P (V = W ) = 0. Defining

(X, Y ) = (Z,Z) if U = 1

= (V,W ) if U = 0 ,

we have

P (X = i) = P (U = 1, Z = i) + P (U = 0, V = i)

= P (U = 1)P (Z = i) + P (U = 0)P (V = i)

= α(i) ∧ β(i) + (α(i)− β(i))+ = α(i) ,
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and similarly, P (Y = i) = β(i). Therefore, (X, Y ) ∈ D(α, β). Also, P (X = Y ) =
P (U = 1) = 1− dV (α, β). �

Example 7.3.5: Poisson’s law of rare events, take 2. Let Y1, . . . , Yn be
independent random variables taking their values in {0, 1}, with P (Yi = 1) = πi,
1 ≤ i ≤ n. Let X :=

∑n
i=1 Yi and λ :=

∑n
i=1 πi. Let pλ be the Poisson distribution

with mean λ. We wish to bound the variation distance between the distribution q
of X and pλ. For this we construct a coupling of the two distributions as follows.
First we generate independent couples (Y1, Y

′
1), . . . , (Yn, Y

′
n) such that

P (Yi = j, Y ′
i = k) =

⎧
⎪⎨

⎪⎩

1− πi if j = 0, k = 0,

e−πi
πk
i

k!
if j = 1, k ≥ 1,

e−πi − (1− πi) if j = 1, k = 0 .

One verifies that for all 1 ≤ i ≤ n, P (Yi = 1) = πi and Y ′
i ∼ Poi(πi). In particular

X ′ :=
∑n

i=1 Y
′
i is a Poisson variable with mean λ. Now

P (X �= X ′) = P

(
n∑

i=1

Yi �=
n∑

i=1

Y ′
i

)

≤ P (Yi �= Y ′
i for some i) ≤

n∑

i=1

P (Yi �= Y ′
i ) .

But

P (Yi �= Y ′
i ) = e−πi − (1− πi) + P (Y ′

1 ≥ 1)

= πi

(
1− e−πi

)
≤ π2

i .

Therefore P (X �= X ′) ≤
∑n

i=1 π
2
i and by the coupling inequality

dV (q, pλ) ≤
n∑

i=1

π2
i .

For instance, with πi = p := λ
n
, we have

dV (q, pλ) ≤
λ2

n
.

In other terms the binomial distribution of size n and mean λ differs in variation
by less than λ2

n
from a Poisson variable with the same mean. This is obviously a re-

finement of the Poisson approximation theorem since it gives exploitable estimates
for finite n.
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Definition 7.3.6 A sequence {Xn}n≥1 of discrete random variables with values
in E is said to converge in distribution to the probability distribution π on E if
for all i ∈ E, limn↑∞ P (Xn = i) = π(i). It is said to converge in variation to this
distribution if

lim
n↑∞

∑

i∈E
|P (Xn = i)− π(i)| = 0 . (7.8)

Observe that Definition 7.3.6 concerns only the marginal distributions of the
stochastic process, not the stochastic process itself. Therefore, if there exists an-

other stochastic process {X ′
n}n≥0 such that Xn

D∼ X ′
n for all n ≥ 0, and if there

exists a third one {X ′′
n}n≥0 such that X ′′

n
D∼ π for all n ≥ 0, then (7.8) follows from

lim
n↑∞

dV (X
′
n, X

′′
n) = 0 . (7.9)

This trivial observation is useful because of the resulting freedom in the choice of
{X ′

n} and {X ′′
n}. An interesting situation occurs when there exists a finite random

time τ such that X ′
n = X ′′

n for all n ≥ τ .

Definition 7.3.7 Two stochastic processes {X ′
n}n≥0 and {X ′′

n}n≥0 taking their val-
ues in the same state space E are said to couple if there exists an almost surely
finite random time τ such that

n ≥ τ ⇒ X ′
n = X ′′

n . (7.10)

The random variable τ is called a coupling time of the two processes.

Theorem 7.3.8 For any coupling time τ of {X ′
n}n≥0 and {X ′′

n}n≥0, we have the
coupling inequality

dV (X
′
n, X

′′
n) ≤ P (τ > n) . (7.11)

Proof. For all A ⊆ E,

P (X ′
n ∈ A)− P (X ′′

n ∈ A) = P (X ′
n ∈ A, τ ≤ n) + P (X ′

n ∈ A, τ > n)

− P (X ′′
n ∈ A, τ ≤ n)− P (X ′′

n ∈ A, τ > n)

= P (X ′
n ∈ A, τ > n)− P (X ′′

n ∈ A, τ > n)

≤ P (X ′
n ∈ A, τ > n) ≤ P (τ > n) .

Inequality (7.11) then follows from Lemma 7.3.2. �

Therefore, if the coupling time is P-a.s. finite, that is limn↑∞ P (τ > n) = 0,

lim
n↑∞

dV (Xn, π) = lim
n↑∞

dV (X
′
n, X

′′
n) = 0 .
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Definition 7.3.9 (A) A sequence {αn}n≥0 of probability distributions on E is said
to converge in variation to the probability distribution β on E if

lim
n↑∞

dV (αn, β) = 0 .

(B) An E-valued random sequence {Xn}n≥0 such that for some probability dis-
tribution π on E,

lim
n↑∞

dV (Xn, π) = 0, (7.12)

is said to converge in variation to π.

7.4 The Rank of Convergence in Distribution

Convergence in distribution is weaker than almost-sure convergence. This means
the following.

Theorem 7.4.1 If the sequence {Xn}n≥1 of random vectors of Rd converges al-
most surely to some random vector X, it also converges in distribution to the same
vector X.

Proof. By dominated convergence, for all u ∈ R,

lim
n↑∞

E
[
ei〈u,Xn〉] = E

[
ei〈u,X〉] ,

which implies, by Paul Lévy’s theorem (Theorem 7.1.4), that {Xn}n≥1 converges
in distribution to X. �

In fact, convergence in distribution is even weaker than convergence in proba-
bility.

Theorem 7.4.2 If the sequence {Xn}n≥1 of random variables converges in prob-
ability to some random variable X, it also converges in distribution to X.

Proof. If this were not the case, one could find a bounded continuous function f
such that E[f(Xn)] does not converge to E[f(X)]. In particular, there would exist
a subsequence nk and some ε > 0 such that |E[f(Xnk

)] − E[f(X)]| ≥ ε for all k.
As {Xnk

}k≥1 converges in probability to X, one can extract from it a subsequence
{Xnk�

}�≥1 converging almost surely to X. In particular, since f is bounded and
continuous, lim�E[f(Xnk�

] = E[f(X)] by dominated convergence, a contradiction.
�
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Combining Theorems 6.4.7 and 7.4.2, we have that convergence in distribution
is weaker than convergence in the quadratic mean:

Theorem 7.4.3 If the sequence of real random variables {Zn}n≥1 converges in
the quadratic mean to some random variable Z, it also converges in distribution
to the same random variable Z.

Convergence in distribution is weaker that convergence in variation:

Theorem 7.4.4 If the sequence of real random variables {Xn}n≥1 converges in
variation to X, it converges in distribution to the same random variable.

Proof. Indeed, for all x (not just the continuity points of the distribution of X),

|P (Xn ≤ x)− P (X ≤ x)| ≤ dV (Xn, X)→ 0 .

�

A Stability Property of the Gaussian Distribution

Theorem 7.4.5 Let {Zn}n≥1, where Zn = (Z
(1)
n , . . . , Z

(m)
n ), be a sequence of

Gaussian random vectors of fixed dimension m that converges componentwise in
the quadratic mean to some vector Z = (Z(1), . . . , Z(m)). Then the latter vector is
Gaussian.

Proof. In fact, by continuity of the inner product in L2
R(P ), for all 1 ≤ i, j ≤ m,

limn↑∞ E[Z
(i)
n Z

(j)
n ] = E[Z(i)Z(j)] and limn↑∞E[Z

(i)
n ] = E[Z(i)], that is

lim
n↑∞

mZn = mZ , lim
n↑∞

ΓZn = ΓZ

and in particular, for all u ∈ Rm,

lim
n↑∞

E
[
eiu

TZn

]
= lim

n↑∞
eiu

TμZn− i
2
uTΓZnu

= eiu
TμZ− i

2
uTΓZu .

The sequence {uTZn}n≥1 converges in the quadratic mean to uTZ, and therefore

it also converges in distribution to uTZ. Therefore, limn↑∞ E
[
eiu

TZn

]
= E[eiu

TZ ],

and finally

E[eiu
TZ ] = eiu

TμZ− i
2
uTΓZu

for all u ∈ Rm. This shows that Z is a Gaussian vector. �
Therefore, limits in the quadratic mean preserve the Gaussian nature of ran-

dom vectors. This is the stability property referred to in the title of this subsection.
Note that the Gaussian nature of random vectors is also preserved by linear trans-
formations, as we already know.
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Skorokhod’s Theorem

There is an at first sight surprising connection between convergence in distribution
and almost-sure convergence exemplified in the following example and generalized
by the theorem following it.

Example 7.4.6: Convergence in distribution of exponential random

variables. Consider the sequence of exponential cdfs

Fn(x) = (1− e−λnx)1x≥0 (n ≥ 1) ,

where {λn}n≥1 is a sequence of positive numbers converging to the finite positive

number λ. Obviously Fn
D→ F where F (x) = (1 − e−λx)1x≥0. Let now X be an

exponential random variable with parameter λ. The random variables

Xn =
λ

λn
X (n ≥ 1)

have the respective cdf Fn (n ≥ 1) and obviously Xn
a.s.→ X.

The next result, Skorokhod’s theorem, generalizes the previous example.

Theorem 7.4.7 Let {Fn}n≥1 be the cdfs of a sequence {Xn}n≥1 of random vari-
ables converging in distribution to a random variable X with the cdf F . There
exists a sequence {Yn}n≥1 of random variables with the cdf {Fn}n≥1 that converges
almost surely to a random variable X with the cdf F .

Proof. Let F←
n and F← denote the generalized inverses of Fn and F respectively

(see Theorem 3.2.30). The sequence we are looking for will be defined on the prob-
ability space (Ω,F , P ) := ((0, 1),B((0, 1)), �), where � is the Lebesgue measure. It
is defined by Yn(ω) := F←

n (ω), that is 2

Yn(u) := F←
n (u)

and the putative limit is defined by

Y (u) := F←(u) .

In order to prove that Yn → Y , it suffices to show that F←
n (u) → F←(u) for

all u ∈ (0, 1) where F← is continuous, since the complement of such points is of
null Lebesgue measure.

2 With a change of notation that will maybe avoid confusion.
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Let u be such a point. Let C be the set of points of continuity of F . If a, b ∈ C,
a < b, are such that

a < F←(u) < b , (�)

then there exists a v, u < v < 1, such that a < F←(u) ≤ F←(v) ≤ b, that is,
F (a) < u < v ≤ F (b).

Since a, b ∈ C, a < b, for large enough n, Fn(a) < u ≤ Fn(b), that is,

a < F←
n (u) ≤ b . (��)

The conclusion then follows from (�) and (��). �

7.5 Exercises

Exercise 7.5.1. Autoregressive Gaussian model, take 2

This is a continuation of Exercise 3.6.32.

3. Show that Xn converges in distribution to a centered Gaussian variable of mean
0 and variance γ2 to be computed.

4. Suppose now that X0 is Gaussian with mean 0 and variance γ2 as computed in
the previous question. Show that {Xn}n≥0 is a strictly stationary sequence, in the
sense that for all n, (Xk, Xk+1, . . . , Xk+n) has a distribution independent of k.

Exercise 7.5.2. Poisson’s law of rare events in the plane

With A a positive real number, let Z1, . . . , ZM be iid random vectors uniformly
distributed in the square ΓA := [0, A]× [0, A]. Define for any set C ⊆ ΓA, N (C)
to be the number of random vectors Zi that fall in C. Let C1, . . . , CK be disjoint
bounded subsets of R2.

Let M = M (A) be a function of A such that

M (A)

A2
= λ > 0.

Show that, as A ↑ ∞, (N (C1) , . . . , N (CK)) converges in distribution. Identify
the limit distribution.

Exercise 7.5.3. A characteristic property of the Gaussian distribu-

tion

Let G be a cumulative distribution function on R such that
∫

R

x dG (x) = 0 and

∫

R

x2 dG (x) = 1 .
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In addition, suppose that G has the following property: If X1 and X2 are indepen-
dent random variables with the cdf G, then X1+X2√

2
also admits G as cdf. Prove

that G is the cdf of a Gaussian variable with mean 0 and variance 1.

Exercise 7.5.4. Mixed moments of a Gaussian vector

Let X = (X1, . . . , Xn)
T be a centered (0-mean) n-dimensional Gaussian vector

X = (X1, . . . , Xn)
T with the covariance matrix Γ = {σij}. Prove the following

formula:

E[Xi1Xi2, . . . , Xi2k ] =
∑

(j1,...,j2k)
j1<j2,...,j2k−1<j2k

σj1j2σj3j4 . . . σj2kj2k , (7.13)

where the summation extends over all permutations (j1, . . . , j2k) of {i1, . . . , i2k}
such that j1 < j2, . . . , j2k−1 < j2k. There are 1 · 3 · 5 . . . (2k− 1) terms in the right-
hand side of Eq. (7.13). The indices i1, . . . , i2k are in {1, . . . , n} and they may
occur with repetitions. Also prove that the odd moments of a centered gaussian
vector are null, that is:

E[Xi1 . . .Xi2k+1
] = 0 ,

for all (i1, . . . , i2k+1) ∈ {1, 2, . . . , n}2k+1. Apply the above to compute the quanti-
ties E[X1X2X3X4], E[X2

1X
2
2 ], E[X4

1 ] and E[X2k
1 ].

Exercise 7.5.5. Series summation via the central limit theorem

Prove, using the central limit theorem, that

lim
n→∞

n∑

k=1

e−nn
k

k!
=

1

2
.

Exercise 7.5.6. g(Xn)
D→ g(X)

Let {Xn}n≥1 and X be random variables such that Xn
D→ X, and let g : R → R

be a continuous function. Prove that g(Xn)
D→ g(X).

Exercise 7.5.7. Cauchy tricks

Let {Xn}n≥1 be a sequence of iid Cauchy random variables.

(a) What is the limit in distribution of X1+···+Xn

n
?

(b) Does X1+···+Xn

n2 converge in distribution?

(c) Does X1+···+Xn

n
converge almost surely to a (nonrandom constant)?
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Exercise 7.5.8. Convergence in distribution, but not in probability

Let Z be a random variable with a symmetric distribution (that is, Z and −Z
have the same distribution). Define the sequence {Zn}n≥1 as follows: Zn = Z if n
is odd, Zn = −Z if n is even. In particular, {Zn}n≥1 converges in distribution to
Z. Show that if Z is not the constant 0, then {Zn}n≥1 does not converge to Z in
probability.

Exercise 7.5.9. Convergence in probability and convergence in vari-

ation

Let {Zn}n≥0 be a sequence of {0, 1}-valued random variables. Show that it con-
verges in variation to 0 if and only if it converges in probability to 0.

Exercise 7.5.10. Convergence in probability but not in distribution

Give an example of a sequence of random variables that converges in probability
but not in distribution.



Chapter 8

Martingales

A martingale is for the general public a clever way of gambling. In mathematics,
it formalizes the notion of fair game and we shall see that martingale theory
indeed has something to say about such games. However the interest and scope
of martingale theory extends far beyond gambling and has become a fundamental
tool of the theory of stochastic processes. The present chapter is an introduction to
this topic, featuring the two main pillars on which it rests: the optional sampling
theorem and the convergence theory of martingales.

8.1 The Martingale Property

Let (Ω,F , P ) be a probability space and let {Fn}n≥1 be a history (or filtration)
defined on it, that is, a sequence of sub-σ-fields of F that is non-decreasing: Fn ⊆
Fn+1 (n ≥ 0). The internal history of a random sequence {Xn}n≥0 is the filtration
{FX

n }n≥0 defined by FX
n := σ(X0, . . . , Xn).

Definition 8.1.1 A complex random sequence {Yn}n≥0 such that for all n ≥ 0

(i) Yn is Fn-measurable and

(ii) E[|Yn|] <∞

is called a (P,Fn)-martingale (resp., submartingale, supermartingale) if, in addi-
tion, for all n ≥ 0, P -almost surely,

E[Yn+1 | Fn] = Yn (resp., ≥ Yn, ≤ Yn) . (8.1)

When the context is clear as to the choice of the underlying probability mea-
sure P , we shall abbreviate, saying for instance, “Fn-submartingale” instead of
“(P,Fn)-submartingale”.
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If the history is not mentioned, it is assumed to be the internal history. For
instance, the phrase {Yn}n≥0 is a martingale means that it is an FY

n -martingale.

Of course an Fn-martingale is an Fn-submartingale and an Fn–supermartingale.

Condition (8.1) implies that for all k ≥ 1, all n ≥ 0,

E[Yn+k | Fn] = Yn (resp., ≥ Yn, ≤ Yn).

Proof. In the martingale case, for instance, by the rule of successive conditioning

E[Yn+k | Fn] = E[E[Yn+k | Fn+k−1] | Fn]

= E[Yn+k−1 | Fn] = E[Yn+k−2 | Fn]

= · · · = E[Yn | Fn] = Yn .

�
In particular, taking expectations and letting n = 0,

E[Yk] = E[Y0] (resp., ≥ E[Y0], ≤ E[Y0]) .

Example 8.1.2: Sums of iid random variables. Let {Xn}n≥0 be an iid

sequence of centered and integrable random variables. The random sequence

Yn := X0 +X1 + · · ·+Xn (n ≥ 0)

is an FX
n -martingale. Indeed, for all n ≥ 0, Yn is FX

n -measurable and

E[Yn+1 | FX
n ] = E[Yn | Fn] + E[Xn+1 | FX

n ] = Yn + E[Xn+1] = Yn ,

where the second equality is due to the fact that FX
n and Xn+1 are independent

(Theorem 5.6.5).

Example 8.1.3: Products of iids. Let X = {Xn}n≥0 be an iid sequence of
integrable random variables with mean 1. The random sequence

Yn =
n∏

k=0

Xk (n ≥ 0)

is an FX
n -martingale. Indeed, for all n ≥ 0, Yn is FX

n -measurable and

E[Yn+1 | FX
n ] = E

[

Xn+1

n∏

k=0

Xk | FX
n

]

= E[Xn+1 | FX
n ]

n∏

k=0

Xk

= E[Xn+1]
n∏

k=1

Xk = 1× Yn = Yn ,
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where the second equality is due to the fact that FX
n and Xn+1 are independent

(Theorem 5.6.5).

Example 8.1.4: Gambling. Consider the random sequence {Yn}n≥0 with val-
ues in R+ defined by Y0 = a ∈ R+ and

Yn+1 = Yn +Xn+1 bn+1(X
n
0 ) (n ≥ 0) ,

where Xn
0 := (X0, . . . , Xn), X0 = Y0, {Xn}n≥1 is an iid sequence of random

variables taking the values +1 or −1 with equal probability, and the family of
functions bn : {0, 1}n → N (n ≥ 1) is the betting strategy, that is, bn+1(X

n
0 )

is the stake at time n + 1 of a gambler given the observed history FX
n of the

chance outcomes up to time n. Admissible bets must guarantee that the fortune
Yn remains non-negative at all times n, that is, bn+1(X

n
0 ) ≤ Yn. The process so

defined is an FX
n -martingale. Indeed, for all n ≥ 0, Yn is FX

n -measurable and

E
[
Yn+1 | FX

n

]
= E

[
Yn | FX

n

]
+ E

[
Xn+1bn+1(X

n
0 ) | FX

n

]

= Yn + E
[
Xn+1 | FX

n

]
bn+1(X

n
0 ) = Yn ,

where the second equality uses Theorem 5.6.9. The integrability condition should
be checked on each application. It is satisfied if the stakes bn(X

n
0 ) are uniformly

bounded.

Example 8.1.5: Harmonic functions of an hmc. Let {Xn}n≥0 be an hmc

with countable space E and transition matrix P. A function h : E → R is called
harmonic (resp., subharmonic, superharmonic) if Ph is well defined and

Ph = h (resp., ≥ h,≤ h) , (8.2)

that is, ∑

j∈E
pijh(j) = h(i) (resp., ≥ h(i),≤ h(i)) (i ∈ E) .

Superharmonic functions are also called excessive functions.

Equation (8.2) is equivalent, in the harmonic case for instance, to

E[h(Xn+1) | Xn = i] = h(i) (i ∈ E) . (�)

In view of the Markov property, the left-hand side of the above equality is also
equal to

E[h(Xn+1) | Xn = i, Xn−1 = in−1, . . . , X0 = i0] ,
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and therefore (�) is equivalent to

E[h(Xn+1 | FX
n ] = h(Xn) .

Therefore, if E[|h(Xn)|] < ∞ for all n ≥ 0, the process {h(Xn)}n≥0 is an FX
n -

martingale. Similarly, for a subharmonic (resp. superharmonic) function h such
that E[|h(Xn)|] <∞ for all n ≥ 0, the process {h(Xn)}n≥0 is an FX

n -submartingale
(resp. FX

n -supermartingale).

Definition 8.1.6 Let {Fn}n≥0 be some filtration. A (P,Fn)-martingale difference
(resp., submartingale difference, supermartingale difference) is, by definition, a
complex random sequence {Xn}n≥0 such that for all n ≥ 0,

(a) Xn is Fn-measurable,

(b) E[|Xn|] <∞ and E[Xn] = 0, and

(c) E[Xn+1 | Fn] = 0 ( resp. ≥ 0, ≤ 0).

The notion of martingale difference generalizes that of centered iid sequences.
Indeed for such iid sequences, Xn is independent of FX

n , and therefore (Theorem
5.6.5) E[Xn+1 | FX

n ] = 0.

Convex Functions of Martingales

Theorem 8.1.7 Let I ⊆ R be an interval (closed, open, semi-closed, infinite,
etc.) and let ϕ : I → R be a convex function.

A. Let {Yn}n≥0 be an Fn-martingale such that P (Yn ∈ I) = 1 for all n ≥ 0.
Assume that E [|ϕ(Yn)|] <∞ for all n ≥ 0. Then, the process {ϕ(Yn)}n≥0 is
an Fn-submartingale.

B. Assume moreover that ϕ is non-decreasing and suppose this time that
{Yn}n≥0 is an Fn-submartingale. Then, the process {ϕ(Yn)}n≥0 is an
Fn-submartingale.

Proof. By Jensen’s inequality for conditional expectations (Exercise 8.6.1),

E [ϕ(Yn+1)|Fn] ≥ ϕ(E [Yn+1|Fn]) .

Therefore (case A)

E [ϕ(Yn+1)|Fn] ≥ ϕ(E [Yn+1|Fn]) = ϕ(Yn) ,
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and (case B)

E [ϕ(Yn+1)|Fn] ≥ ϕ(E [Yn+1|Fn]) ≥ ϕ(Yn) .

(For the last inequality, use the submartingale property E [Yn+1|Fn] ≥ Yn and the
hypothesis that ϕ is non-decreasing.) �

Example 8.1.8: Let {Yn}n≥0 be an Fn-martingale and let p ≥ 1. As a special
case of Theorem 8.1.7 with the convex function x→ |x|p, we have that if E [|Yn|p] <
∞, {|Yn|p}n≥0 is an Fn-submartingale. Applying Theorem 8.1.7 with the convex
function x �→ x+, we have that {Y +

n }n≥0 is an Fn-submartingale.

Martingale Transforms and Stopped Martingales

Let {Fn}n≥0 be some filtration. The complex stochastic process {Hn}n≥1 is called
Fn-predictable if

Hn is Fn−1-measurable for all n ≥ 1 .

Let {Yn}n≥0 be another complex stochastic process. The stochastic process

(H ◦ Y )n :=

n∑

k=1

Hk(Yk − Yk−1) (n ≥ 1)

is called the transform of Y by H .

Theorem 8.1.9

(a) Let {Yn}n≥0 be an Fn-submartingale and let {Hn}n≥0 be a bounded non-
negative Fn–predictable process. Then {(H◦Y )n}n≥0 is an Fn-submartingale.

(b) If {Yn}n≥0 is an Fn-martingale and if {Hn}n≥0 is bounded and Fn-
predictable, then {(H ◦ Y )n}n≥0 is an Fn-martingale.

Proof. Conditions (i) and (ii) of (8.1.1) are obviously satisfied. Moreover,

(a) E[(H ◦ Y )n+1 − (H ◦ Y )n | Fn] = E[Hn+1(Yn+1 − Yn) | Fn]

= Hn+1E[Yn+1 − Yn | Fn] ≥ 0 ,

using Theorem 5.6.9 for the second equality.

(b) E[(H ◦ Y )n+1 − (H ◦ Y )n | Fn] = Hn+1E[Yn+1 − Yn | Fn] = 0 ,

by the same token. �



272 CHAPTER 8. MARTINGALES

Definition 8.1.10 Let {Fn}n∈N be a non-decreasing sequence of sub-σ-fields of
F . A random variable τ taking its values in N and such that, for all m ∈ N, the
event {τ = m} is in Fm is called an Fn-stopping time.

In particular, τ is an FX
n -stopping time if, for all m ∈ N, the event {τ = m}

can be expressed as

1{τ=m} = ψm(X0, . . . , Xm) ,

for some measurable function ψm with values in {0, 1} (Theorem 5.6.3). This
explains why stopping times are said to be non anticipative.

Theorem 8.1.11 Let {Fn}n≥0 be a history and let F∞ := σ(∪n≥0Fn). Let τ be
an Fn-stopping time. The collection of events

Fτ := {A ∈ F∞ | A ∩ {τ = n} ∈ Fn, for all n ≥ 1}

is a σ-field, and τ is Fτ -measurable. Let {Xn}n≥0 be an E-valued Fn-adapted ran-
dom sequence, and let τ be a finite Fn-stopping time. Then X(τ) is Fτ -measurable.

The proof is left as an exercise.

If {Fn}n≥0 is the internal history of some random sequence {Xn}n≥0, that is,
if Fn = FX

n (n ≥ 0), one may interpret FX
τ as the collection of events that are

determined by the observation of the random sequence up to time τ (included).

Theorem 8.1.9 immediately leads to the stopped martingale theorem:

Theorem 8.1.12 Let {Yn}n≥0 be an Fn-submartingale (resp., martingale) and
let τ be an Fn-stopping time. Then {Yn∧τ}n≥0 is an Fn-submartingale (resp.,
martingale). In particular,

E[Yn∧τ ] ≥ E[Y0] (resp., = E[Y0]) (n ≥ 0) . (8.3)

Proof. Let Hn := 1{n≤τ}. The stochastic process H is Fn–predictable since
{Hn = 0} = {τ ≤ n− 1} ∈ Fn−1. We have

Yn∧τ = Y0 +

n∧τ∑

k=1

(Yk − Yk−1)

= Y0 +

n∑

k=1

1{k≤τ} (Yk − Yk−1) .

The result then follows by Theorem 8.1.9. �
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8.2 Martingale Inequalities

Kolmogorov’s Inequality

Theorem 8.2.1 Let {Sn}n≥0 be an Fn-submartingale. Then, for all λ ∈ R+,

λP

(

max
0≤i≤n

Si > λ

)

≤ E
[
Sn1{max0≤i≤n Si>λ}

]
. (8.4)

Proof. Define the random time

τ = inf{n ≥ 0 ; Sn > λ} .

It is an Fn-stopping time since

Ai := {τ = i} =
{

Si > λ, max
0≤j≤i−1

Sj ≤ λ

}

∈ Fi .

The Ai’s so defined are mutually disjoint and

A :=

{

max
0≤i≤n

Si > λ

}

=

n⋃

i=1

Ai .

Since λ1Ai
≤ Si1Ai

,

λP (A) = λ

n∑

i=0

P (Ai) ≤
n∑

i=0

E[Si1Ai
] .

For all 0 ≤ i ≤ n, Ai being Fi-measurable, we have by the submartingale property
that E [Sn | Fi] ≥ Si and therefore

∫
Ai

Si dP ≤
∫
Ai

E[Sn | Fi] dP . Taking these
observations into account,

λP (A) ≤
n∑

i=0

E[Si1Ai
] ≤

n∑

i=0

E
[
EFi [Sn]1Ai

]

=

n∑

i=0

E
[
EFi [Sn1Ai

]
]
=

n∑

i=0

E[Sn1Ai
]

= E

[

Sn

n∑

i=0

1Ai

]

= E[Sn1A] .

�
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Corollary 8.2.2 Let {Mn}n≥0 be an Fn-martingale. Then, for all p ≥ 1, all
λ ∈ R,

λpP

(

max
0≤i≤n

|Mi| > λ

)

≤ E[|Mn|p] . (8.5)

Proof. Let Sn = |Mn|p. This defines an Fn-submartingale (Example 8.1.8) to
which one may apply Kolmogorov’s inequality with λ replaced by λp:

λpP

(

max
0≤i≤n

|Mi|p > λp

)

≤ E
[
|Mn|p1{max0≤i≤n |Mi|p>λp}

]
≤ E[|Mn|p] .

�

Doob’s Inequality

Recall the notation ‖ X ‖p:= (E [|X|p])1/p.

Theorem 8.2.3 Let {Mn}n≥0 be an Fn-martingale. For all p > 1,

‖Mn ‖p≤‖ max
0≤i≤n

|Mi| ‖p≤ q ‖Mn ‖p , (8.6)

where q (the “conjugate” of p) is defined by 1
p
+ 1

q
= 1.

Proof. The first inequality is trivial. For the second inequality, observe that for
all non-negative random variables X, by Fubini’s theorem,

E[Xp] = E

[∫ X

0

pxp−1 dx

]

= E

[∫ ∞

0

pxp−11{x<X} dx
]

= p

∫ ∞

0

xp−1P (X > x) dx .

Therefore, applying this and Kolmogorov’s inequality (8.4) to the submartingale
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Sn = |Mn|,

E

[

max
0≤i≤n

|Mi|p
]

≤ E

[(

max
0≤i≤n

|Mi|
)p]

= p

∫ ∞

0

xp−1P

(

max
0≤i≤n

|Mi| > x

)

dx

≤ p

∫ ∞

0

xp−2E
[
|Mn| 1{max0≤i≤n |Mi|>x}

]
dx

= pE

[∫ ∞

0

xp−2|Mn| 1{max0≤i≤n |Mi|>x} dx
]

= pE

[

|Mn|
∫ max0≤i≤n |Mi|

0

xp−2 dx

]

=
p

p− 1
E

[

|Mn|
(

max
0≤i≤n

|Mi|
)p−1

]

= qE

[

|Mn|
(

max
0≤i≤n

|Mi|
)p−1

]

.

By Hölder’s inequality, and observing that (p− 1)q = p,

E

[

|Mn|
(

max
0≤i≤n

|Mi|
)p−1

]

≤ E[|Mn|p]1/p E

[(

max
0≤i≤n

|Mi|
)(p−1)q

]1/q

=‖Mn ‖p E

[(

max
0≤i≤n

|Mi|
)p]1/q

.

Therefore

E

[

max
0≤i≤n

|Mi|p
]

≤ q ‖Mn ‖p E

[(

max
0≤i≤n

|Mi|
)p]1/q

,

or (eliminating the trivial case where E [max0≤i≤n |Mi|p] =∞)

E

[

max
0≤i≤n

|Mi|p
]1− 1

q

≤ q ‖Mn ‖p ,

that is, since 1− 1
q
= 1

p
,

‖ max
0≤i≤n

|Mi| ‖p≤ q ‖Mn ‖p .

�
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Hoeffding’s Inequality

Theorem 8.2.4 Let {Mn}n≥0 be a real Fn-martingale such that, for some se-
quence c1, c2, . . . of real numbers,

P (|Mn −Mn−1| ≤ cn) = 1 (n ≥ 1) . (8.7)

Then, for all x ≥ 0 and all n ≥ 1,

P (|Mn −M0| ≥ x) ≤ 2 exp

(

−1
2
x2

/ n∑

i=1

c2i

)

. (8.8)

Proof. By convexity of z �→ eaz, for |z| ≤ 1 and all a ∈ R,

aaz ≤ 1

2
(1− z)e−a +

1

2
(1 + z)e+a .

In particular, if Z is a centered random variable such that P (|Z| ≤ 1) = 1,

E[eaZ ] ≤ 1

2
(1−E[Z])e−a +

1

2
(1 + E[Z])e+a

=
1

2
e−a +

1

2
e+a ≤ ea

2/2 .

By similar arguments, for all a ∈ R,

E

[

ea
(

Mn−Mn−1
cn

)∣∣
∣
∣Fn−1

]

≤ 1

2

(

1− E

[
Mn −Mn−1

cn

∣
∣
∣
∣Fn−1

])

e−a + · · ·

· · ·+ 1

2

(

1 + E

[
Mn −Mn−1

cn

∣
∣
∣
∣Fn−1

])

e+a ≤ ea
2/2 ,

and, with a replaced by cna,

E
[
ea(Mn−Mn−1)

∣
∣Fn−1

]
≤ ea

2c2n/2 .

Therefore,

E
[
ea(Mn−M0)

]
= E

[
ea(Mn−1−M0)ea(Mn−Mn−1)

]

= E
[
ea(Mn−1−M0)E

[
ea(Mn−Mn−1)

∣
∣Fn−1

]]

≤ E
[
ea(Mn−1−M0)

]
× ea

2c2n/2 ,
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and then by recurrence

E
[
ea(Mn−M0)

]
≤ e

1
2
a2

∑n
i=1 c

2
i .

In particular, with a > 0, by Markov’s inequality,

P (Mn −M0 ≥ x) ≤ e−axE
[
ea(Mn−M0)

]
≤ e−ax+ 1

2
a2

∑n
i=1 c

2
i .

Minimization of the right-hand side with respect to a gives

P (Mn −M0 ≥ x) ≤ e−
1
2
x2
/∑n

i=1 c
2
i .

The same argument with M0 −Mn instead of Mn −M0 yields the bound

P (−(Mn −M0) ≥ x) ≤ e−
1
2
x2
/∑n

i=1 c
2
i .

The announced bound then follows from these two bounds since for any random
variable X, and all x ∈ R+, P (|X| ≥ x) = P (X ≥ x) + P (X ≤ −x). �

Example 8.2.5: The knapsack. There are n objects, the i-th has a volume
Vi and is worth Wi. All these non-negative random variables form an independent
family, the Vi’s have finite means and the means of the Wi’s are bounded by
M < ∞. You have to choose integers z1, . . . , zn in such a way that the total
volume

∑n
i=1 ziVi does not exceed a given storage capacity c and that the total

worth
∑n

i=1 ziVi is maximized. Call this maximal worth Z. We shall see that

P (|Z −E [Z] | ≥ x) ≤ 2 exp

{
−x2

2nM2

}

(x ≥ 0) .

For this consider the variables Zj which are the equivalent of Z when the j-th object
has been removed. Let now Mj := E [Z | Fj], where Fj := σ ((Vk,Wk); 1 ≤ k ≤ j).
Note that in view of the independence assumptions E [Zj | Fj] = E [Zj−1 | Fj ].
Clearly Zj ≤ Z ≤ Zj + M . Taking conditional expectations given Fj and then
Fj−1 in this last chain of inequalities reveals that |Mj −Mj−1| ≤ M . The rest is
then just Hoeffding’s inequality.

We now give a general framework of application.

Let X be a finite set, and let f : XN → R be a given function. We introduce
the notation x = (x1, . . . , xN ) and xk

1 = (x1, . . . , xk). In particular, x = xN
1 . For

x ∈ XN , z ∈ X and 1 ≤ k ≤ N , let

fk(x, z) := f(x1, . . . , xk−1, z, xk+1, . . . , xN) .
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The function f is said to satisfy the Lipschitz condition with bound c if for all
x ∈ XN , all z ∈ X and all 1 ≤ k ≤ N ,

|fk(x, z)− f(x)| ≤ c .

Let X1, X2, . . . , XN be independent random variables with values in X . Define the
martingale

Mn = E [f(X) |Xn
1 ] .

By the independence assumption, with obvious notations,

E [f(X) |Xn
1 ] =

∑

xN
n+1

f(Xn−1
1 , Xn, x

N
n+1)P (XN

n+1 = xN
n+1)

and

E
[
f(X) |Xn−1

1

]
=

∑

xN
n+1

∑

xn

f(Xn−1
1 , xn, x

N
n+1)P (Xn = xn)P (XN

n+1 = xN
n+1) .

Therefore

|Mn −Mn−1|

≤
∑

xN
n+1

∑

xn

|f(Xn−1
1 , xn, x

N
n+1)− f(Xn−1

1 , Xn, x
N
n+1)|P (Xn = xn)P (XN

n+1 = xN
n+1) ≤ c .

Example 8.2.6: Pattern matching. Take f(x) to be the number of oc-
currences of the fixed pattern b = (b1, . . . , bk) (k ≤ N) in the sequence x =
(x1, . . . , xN), that is

f(x) =
N−k+1∑

i=1

1{xi=b1,...,xi+k−1=bk} .

The mean number of matches in an iid sequence X = (X1, . . . , XN) with uniform
distribution on X is therefore

E [f(X)] =
N−k+1∑

i=1

E
[
1{Xi=b1,...,Xi+k−1=bk}

]
=

N−k+1∑

i=1

(
1

|X |

)k

,

that is,

E [f(X)] = (N − k + 1)

(
1

|X |

)k

.

The martingale Mn := E [f(X) |Xn
1 ] is such that M0 = E [f(X)]. Changing the

value of one coordinate of x ∈ XN changes f(x) by at most k, we can apply the
bound of Theorem 8.8 with ci ≡ k to obtain the inequality

P (|f(X)− E [f(X)] | ≥ λ) ≤ 2e−
1
2

λ2

Nk2 .
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8.3 The Optional Sampling Theorem

Martingale theory rests on two pillars. The first pillar is the Doob’s optional
sampling theorem. The second pillar is the martingale convergence theorem (and
its avatars).

The version of the optional sampling theorem given next is the most elementary
one, sufficient for the elementary examples to be considered now. More general
results are given later in this subsection.

Theorem 8.3.1 Let {Mn}n≥0 be an Fn-martingale, and let τ be an Fn-stopping
time (see Definition 8.1.10). Suppose that at least one of the following conditions
holds:

(α) P (τ ≤ n0) = 1 for some n0 ≥ 0, or

(β) P (τ <∞) = 1 and |Mn| ≤ K <∞ when n ≤ τ .

Then
E[Mτ ] = E[M0] . (8.9)

Proof. (α) Just apply Theorem 8.1.12 (Formula (8.3) with n = n0).

(β) Apply the result of (α) to the Fn-stopping time τ ∧ n0 to obtain

E[Mτ∧n0 ] = E[M0] .

But, by dominated convergence,

lim
n0↑∞

E[Mτ∧n0 ] = E[ lim
n0↑∞

Mτ∧n0 ] = E[Mτ ] .

�

Example 8.3.2: The ruin problem via martingales. The symmetric
random walk {Xn}n≥0 on Z with initial state 0 is an FX

n -martingale (Example
8.1.2). Let τ be the first time n for which Xn = −a or + b, where a, b > 0.
This is an FX

n -stopping time and moreover τ < ∞. Part (β) of the above re-
sult can be applied with K = sup(a, b) to obtain 0 = E[X0] = E[Xτ ]. Writing
v = P (−a is hit before b), we have

E[Xτ ] = −av + b(1− v) ,
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and therefore

v =
b

a+ b
.

Example 8.3.3: A counterexample. Consider the symmetric random walk
of the previous example, but now define τ to be the hitting time of b > 0, an
almost surely finite time since the symmetric walk on Z is recurrent. If the optional
sampling theorem applied, one would have

0 = E[X0] = E[Xτ ] = b ,

an obvious contradiction. Of course, neither condition (α) nor (β) is satisfied.

We are now ready for the statement and proof of Doob’s optional sampling
theorem generalizing the elementary results given at the beginning of the present
section.

Theorem 8.3.4 Let {Yn}n≥0 be an Fn-submartingale (resp., martingale), and let
τ1, τ2 be finite Fn-stopping times such that P (τ1 ≤ τ2) = 1. If for i = 1, 2,

E [|Yτi|] <∞ , (8.10)

and
lim inf
n↑∞

E
[
|Yn|1{τi>n}

]
= 0 , (8.11)

then, P -a.s.
E[Yτ2 | Fτ1] ≥ Yτ1 (resp., = Yτ1) . (8.12)

In particular,
E[Yτ2 ] ≥ E[Yτ1 ] (resp., = E[Yτ1 ]) . (8.13)

More generally, if {τn}n≥1 is a non-decreasing sequence of finite Fn-stopping times
satisfying conditions (8.10) and (8.11), the sequence {Yτn}n≥1 is an Fτn-submartin-
gale (resp., martingale).

Proof. It suffices to give the proof for the submartingale case. The meaning of
(8.12) is that, for all A ∈ Fτ1,

E
[
1AYτ2

]
≥ E

[
1AYτ1

]
.

It is sufficient to show that for all n ≥ 0,

E
[
1A∩{τ1=n}Yτ2

]
≥ E

[
1A∩{τ1=n}Yτ1

]
,
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or, equivalently since τ1 = n implies τ2 ≥ n,

E
[
1A∩{τ1=n}∩{τ2≥n}Yτ2

]
≥ E

[
1A∩{τ1=n}∩{τ2≥n}Yτ1

]
= E

[
1A∩{τ1=n}∩{τ2≥n}Yn

]
.

Write this as
E
[
1B∩{τ2≥n}Yτ2

]
≥ E

[
1B∩{τ2≥n}Yn

]
, (�)

where B := A ∩ {τ1 = n}. By definition of Fτ1 , B ∈ Fn. It is therefore sufficient
to show that for all n ≥ 0, all B ∈ Fn, (�) holds. We have

E
[
1B∩{τ2≥n}Yn

]
= E

[
1B∩{τ2=n}Yn

]
+ E

[
1B∩{τ2≥n+1}Yn

]

≤ E
[
1B∩{τ2=n}Yn

]
+ E

[
1B∩{τ2≥n+1}E[Yn+1|Fn]

]

= E
[
1B∩{τ2=n}Yτ2

]
+ E

[
1B∩{τ2≥n+1}Yn+1

]

≤ E
[
1B∩{n≤τ2≤n+1}Yτ2

]
+ E

[
1B∩{τ2≥n+2}Yn+2

]

· · ·
≤ E

[
1B∩{n≤τ2≤m}Yτ2

]
+ E

[
1B∩{τ2>m}Ym

]
,

that is,
E
[
1B∩{n≤τ2≤m}Yτ2

]
≥ E

[
1B∩{τ2≥n}Yn

]
− E

[
1B∩{τ2>m}Ym

]

for all m ≥ n. Therefore, by dominated convergence and hypothesis (8.11)

E
[
1B∩{τ2≥n}Yτ2

]
= E

[
lim
m↑∞

1B∩{n≤τ2≤m}Yτ2

]

≥ E
[
1B∩{τ2≥n}Yn

]
− lim inf

m↑∞
E
[
1B∩{τ2>m}Ym

]

= E
[
1B∩{τ2≥n}Yn

]
.

�

Corollary 8.3.5 Let {Yn}n≥0 be an Fn-submartingale (resp., martingale). Let
τ1, τ2 be Fn-stopping times such that τ1 ≤ τ2 ≤ N a.s., for some constant N <∞.
Then (8.13) holds.

Proof. This is an immediate consequence of Theorem 8.3.4. �

Corollary 8.3.6 Let {Yn}n≥0 be a uniformly integrable Fn-submartingale (resp.,
martingale). Let τ1, τ2 be finite Fn-stopping times. Then (8.12) holds.

Proof. In order to apply Theorem 8.3.4, we have to show that conditions (8.10)
and (8.11) are satisfied when {Yn}n≥1 is uniformly integrable. Condition (8.11)
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follows from part (b) of Theorem 6.5.3 since the τi’s are finite and therefore
P (τi > n) → 0 as n ↑ ∞. It remains to show that condition (8.10) is satis-
fied. Let N < ∞ be an integer. By Corollary 8.3.5, if τ is a stopping time (here
τ1 or τ2),

E[Y0] ≤ E[Yτ∧N ]

and therefore

E[|Yτ∧N |] = 2E[Y +
τ∧N ]− E[Yτ∧N ] ≤ 2E[Y +

τ∧N ]− E[Y0] .

The submartingale {Y +
n }n≥0 satisfies

E[Y +
τ∧N ] =

N∑

j=0

E[1{τ∧N=j}Y +
j ] + E[1{τ>N}Y +

N ]

≤
N∑

j=0

E[1{τ∧N=j}Y +
N ] + E[1{τ>N}Y +

N ]

= E[Y +
N ] ≤ E[|YN |] .

Therefore

E[|Yτ∧N |] ≤ 2E[|YN |] + E[|Y0|] ≤ 3 sup
N

E|YN | .

Since by Fatou’s lemma E[|Yτ |] ≤ lim infN↑∞ E[|Yτ∧N |], we have

E[|Yτ |] ≤ 3 sup
N

E[|YN |] ,

a finite quantity since {Yn}n≥1 is uniformly integrable. �

Corollary 8.3.7 Let {Yn}n≥0 be an Fn-submartingale (resp., martingale) and let
τ be an Fn-stopping time such that

E[τ ] <∞.

Suppose moreover that there exists a constant c <∞ such that, for all n ≥ 0,

E[|Yn+1 − Yn| | Fn] ≤ c, P -a.s. on {τ ≥ n}.

Then E[|Yτ |] <∞ and

E[Yτ ] ≥ ( resp., =)E[Y0] .
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Proof. In order to apply Theorem 8.3.4 with τ1 = 0, τ2 = τ , one just has to check
conditions (8.10) and (8.11) for τ . Let Z0 := |Y0|. With Zn := |Yn−Yn−1| (n ≥ 1),

E

[
τ∑

j=0

Zj

]

=
∞∑

n=0

E

[

1{τ=n}
n∑

j=0

Zj

]

=
∞∑

n=0

n∑

j=0

E
[
1{τ=n}Zj

]

=

∞∑

j=0

∞∑

n=j

E
[
1{τ=n}Zj

]
=

∞∑

j=0

E
[
1{τ≥j}Zj

]
.

For j ≥ 1, {τ ≥ j} = {τ < j − 1} ∈ Fj−1 and therefore,

E
[
1{τ≥j}Zj

]
= E

[
1{τ≥j}E [Zj | Fj−1]

]
≤ cP (τ ≥ j) , (�)

and

E

[
τ∑

j=0

Zj

]

≤ E[|Y0|] + c
∞∑

j=1

P (τ ≥ j) = E[|Y0|] + cE[τ ] <∞ .

Therefore condition (8.10) is satisfied since E [|Yτ |] ≤ E
[∑τ

j=0 Zj

]
. Moreover, if

τ > n,

n∑

j=0

Zj ≤
τ∑

j=0

Zj

and therefore

E
[
1{τ>n}|Yn|

]
≤ E

[

1{τ>n}
τ∑

j=0

Zj

]

.

But, by (�), E
[∑τ

j=0Zj

]
< ∞. Also, {τ > n} ↓ ∅ as n ↑ ∞. Therefore, by

dominated convergence

lim inf
n↑∞

E[1{τ>n}|Yn|] ≤ lim inf
n↑∞

E

[

1{τ>n}
τ∑

j=0

Zj

]

= 0 .

This is condition (8.11). �
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Wald’s Formulas

Theorem 8.3.8 Let {Zn}n≥1 be an iid sequence of real random variables such
that E [|Z1|] <∞, and let τ be an FZ

n -stopping time with E[τ ] <∞. Then

E

[
τ∑

n=1

Zn

]

= E[Z1]E[τ ] . (8.14)

If, moreover, E[Z2
1 ] <∞,

Var

(
τ∑

n=1

Zn

)

= Var (Z1)E[τ ] . (8.15)

Proof. Let X0 := 0, Xn := (Z1 + · · ·+ Zn) − nE[Z1] (n ≥ 1). Then {Xn}n≥1 is
an FZ

n -martingale such that

E[|Xn+1 −Xn| | FZ
n ] = E[|Zn+1 − E[Z1]| | FZ

n ]

= E|Zn −E[Z1]| ≤ 2E [|Z1|] <∞ .

Therefore Corollary 8.3.7 can be applied with Yn =
∑n

k=1 (Zk − E [Z1]) to obtain
(8.14). For the proof of (8.15), the same kind of argument works, this time with
the martingale Yn = X2

n − n Var (Z1). �

Theorem 8.3.9 Let {Zn}n≥1 be iid real random variables and let Sn = Z1+ · · ·+
Zn. Let ϕZ(t) := E[etZ1 ] and suppose that ϕZ(t0) exists and is greater than or
equal to 1 for some t0 �= 0. Let τ be an FZ

n -stopping time such that E[τ ] <∞ and
|Sn| ≤ c on {τ ≥ n} for some constant c <∞. Then

E

[
et0Sτ

ϕZ(t0)τ

]

= 1 . (8.16)

Proof. Let Y0 := 1 and for n ≥ 1,

Yn :=
et0Sn

ϕZ(t0)n
.

By application of the result of Example 8.1.3 with Xi :=
et0Zi

ϕZ(t0)
, we have that the

sequence {Yn}n≥0 is an FZ
n -martingale. Moreover, on {τ ≥ n},

E[|Yn+1 − Yn| | FZ
n ] = YnE

[∣
∣
∣
∣
et0Zn+1

ϕZ(t0)
− 1

∣
∣
∣
∣ | F

Z
n

]

=
Yn

ϕZ(t0)
E

[
|et0Z1 − ϕZ(t0)|

]
≤ K <∞
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since ϕZ(t0) ≥ 1 and

Yn =
et0Sn

ϕZ(t0)n
≤ e|t0|c

ϕZ(t0)n
≤ e|t0|c .

Therefore, Corollary 8.3.7 applies to give (8.16). �

8.4 The Martingale Convergence Theorem

The second pillar of martingale theory is the martingale convergence theorem.
This result is the probabilistic counterpart of the convergence of a non-negative
non-increasing, or bounded non-decreasing, sequence of real numbers to a finite
limit. It says in particular (but we shall give a more complete result soon) that a
non-negative supermartingale converges almost surely to a finite limit.

The Upcrossing Inequality

The proof of the martingale convergence theorem is based on the upcrossing in-
equality.

Theorem 8.4.1 Let {Sn}n≥0 be an Fn-submartingale. Let a, b ∈ R with a < b,
and let νn be the number of upcrossings of [a, b] before (≤) time n. Then

(b− a)E[νn] ≤ E[(Sn − a)+] . (8.17)

(By definition, an upcrossing occurs at time � if Sk ≤ a and if there exists � > k
such that Sj < b for j = 1, . . . , �− 1 and S� ≥ b.)

Proof. Since νn is the number of upcrossings of [0, b − a] by the submartingale
{(Sn − a)+}n≥1, we may suppose without loss of generality that Sn ≥ 0 and take
a = 0, and then prove that

bE[νn] ≤ E[Sn − S0] , (8.18)

where S0 = 0 and F0 is the gross σ-field. Define a sequence of Fn-stopping times
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as follows

τ0 = 0

τ1 = inf{n > τ0 ; Sn = 0}
τ2 = inf{n > τ1 ; Sn ≥ b}
· · ·

τ2k+1 = inf{n > τ2k ; Sn = 0}
τ2k = inf{n > τ2k+1 ; Sn ≥ b}
· · ·

For i ≥ 1, let

ϕi = 1 if τm < i ≤ τm+1 for some odd m

= 0 if τm < i ≤ τm+1 for some even m.

Observe that

{ϕi = 1} =
⋃

oddm

(
{τm < i} ∩ {τm+1 < i}

)
∈ Fi−1

and that

bνn ≤
n∑

i=1

ϕi(Si − Si−1) .

Therefore

bE[νn] ≤ E[
n∑

i=1

ϕi(Si − Si−1)] =
n∑

i=1

E[ϕi(Si − Si−1)]

=

n∑

i=1

E[ϕiE[(Si − Si−1)|Fi−1]] =

n∑

i=1

E[ϕi(E[Si|Fi−1]− Si−1)]

≤
n∑

i=1

E[(E[Si|Fi−1]− Si−1)] ≤
n∑

i=1

(E[Si]− E[Si−1]) = E[Sn − S0] .

�

We are now in a position to state and prove the fundamental martingale con-
vergence theorem.

Theorem 8.4.2 Let {Sn}n≥0 be an Fn-submartingale. Suppose moreover that it
is L1-bounded, that is,

sup
n≥0

E[|Sn|] <∞ . (8.19)

Then {Sn}n≥0 converges P -a.s. to an integrable random variable S∞.



8.4. THE MARTINGALE CONVERGENCE THEOREM 287

Condition (8.19) can be replaced by the equivalent condition

sup
n≥0

E[S+
n ] <∞ .

Indeed, if {Sn}n≥0 is an Fn-submartingale,

E
[
S+
n

]
≤ E [|Sn|] ≤ 2E

[
S+
n

]
− E [Sn] ≤ 2E

[
S+
n

]
−E [S0] .

By changing signs, the same hypothesis leads to the same conclusion for a
supermartingale {Sn}n≥0. Similarly to the previous remark, condition (8.19) can
be replaced by the equivalent condition

sup
n≥0

E[S−
n ] <∞ .

Proof. The proof is based on the following observation concerning any determin-
istic sequence {xn}n≥1. If this sequence does not converge, then it is possible to
find two rational numbers a and b such that

lim inf
n

xn < a < b < lim sup
n

xn ,

which implies that the number of upcrossings of [a, b] by this sequence is infinite.
Therefore to prove convergence, it suffices to prove that any interval [a, b] with
rational extremities is crossed at most a finite number of times.

Let νn([a, b]) be the number of upcrossings of an interval [a, b] prior (≤) to time
n and let ν∞([a, b]) := limn↑∞ νn([a, b]). By (8.17),

(b− a)E[νn([a, b])] ≤ E[(Sn − a)+] ≤ E[S+
n ] + |a|

≤ sup
k≥0

E[S+
k ] + |a| ≤ sup

k≥0
E[[Sk|] + |a| <∞ .

Therefore, letting n ↑ ∞,

(b− a)E[ν∞([a, b])] <∞ .

In particular, ν∞([a, b]) <∞, P -a.s. Therefore, P -a.s. there is only a finite number
of upcrossings of any rational interval [a, b]. Equivalently, in view of the observa-
tion made in the first lines of the proof, {Sn}n≥0 converges P -a.s. to some random
variable S∞. Therefore (by Fatou’s lemma for the second inequality):

E[|S∞|] = E[lim
n↑∞
|Sn|] ≤ lim inf

n↑∞
E|Sn| ≤ sup

n≥0
E|Sn| <∞ .

�
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Corollary 8.4.3

(a) Any non-positive submartingale {Sn}n≥0 almost surely converges to an inte-
grable random variable.

(b) Any non-negative supermartingale almost surely converges to an integrable
random variable.

Proof. (b) follows from (a) by changing signs. For (a), we have

E[|Sn|] = −E[Sn] ≤ −E[S0] = E[|S0|] <∞ .

Therefore (8.19) is satisfied and the conclusion then follows from Theorem 8.4.2.
�

An immediate application of the martingale convergence theorem is to gam-
bling. The next example teaches us that a gambler in a “fair game” is eventually
ruined.

Example 8.4.4: Fair game not so fair. Consider the situation in Exam-
ple 8.1.4, assuming that the initial fortune a is a positive integer and that the
bets are also positive integers (that is, the functions bn+1(X

n
0 ) ∈ N+ except if

Yn = 0, in which case the gambler is not allowed to bet anymore, or equivalently
bn(X

n−1
0 ∗ 0) := bn(X0, X1, . . . , Xn, 0) = 0). In particular, Yn ≥ 0 for all n ≥ 0.

Therefore the process {Yn}n≥0 is a non-negative FX
n -martingale and by the mar-

tingale convergence theorem it almost surely has a finite limit. Since the bets
are assumed positive integers when the fortune of the player is positive, this limit
cannot be other than 0. Since Yn is a non-negative integer for all n ≥ 0, this can
happen only if the fortune of the gambler becomes null in finite time.

Example 8.4.5: Branching processes via martingales. The power of the
concept of martingale will now be illustrated by revisiting the branching process.
It is assumed that P (Z = 0) < 1 and P (Z ≥ 2) > 0 (to get rid of trivialities).
The stochastic process

Yn =
Xn

mn
,

where m is the average number of sons of a given individual, is an FX
n -martingale.

Indeed, since each one among the Xn members of the nth generation gives birth
on average to m sons and does this independently of the rest of the population,
E[Xn+1|Xn] = mXn and

E

[
Xn+1

mn+1
|FX

n

]

= E

[
Xn+1

mn+1
|Xn

]

=
Xn

mn
.



8.4. THE MARTINGALE CONVERGENCE THEOREM 289

By the martingale convergence theorem, almost surely

lim
n↑∞

Xn

mn
= Y <∞ .

In particular, if m < 1, then limn↑∞ Xn = 0 almost surely. Since Xn takes integer
values, this implies that the branching process eventually becomes extinct.

If m = 1, then limn↑∞Xn = X∞ < ∞ and it is easily argued that this limit
must be 0. Therefore, in this case as well the process eventually becomes extinct.

For the case m > 1, we consider the unique solution in (0, 1) of x = g(x)
(g is the generating function of the typical progeny of a member of the population
considered). Suppose we can show that Zn = xXn is a martingale. Then, by the
martingale convergence theorem, Zn converges to a finite limit and therefore Xn

has a limit X∞, which however can be infinite. One can easily argue that this
limit cannot be other than 0 (extinction) or ∞ (non-extinction). Since {Zn}n≥0

is a martingale, x = E[Z0] = E[Zn] and therefore, by dominated convergence,
x = E[Z∞] = E[xX∞ ] = P (X∞ = 0). Therefore x is the probability of extinction.

It remains to show that {Zn}n≥0 is an FX
n -martingale. For all i ∈ N and all

x ∈ [0, 1], E[xXn+1 |Xn = i] = xi. This is obvious if i = 0. If i > 0, Xn+1 is the
sum of i independent random variables with the same generating function g, and
therefore, E[xXn+1 |Xn = i] = g(x)i = xi. From this last result and the Markov
property,

E[xXn+1 |FX
n ] = E[xXn+1 |Xn] = xXn .

The following results are important refinements of the fundamental martingale
convergence theorem.

Theorem 8.4.6 Let {Mn}n≥0 be an Fn-martingale such that for some p ∈ (1,∞),

sup
n≥0

E|Mn|p <∞ . (8.20)

Then {Mn}n≥0 converges a.s. and in Lp to some finite variable M∞.

Proof. By hypothesis, the martingale {Mn}n≥0 is Lp-bounded and a fortiori
L1-bounded since p > 1. Therefore it converges almost surely. By Doob’s inequal-
ity, E[max0≤i≤n |Mi|p] ≤ qpE|Mn|p and in particular,

E[max
0≤i≤n

|Mi|p] ≤ qp sup
k

E|Mk|p <∞ .
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Letting n ↑ ∞, we have in view of condition (8.20) that

E[sup
n≥0
|Mn|p] <∞ . (8.21)

Therefore {|Mn|p}n≥0 is uniformly integrable (Theorem 6.5.5). In particular, since
it converges almost surely, it also converges in L1 (Theorem 6.5.7). In other words,
{Mn}n≥0 converges in Lp. �

The above result was proved for p > 1 (the proof depended on Doob’s inequal-
ity, which is true for p > 1). For p = 1, a similar result holds with an additional
assumption of uniform integrability. Note however that the next result also applies
to submartingales.

Theorem 8.4.7 A uniformly integrable Fn-submartingale {Sn}n≥0 converges a.s.
and in L1 to an integrable random variable S∞ and E[S∞ | Fn] ≥ Sn.

Proof. By the uniform integrability hypothesis, supnE[|Sn|] < ∞ and therefore,
by Theorem 8.4.2, Sn converges almost surely to some integrable random variable
S∞. It also converges to this variable in L1 since a uniformly integrable sequence
that converges almost surely also converges in L1 (Theorem 6.5.7).

By the submartingale property, for all A ∈ Fn, all m ≥ n,

E[1ASn] ≤ E[1ASm] .

Since convergence is in L1,

lim
m↑∞

E[1ASm] = E[1AS∞] ,

so that finally E[1ASn] ≤ E[1AS∞]. This being true for all A ∈ Fn, we have that
E[S∞ | Fn] ≥ Sn. �

The following result is Lévy’s continuity theorem for conditional expectations.

Corollary 8.4.8 Let {Fn}n≥1 be a filtration and let ξ be an integrable random
variable. Let F∞ := σ

(
∪n≥ Fn

)
. Then

lim
n↑∞

E[ξ | Fn] = E[ξ | F∞] . (8.22)

Proof. It suffices to treat the case where ξ is non-negative. The sequence
{Mn = E[ξ | Fn]}n≥1 is a uniformly integrable Fn-martingale (Theorem 6.5.4) and
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by Theorem 8.4.7, it converges almost surely and in L1 to some integrable random
variable M∞. We have to show that M∞ = E[ξ | F∞]. For m ≥ n and A ∈ Fn,

E[1AMm] = E[1AMn] = E[1AE[ξ | Fn]] = E[1Aξ] .

Since convergence is also in L1, limm↑∞ E[1AMm] = E[1AM∞]. Therefore

E[1AM∞] = E[1Aξ] (8.23)

for all A ∈ Fn and therefore for all A ∈ ∪nFn. The σ-finite measures A �→
E[1AM∞] and A �→ E[1Aξ] agreeing on the algebra ∪nFn also agree on the small-
est σ-algebra containing it, that is F∞. Therefore (8.23) holds for all A ∈ F∞
(Theorem 4.1.32) and this implies

E[1AM∞] = E[1AE[ξ | F∞]] ,

and finally, since M∞ is F∞-measurable, M∞ = E[ξ | F∞]. �

Backwards (or Reverse) Martingales

In the following, pay attention to the indexation: the index set is the set of non-
positive relative integers. Let {Fn}n≤0 be a non-decreasing family of σ-fields, that
is, Fn ⊆ Fn+1 for all n ≤ −1.

There is nothing new in the definition of “backwards” or “reverse” martingales
or submartingales, except that the index set is now {. . . ,−2,−1, 0}. For instance,
{Yn}n≤0 is an Fn-submartingale if E [Yn | Fn−1] ≥ Yn−1 for all n ≤ 0. The term
“backwards” in fact refers to one of the uses that is made of this notion, that of
discussing the limit of Yn as n ↓ −∞.

Reverse martingales or submartingales often appear in the following setting.
Let {Zk}k≥0 be a sequence of integrable random variables. Suppose that

E [Zk−1 | Zk, Zk+1, Zk+2, . . .] = Zk (k ≥ 0) .

Clearly, the change of indexation k → −n gives a “backwards” martingale. The
next example concerns that situation.

Example 8.4.9: Empirical mean of an iid sequence. Let {Xn}n≥1 be an
iid sequence of integrable random variables and let

Zk :=
1

k
Sk ,
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where Sk := X1 + · · ·+Xk. We shall prove that

E [Zk−1 | Gk] = Zk ,

where Gk = σ(Zk, Zk+1, Zk+2, . . .). It suffices to prove that for all k ≥ 1,

E [Z1 | Gk] = Zk , (�)

since it then follows that for m ≤ k,

E [Zm | Gk] = E [E [Z1 | Gm] | Gk] = E [Z1 | Gk] = Zk .

By linearity,

Sk = E [Sk | Gk] =
k∑

j=1

E [Xj | Gk] .

¿From the fact that Gk = σ(Zk, Zk+1, Zk+2, . . .) = σ(Sk, Xk+1, Xk+2, . . .) and by
the iid assumption for {Xn}n≥1,

Sk =

k∑

j=1

E [Xj | Sk, Xk+1, Xk+2, . . .] =

k∑

j=1

E [Xj | Sk] .

But the pairs (Xj, Sk) (1 ≤ j ≤ k) have the same distribution, and therefore

k∑

j=1

E [Xj | Sk] = kE [X1 | Sk] = kE [X1 | Gk] = kE [Z1 | Gk] ,

from which (�) follows.

Theorem 8.4.10 Let {Fn}n≤0 be a non-decreasing family of σ-fields. Let {Sn}n≤0

be an Fn-submartingale. Then:

A. Sn converges P -a.s. and in L1 as n ↓ −∞ to an integrable random variable
S−∞, and

B. with F−∞ := ∩n≤0Fn,
S−∞ ≤ E [S0 | F−∞] ,

with equality if {Sn}n≤0 is an Fn-martingale.

Proof. First note that by the submartingale property, Sn ≤ E [S0 | Fn]
(n ≤ 0). In particular, {Sn}n≤0 is not only L1-bounded, but also uniformly inte-
grable (Theorem 6.5.4).
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A. Denoting by νm = νm([a, b]) the number of upcrossings of [a, b] by {Sn}n≤0

in the integer interval [−m, 0] and by ν = ν([a, b]) the total number of upcrossings
of [a, b], the upcrossing inequality yields

(b− a)E [νm] ≤ E
[
(S0 − a)+

]
<∞ ,

and letting m ↑ ∞, E [ν] <∞. Almost-sure convergence to an integrable random
variable S−∞ is then proved as in Theorem 8.4.2. Since {Sn}n≤0 is uniformly
integrable, convergence to S−∞ is also in L1.

B. Clearly, S−∞ is F−∞-measurable. Also, by the submartingale property,
Sn ≤ E [S0 | Fn] (n ≤ −1), that is, for all n ≤ −1 and all A ∈ Fn,

∫

A

Sn dP ≤
∫

A

S0 dP .

This is true for any A ∈ F−∞ because F−∞ ⊆ Fn for all n ≤ −1. Since Sn

converges to S−∞ in L1 as n ↓ −∞,
∫
A
Sn dP →

∫
A
S−∞ dP and therefore

∫

A

S−∞ dP ≤
∫

A

S0 dP (A ∈ F−∞) ,

which implies that S−∞ ≤ E [S0 | F−∞].

The martingale case is obtained using the same proof with each ≤ symbol
replaced by =. �

Statement B says that {Sn}n∈−N∪{−∞} is a submartingale relatively to the his-
tory {Fn}n∈−N∪{−∞}.

Example 8.4.11: The Strong Law of Large Numbers. The situation is
that of Example 8.4.9. By Theorem 8.4.10, Sk/k → converges almost surely. By
Kolmogorov’s zero-one law (Theorem 6.3.3), Sk/k → a, a deterministic number.
It remains to identify a with E [X1]. We know from the first lines of the proof of
Theorem 8.4.10 that {Sk/k}k≥1 is uniformly integrable. Therefore, by Theorem
6.5.7,

lim
k↑∞

E

[
Sk

k

]

= a .

But for all k ≥ 1, E [Sk/k] = E [X1].

The uniform integrability of the backwards submartingale in Theorem 8.4.10
followed directly from the submartingale property. This is not the case for a
supermartingale unless one adds a condition.
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Theorem 8.4.12 Let {Fn}n≤0 be a filtration and let {Sn}n≤0 be an Fn-
supermartingale such that

sup
n≤0

E [Sn] <∞ . (8.24)

Then

A. Sn converges P -a.s. and in L1 as n ↓ −∞ to an integrable random variable
S−∞, and

B. with F−∞ := ∩n≤0Fn,

S−∞ ≥ E [S0 | F−∞] P -a.s.

Proof. It suffices to prove uniform integrability, since the rest of the proof then
follows the same lines as in Theorem 8.4.7.

Fix ε > 0 and select k ≤ 0 such that

lim
i↓−∞

E [Si]−E [Sk] ≤ ε . (�)

Then 0 ≤ E [Sn] − E [Sk] ≤ ε for all n ≤ k. We first show that for sufficiently
large λ > 0, ∫

{|Sn|>λ}
|Sn| dP ≤ ε .

It is enough to prove this for sufficiently large −n, here for −n ≥ −k. The previous
integral is equal to

−
∫

{Sn<−λ}
Sn dP + E [Sn]−

∫

{Sn≤λ}
Sn dP .

By the supermartingale hypothesis, this quantity is

≤ −
∫

{Sk<−λ}
Sn dP + E [Sn]−

∫

{Sn≤λ}
Sk dP .

In view of (�), this is less than or equal to

−
∫

{Sn<−λ}
Sk dP + E [Sk]−

∫

{Sn≤λ}
Sk dP + ε ,

which is equal to ∫

{|Sn|>λ}
|Sk| dP + ε .



8.4. THE MARTINGALE CONVERGENCE THEOREM 295

Since ε is an arbitrary positive quantity, it remains to show that
∫
{|Sn|>λ} |Sk| dP

tends to 0 uniformly in n ≤ 0 as λ ↑ ∞. But since {S−
n }n≥1 is a supermartingale

E [|Sn|] = E [Sn] + 2E
[
S−
n

]
≤ sup

n≤0
E [Sn] + 2E

[
S−
0

]
.

Therefore, in view of hypothesis (8.24),

P (|Sn| > λ) ≤ E [|Sn|]
λ

→ 0

uniformly in n ≤ 0, and therefore
∫

{|Sn|>λ}
|Sk| dP → 0

uniformly in n. �

The following result is the backwards Lévy’s continuity theorem for conditional
expectations.

Corollary 8.4.13 Let {Fn}n≤0 be a history and let ξ be an integrable random
variable. Then, with F−∞ := ∩n≤0Fn,

lim
n↓−∞

E[ξ | Fn] = E [ξ | F−∞] . (8.25)

Proof. Mn := E[ξ | Fn] (n ≤ 0) is an Fn-martingale and therefore by the back-
wards martingale convergence theorem, it converges as n ↓ −∞ almost surely and
in L1 to some integrable variable M−∞ and

M−∞ = E [M0 | F−∞] = E [E [ξ | F0] | F−∞] = E [ξ | F−∞]

since F−∞ ⊆ F0. �

The Robbins–Sigmund Theorem

In applications, one often encounters random sequences that are not quite martin-
gales, submartingales or supermartingales, but “nearly” so, up to “perturbations”.
The statement of the result below will make this precise.

Theorem 8.4.14 Let {Vn}n≥1, {βn}n≥1, {γn}n≥1 and {δn}n≥1 be real non-negative
sequences of random variables adapted to some filtration {Fn}n≥1 and such that

E[Vn+1 | Fn] ≤ Vn(1 + βn) + γn − δn (n ≥ 1) . (8.26)
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Then, on the set

Γ =

{
∑

n≥1

βn <∞
}

∩
{
∑

n≥1

γn <∞
}

(8.27)

the sequence {Vn}n≥1 converges almost surely to a finite random variable and more-
over

∑
n≥1 δn <∞ P-almost surely.

Proof. 1. Let α0 := 0 and

αn :=

(
n∏

k=1

(1 + βk)

)−1

(n ≥ 1) ,

and let
V ′
n := αn−1Vn, γ′

n := αnγn, δ′n := αnδn (n ≥ 1) .

Then
E[V ′

n+1 | Fn] = αnE[Vn+1 | Fn] ≤ αnVn(1 + βn) + αnγn − αnδn ,

that is, since αnVn(1 + βn) = αn−1Vn,

E[V ′
n+1 | Fn] ≤ V ′

n + γ′
n − δ′n .

Therefore, the random sequence {Yn}n≥1 defined by

Yn := V ′
n −

n−1∑

k=1

(γ′
k − δ′k)

is an Fn-supermartingale.

2. For a > 0, let

Ta := inf

{

n ≥ 1 ;

n−1∑

k=1

(γ′
k − δ′k) ≥ a

}

.

The sequence {Yn∧Ta}n≥1 is an Fn-supermartingale bounded from below by −a. It
therefore converges to a finite limit. Therefore, on {Ta = ∞}, {Yn}n≥1 converges
to a finite limit.

3. On Γ,
∏∞

k=1(1+βk) converges almost surely to a positive limit and therefore
limn↑∞ αn > 0. Therefore, condition

∑
n≥1 γn <∞ implies

∑
n≥1 γ

′
n <∞.

4. By definition of Yn,

Yn +
n−1∑

k=1

γ′
k = V ′

n +
n−1∑

k=1

δ′k ≥
n−1∑

k=1

δ′k ,
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But on Γ∩{Ta =∞}, {Yn}n≥1 converges to a finite random variable, and therefore∑
n≥1 δ

′
n <∞.

5. Since on Γ∩{Ta =∞},
∑

n≥1 γ
′
n <∞,

∑
n≥1 δ

′
n <∞ and {Yn}n≥1 converges

to a finite random variable, it follows that {V ′
n}n≥1 converges to a finite limit.

Since limn↑∞ αn > 0, it follows in turn that {Vn}n≥1 converges to a finite limit and∑
n≥1 δn <∞ on Γ ∩ {Ta =∞}, and therefore on Γ ∩ (∪a{Ta =∞}) = Γ. �

Corollary 8.4.15 Let {Vn}n≥1, {γn}n≥1 and {δn}n≥1 be real non-negative se-
quences of random variables adapted to some filtration {Fn}n≥1. Suppose that
for all n ≥ 1

E[Vn+1 | Fn] ≤ Vn + γn − δn . (8.28)

Let {an}n≥1 be a random sequence that is strictly positive and strictly increasing
and let

Γ̃ :=

{
∑

n≥1

γn
an

<∞
}

. (8.29)

Then, almost-surely:

1. on Γ̃, the series
∑

n≥1
Vn+1−Vn

an
is convergent and

∑
n≥1

δn
an

<∞,

2. on Γ̃ ∩ {limn↑∞ an <∞}, {Vn}n≥1 converges almost surely, and

3. on Γ̃ ∩ {limn↑∞ an =∞}, limn↑∞ Vn

an
= 0 and limn↑∞

Vn+1

an
= 0.

Proof. 1. Let for n ≥ 1

Zn :=
n−1∑

k=1

Vk+1 − Vk

ak
+

V1

a0
=

n∑

k=1

Vk

(
1

ak−1

− 1

ak

)

+
Vn

an
.

Since 1
ak−1
− 1

ak
> 0, we have that Zn ≥ 0 (n ≥ 1). Also

E[Zn+1 | Fn] ≤ Zn +
γn
an
− δn

an
.

Therefore, by Theorem 8.4.14, on Γ̃, {Zn}n≥1 converges and
∑

n≥1
δn
an

< ∞. Note
that in particular

lim
n↑∞

Vn+1 − Vn

an
= 0 on Γ̃ . (8.30)

2. If moreover limn↑∞ an = a∞ <∞, the convergence of
∑

n≥1
Vn+1−Vn

an
implies

that of 1
a∞

∑
n≥1 (Vn+1 − Vn), and therefore {Vn}n≥1 converges.
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3. If on the contrary limn↑∞ an =∞, the convergence of
∑

n≥1
Vn+1−Vn

an
implies

that of Vn+1

an
(and therefore that of Vn

an
, by (8.30)) to 0 (recall Kronecker’s lemma: if

an > 0 and an ↑ ∞, the convergence of
∑

n≥1
xn

an
implies that limn↑∞ 1

an

∑n
k=1 xk =

0). �

8.5 Square-integrable Martingales

Let {Fn}n≥0 be a filtration. Recall that a process {Hn}n≥0 is called Fn-predictable
if for all n ≥ 1, Hn is Fn−1-measurable.

Doob’s decomposition

Theorem 8.5.1 Let {Sn}n≥0 be an Fn-submartingale. Then there exists a P-a.s.
unique non-decreasing Fn-predictable process {An}n≥0 with A0 ≡ 0 and a unique
Fn-martingale {Mn}n≥0 such that for all n ≥ 0,

Sn = Mn + An .

Proof. Existence is proved by explicit construction. Let M0 := S0, A0 = 0 and,
for n ≥ 1,

Mn := S0 +

n−1∑

j=0

{
Sj+1 − E[Sj+1|Fj]

}
,

An :=
n−1∑

j=0

(E[Sj+1|Fj]− Sj) .

Clearly, {Mn}n≥0 and {An}n≥0 have the announced properties. In order to prove
uniqueness, let {M ′

n}n≥0 and {A′
n}n≥0 be another such decomposition. In partic-

ular, for n ≥ 1,

A′
n+1 −A′

n = (An+1 −An) + (Mn+1 −Mn)− (M ′
n+1 −M ′

n) .

Therefore
E[A′

n+1 − A′
n | Fn] = E[An+1 − An | Fn] ,

and, since A′
n+1 − A′

n and An+1 − An are Fn-measurable,

A′
n+1 −A′

n = An+1 − An, P-a.s. (n ≥ 1) ,

from which it follows that A′
n = An a.s. for all n ≥ 0 (recall that A′

0 = A0) and
then M ′

n = Mn a.s. for all n ≥ 0. �
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Definition 8.5.2 The sequence {An}n≥0 in Theorem 8.5.1 is called the compen-
sator of {Sn}n≥0.

Definition 8.5.3 Let {Mn}n≥0 be a square-integrable Fn-martingale (that is,
E[M2

n ] <∞ for all n ≥ 0). The compensator of the Fn-submartingale {M2
n}n≥0 is

denoted by {〈M〉n}n≥0 and is called the bracket process of {Mn}n≥0.

By the explicit construction in the proof of Theorem 8.5.1, 〈M〉0 := 0 and for
n ≥ 1,

〈M〉n :=
n−1∑

j=0

{
E[M2

j+1 | Fj]−M2
j

}
=

n−1∑

j=0

{
E[(M2

j+1 −M2
j ) | Fj]

}
. (8.31)

Also, for all 0 ≤ k ≤ n,

E[(Mn −Mk)
2 | Fk] = E[M2

n −M2
k | Fk] = E[〈M〉n − 〈M〉k | Fk] .

Therefore, {M2
n−〈M〉n}n≥0 is an Fn-martingale. In particular, ifM0 = 0, E[M2

n] =
E[〈M〉n].

Example 8.5.4: Let {Zn}n≥0 be a sequence of iid centered random variables
of finite variance. Let M0 := 0 and Mn :=

∑n
j=1 Zj for n ≥ 1. Then, for n ≥ 1,

〈M〉n =
n∑

j=1

Var (Zj) .

Theorem 8.5.5 If E [〈M〉∞] < ∞, the square-integrable martingale {Mn}n≥0

converges almost surely to a finite limit, and convergence takes place also in L2.

Proof. This is Theorem 8.4.6 for the particular case p = 2. In fact, condition
(8.20) thereof is satisfied since

sup
n≥1

E
[
M2

n

]
= sup

n≥1
E[〈M〉n] = E [〈M〉∞] <∞ .

�
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The Martingale Law of Large Numbers

Theorem 8.5.6 Let {Mn}n≥0 be a square-integrable Fn-martingale. Then:

A. On {〈M〉∞ <∞}, Mn converges to a finite limit.

B. On {〈M〉∞ =∞}, Mn/〈M〉n → 0.

Proof. A. Let K > 0 be fixed, the random time

τK := inf{n ≥ 0 : 〈M〉n+1 > K}

is an Fn-stopping time since the bracket process is Fn-predictable. Also 〈M〉n∧τK ≤
K and therefore by Theorem 8.5.5, {Mn∧τK}n≥0 converges to a finite limit. There-
fore {Mn}n≥0 converges to a finite limit on the set {〈M〉∞ < K} contained in
{τK =∞}. Hence the result since

{〈M〉∞ <∞} =
⋃

K≥1

{τK =∞} .

B. Note that
E[M2

n+1 | Fn] = M2
n + 〈M〉n+1 − 〈M〉n.

Define
Vn = M2

n , γn = 〈M〉n+1 − 〈M〉n, an = 〈M〉2n+1 .

The result then follows from Part 3 of Corollary 8.4.15 (observe that there exists
a k0 such that ak ≥ 1 for k ≥ k0 and

∞∑

k=k0

γk/ak =

∞∑

k=k0

(〈M〉k+1 − 〈M〉k)/〈M〉2k+1 ≤
∫ ∞

1

x−2 dx <∞) ,

which says, in particular, that
√

Vn+1/an = Mn+1/〈M〉n+1 converges to 0. �

We do not have in general {〈M〉∞ <∞} = {{Mn}n≥0 converges}.

The following is a conditioned version of the Borel–Cantelli lemma. Note that,
in this form, we have a necessary and sufficient condition.

Corollary 8.5.7 Let {Fn}n≥1 be a filtration and let {An}n≥1 be a sequence of
events such that An ∈ Fn (n ≥ 1). Then

{
∑

n≥1

P (An | Fn−1) =∞
}

≡
{
∑

n≥1

1An =∞
}

.
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Proof. Define {Mn}n≥0 by M0 := 0 and for n ≥ 1,

Mn :=

n∑

k=1

(1Ak
− P (Ak | Fk−1)) .

This is a square-integrable Fn-martingale, with bracket process

〈M〉n =

n∑

k=1

P (Ak | Fk−1)(1− P (Ak | Fk−1)) .

In particular,

〈M〉n ≤
n∑

k=1

P (Ak | Fk−1) .

A. Suppose that
∑∞

k=1 P (Ak | Fk−1) < ∞. Then, by the above inequality,
〈M〉∞ < ∞, and therefore, by Part A of Theorem 8.5.6, Mn converges. Since by
hypothesis,

∑∞
k=1 P (Ak | Fk−1) <∞, this implies that

∑∞
k=1 1Ak

<∞.

B. Suppose that
∑∞

k=1 P (Ak | Fk−1) =∞ and 〈M〉∞ <∞. Then Mn converges
to a finite random variable and therefore

Mn∑n
k=1 P (Ak | Fk−1)

=

∑n
k=1 1Ak∑n

k=1 P (Ak | Fk−1)
− 1→ 0 .

C. Suppose that
∑∞

k=1 P (Ak | Fk−1) =∞ and 〈M〉∞ =∞. Then Mn

〈M〉n → 0 and
a fortiori,

Mn∑n
k=1 P (Ak | Fk−1)

→ 0 ,

that is, ∑n
k=1 1Ak∑n

k=1 P (Ak | Fk−1)
→ 1 .

�

8.6 Exercises

Exercise 8.6.1. Conditional Jensen’s inequality

Let I be a general interval of R (closed, open, semi-closed, infinite, etc.) and let
(a, b) be its interior, assumed non-empty. Let ϕ : I → R be a convex function. Let
X be an integrable real-valued random variable such that P (X ∈ I) = 1. Assume
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moreover that either ϕ is non-negative, or that ϕ(X) is integrable. Prove that for
any sub-σ-field G ⊆ F

E [ϕ(X) | G] ≥ ϕ(E [X | G]) .

Exercise 8.6.2. Discounted product

Let {Xn}n≥1 be a sequence of independent integrable random variables with a
common mean m �= 0. Show that

Yn := m−nX1X2 · · ·Xn (n ≥ 1)

is an FX
n -martingale.

Exercise 8.6.3. Mean hitting time via martingales

Let {Xn}n≥0 be a symmetric random walk on Z. Show that {Xn}n≥0 and
{X2

n − n}n≥0 are FX
n -martingales. Deduce from this the mean of T of the hit-

ting time of {−a, b}, where a and b are positive integers.

Exercise 8.6.4. Probability of hit

Let {Xn}n≥0 be a hmc with state space E, and let B be a closed subset of states,
that is,

i ∈ B ⇒
∑

j∈B
pij = 1 .

Let T be the hitting time of B, and let for i ∈ E,

h(i) := Pi(T <∞) .

Show that {h(Xn)}n≥0 is a FX
n -martingale.

Exercise 8.6.5. Ruined again!

Show that the function h(i) =
(

q
p

)i

is harmonic for the nonsymmetric random

walk on Z (with pi,i+1 = p, pi,i−1 = q = 1 − p, p �= 1
2
), where p ∈ (0, 1), p �= 1

2
.

Apply the optional sampling theorem to obtain the ruin probability in the ruin
problem of Example 9.1.10.

Exercise 8.6.6. The Lévy martingale

Let {Xn}n≥0 be an hmc with state space E and transition matrix P, and let
f : E → R be a bounded function. Show that the process

Mf
n = f(Xn)− f(X0)−

n−1∑

k=0

(P− I)f(Xk)
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is an FX
n -martingale.

Exercise 8.6.7. Martingale characterization of an hmc

Let {Xn}n≥0 be a stochastic process with values in the countable space E. It is
not assumed to be an hmc. Let P be some transition matrix on E. Prove that
if for all bounded f : E → R, {Mf

n}n≥0 defined in Exercise 8.6.6 is a martingale
with respect to {Xn}n≥0, then {Xn}n≥0 is an hmc with transition matrix P.

Exercise 8.6.8. A martingale representation theorem

Let {Xn}n≥0 be a sequence of {0, 1}-valued random variables and let λn−1 :=
E

[
Xn | FX

n−1

]
(n ≥ 0), where F−1 := {∅,Ω}. Show that any FX

n -martingale
{Mn}n≥0 is of the form

Mn = M0 +
n∑

j=0

Hj(Xj − λj−1) ,

where {Hn}n≥0 is an FX
n -predictable sequence.

Exercise 8.6.9. A martingale built on a permutation

Let a1, . . . , ak ∈ R be such that
∑k

j=1 aj = 0. Let π be a completely random

permutation of {1, . . . , k}, that is, P (π = π0) = 1
k!

for all permutations π0 of
{1, . . . , k}. Let Fn := σ(π(1), . . . , π(n)) (1 ≤ n ≤ k) and

Xn :=
k

k − n

n∑

j=1

aπ(j) .

Show that {Xn}1≤n≤k is an Fn-martingale.

Exercise 8.6.10. Fτ

Prove Theorem 8.1.11.

Exercise 8.6.11. Ruined again

Show that the function h(i) =
(

1−p
p

)i

is harmonic for the nonsymmetric random

walk on Z (with pi,i+1 = p, pi,i−1 = 1− p, where p ∈ (0, 1) and p �= 1
2
). Apply the

optional sampling theorem to obtain the ruin probability in Example 9.1.10.

Exercise 8.6.12. Absorption probability

Consider the hmc {Xn}n≥0 with state space E = {0, 1, . . . , m} and transition
probabilities

pij =

(
m

j

)(
i

m

)j (

1− i

m

)m−j

.
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In particular, 0 and m are absorbing states.

(a) Show that {Xn}n≥0 is a martingale.

(b) Compute the probability of absorption by state 0.

Exercise 8.6.13. Upcrossings

Let {Mn}n≥0 be an Fn-martingale. Let a, b ∈ R with a < b, and let νn be the
number of upcrossings of [a, b] before (≤) time n. For k ≥ 1, let Ak be the event
that there are exactly k − 1 upcrossings of [a, b] before (≤) time n. Show that

(b− a)P (νn ≥ k) ≤ E [(a−Mn)1Ak
] .

Exercise 8.6.14. E [X | Fτ ] = X(τ)
Let τ be a stopping time for the filtration {Fn}n≥1. Let Xn := E [X | Fn] (n ≥ 1)
where X is an integrable random variable. Prove that E [X | Fτ ] = X(τ).

Exercise 8.6.15. Martingale bounded by an integrable random vari-

able

Let {Xn}n≥1 be an Fn-martingale and let Z be an integrable random variable such
that Xn ≤ Z (n ≥ 1). Prove that {Xn}n≥1 converges almost surely.

Exercise 8.6.16. The gambler with unlimited credit

Consider the gambling situation of Example 8.1.4 when the stakes are bounded,
say by M , and when the initial fortune of the gambler is a. But we suppose that
the gambler can borrow whatever amount he needs, so that his “fortune” Yn at
any time n can take arbitrary values. Prove that

P (|Yn − a| ≥ λ ≤ 2 exp

(

− λ2

2nM2

)

.

Exercise 8.6.17. Fair coin tosses

Consider a Bernoulli sequence of parameter 1
2
representing a fair game of heads

and tails. Let Xn be the number of heads after n tosses. Use Hoeffding’s
inequality to prove that

P (|Xn − E[Xn]| ≥ λ) ≤ 2 exp

(

−λ
2

n

)

.
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Exercise 8.6.18. Krickeberg’s decomposition

Prove that an Fn-martingale {Mn}n≥0 such that supn≥0 E[|Mn|] < ∞ is the dif-
ference of two non-negative Fn-martingales. (Hint: Doob’s decomposition applied
to |Mn|.)

Exercise 8.6.19. Polya’s urn

At time 0 an urn contains exactly one black ball and one white ball. At time
n ≥ 0, a ball is drawn at random and then at time n+ 1 this ball is put back into
the urn together with another ball of the same color. In particular, there are at
time n exactly n+ 2 balls in the urn. Let Bn be the number of black balls in the
urn. Let Xn := Bn

n+2
be the proportion of black balls at time n. Show that {Xn}n≥0

is a martingale and that the ratio of the number of black balls to the number of
white balls converges.

Exercise 8.6.20. Records

Let {Xn}n≥1 be an iid sequence of random variables with a common cumulative
distribution F that is continuous. For 1 ≤ i ≤ n, let Yi := 1 if and only if Xi =
max(X1, . . . , Xi). We shall admit that Xi is uniformly distributed on {1, . . . , i}
and that {Yi}1≤i≤n is iid. Let Zn :=

∑n
i=1 1{Yi=1} (the number of times a record is

broken, that is, the number of i’s such that Xi > max(X1, . . . , Xi−1)). Prove that
Zn

lnn
→ 1 almost surely.

Exercise 8.6.21. A maximal inequality

Let {Xn}n≥0 be a centered square-integrable martingale. Let λ > 0. Prove the
following inequality:

P

(

max
0≤k≤n

Xk > λ

)

≤ E [X2
n]

E [X2
n] + λ2

.

Hint: With c > 0, work with the sequence {(Xn + c)2}n≥0 and then select an
appropriate c.

Exercise 8.6.22. An extension of Hoeffding’s inequality

Let M be a real FX
n -martingale such that, for some sequence d1, d2, . . . of real

numbers,
P (Bn ≤Mn −Mn−1 ≤ Bn + dn) = 1 (n ≥ 1) ,

where for each n ≥ 1, Bn is a function of Xn−1
0 . Prove that, for all x ≥ 0,

P (|Mn −M0| ≥ x) ≤ 2 exp

(

−2x2

/ n∑

i=1

d2i

)

.
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Exercise 8.6.23. The derivative of a Lipschitz continuous function

Let f : [0, 1)→ R satisfy a Lipschitz condition, that is,

|f(x)− f(y)| ≤M |x− y| (x, y ∈ [0, 1)) ,

where M < ∞. Let Ω = [0, 1), F = B([0, 1)) and let P be the Lebesgue measure
on [0, 1). Let for all n ≥ 1

ξn(ω) :=
2n∑

k=1

1{[(k−1)2−n,k2−n)}(ω)

and
Fn = σ(ξk ; 1 ≤ k ≤ n) .

(i) Show that Fn = σ(ξn) and ∨nFn = B([0, 1)).

(ii) Let

Xn :=
f(ξn + 2−n)− f(ξn)

2−n
.

Show that {Xn}n≥1 is a uniformly integrable Fn-martingale.

(iii) Show that there exists a measurable function g : [0, 1)→ R such thatXn → g
P -almost surely and that Xn = E [g | Fn].

(iv) Show that for all n ≥ 1 and all k (1 ≤ k ≤ 2n)

f(k2−n)− f(0) =

∫ k2−n

0

g(x) dx

and deduce from this that

f(x)− f(0) =

∫ x

0

g(y) dy (x ∈ [0, 1)) .

Exercise 8.6.24. A non-uniformly integrable martingale

Let {Xn}n≥0 be a sequence of iid random variables such that P (Xn = 0) =
P (Xn = 2) = 1

2
(n ≥ 0). Define

Zn :=

n∏

j=1

Xj (n ≥ 0) .

Show that {Zn}n≥0 is an FX
n -martingale and prove that it is not uniformly inte-

grable.
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Exercise 8.6.25. The ballot problem via martingales

This exercise proposes an alternative proof for the ballot problem. Let k := a+ b
and let Dn be the difference between the number of votes for A and the number
of votes for B at time n ≥ 1. Prove that

Xn =
Dk−n

k − n
(1 ≤ n ≤ k)

is a martingale. Deduce from this that the probability that A leads throughout
the voting process is (a− b)/(a + b). Hint: τ := inf{n ; Xn = 0} ∧ (k − 1).

Exercise 8.6.26. A voting model

Let G = (V, E) be a finite graph. Each vertex v shelters a random variable Xn(v)
representing the opinion (0 or 1) at time n of the voter located at this vertex.
At each time n, an edge 〈v, w〉 is chosen at random, and one of the two vertices,
again chosen at random (say v), reconsiders his opinion passing from Xn(v) to
Xn+1(v) = Xn(w). The initial opinions at time 0 are given. Let Zn be the total
number of votes for 1 at time n. Show that {Zn}n≥1 is a martingale that converges
in finite random time to a random variable Z∞ taking the values 0 or |V |, the
probability that all opinions are eventually 1 being equal to the initial proportion
of 1’s.



Chapter 9

Markov Chains

Discrete-time homogeneous Markov chains are sequences {Xn}n≥0 of random vari-
ables with values in some denumerable set E, that can always be represented (in
a sense to be made precise) by a recurrence equation Xn+1 = f(Xn, Zn+1), where
{Zn}n≥1 is an iid sequence independent of the initial state X0. The probabilistic
dependence on the past is only through the previous state, but this limited amount
of memory suffices to produce enough varied and complex behavior to make Markov
chains the most important source of stochastic models in the applied sciences.

9.1 The Transition Matrix

A particle moves on a denumerable set E. If at time n, the particle is in position
Xn = i, it will be at time n + 1 in a position Xn+1 = j chosen independently of
the past trajectory Xn−1, Xn−2 with probability pij. This can be represented by a
labeled directed graph, called the transition graph, whose set of vertices is E, and
for which there is a directed edge from i ∈ E to j ∈ E with label pij if and only
the latter quantity is positive. Note that there may be “self-loops”, corresponding
to positions i such that pii > 0.

1
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This graphical interpretation of a Markov chain in terms of a “random walk” on
a set E is adapted to the study of random walks on graphs. Since the interpretation
of a Markov chain in such terms is not always the natural one, we proceed to give
a more formal definition.

Definition 9.1.1 If for all integers n ≥ 0 and all states i0, i1, . . . , in−1, i, j,

P (Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j |Xn = i) ,

this stochastic process is called a Markov chain, and a homogeneous Markov chain
(hmc) if, in addition, the right-hand side is independent of n.

The matrix P = {pij}i,j∈E, where

pij = P (Xn+1 = j |Xn = i) ,

is called the transition matrix of the hmc. Since the entries are probabilities, and
since a transition from any state i must be to some state, it follows that

pij ≥ 0, and
∑

k∈E
pik = 1

for all states i, j. A matrix P indexed by E and satisfying the above properties is
called a stochastic matrix. The state space may be infinite, and therefore such a
matrix is in general not of the kind studied in linear algebra. However, the basic
operations of addition and multiplication will be defined by the same formal rules.
The notation x = {x(i)}i∈E formally represents a column vector, and xT is the
corresponding row vector.

The Markov property easily extends (Exercise 9.7.2) to

P (A |Xn = i, B) = P (A |Xn = i) ,

where

A = {Xn+1 = j1, . . . , Xn+k = jk}, B = {X0 = i0, . . . , Xn−1 = in−1} .

This is in turn equivalent to

P (A ∩ B |Xn = i) = P (A |Xn = i)P (B |Xn = i) .

That is, A and B are conditionally independent given Xn = i.

In other words, the future at time n and the past at time n are conditionally
independent given the present state Xn = i. In particular, the Markov property is
independent of the direction of time.
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Notation. We shall from now on abbreviate P (A |X0 = i) as Pi(A). Also, if
μ is a probability distribution on E, then Pμ(A) is the probability of A given that
the initial state X0 is distributed according to μ.

The distribution at time n of the chain is the vector νn := {νn(i)}i∈E, where

νn(i) := P (Xn = i) .

From the Bayes rule of total causes, νn+1(j) =
∑

i∈E νn(i)pij , that is, in matrix
form, νTn+1 = νT

nP. Iteration of this equality yields

νT
n = νT

0 P
n . (9.1)

The matrix Pm is called the m-step transition matrix because its general term is

pij(m) = P (Xn+m = j |Xn = i) .

In fact, by the Bayes sequential rule and the Markov property, the right-hand side
equals

∑
i1,...,im−1∈E pii1pi1i2 · · · pim−1j, which is the general term of the m-th power

of P.

The probability distribution ν0 of the initial state X0 is called the initial distri-
bution. ¿From the Bayes sequential rule and in view of the homogeneous Markov
property and the definition of the transition matrix,

P (X0 = i0, X1 = i1, . . . , Xk = ik) = ν0(i0)pi0i1 · · ·pik−1ik .

Therefore,

Theorem 9.1.2 The distribution of a discrete-time hmc is uniquely determined
by its initial distribution and its transition matrix.

Many hmcs receive a natural description in terms of a recurrence equation.

Theorem 9.1.3 Let {Zn}n≥1 be an iid sequence of random variables with values
in an arbitrary space F . Let E be a countable space, and f : E × F → E be some
function. Let X0 be a random variable with values in E, independent of {Zn}n≥1.
The recurrence equation

Xn+1 = f(Xn, Zn+1) (9.2)

then defines an hmc.

Proof. Iteration of recurrence (9.2) shows that for all n ≥ 1, there is a function
gn such that Xn = gn(X0, Z1, . . . , Zn), and therefore P (Xn+1 = j |Xn = i, Xn−1 =
in−1, . . . , X0 = i0) = P (f(i, Zn+1) = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) =
P (f(i, Zn+1) = j), since the event {X0 = i0, . . . , Xn−1 = in−1, Xn = i} is express-
ible in terms of X0, Z1, . . . , Zn and is therefore independent of Zn+1. Similarly,
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P (Xn+1 = j |Xn = i) = P (f(i, Zn+1) = j). We therefore have a Markov chain,
and it is homogeneous since the right-hand side of the last equality does not depend
on n. Explicitly:

pij = P (f(i, Z1) = j) . (9.3)

�

Example 9.1.4: 1-D random walk, take 1. Let X0 be a random variable
with values in Z. Let {Zn}n≥1 be a sequence of iid random variables, independent
of X0, taking the values +1 or −1, and with the probability distribution P (Zn =
+1) = p, where p ∈ (0, 1). The process {Xn}n≥1 defined by

Xn+1 = Xn + Zn+1

is, in view of Theorem 9.1.3, an hmc, called a random walk on Z. It is called a
“symmetric” random walk if p = 1

2
.

Example 9.1.5: The Repair Shop, take 1. During day n, Zn+1 machines
break down, and they enter the repair shop on day n+ 1. Every day one machine
among those waiting for service is repaired. Therefore, denoting by Xn the number
of machines in the shop on day n,

Xn+1 = (Xn − 1)+ + Zn+1 , (9.4)

where a+ = max(a, 0). In particular, if {Zn}n≥1 is an iid sequence independent of
the initial state X0, then {Xn}n≥0 is a homogeneous Markov chain. In terms of
the probability distribution P (Z1 = k) = ak (k ≥ 0), its transition matrix is

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Indeed, from (9.3),

pij = P ((i− 1)+ + Z1 = j) = P (Z1 = j − (i− 1)+) = aj−(i−1)+ .
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Example 9.1.6: Stochastic Automata. A finite automaton (E,A, f) can
read sequences of letters from a finite alphabet A written on some infinite tape.
It can be in any state of a finite set E, and its evolution is governed by a function
f : E×A → E, as follows. When the automaton is in state i ∈ E and reads letter
a ∈ A, it switches from state i to state j = f(i, a) and then reads on the tape the
next letter to the right.

3

0
1

0

0

0

1 1

1

0 1 2

a

1 00 1 1 1 1 0

3

0 1 1 1 1 1 1 0 1 0

3 3

b

30 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2

c

Figure 9.1: The automaton: the recognition process and the Markov chain.
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An automaton can be represented by its transition graph G having for nodes
the states of E. There is an oriented edge from the node (state) i to the node j if
and only if there exists an a ∈ A such that j = f(i, a), and this edge then receives
label a. If j = f(i, a1) = f(i, a2) for a1 �= a2, then there are two edges from i to
j with labels a1 and a2, or, more economically, one such edge with label (a1, a2).
More generally, a given oriented edge can have multiple labels of any order.

Consider, for instance, the automaton with alphabet A = {0, 1} corresponding
to the transition graph of Figure 9.1a. As the automaton, initialized in state 0,
reads the sequence of Figure 9.1b from left to right, it passes successively through
the states (including the initial state 0)

0 1 0 0 1 2 3 1 0 0 1 2 3 1 2 3 0 1 0 .

Rewriting the sequence of states below the sequence of letters, it appears that the
automaton is in state 3 after it has seen three consecutive 1’s. This automaton is
therefore able to recognize and count such blocks of 1’s. However, it does not take
into account overlapping blocks (see Figure 9.1b).

If the sequence of letters read by the automaton is {Zn}n≥1, the sequence of
states {Xn}n≥0 is then given by the recurrence equation Xn+1 = f(Xn, Zn+1) and
therefore, if {Zn}n≥1 is iid and independent of the initial state X0, then {Xn}n≥1

is, according to Theorem 9.2, an hmc.

Not all homogeneous Markov chains receive a “natural” description of the type
featured in Theorem 9.1.3. However, it is always possible to find a “theoretical”
description of this kind.

Theorem 9.1.7 For any transition matrix P on E, there exists a homogeneous
Markov chain with this transition matrix and with a representation such as in
Theorem 9.1.3.

Proof. Define

Xn+1 := j if

j−1∑

k=0

pXnk ≤ Zn+1 <

j∑

k=0

pXnk ,

where {Zn}n≥1 is iid, uniform on [0, 1]. By application of Theorem 9.1.3 and of
formula (9.3), we check that this hmc has the announced transition matrix. �

As we already mentioned, not all homogeneous Markov chains are naturally
described by the model of Theorem 9.1.3. A slight modification of this result
considerably enlarges its scope.
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Theorem 9.1.8 Let things be as in Theorem 9.1.3 except for the joint distribu-
tion of X0, Z1, Z2, . . .. Suppose instead that for all n ≥ 0, Zn+1 is condition-
ally independent of Zn, . . . , Z1, Xn−1, . . . , X0 given Xn, and that for all i, j ∈ E,
P (Zn+1 = k |Xn = i) is independent of n. Then {Xn}n≥0 is an hmc, with transi-
tion probabilities

pij = P (f(i, Z1) = j |X0 = i) .

Proof. The proof is quite similar to that of Theorem 9.1.3 and is left as an
exercise. �

Example 9.1.9: The Ehrenfest urn, take 1. This idealized model of dif-
fusion through a porous membrane, proposed in 1907 by the Austrian physicists
Tatiana and Paul Ehrenfest to describe in terms of statistical mechanics the ex-
change of heat between two systems at different temperatures, considerably helped
our understanding of the phenomenon of thermodynamic irreversibility. It features
N particles that can be either in compartment A or in compartment B.

A B

Xn = i N − i

Suppose that at time n ≥ 0, Xn = i particles are in A. One then chooses a
particle at random, and this particle is moved at time n + 1 from where it is to
the other compartment. Thus, the next state Xn+1 is either i − 1 (the displaced
particle was found in compartment A) with probability i

N
, or i + 1 (it was found

in B) with probability N−i
N

. This model pertains to Theorem 9.1.8. For all n ≥ 0,

Xn+1 = Xn + Zn+1 ,

where Zn ∈ {−1,+1} and P (Zn+1 = −1 |Xn = i) = i
N
. The nonzero entries of

the transition matrix are therefore

pi,i+1 =
N − i

N
, pi,i−1 =

i

N
.
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1 1− i−1
N

1− i
N

1
N

1
N

i
N

i+1
N

1

0 1 i−1 i i+1 N−1 N

First-step Analysis

Some functionals of homogeneous Markov chains such as probabilities of absorption
by a closed set and average times before absorption can be evaluated by a technique
called first-step analysis.

Example 9.1.10: The gambler’s ruin, take 1. Two players A and B play
“heads or tails”, where heads occur with probability p ∈ (0, 1), and the successive
outcomes form an iid sequence. Calling Xn the fortune in dollars of player A at
time n, then Xn+1 = Xn + Zn+1, where Zn+1 = +1 (resp., −1) with probability
p (resp., q := 1 − p), and {Zn}n≥1 is iid. In other words, A bets $1 on heads at
each toss, and B bets $1 on tails. The respective initial fortunes of A and B are
a and b (positive integers). The game ends when a player is ruined, and therefore
the process {Xn}n≥1 is a random walk as described in Example 9.1.4, except that
it is restricted to E = {0, . . . , a, a+1, . . . , a+ b = c}. The duration of the game is
T , the first time n at which Xn = 0 or c, and the probability of winning for A is
u(a) = P (XT = c |X0 = a).

1 2 3 4 5 6 7 8 9 10 T = 11

c = a+ b

0

a

A wins

The gambler’s ruin
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Instead of computing u(a) alone, first-step analysis computes

u(i) = P (XT = c |X0 = i)

for all states i, 0 ≤ i ≤ c, and for this, it first generates a recurrence equation for
u(i) by breaking down event “A wins” according to what can happen after the first
step (the first toss) and using the rule of total causes. If X0 = i, 1 ≤ i ≤ c−1, then
X1 = i + 1 (resp., X1 = i − 1) with probability p (resp., q), and the probability
of winning for A with updated initial fortune i+ 1 (resp., i− 1) is u(i+ 1) (resp.,
u(i− 1)). Therefore, for i, 1 ≤ i ≤ c− 1,

u(i) = pu(i+ 1) + qu(i− 1) ,

with the boundary conditions u(0) = 0, u(c) = 1.

The characteristic equation associated with this linear recurrence equation is
pr2 − r + q = 0. It has two distinct roots, r1 = 1 and r2 = q

p
, if p �= 1

2
, and a

double root, r1 = 1, if p = 1
2
. Therefore, the general solution is u(i) = λri1+μri2 =

λ + μ
(

q
p

)i

when p �= q, and u(i) = λri1 + μiri1 = λ + μi when p = q = 1
2
. Taking

into account the boundary conditions, one can determine the values of λ and μ.
The result is, for p �= q,

u(i) =
1− ( q

p
)i

1− ( q
p
)c
,

and for p = q = 1
2
,

u(i) =
i

c
.

In the case p = q = 1
2
, the probability v(i) that B wins when the initial fortune of B

is c−i is obtained by replacing i by c−i in the expression for u(i): v(i) = c−i
c

= 1− i
c
.

One checks that u(i) + v(i) = 1, which means in particular that the probability
that the game lasts forever is null. The reader is invited to check that the same is
true in the case p �= q.

First-step analysis can also be used to compute average times before absorption
(Exercise 9.7.5).

Communication and Period

These two concepts are topological in the sense that they concern only the naked
transition graph (with only the arrows, without the labels).
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Definition 9.1.11 State j is said to be accessible from state i if there exists an
M ≥ 0 such that pij(M) > 0. States i and j are said to communicate if i is
accessible from j and j is accessible from i, and this is denoted by i↔ j.

In particular, a state i is always accessible from itself, since pii(0) = 1 (P0 = I,
the identity).

For M ≥ 1, pij(M) =
∑

i1,...,iM−1
pii1 · · ·piM−1j , and therefore pij(M) > 0 if and

only if there exists at least one path i, i1, . . . , iM−1, j from i to j such that

pii1pi1i2 · · ·piM−1j > 0 ,

or, equivalently, if there is a directed path from i to j in the transition graph G.
Clearly,

i↔ i (reflexivity),

i↔ j ⇒ j ↔ i (symmetry),

i↔ j, j ↔ k ⇒ i↔ k (transitivity).

Therefore, the communication relation (↔) is an equivalence relation, and it gen-
erates a partition of the state space E into disjoint equivalence classes called com-
munication classes.

Definition 9.1.12 A closed state i is one such that pii = 1. More generally, a
closed set C of states is one such that for all i ∈ C,

∑
j∈C pij = 1.

Definition 9.1.13 If there exists only one communication class, then the chain,
its transition matrix, and its transition graph are said to be irreducible.

Example 9.1.14: The Repair Shop, take 2. Recall that this Markov chain
satisfies the recurrence equation

Xn+1 = (Xn − 1)+ + Zn+1 , (9.5)

where a+ = max(a, 0). The sequence {Zn}n≥1 is assumed to be iid, independent
of the initial state X0, and with common probability distribution

P (Z1 = k) = ak, k ≥ 0

of generating function gZ .

This chain is irreducible if and only if P (Z1 = 0) > 0 and P (Z1 ≥ 2) > 0 as
we now prove formally. Looking at (9.14), we make the following observations. If
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P (Zn+1 = 0) = 0, then Xn+1 ≥ Xn a.s. and there is no way of going from i to i−1.
If P (Zn+1 ≤ 1) = 1, then Xn+1 ≤ Xn, and there is no way of going from i to i+1.
Therefore, the two conditions P (Z1 = 0) > 0 and P (Z2 ≥ 2) > 0 are necessary
for irreducibility. They are also sufficient. Indeed if there exists an integer k ≥ 2
such that P (Zn+1 = k) > 0, then one can jump with positive probability from any
i > 0 to i + k − 1 > i or from i = 0 to k > 0. Also if P (Zn+1 = 0) > 0, one can
step down from i > 0 to i− 1 with positive probability. In particular, one can go
from i to j < i with positive probability. Therefore, one way to travel from i to
j ≥ i is by taking several successive steps of height at least k− 1 in order to reach
a state l ≥ i, and then (in the case of l > i) stepping down one stair at a time
from l to i. All this with positive probability.

Consider the random walk on Z (Example 9.1.4). Since 0 < p < 1, it is
irreducible. Observe that E = C0 +C1, where C0 and C1, the set of even and odd
relative integers respectively, have the following property. If you start from i ∈ C0

(resp., C1), then in one step you can go only to a state j ∈ C1 (resp., C0). The
chain {Xn} passes alternately from one cyclic class to the other. In this sense, the
chain has a periodic behavior, corresponding to the period 2. More generally, for
any irreducible Markov chain, one can find a unique partition of E into d classes
C0, C1, . . ., Cd−1 such that for all k, i ∈ Ck,

∑

j∈Ck+1

pij = 1 ,

where by convention Cd = C0, and where d is maximal (that is, there is no other
such partition C ′

0, C
′
1, . . . , C

′
d′−1 with d′ > d). The proof follows directly from

Theorem 9.1.17 below.

The number d ≥ 1 is called the period of the chain (resp., of the transition
matrix, of the transition graph). The classes C0, C1, . . . , Cd−1 are called the cyclic
classes. The chain therefore moves from one class to the other at each transition,
and this cyclically.

We now give the formal definition of period. It is based on the notion of greatest
common divisor of a set of positive integers.

Definition 9.1.15 The period di of state i ∈ E is, by definition,

di = gcd{n ≥ 1 ; pii(n) > 0} ,

with the convention di = +∞ if there is no n ≥ 1 with pii(n) > 0. If di = 1, the
state i is called aperiodic.
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Theorem 9.1.16 If states i and j communicate, then they have the same period.

Proof. As i and j communicate, there exist integers N and M such that pij(M) >
0 and pji(N) > 0. For any k ≥ 1,

pii(M + nk +N) ≥ pij(M)(pjj(k))
npji(N)

(indeed, the path X0 = i, XM = j,XM+k = j, . . . , XM+nk = j,XM+nk+N = i is
just one way of going from i to i in M + nk +N steps). Therefore, for any k ≥ 1
such that pjj(k) > 0, we have pii(M + nk + N) > 0 for all n ≥ 1. Therefore, di
divides M+nk+N for all n ≥ 1, and in particular, di divides k. We have therefore
shown that di divides all k such that pjj(k) > 0, and in particular, di divides dj.
By symmetry, dj divides di, and therefore, finally, di = dj. �

We may therefore speak of the period of a communication class or of an irre-
ducible chain.

The important result concerning periodicity is the following.

Theorem 9.1.17 Let P be an irreducible stochastic matrix with period d. Then
for all states i, j there exist m ≥ 0 and n0 ≥ 0 (m and n0 possibly depending on
i, j) such that

pij(m+ nd) > 0, for all n ≥ n0.

Proof. It suffices to prove the theorem for i = j. Indeed, there exists an m
such that pij(m) > 0, because j is accessible from i, the chain being irreducible,
and therefore, if for some n0 ≥ 0 we have pjj(nd) > 0 for all n ≥ n0, then
pij(m + nd) ≥ pij(m)pjj(nd) > 0 for all n ≥ n0. The rest of the proof is an
immediate consequence of a classical result of number theory.1 Indeed, the gcd

of the set A = {k ≥ 1; pjj(k) > 0} is d, and A is closed under addition. The set A
therefore contains all but a finite number of the positive multiples of d. In other
words, there exists an n0 such that n > n0 implies pjj(nd) > 0. �

C0 C1 C2 = Cd−1

Behavior of a Markov chain with period 3

1 Let d be the g.c.d of A = {an ;n ≥ 1}, a set of positive integers that is closed under addition.
Then A contains all but a finite number of the positive multiples of d.
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Stationary Distributions

The central notion of the stability theory of discrete-time hmcs is that of a sta-
tionary distribution.

Definition 9.1.18 A probability distribution π satisfying

πT = πTP (9.6)

is called a stationary distribution of the transition matrix P, or of the corresponding
hmc.

The global balance equation (9.6) says that for all states i,

π(i) =
∑

j∈E
π(j)pji .

Iteration of (9.6) gives πT = πTPn for all n ≥ 0, and therefore, in view of (9.1), if
the initial distribution ν = π, then νn = π for all n ≥ 0. Thus, if a chain is started
with a stationary distribution, it keeps the same distribution forever. But there is
more, because then,

P (Xn = i0, Xn+1 = i1, . . . , Xn+k = ik) = P (Xn = i0)pi0i1 . . . pik−1ik

= π(i0)pi0i1 . . . pik−1ik

does not depend on n. In this sense the chain is stationary. One also says that
the chain is in a stationary regime, or in steady state. In summary:

Theorem 9.1.19 An hmc whose initial distribution is a stationary distribution
is stationary.

The balance equation πTP = πT , together with the requirement that π be a
probability vector, that is, πT1 = 1 (where 1 is a column vector with all its entries
equal to 1), constitute when E is finite, |E|+1 equations for |E| unknown variables.
One of the |E| equations in πTP = πT is superfluous given the constraint πT1 = 1.
Indeed, summing up all equalities of πTP = πT yields the equality πTP1 = πT1,
that is, πT1 = 1.

Example 9.1.20: Two-state Markov chain. Take E = {1, 2} and define
the transition matrix

P =

(
1− α α
β 1− β

)

,
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where α, β ∈ (0, 1). The global balance equations are

π(1) = π(1)(1− α) + π(2)β , π(2) = π(1)α+ π(2)(1− β) .

These two equations are dependent and reduce to the single equation π(1)α =
π(2)β, to which must be added the constraint π(1) + π(2) = 1 expressing that π
is a probability vector. We obtain

π(1) =
β

α + β
, π(2) =

α

α+ β
.

Example 9.1.21: The Ehrenfest urn, take 2. The global balance equations
are, for i ∈ [1, N − 1],

π(i) = π(i− 1)

(

1− i− 1

N

)

+ π(i+ 1)
i+ 1

N

and, for the boundary states,

π(0) = π(1)
1

N
, π(N) = π(N − 1)

1

N
.

Leaving π(0) undetermined, one can solve the balance equations for i = 0, 1, . . . , N
successively, to obtain π(i) = π(0)

(
N
i

)
. The value of π(0) is then determined by

writing that π is a probability vector: 1 =
∑N

i=0 π(i) = π(0)
∑N

i=0

(
N
i

)
= π(0)2N .

This gives for π the binomial distribution of size N and parameter 1
2
:

π(i) =
1

2N

(
N

i

)

.

This is the distribution one would obtain by placing independently each particle
in the compartments, with probability 1

2
for each compartment.

Stationary distributions may be many. Take the identity as transition matrix.
Then any probability distribution on the state space is a stationary distribution.
Also there may well not exist any stationary distribution. See Exercise 9.7.10.

Reversible Chains

Let {Xn}n≥0 be an hmc with transition matrix P and admitting a stationary
distribution π > 0 (meaning π(i) > 0 for all states i). Define the matrix Q,
indexed by E, by

π(i)qij = π(j)pji . (9.7)
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This is a stochastic matrix since

∑

j∈E
qij =

∑

j∈E

π(j)

π(i)
pji =

1

π(i)

∑

j∈E
π(j)pji =

π(i)

π(i)
= 1 ,

where the third equality uses the global balance equations. Its interpretation is
the following: Suppose that the initial distribution of the chain is π, in which case
for all n ≥ 0, all i ∈ E, P (Xn = i) = π(i). Then, from Bayes’ retrodiction formula,

P (Xn = j |Xn+1 = i) =
P (Xn+1 = i |Xn = j)P (Xn = j)

P (Xn+1 = i)
,

that is, in view of (9.7),

P (Xn = j |Xn+1 = i) = qji .

We see that Q is the transition matrix of the initial chain when time is reversed.

The following is a very simple observation that will be promoted to the rank
of a theorem in view of its usefulness.

Theorem 9.1.22 Let P be a stochastic matrix indexed by a countable set E, and
let π be a probability distribution on E. Define the matrix Q indexed by E by (9.7).
If Q is a stochastic matrix, then π is a stationary distribution of P.

Proof. For fixed i ∈ E, sum equalities (9.7) with respect to j ∈ E to obtain

∑

j∈E
π(i)qij =

∑

j∈E
π(j)pji .

This is the global balance equation since the left-hand side is equal to
π(i)

∑
j∈E qij = π(i). �

Definition 9.1.23 One calls reversible a stationary Markov chain with initial
distribution π (a stationary distribution) if for all i, j ∈ E, we have the so-called
detailed balance equations

π(i)pij = π(j)pji . (9.8)

We then say: the pair (P, π) is reversible.

In this case, qij = pij , and therefore the chain and the time-reversed chain are
statistically the same, since the distribution of a homogeneous Markov chain is
entirely determined by its initial distribution and its transition matrix.
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The next result is an immediate corollary of Theorem 9.1.22.

Theorem 9.1.24 Let P be a transition matrix on the countable state space E,
and let π be some probability distribution on E. If for all i, j ∈ E, the detailed
balance equations (9.8) are satisfied, then π is a stationary distribution of P.

Example 9.1.25: The Ehrenfest urn, take 3. The verification of the
detailed balance equations π(i)pi,i+1 = π(i+ 1)pi+1,i is immediate.

The Strong Markov Property

The Markov property, that is, the independence of past and future given the
present state, extends to the situation where the present time is a stopping time,
a notion which we now introduce.

Let {Xn}n≥0 be a stochastic process with values in the denumerable set E. For
an event A, the notation A ∈ X n

0 means that there exists a function ϕ : En+1 �→
{0, 1} such that

1A(ω) = ϕ(X0(ω), . . . , Xn(ω)) .

In other terms, this event is expressible in terms of X0(ω), . . . , Xn(ω). Let now τ
be a random variable with values in N. It is called a Xn

0 -stopping time if for all
m ∈ N, {τ = m} ∈ Xm

0 . In other words, it is a non-anticipative random time
with respect to {Xn}n≥0, since in order to check if τ = m, one need only observe
the process up to time m and not beyond. It is immediate to check that if τ is a
Xn

0 -stopping time, then so is τ + n for all n ≥ 1.

Example 9.1.26: Return time. Let {Xn}n≥0 be an hmc with state space E.
Define for i ∈ E the return time to i by

Ti := inf{n ≥ 1 ; Xn = i}

using the convention inf ∅ = ∞ for the empty set of N. This is a Xn
0 -stopping

time since for all m ∈ N,

{Ti = m} = {X1 �= i, X2 �= i, . . . , Xm−1 �= i, Xm = i} .

Note that Ti ≥ 1. It is a “return” time, not to be confused with the closely
related “hitting” time of i, defined as Si := inf{n ≥ 0 ; Xn = i}, which is also a
Xn

0 -stopping time, equal to Ti if and only if X0 �= i.
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Example 9.1.27: Successive return times. This continues the previous
example. Let us fix a state, conventionally labeled 0, and let T0 be the return time
to 0. We define the successive return times to 0, τk, k ≥ 1 by τ1 = T0 and for
k ≥ 1,

τk+1 := inf{n ≥ τk + 1 ; Xn = 0}
with the above convention that inf ∅ = ∞. In particular, if τk = ∞ for some k,
then τk+� =∞ for all � ≥ 1. The identity

{τk = m} ≡
{

m−1∑

n=1

1{Xn=0} = k − 1 , Xm = 0

}

for m ≥ 1 shows that τk is a Xn
0 -stopping time.

Let {Xn}n≥0 be a stochastic process with values in the countable set E and let
τ be a random time taking its values in N := N ∪ {+∞}. In order to define Xτ

when τ = ∞, one must decide how to define X∞. This is done by taking some
arbitrary element Δ not in E, and setting

X∞ = Δ .

By definition, the “process after τ” is the stochastic process

{SτXn}n≥0 := {Xn+τ}n≥0 .

The “process before τ ,” or the “process stopped at τ ,” is the process

{Xτ
n}n≥0 := {Xn∧τ}n≥0 ,

which freezes at time τ at the value Xτ .

Theorem 9.1.28 Let {Xn}n≥0 be an hmc with state space E and transition ma-
trix P. Let τ be a Xn

0 -stopping time. Then for any state i ∈ E,

(α) Given that Xτ = i, the process after τ and the process before τ are indepen-
dent.

(β) Given that Xτ = i, the process after τ is an hmc with transition matrix P.

Proof. (α) We have to show that for all times k ≥ 1, n ≥ 0, and all states
i0, . . . , in, i, j1, . . . , jk,

P (Xτ+1 = j1, . . . , Xτ+k = jk |Xτ = i, Xτ∧0 = i0, . . . , Xτ∧n = in)

= P (Xτ+1 = j1, . . . , Xτ+k = jk |Xτ = i) .
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We shall prove a simplified version of the above equality, namely

P (Xτ+k = j |Xτ = i, Xτ∧n = in) = P (Xτ+k = j |Xτ = i) . (�)

The general case is obtained by the same arguments. The left-hand side of (�)
equals

P (Xτ+k = j,Xτ = i, Xτ∧n = in)

P (Xτ = i, Xτ∧n = in)
.

The numerator of the above expression can be developed as

∑

r∈N
P (τ = r,Xr+k = j,Xr = i, Xr∧n = in) . (��)

(The sum is over N because Xτ = i �= Δ implies that τ <∞.) But

P (τ = r,Xr+k = j,Xr = i, Xr∧n = in)

= P (Xr+k = j |Xr = i, Xr∧n = in, τ = r)P (τ = r,Xr∧n = in, Xr = i) ,

and since r ∧ n ≤ r and {τ = r} ∈ Xr
0 , the event B := {Xr∧n = in, τ = r} is in

Xr
0 . Therefore, by the Markov property, P (Xr+k = j |Xr = i, Xr∧n = in, τ = r} =

P (Xr+k = j |Xr = i) = pij(k). Finally, expression (��) reduces to

∑

r∈N
pij(k)P (τ = r,Xr∧n = in, Xr = i) = pij(k)P (Xτ=i, Xτ∧n = in) .

Therefore, the left-hand side of (�) is just pij(k). Similar computations show that
the right-hand side of (�) is also pij(k), so that (α) is proven.

(β) We must show that for all states i, j, k, in−1, . . . , i1,

P (Xτ+n+1 = k |Xτ+n = j,Xτ+n−1 = in−1, . . . , Xτ = i)

= P (Xτ+n+1 = k |Xτ+n = j) = pjk .

But the first equality follows from the fact proven in (α) that for the stopping time
τ ′ = τ + n, the processes before and after τ ′ are independent given Xτ ′ = j. The
second equality is obtained by the same calculations as in the proof of (α). �

The Cycle Independence Property

Consider a Markov chain with a state conventionally denoted by 0 such that
P0(T0 < ∞) = 1. In view of the strong Markov property, the chain starting
from state 0 will return infinitely often to this state. Let τ1 = T0, τ2, . . . be the
successive return times to 0, and set τ0 ≡ 0.
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By the strong Markov property, for any k ≥ 1, the process after τk is indepen-
dent of the process before τk (observe that condition Xτk = 0 is always satisfied),
and the process after τk is a Markov chain with the same transition matrix as the
original chain, and with initial state 0, by construction. Therefore, the successive
times of visit to 0, the pieces of trajectory

{Xτk , Xτk+1, . . . , Xτk+1−1}, k ≥ 0,

are independent and identically distributed. Such pieces are called the regenerative
cycles of the chain between visits to state 0. Each random time τk is a regeneration
time, in the sense that {Xτk+n}n≥0 is independent of the past X0, . . . , Xτk−1 and
has the same distribution as {Xn}n≥0. In particular, the sequence {τk − τk−1}k≥1

is iid.

Example 9.1.29: Returns to zero of the 1-D symmetric walk. Let
τ1 = T0, τ2, . . . be the successive return times to state 0 of the random walk on Z

of Example 9.1.4 with p = 1
2
. We shall admit that P0(T0 < ∞) = 1, a fact that

will be proved in the next section, and obtain the probability distribution of T0

given X0 = 0.

Observe that for n ≥ 1,

P0(X2n = 0) =
∑

k≥1

P0(τk = 2n) ,

and therefore, for all z ∈ C such that |z| < 1,

∑

n≥1

P0(X2n = 0)z2n =
∑

k≥1

∑

n≥1

P0(τk = 2n)z2n =
∑

k≥1

E0[z
τk ] .

But τk = τ1 + (τ2 − τ1) + · · ·+ (τk − τk−1) and therefore, since τ1 = T0,

E0[z
τk ] = (E0[z

T0 ])k .

In particular,
∑

n≥0

P0(X2n = 0)z2n =
1

1− E0[zT0 ]

(note that the latter sum includes the term for n = 0, that is, 1). Direct evaluation
of the left-hand side yields

∑

n≥0

1

22n
(2n)!

n!n!
z2n =

1√
1− z2

.
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Therefore, the generating function of the return time to 0 given X0 = 0 is

E0[z
T0 ] = 1−

√
1− z2 .

Its first derivative
z√

1− z2

tends to ∞ as z → 1 from below via real values. Therefore, by Abel’s theorem,

E0[T0] =∞ .

We see that although given X0 = 0 the return time is almost surely finite, it has
an infinite expectation.

9.2 Recurrence

In the theory of Markov chains, recurrence refers to the possibility of an infinite
number of visits to a given state. The basic definition is in terms of return times.

Recall that Ti denotes the return time to state i.

Definition 9.2.1 State i ∈ E is called recurrent if

Pi(Ti <∞) = 1 ,

and otherwise it is called transient. A recurrent state i ∈ E such that

Ei[Ti] <∞

is called positive recurrent, and otherwise it is called null recurrent.

The definition in terms of return times will now be connected to that in terms
of the number of visits.

Theorem 9.2.2 The distribution given X0 = j of Ni =
∑

n≥1 1{Xn=i}, the number
of visits to state i strictly after time 0, is

Pj(Ni = r) = fjif
r−1
ii (1− fii) (r ≥ 1)

Pj(Ni = 0) = 1− fji ,

where fji = Pj(Ti <∞) and Ti is the return time to i.

Proof. We first go from j to i (probability fji) and then, r−1 times in succession,
from i to i (each time with probability fii), and the last time, that is the r + 1-st
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time, we leave i never to return to it (probability 1−fii). By the cycle independence
property, all these “cycles” are independent, so that the successive probabilities
multiply. �

The distribution of Ni given X0 = j and given Ni ≥ 1 is geometric. This has
two main consequences. Firstly, Pi(Ti < ∞) = 1 ⇐⇒ Pi(Ni =∞) = 1. In words:
starting from i, the chain almost surely returns to i, and will then visit i infinitely
often. Secondly,

Ei[Ni] =

∞∑

r=1

rPi(Ni = r) =

∞∑

r−1

rf r
ii(1− fii) =

fii
1− fii

.

In particular, Pi(Ti <∞) < 1⇐⇒ Ei[Ni] <∞.

We collect these results for future reference. For any state i ∈ E,

Pi(Ti <∞) = 1⇐⇒ Pi(Ni =∞) = 1

and
Pi(Ti <∞) < 1⇐⇒ Pi(Ni =∞) = 0⇐⇒ Ei[Ni] <∞ . (9.9)

In particular, the event {Ni =∞} has Pi-probability 0 or 1.

The Potential Matrix Criterion

The potential matrix G associated with the transition matrix P is defined by

G =
∑

n≥0

Pn .

Its general term

gij =

∞∑

n=0

pij(n) =

∞∑

n=0

Pi(Xn = j) =

∞∑

n=0

Ei[1{Xn=j}] = Ei

[ ∞∑

n=0

1{Xn=j}

]

is the average number of visits to state j, given that the chain starts from state i.

Although the next criterion of recurrence is of theoretical rather than practical
interest, it can be helpful in a few situations, for instance in the study of recurrence
of random walks (see the examples below).

Theorem 9.2.3 State i ∈ E is recurrent if and only if

∞∑

n=0

pii(n) =∞ .
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Proof. This merely rephrases Eqn. (9.9). �

Example 9.2.4: 1-D random walk. The state space of this Markov chain is
E := Z and the non-null terms of its transition matrix are pi,i+1 = p , pi,i−1 = 1−p,
where p ∈ (0, 1). Since this chain is irreducible, it suffices to elucidate the nature
(recurrent or transient) of any one of its states, say, 0. We have p00(2n + 1) = 0
and

p00(2n) =
(2n)!

n!n!
pn(1− p)n .

By Stirling’s equivalence formula n! ∼ (n/e)n
√
2πn, the above quantity is equiva-

lent to
[4p(1− p)]n√

πn
(�)

and the nature of the series
∑∞

n=0 p00(n) (convergent or divergent) is that of the
series with general term (�). If p �= 1

2
, in which case 4p(1−p) < 1, the latter series

converges, and if p = 1
2
, in which case 4p(1− p) = 1, it diverges. In summary, the

states of the 1-D random walk are transient if p �= 1
2
, recurrent if p = 1

2
.

Example 9.2.5: 3-D random walk. The state space of this hmc is E =
Z
3. Denoting by e1, e2, and e3 the canonical basis vectors of R3 (respectively

(1, 0, 0), (0, 1, 0), and (0, 0, 1)), the nonnull terms of the transition matrix of the
3-D symmetric random walk are given by

px,x±ei =
1

6
.

We elucidate the nature of state, say, 0 = (0, 0, 0). Clearly, p00(2n+ 1) = 0 for all
n ≥ 0, and (exercise)

p00(2n) =
∑

0≤i+j≤n

(2n)!

(i!j!(n− i− j)!)2

(
1

6

)2n

.

This can be rewritten as

p00(2n) =
∑

0≤i+j≤n

1

22n

(
2n

n

)(
n!

i!j!(n− i− j)!

)2 (
1

3

)2n

.

Using the trinomial formula

∑

0≤i+j≤n

n!

i!j!(n− i− j)!

(
1

3

)n

= 1 ,
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we obtain the bound

p00(2n) ≤ Kn
1

22n

(
2n

n

)(
1

3

)n

,

where

Kn = max
0≤i+j≤n

n!

i!j!(n− i− j)!
.

For large values of n,Kn is bounded as follows. Let i0 and j0 be the values of i,
j that maximize n!/(i!j!(n + −i − j)!) in the domain of interest 0 ≤ i + j ≤ n.
¿From the definition of i0 and j0, the quantities

n!

(i0 − 1)!j0!(n− i0 − j0 + 1)!
,

n!

(i0 + 1)!j0!(n− i0 − j0 − 1)!
,

n!

i0!(j0 − 1)!(n− i0 − j0 + 1)!
,

n!

i0!(j0 + 1)!(n− i0 − j0 − 1)!
,

are bounded by
n!

i0!j0!(n− i0 − j0)!
.

The corresponding inequalities reduce to

n− i0 − 1 ≤ 2j0 ≤ n− i0 + 1 and n− j0 − 1 ≤ 2i0 ≤ n− j0 + 1 ,

and this shows that for large n, i0 ∼ n/3 and j0 ∼ n/3. Therefore, for large n,

p00(2n) ∼
n!

(n/3)!(n/3)!22nen

(
2n

n

)

.

By Stirling’s equivalence formula, the right-hand side of the latter equivalence is
in turn equivalent to

3
√
3

2(πn)3/2
,

the general term of a convergent series. State 0 is therefore transient.

One might wonder at this point about the symmetric random walk on Z2, which
moves at each step northward, southward, eastward and westward equiprobably.
Exercise 9.7.25 asks you to show that it is null recurrent. Exercise 9.7.26 asks you
to prove that the symmetric random walks on Zp, p ≥ 4, are transient.
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A theoretical application of the potential matrix criterion is to the proof that
recurrence is a (communication) class property.

Theorem 9.2.6 If i and j communicate, then they are either both recurrent or
both transient.

Proof. By definition, i and j communicate if and only if there exist integersM and
N such that pij(M) > 0 and pji(N) > 0. Going from i to j in M steps, then from
j to j in n steps, then from j to i in N steps, is just one way of going from i back
to i in M + n+N steps. Therefore, pii(M + n+N) ≥ pij(M)× pjj(n)× pji(N).
Similarly, pjj(N + n + M) ≥ pji(N) × pii(n) × pij(M). Therefore, with α :=
pij(M) pji(N) (a strictly positive quantity), we have pii(M + N + n) ≥ α pjj(n)
and pjj(M + N + n) ≥ α pii(n). This implies that the series

∑∞
n=0 pii(n) and∑∞

n=0 pjj(n) either both converge or both diverge. The potential matrix criterion
concludes the proof. �

Invariant Measure

This notion extends that of a stationary distribution and plays a central role in
the recurrence theory of Markov chains.

Definition 9.2.7 A non-trivial (that is, non-null) vector x (indexed by E) of non-
negative real numbers (notation: 0 ≤ x <∞) is called an invariant measure of the
stochastic matrix P (indexed by E) if

xT = xTP . (9.10)

Theorem 9.2.8 Let P be the transition matrix of an irreducible recurrent hmc
{Xn}n≥0. Let 0 be an arbitrary state and let T0 be the return time to 0. Define for
all i ∈ E

xi = E0

[
T0∑

n=1

1{Xn=i}

]

. (9.11)

(For i �= 0, xi is the expected number of visits to state i before returning to 0.)
Then, 0 < x <∞ and x is an invariant measure of P.

Proof. We make three preliminary observations. First, it will be convenient to
rewrite (9.11) as

xi = E0

[
∑

n≥1

1{Xn=i}1{n≤T0}

]

.
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Next, when 1 ≤ n ≤ T0, Xn = 0 if and only if n = T0. Therefore,

x0 = 1 .

Also,

∑

i∈E

∑

n≥1

1{Xn=i}1{n≤T0} =
∑

n≥1

(
∑

i∈E
1{Xn=i}

)

1{n≤T0} =
∑

n≥1

1{n≤T0} = T0 ,

and therefore ∑

i∈E
xi = E0[T0] . (9.12)

We introduce the quantity

0p0i(n) := E0[1{Xn=i}1{n≤T0}] = P0(X1 �= 0, · · · , Xn−1 �= 0, Xn = i) .

This is the probability, starting from state 0, of visiting i at time n before returning
to 0. From the definition of x,

xi =
∑

n≥1

0p0i(n) . (†)

We first prove (9.10). Observe that 0p0i(1) = p0i, and, by first-step analysis, for
all n ≥ 2, 0p0i(n) =

∑
j �=0 0p0j(n − 1)pji. Summing up all the above equalities,

and taking (†) into account, we obtain

xi = p0i +
∑

j �=0

xjpji ,

that is, (9.10), since x0 = 1.

Next we show that xi > 0 for all i ∈ E. Indeed, iterating (9.10), we find
xT = xTPn, that is, since x0 = 1,

xi =
∑

j∈E
xjpji(n) = p0i(n) +

∑

j �=0

xjpji(n) .

If xi were null for some i ∈ E, i �= 0, the latter equality would imply that p0i(n) =
0 for all n ≥ 0, which means that 0 and i do not communicate, in contradiction to
the irreducibility assumption.

It remains to show that xi <∞ for all i ∈ E. As before, we find that

1 = x0 =
∑

j∈E
xjpj0(n)
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for all n ≥ 1, and therefore if xi = ∞ for some i, necessarily pi0(n) = 0 for all
n ≥ 1, and this also contradicts irreducibility. �

Theorem 9.2.9 The invariant measure of an irreducible recurrent hmc is unique
up to a multiplicative factor.

Proof. In the proof of Theorem 9.2.8, we showed that for an invariant measure y
of an irreducible chain, yi > 0 for all i ∈ E, and therefore, one can define, for all
i, j ∈ E, the matrix Q by

qji =
yi
yj
pij . (�)

It is a transition matrix, since
∑

i∈E qji = 1
yj

∑
i∈E yipij =

yj
yj

= 1. The general

term of Qn is

qji(n) =
yi
yj
pij(n) . (��)

Indeed, supposing (��) true for n,

qji(n + 1) =
∑

k∈E
qjkqki(n) =

∑

k∈E

yk
yj
pkj

yi
yk

pik(n)

=
yi
yj

∑

k∈E
pik(n)pkj =

yi
yj
pij(n+ 1) ,

and (��) follows by induction.

Clearly, Q is irreducible, since P is irreducible (just observe that qji(n) > 0
if and only if pij(n) > 0 in view of (��)). Also, pii(n) = qii(n), and therefore∑

n≥0 qii(n) =
∑

n≥0 pii(n), and therefore Q is recurrent by the potential matrix
criterion. Call gji(n) the probability, relative to the chain governed by the tran-
sition matrix Q, of returning to state i for the first time at step n when starting
from j. First-step analysis gives

gi0(n+ 1) =
∑

j �=0

qijgj0(n) ,

that is, using (�),

yigi0(n+ 1) =
∑

j �=0

(yjgj0(n))pji .

Recall that 0p0i(n+ 1) =
∑

j �=0 0p0j(n)pji, or, equivalently,

y0 0p0i(n + 1) =
∑

j �=0

(y0 0p0j(n))pji .
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We therefore see that the sequences {y0 0p0i(n)} and {yigi0(n)} satisfy the same
recurrence equation. Their first terms (n = 1), respectively y0 0p0i(1) = y0p0i and
yigi0(1) = yiqi0, are equal in view of (�). Therefore, for all n ≥ 1,

0p0i(n) =
yi
y0
gi0(n) .

Summing up with respect to n ≥ 1 and using
∑

n≥1 gi0(n) = 1 (Q is recurrent),
we obtain that xi =

yi
y0
. �

Equality (9.12) and the definition of positive recurrence give the following.

Theorem 9.2.10 An irreducible recurrent hmc is positive recurrent if and only
if its invariant measures x satisfy

∑

i∈E
xi <∞ .

The Stationary Distribution Criterion of Positive Recurrence

An hmc may well be irreducible and possess an invariant measure, and yet not be
recurrent. The simplest example is the 1-D non-symmetric random walk, which
was shown to be transient and yet admits xi = 1 (i ∈ Z) for invariant measure.
However, it turns out that the existence of a stationary probability distribution is
necessary and sufficient for an irreducible chain (not a priori assumed recurrent)
to be recurrent positive.

Theorem 9.2.11 An irreducible hmc is positive recurrent if and only if there
exists a stationary distribution. Moreover, the stationary distribution π is, when
it exists, unique, and π > 0.

Proof. The direct part follows from Theorems 9.2.8 and 9.2.10. For the converse
part, assume the existence of a stationary distribution π. Iterating πT = πTP, we
obtain πT = πTPn, that is, for all i ∈ E, π(i) =

∑
j∈E π(j)pji(n). If the chain

were transient, then, for all states i, j,

lim
n↑∞

pji(n) = 0 .
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The following is a formal proof:2

∑

n≥1

pji(n) =
∑

n≥1

∑

k≥1

Pj(Ti = k)pii(n− k)

=
∑

k≥1

Pj(Ti = k)
∑

n≥1

pii(n− k)

≤
(
∑

k≥1

Pj(Ti = k)

)(
∑

n≥1

pii(n)

)

= Pj(Ti <∞)

(
∑

n≥1

pii(n)

)

≤
∑

n≥1

pii(n) <∞ .

In particular, limn pji(n) = 0. Since pji(n) is bounded uniformly in j and n by 1,
by the dominated convergence theorem for series:3

π(i) = lim
n↑∞

∑

j∈E
π(j)pji(n) =

∑

j∈E
π(j)

(

lim
n↑∞

pji(n)

)

= 0 .

This contradicts the assumption that π is a stationary distribution (
∑

i∈E π(i) =
1). The chain must therefore be recurrent, and by Theorem 9.2.10, it is positive
recurrent.

The stationary distribution π of an irreducible positive recurrent chain is unique
(use Theorem 9.2.9 and the fact that there is no choice for a multiplicative factor
but 1). Also recall that π(i) > 0 for all i ∈ E (see Theorem 9.2.8). �
Theorem 9.2.12 Let π be the unique stationary distribution of an irreducible
positive recurrent hmc, and let Ti be the return time to state i. Then

π(i)Ei[Ti] = 1 . (9.13)

Proof. This equality is a direct consequence of expression (9.11) for the invariant
measure. Indeed, π is obtained by normalization of x: for all i ∈ E,

π(i) =
xi∑
j∈E xj

,

and in particular, for i = 0, recalling that x0 = 1 and using (9.12),

π(0) =
1

E0[T0]
.

2 Rather awkward, but using only the elementary tools available.
3 Let {ank}n≥1,k≥1 be an array of real numbers such that, for some sequence {bk}k≥1 of

non-negative numbers satisfying
∑∞

k=1 bk < ∞, it holds that for all n ≥ 1, k ≥ 1, |ank| ≤ bk.
If moreover for all k ≥ 1, limn↑∞ ank = ak, then limn↑∞

∑∞
k=1 ank =

∑∞
k=1 ak. (Note that this

result is a particular case of the dominated convergence theorem, Theorem 5.1.3.)
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Since state 0 does not play a special role in the analysis, (9.13) is true for all i ∈ E.
�

The situation is extremely simple when the state space is finite.

Theorem 9.2.13 An irreducible hmc with finite state space is positive recurrent.

Proof. We first show recurrence. We have
∑

j∈E
pij(n) = 1 ,

and in particular, the limit of the left-hand side is 1. If the chain were transient,
then, as we saw in the proof of Theorem 9.2.11, for all i, j ∈ E,

lim
n↑∞

pij(n) = 0 ,

and therefore, since the state space is finite

lim
n↑∞

∑

j∈E
pij(n) = 0 ,

a contradiction. Therefore, the chain is recurrent. By Theorem 9.2.8 it has an
invariant measure x. Since E is finite,

∑
i∈E xi < ∞, and therefore the chain is

positive recurrent, by Theorem 9.2.10. �

Example 9.2.14: The Repair Shop, take 2. Recall that this Markov chain
satisfies the recurrence equation

Xn+1 = (Xn − 1)+ + Zn+1 , (9.14)

where a+ = max(a, 0). The sequence {Zn}n≥1 is assumed to be iid, independent
of the initial state X0, and with common probability distribution

P (Z1 = k) = ak, k ≥ 0

of generating function gZ .

This chain is irreducible if and only if P (Z1 = 0) > 0 and P (Z1 ≥ 2) > 0 as
we now prove formally. Looking at (9.14), we make the following observations. If
P (Zn+1 = 0) = 0, then Xn+1 ≥ Xn a.s. and there is no way of going from i to i−1.
If P (Zn+1 ≤ 1) = 1, then Xn+1 ≤ Xn, and there is no way of going from i to i+1.
Therefore, the two conditions P (Z1 = 0) > 0 and P (Z2 ≥ 2) > 0 are necessary
for irreducibility. They are also sufficient. Indeed if there exists an integer k ≥ 2
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such that P (Zn+1 = k) > 0, then one can jump with positive probability from any
i > 0 to i + k − 1 > i or from i = 0 to k > 0. Also if P (Zn+1 = 0) > 0, one can
step down from i > 0 to i− 1 with positive probability. In particular, one can go
from i to j < i with positive probability. Therefore, one way to travel from i to
j ≥ i is by taking several successive steps of height at least k− 1 in order to reach
a state l ≥ i, and then (in the case of l > i) stepping down one stair at a time
from l to i. All this with positive probability.

Example 9.2.15: The Repair Shop, take 3. Assuming irreducibility (see
Example 9.2.14), we now seek a necessary and sufficient condition for positive
recurrence. For any complex number z with modulus not larger than 1, it follows
from the recurrence equation (9.14) that

zXn+1+1 =
(
z(Xn−1)++1

)
zZn+1 =

(
zXn − 1{Xn=0} + z1{Xn=0}

)
zZn+1 ,

and therefore zzXn+1 − zXnzZn+1 = (z − 1)1{Xn=0}zZn+1 . ¿From the independence
of Xn and Zn+1, E[zXnzZn+1 ] = E[zXn ]gZ(z), and E[1{Xn=0}zZn+1 ] = π(0)gZ(z),
where π(0) = P (Xn = 0). Therefore, zE[zXn+1 ]−gZ(z)E[zXn ] = (z−1)π(0)gZ(z).
But in steady state, E[zXn+1 ] = E[zXn ] = gX(z), and therefore

gX(z) (z − gZ(z)) = π(0)(z − 1)gZ(z) . (9.15)

This gives the generating function gX(z) =
∑∞

i=0 π(i)z
i, as long as π(0) is available.

To obtain π(0), differentiate (9.15):

g′X(z) (z − gZ(z)) + gX(z) (1− g′Z(z)) = π(0) (gZ(z) + (z − 1)g′Z(z)) ,

and let z = 1, to obtain, taking into account the equalities gX(1) = gZ(1) = 1 and
g′Z(1) = E[Z],

π(0) = 1− E[Z] . (9.16)

But the stationary distribution of an irreducible hmc is positive, hence the neces-
sary condition of positive recurrence:

E[Z1] < 1 .

It turns out that this condition is also sufficient for positive recurrence.

From (9.15) and (9.16), we have the generating function of the stationary dis-
tribution: ∞∑

i=0

π(i)zi = (1− E[Z])
(z − 1)gZ(z)

z − gZ(z)
. (9.17)
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If E[Z1] > 1, the chain is transient, as a simple argument based on the strong law
of large numbers shows. In fact, Xn = X0 +

∑n
k=1 Zk − n +

∑n
k=1 1{Xk=0}, and

therefore

Xn ≥
n∑

k=1

Zk − n =

n∑

k=1

(Zk − 1) ,

which tends to ∞ because, by the strong law of large numbers,

∑n
k=1(Zk − 1)

n
→ E[Z]− 1 > 0 .

This is of course incompatible with recurrence.

In the case E[Z1] = 1, there are only two possibilities left: transient or null
recurrent. It turns out that the chain is null recurrent in this case.

Example 9.2.16: The Pure Random Walk on a Graph. Consider a
finite non-directed connected graph G = (V, E) where V is the set of vertices, or
nodes, and E is the set of edges. Let di be the index of vertex i (the number of
edges “adjacent” to vertex i). Since there are no isolated nodes (a consequence of
the connectedness assumption), di > 0 for all i ∈ V . Transform this graph into a
directed graph by splitting each edge into two directed edges of opposite directions,
and make it a transition graph by associating to the directed edge from i to j the
transition probability 1

di
(see the figure below). Note that

∑
i∈V di = 2|E|.

1

2

3

4

1

2

3

4

1

1
3

1
3

1
2

1
2

1
2

1
2

1
3

A random walk on a graph

The corresponding hmc with state space E ≡ V is irreducible (G is connected).
It therefore admits a unique stationary distribution π, which we attempt to find
via Theorem 9.1.24. Let i and j be connected by an edge, and therefore pij =

1
di



340 CHAPTER 9. MARKOV CHAINS

and pji =
1
dj
, so that the detailed balance equation between these two states is

π(i)
1

di
= π(j)

1

dj
.

This gives π(i) = Kdi, whereK is obtained by normalization: K =
(∑

j∈E dj

)−1

=

(2|E|)−1. Therefore

π(i) =
di
2|E| .

The lazy random walk on the graph is, by definition, the Markov chain on V
with the transition probabilities pii =

1
2
and for i, j ∈ V such that i and j are

connected by an edge of the graph, pi,i = 1
2di

. This modified chain admits the
same stationary distribution as the original random walk. The difference is that
the lazy version is always aperiodic, whereas the original version may be periodic.

The stationary distribution criterion can also be used to prove instability.

Birth-and-Death Markov Chain

We first define the birth-and-death process with a bounded population. The state
space of such a chain is E = {0, 1, . . . , N} and its transition matrix is

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r0 p0
q1 r1 p1

q2 r2 p2
. . .

qi ri pi
. . .

. . .
. . .

qN−1 rN−1 pN−1

pN rN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where pi > 0 for all i ∈ E\{N}, qi > 0 for all i ∈ E\{0}, ri ≥ 0 for all i ∈ E,
and pi + qi + ri = 1 for all i ∈ E. The positivity conditions placed on the pi’s
and qi’s guarantee that the chain is irreducible. Since the state space is finite, it is
positive recurrent (Theorem 9.2.13), and it has a unique stationary distribution.
Motivated by the Ehrenfest hmc, which is reversible in the stationary state, we
make the educated guess that the birth and death process considered has the same
property. This will be the case if and only if there exists a probability distribution π
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on E satisfying the detailed balance equations, that is, such that for all 1 ≤ i ≤ N ,
π(i− 1)pi−1 = π(i)qi. Letting w0 = 1 and for all 1 ≤ i ≤ N ,

wi =

i∏

k=1

pk−1

qk

we find that
π(i) =

wi
∑N

j=0wj

(9.18)

indeed satisfies the detailed balance equations and is therefore the (unique) sta-
tionary distribution of the chain.

We now consider the unbounded birth-and-death process. This chain has the
state space E = N and its transition matrix is as in the previous example (only, it is
unbounded on the right). In particular, we assume that the pi’s and qi’s are positive
in order to guarantee irreducibility. The same reversibility argument as above
applies with a little difference. In fact we can show that the wi’s defined above
satisfy the detailed balance equations and therefore the global balance equations.
Therefore the vector {wi}i∈E is the unique, up to a multiplicative factor, invariant
measure of the chain. It can be normalized to a probability distribution if and
only if

∞∑

j=0

wj <∞ .

Therefore, in this case and in this case only there exists a (unique) stationary
distribution, also given by (9.18).

Note that the stationary distribution, when it exists, does not depend on the
ri’s. The recurrence properties of the above unbounded birth-and-death process
are therefore the same as those of the chain below, which is however not aperiodic.
For aperiodicity, it suffices to suppose at least one of the ri’s is positive.

0 1 2 i−1 i i+1

p0 = 1 p1

q3

pi−1 pi

q1 q2 qi qi+1

p2

We now compute, for the (bounded or unbounded) irreducible birth-and death
process, the average time it takes to reach a state b from a state a < b. In fact, we
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shall prove that

Ea [Tb] =
b∑

k=a+1

1

qkwk

k−1∑

j=0

wj . (9.19)

Since obviously Ea [Tb] =
∑b

k=a+1Ek−1 [Tk], it suffices to prove that

Ek−1 [Tk] =
1

qkwk

k−1∑

j=0

wj . (�)

For this, consider for any given k ∈ {0, 1, . . . , N} the truncated chain, which moves
on the state space {0, 1, . . . , k} as the original chain, except in state k where it
moves one step down with probability qk and stays still with probability pk + rk.
Write Ẽ for expectations of the modified chain. The unique stationary distribution
of this chain is given by

π̃� =
w�

∑k
j=0w�

for all 0 ≤ � ≤ k. First-step analysis shows that Ẽk [Tk] = (rk + pk) × 1 +

qk

(
1 + Ẽk−1 [Tk]

)
, that is

Ẽk [Tk] = 1 + qkẼk−1 [Tk] .

Also

Ẽk [Tk] =
1

π̃k

=
1

wk

k∑

j=0

wj ,

and therefore, since Ẽk−1 [Tk] = Ek−1 [Tk], we have (�).

In the special case where (pj , qj, rj) = (p, q, r) for all j �= 0, N , (p0, q0, r0) =

(p, q+ r, 0) and (pN , qN , rN) = (0, p+ r, q), we have wi =
(

p
q

)i

, and for 1 ≤ k ≤ N ,

Ek−1 [Tk] =
1

q
(

p
q

)k

k−1∑

j=0

(
p

q

)j

=
1

p− q

(

1−
(
q

p

)k
)

.

In the further particularization where p = q, wi = 1 for all i and

Ek−1 [Tk] =
k

p
.
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Foster’s Theorem

The stationary distribution criterion of positive recurrence of an irreducible chain
requires solving the balance equation, an often hopeless enterprise. The following
sufficient condition is more tractable and indeed quite powerful.

Theorem 9.2.17 Let P be an irreducible transition matrix on the countable state
space E. Suppose that there exists a function h : E → R such that inf i h(i) > −∞,

∑

k∈E
pikh(k) <∞ (i ∈ F ) , (9.20)

and ∑

k∈E
pikh(k) ≤ h(i)− ε (i �∈ F ) , (9.21)

for some finite set F and some ε > 0. Then the corresponding hmc is positive
recurrent.

Proof. Recall the notation Xn
0 for (X0, . . . , Xn). Since infi h(i) > −∞, one may

assume without loss of generality that h ≥ 0, by adding a constant if necessary.
Call τ the return time to F and let Yn := h(Xn)1{n<τ}. Equality (9.21) implies
that E[h(Xn+1) | Xn = i] ≤ h(i)− ε for all i �∈ F . For i �∈ F ,

Ei[Yn+1 | Xn
0 ] = Ei[Yn+11{n<τ} | Xn

0 ] + Ei(Yn+11{n≥τ} | Xn
0 ]

= Ei[Yn+11{n<τ} | Xn
0 ] ≤ Ei[h(Xn+1)1{n<τ} | Xn

0 ]

= 1{n<τ}Ei[h(Xn+1) | Xn
0 ] = 1{n<τ}Ei[h(Xn+1) | Xn]

≤ 1{n<τ}h(Xn)− ε1{n<τ} ,

where the third equality comes from the fact that 1{n<τ} is a function of Xn
0 (The-

orem 2.4.6), the fourth equality is the Markov property and the last inequality is
true because Pi-a.s., Xn �∈ F on n < τ . Therefore, Pi-a.s.,

Ei[Yn+1 | Xn
0 ] ≤ Yn − ε1{n<τ}

and, taking expectations,

0 ≤ Ei[Yn+1] ≤ Ei[Yn]− εPi(τ > n) .

Iterating the above equality and taking into account the fact that Yn is non-
negative, we obtain

0 ≤ Ei[Y0]− ε
n∑

k=0

Pi(τ > k) .
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But Y0 = h(i), Pi-a.s., and
∑∞

k=0 Pi(τ > k) = Ei[τ ]. Therefore, for all i �∈ F ,

Ei[τ ] ≤ ε−1h(i) .

For j ∈ F , by first-step analysis

Ej [τ ] = 1 +
∑

i�∈F
pjiEi[τ ] .

Therefore Ej [τ ] ≤ 1 + ε−1
∑

i�∈F pjih(i), a finite quantity in view of assumption
(9.20): the return time to F starting anywhere in F has finite expectation. Since
F is a finite set, this implies positive recurrence in view of the following lemma. �

Lemma 9.2.18 Let {Xn}n≥0 be an irreducible hmc, let F be a finite subset of the
state space E and let τ(F ) be the return time to F . If Ej [τ(F )] <∞ for all j ∈ F ,
the chain is positive recurrent.

Proof. Exercise 9.7.15. �

The function h in Foster’s theorem is called a Lyapunov function because it
plays a role similar to the Lyapunov functions in the stability theory of ordinary
differential equations. It has a tendency to decrease along the trajectories of the
process, at least outside a finite set of states, called the refuge. Since it is non-
negative, it cannot decrease forever and therefore it eventually enters the refuge.

The following corollary of Foster’s theorem is sometimes referred to as Pakes’
lemma.

Corollary 9.2.19 Let {Xn}n≥0 be an irreducible hmc on E = N such that for all
n ≥ 0 and all i ∈ E,

E[Xn+1 | Xn = i] <∞ (9.22)

and

lim sup
i↑∞

E[Xn+1 −Xn | Xn = i] < 0 . (9.23)

Such an hmc is positive recurrent.

Proof. Let −2ε be the left-hand side of (9.23). In particular, ε > 0. By (9.23),
for i sufficiently large, say i > i0, E[Xn+1 −Xn | Xn = i] < −ε, and therefore the
conditions of Foster’s theorem are satisfied with h(i) = i and F = {i; i ≤ i0}. �
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Example 9.2.20: A Random Walk on N. Let {Zn}n≥1 be an iid sequence
of integrable random variables with values in Z such that

E[Z1] < 0 ,

and define {Xn}n≥0, an hmc with state space E = N, by

Xn+1 = (Xn + Zn+1)
+ ,

where X0 is independent of {Zn}n≥1. Assume irreducibility (the reader is invited
to find a necessary and sufficient condition for this). Here

E[Xn+1 − i | Xn = i] = E[(i+ Zn+1)
+ − i]

= E[−i1{Zn+1≤−i} + Zn+11{Zn+1>−i}] ≤ E[Z11{Z1>−i}] .

By dominated convergence, the limit of E[Z11{Z1>−i}] as i tends to∞ is E[Z1] < 0
and therefore, by Pakes’ lemma, the hmc is positive recurrent.

Example 9.2.21: The Repair Shop, take 4. Continuation of Example
9.2.15. Arguments very similar to those of the previous example show that in
the repair shop hmc (assumed irreducible), condition E[Z1] < 1 implies positive
recurrence.

9.3 Long-run Behavior

The Markov Chain Ergodic Theorem

The ergodic theorem for Markov chains gives conditions guaranteeing that empir-
ical averages of the type

1

N

N∑

k=1

f(Xk, . . . , Xk+L)

converge to the corresponding probabilistic averages. This result is an almost
immediate application of the strong law of large numbers.

Proposition 9.3.1 Let {Xn}n≥0 be an irreducible recurrent hmc and let x denote
the canonical invariant measure associated with state 0 ∈ E, which is given by
(9.11). Define for n ≥ 1

ν(n) =
n∑

k=1

1{Xk=0} . (9.24)
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Let f : E → R be such that
∑

i∈E
|f(i)|xi <∞ . (9.25)

Then, for any initial distribution μ, Pμ-a.s.,

lim
N↑∞

1

ν(N)

N∑

k=1

f(Xk) =
∑

i∈E
f(i)xi . (9.26)

Before the proof, we shall harvest the most interesting consequences.

Theorem 9.3.2 Let {Xn}n≥0 be an irreducible positive recurrent Markov chain
with the stationary distribution π, and let f : E → R be such that

∑

i∈E
|f(i)|π(i) <∞ . (9.27)

Then for any initial distribution μ, Pμ-a.s.,

lim
n↑∞

1

N

N∑

k=1

f(Xk) =
∑

i∈E
f(i)π(i) . (9.28)

Proof. Apply Proposition 9.3.1 to f ≡ 1. Condition (9.25) is satisfied, since in
the positive recurrent case,

∑
i∈E xi <∞. Therefore, Pμ-a.s.,

lim
N↑∞

N

ν(N)
=

∑

j∈E
xj .

Now, f satisfying (9.27) also satisfies (9.25), since x and π are proportional, and
therefore, Pμ-a.s.,

lim
N↑∞

1

ν(N)

N∑

k=1

f(Xk) =
∑

i∈E
f(i)xi .

Combining the above equalities gives, Pμ-a.s.,

lim
N→∞

1

N

N∑

k=1

f(Xk) = lim
N→∞

ν(N)

N

1

ν(N)

N∑

k=1

f(Xk) =

∑
i∈E f(i)xi
∑

j∈E xj
,

from which (9.28) follows, since π is obtained by normalization of x. �
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Corollary 9.3.3 Let {Xn}n≥1 be an irreducible positive recurrent Markov chain
with the stationary distribution π, and let g : EL+1 → R be such that

∑

i0,...,iL

|g(i0, . . . , iL)|π(i0)pi0i1 · · · piL−1iL <∞ .

Then for all initial distributions μ, Pμ-a.s.

lim
1

N

N∑

k=1

g(Xk, Xk+1, . . . , Xk+L) =
∑

i0,i1,...,iL

g(i0, i1, . . . , iL)π(i0)pi0i1 · · · piL−1iL .

Proof. Apply Theorem 9.3.2 to the “snake chain” {(Xn, Xn+1, . . . , Xn+L)}n≥0,
which is (see Exercise 9.7.13) irreducible recurrent and admits the stationary dis-
tribution

π(i0)pi0i1 · · · piL−1iL .

�

Note that
∑

i0,i1,...,iL

g(i0, i1, . . . , iL)π(i0)pi0i1 · · · piL−1iL = Eπ[g(X0, . . . , XL)] .

Proof. (of Proposition 9.3.1.) Let T0 = τ1, τ2, τ3, . . . be the successive return
times to state 0, and define

Up =

τp+1∑

n=τp+1

f(Xn) .

In view of the regenerative cycle theorem, {Up}p≥1 is an iid sequence. Moreover,
assuming f ≥ 0 and using the strong Markov property,

E[U1] = E0

[
T0∑

n=1

f(Xn)

]

= E0

[
T0∑

n=1

∑

i∈E
f(i)1{Xn=i}

]

=
∑

i∈E
f(i)E0

[
T0∑

n=1

1{Xn=i}

]

=
∑

i∈E
f(i)xi .

This quantity is finite by hypothesis and therefore the strong law of large numbers
applies to give

lim
n↑∞

1

n

n∑

p=1

Up =
∑

i∈E
f(i)xi ,
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that is,

lim
n↑∞

1

n

τn+1∑

k=T0+1

f(Xk) =
∑

i∈E
f(i)xi . (9.29)

Observing that
τν(n) ≤ n < τν(n)+1 ,

we have ∑τν(n)

k=1 f(Xk)

ν(n)
≤

∑n
k=1 f(Xk)

ν(n)
≤

∑τν(n)+1

k=1 f(Xi)

ν(n)
.

Since the chain is recurrent, limn↑∞ ν(n) = ∞, and therefore, from (9.29), the
extreme terms of the above chain of inequalities tend to

∑
i∈E f(i)xi as n goes to

∞, and this implies (9.26). The case of a function f of arbitrary sign is obtained by
considering (9.26) written separately for f+ = max(0, f) and f− = max(0,−f),
and then taking the difference of the two equalities obtained in this way. The
difference is not an undetermined form ∞−∞ due to hypothesis (9.25). �

The version of the ergodic theorem for Markov chains featured in Theorem
9.3.2 is a kind of strong law of large numbers, and it can be used in simulations to
compute, when π is unknown, quantities of the type Eπ[f(X0)].

The Markov Chain Convergence Theorem

This is one of the fundamental theoretical results of Markov chain theory. The
proof will be given in terms of convergence in variation and is based on coupling.

Definition 9.3.4 (A) A sequence {αn}n≥0 of probability distributions on E is said
to converge in variation to the probability distribution β on E if

lim
n↑∞

dV (αn, β) = 0 .

(B) An E-valued random sequence {Xn}n≥0 such that for some probability dis-
tribution π on E,

lim
n↑∞

dV (Xn, π) = 0 , (9.30)

is said to converge in variation to π.

Observe that Definition 9.3.4 concerns only the marginal distributions of the
stochastic process, not the stochastic process itself. Therefore, if there exists an-

other stochastic process {X ′
n}n≥0 such that Xn

D∼ X ′
n for all n ≥ 0, and if there
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exists a third one {X ′′
n}n≥0 such that X ′′

n
D∼ π for all n ≥ 0, then (9.30) follows

from
lim
n↑∞

dV (X
′
n, X

′′
n) = 0 . (9.31)

This trivial observation is useful because of the resulting freedom in the choice of
{X ′

n} and {X ′′
n}. An interesting situation occurs when there exists a finite random

time τ such that X ′
n = X ′′

n for all n ≥ τ .

Definition 9.3.5 Two stochastic processes {X ′
n}n≥0 and {X ′′

n}n≥0 taking their val-
ues in the same state space E are said to couple if there exists an almost surely
finite random time τ such that

n ≥ τ ⇒ X ′
n = X ′′

n . (9.32)

The random variable τ is called a coupling time of the two processes.

Theorem 9.3.6 For any coupling time τ of {X ′
n}n≥0 and {X ′′

n}n≥0, we have the
coupling inequality

dV (X
′
n, X

′′
n) ≤ P (τ > n) . (9.33)

Proof. For all A ⊆ E,

P (X ′
n ∈ A)− P (X ′′

n ∈ A) = P (X ′
n ∈ A, τ ≤ n) + P (X ′

n ∈ A, τ > n)

− P (X ′′
n ∈ A, τ ≤ n)− P (X ′′

n ∈ A, τ > n)

= P (X ′
n ∈ A, τ > n)− P (X ′′

n ∈ A, τ > n)

≤ P (X ′
n ∈ A, τ > n) ≤ P (τ > n) .

Inequality (9.33) then follows from Lemma 7.3.2. �

Therefore, if the coupling time is P-a.s. finite, that is limn↑∞ P (τ > n) = 0,

lim
n↑∞

dV (Xn, π) = lim
n↑∞

dV (X
′
n, X

′′
n) = 0 .

Consider an hmc that is irreducible and positive recurrent. If its initial distri-
bution is the stationary distribution, it keeps the same distribution at all times.
The chain is then said to be in the stationary regime, or in equilibrium, or in steady
state.

A question arises naturally: What is the long-run behavior of the chain when
the initial distribution μ is arbitrary? For instance, will it converge to equilibrium?
In what sense?
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The classical form of the result is that for arbitrary states i and j,

lim
n↑∞

pij(n) = π(j) , (9.34)

if the chain is ergodic, according to the following definition:

Definition 9.3.7 An irreducible positive recurrent and aperiodic hmc is called
ergodic.

In fact, (9.34) can be drastically improved:

Theorem 9.3.8 Let {Xn}n≥0 be an ergodic hmc on the countable state space E
with transition matrix P and stationary distribution π, and let μ be an arbitrary
initial distribution. Then

lim
n↑∞

∑

i∈E
|Pμ(Xn = i)− π(i)| = 0 ,

and in particular, for all j ∈ E,

lim
n↑∞

∑

i∈E
|pji(n)− π(i)| = 0 .

In fact, for all probability distributions μ and ν on E,

lim
n↑∞

dV (μ
TPn, νTPn) = 0 .

Proof. (The first two statements correspond to the particular case where ν is
the stationary distribution π, and particularizing further, μ = δj .) The proof
will be given via the coupling method.4 From the discussion preceding Definition
9.3.5, it suffices to construct two coupling chains with initial distributions μ and
ν, respectively. This is done in the next lemma. �

Lemma 9.3.9 Let {X(1)
n }n≥0 and {X(2)

n }n≥0 be two independent ergodic hmcs
with the same transition matrix P and initial distributions μ and ν, respectively.
Let τ = inf{n ≥ 0; X

(1)
n = X

(2)
n }, with τ =∞ if the chains never intersect. Then

τ is, in fact, almost surely finite. Moreover, the process {X ′
n}n≥0 defined by

X ′
n =

{
X

(1)
n if n ≤ τ,

X
(2)
n if n ≥ τ

(9.35)

is an hmc with transition matrix P.
4 For the general theory of coupling and its numerous applications, see [14].
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Proof. Step 1. Consider the product hmc {Zn}n≥0 defined by Zn = (X
(1)
n , X

(2)
n ).

It takes values in E ×E, and the probability of transition from (i, k) to (j, �) in n
steps is pij(n)pk�(n). We first show that this chain is irreducible. The probability
of transition from (i, k) to (j, �) in n steps is pij(n)pk�(n). Since P is irreducible
and aperiodic, by Theorem 9.1.17, there exists an m such that for all pairs (i, j)
and (k, �), n ≥ m implies pij(n)pk�(n) > 0. This implies irreducibility. (Note the
essential role of aperiodicity. A simple counterexample is that of the symmetric
random walk on Z, which is irreducible but of period 2. The product of two
independent such hmcs is the symmetric random walk on Z2, which has two
communications classes.)

Step 2. Next we show that the two independent chains meet in finite time.
Clearly, the distribution σ̃ defined by σ̃(i, j) := π(i)π(j) is a stationary distri-
bution for the product chain, where π is the stationary distribution of P. There-
fore, by the stationary distribution criterion, the product chain is positive recur-
rent. In particular, it reaches the diagonal of E2 in finite time, and consequently,
P (τ <∞) = 1.

It remains to show that {X ′
n}n≥0 given by (9.35) is an hmc with transition

matrix P. For this we use the following lemma.

Lemma 9.3.10 Let X1
0 , X

2
0 , Z

1
n, Z

2
n (n ≥ 1) be independent random variables, and

suppose moreover that Z1
n, Z

2
n (n ≥ 1) are identically distributed. Let τ be a non-

negative integer-valued random variable such that for all m ∈ N, the event {τ = m}
is expressible in terms of X1

0 , X
2
0 , Z

1
n, Z

2
n (n ≤ m). Define the sequence {Zn}n≥1 by

Zn =

{
Z1

n if n ≤ τ,
Z2

n if n > τ.

Then, {Zn}n≥1 has the same distribution as {Z1
n}n≥1 and is independent of X1

0 , X
2
0 .

Proof. For any sets C1, C2, A1, . . . , Ak in the appropriate spaces,

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z� ∈ A�, 1 ≤ � ≤ k)

=
∑k

m=0 P (X1
0 ∈ C1, X

2
0 ∈ C2, Z� ∈ A�, 1 ≤ � ≤ k, τ = m)

+P (X1
0 ∈ C1, X

2
0 ∈ C2, Z1 ∈ A1, . . . , Zk ∈ Ak, τ > k)

=
∑k

m=0 P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ m, τ = m,Z2

r ∈ Ar,m+ 1 ≤ r ≤ k)

+P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ k, τ > k) .
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Since the event {τ = m} is independent of Z2
m+1 ∈ Am+1, . . . , Z

2
k ∈ Ak (k ≥ m),

=

k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ m, τ = m)P (Z2

r ∈ Ar,m+ 1 ≤ r ≤ k)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ k, τ > k)

=

k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ m, τ = m,Z1

r ∈ Ar,m+ 1 ≤ r ≤ k)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
� ∈ A�, 1 ≤ � ≤ k, τ > k)

= P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
k ∈ Ak) .

�

Step 3. We now complete the proof. The statement of the theorem concerns
only the distributions of {X�

n}n≥0 (� = 1, 2), and therefore we may assume a
representation

X�
n+1 = f(X�

n, Z
�
n+1) (n ≥ 1, � = 1, 2) ,

where X�
0, Z

�
n (n ≥ 1, � = 1, 2) satisfy the conditions in Lemma 9.3.10. The

random time τ satisfies the condition of Lemma 9.3.10. Defining {Zn}n≥1 in the
same manner as in this lemma, we therefore have

Xn+1 = f(Xn, Zn+1) ,

which proves the announced result. �

9.4 Absorption

The special nature of the branching process allowed for a simple and elegant com-
putation of the probability of absorption into state 0. We now consider the ab-
sorption problem for hmcs with no special structure,5 based only on the transition
matrix P, not necessarily assumed irreducible. The state space E is then decom-
posable as E = T +

∑
j Rj, where R1, R2, . . . are the disjoint recurrent classes and

T is the collection of transient states. (Note that the number of recurrent classes
as well as the number of transient states may be infinite.) The transition matrix

5 Such as those occurring in sociology, for instance in models describing migration (whether
geographical or sociological) of populations, for which the transition matrix is obtained empiri-
cally.
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can therefore be block-partitioned as

P =

⎛

⎜
⎜
⎜
⎝

P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
B(1) B(2) · · · Q

⎞

⎟
⎟
⎟
⎠

or in condensed notation,

P =

(
D 0
B Q

)

. (9.36)

This structure of the transition matrix accounts for the fact that one cannot go
from a state in a given recurrent class to any state not belonging to this recurrent
class. In other words, a recurrent class is closed.

What is the probability of being absorbed by a given recurrent class when
starting from a given transient state? This kind of problem was already addressed
when the first-step analysis method was introduced. This method leads to a sys-
tem of linear equations with boundary conditions, for which the solution is unique,
due to the finiteness of the state space. With an infinite state space, the unique-
ness issue cannot be overlooked, and the absorption problem will be reconsidered
with this in mind, and also with the intention of finding general matrix-algebraic
expressions for the solutions. Another phenomenon not manifesting itself in the
finite case is the possibility, when the set of transient states is infinite, of never
being absorbed by the recurrent set. We shall consider this problem first, and then
proceed to derive the distribution of the time to absorption by the recurrent set,
and the probability of being absorbed by a given recurrent class.

Before Absorption

Let A be a subset of the state space E (typically the set of transient states, but
not necessarily). We aim at computing for any initial state i ∈ A the probability
of remaining forever in A,

v(i) = Pi(Xr ∈ A; r ≥ 0) .

Defining vn(i) := Pi(X1 ∈ A, . . . , Xn ∈ A), we have, by monotone sequential
continuity,

lim
n↑∞
↓ vn(i) = v(i) .

But for j ∈ A,

Pi(X1 ∈ A, . . . , Xn−1 ∈ A,Xn = j) =
∑

i1∈A
· · ·

∑

in−1∈A
pii1 · · ·pin−1j
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is the general term qij(n) of the n-th iterate of the restriction Q of P to the set
A. Therefore vn(i) =

∑
j∈A qij(n), that is, in vector notation,

vn = Qn1A ,

where 1A is the column vector indexed by A with all entries equal to 1. From this
equality we obtain

vn+1 = Qvn ,

and by dominated convergence v = Qv. Moreover, 0A ≤ v ≤ 1A, where 0A is the
column vector indexed by A with all entries equal to 0. The above result can be
refined as follows:

Theorem 9.4.1 The vector v is the maximal solution of

v = Qv, 0A ≤ v ≤ 1A .

Moreover, either v = 0A or supi∈A v(i) = 1. In the case of a finite transient set T ,
the probability of infinite sojourn in T is null.

Proof. Only maximality and the last statement remain to be proved. To prove
maximality consider a vector u indexed by A such that u = Qu and 0A ≤ u ≤ 1A.
Iteration of u = Qu yields u = Qnu, and u ≤ 1A implies that Qnu ≤ Qn1A = vn.
Therefore u ≤ vn, which gives u ≤ v by passage to the limit.

To prove the last statement of the theorem, let c = supi∈A v(i). ¿From v ≤ c1A,
we obtain v ≤ cvn as above, and therefore, at the limit, v ≤ cv. This implies either
v = 0A or c = 1.

When the set T is finite, the probability of infinite sojourn in T is null, because
otherwise at least one transient state would be visited infinitely often. �

Equation v = Qv reads

v(i) =
∑

j∈A
pijv(j) (i ∈ A) .

First-step analysis gives this equality as a necessary condition. However, it does
not help to determine which solution to choose, in case there are several.

Example 9.4.2: Repair shop, take 5. We shall prove in a different way a
result already obtained previously, that is: the repair shop chain is recurrent if
and only if ρ ≤ 1. Observe that the restriction of P to Ai := {i + 1, i + 2, . . .},
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namely

Q =

⎛

⎜
⎜
⎝

a1 a2 a3 · · ·
a0 a1 a2 · · ·

a0 a1 · · ·
· · ·

⎞

⎟
⎟
⎠ ,

does not depend on i ≥ 0. In particular, the maximal solution of v = Qv, 0A ≤ v ≤
1A when A ≡ Ai has, in view of Theorem 9.4.1, the following two interpretations.
Firstly, for i ≥ 1, 1− v(i) is the probability of visiting 0 when starting from i ≥ 1.
Secondly, (1 − v(1)) is the probability of visiting {0, 1, . . . , i} when starting from
i + 1. But when starting from i + 1, the chain visits {0, 1, . . . , i} if and only if it
visits i, and therefore (1− v(1)) is also the probability of visiting i when starting
from i+ 1. The probability of visiting 0 when starting from i+ 1 is

1− v(i+ 1) = (1− v(1))(1− v(i)) ,

because in order to go from i + 1 to 0 one must first reach i, and then go to 0.
Therefore, for all i ≥ 1,

v(i) = 1− βi ,

where β = 1− v(1). To determine β, write the first equality of v = Qv:

v(1) = a1v(1) + a2v(2) + · · · ,

that is,

(1− β) = a1(1− β) + a2(1− β2) + · · · .

Since
∑

i≥0 ai = 1, this reduces to

β = g(β) , (�)

where g is the generating function of the probability distribution (ak, k ≥ 0). Also,
all other equations of v = Qv reduce to (�).

Under the irreducibility assumptions a0 > 0, a0 + a1 < 1, (�) has only one
solution in [0, 1], namely β = 1 if ρ ≤ 1, whereas if ρ > 1, it has two solutions in
[0, 1], this probability is β = 1 and β = β0 ∈ (0, 1). We must take the smallest
solution. Therefore, if ρ > 1, the probability of visiting state 0 when starting from
state i ≥ 1 is 1− v(i) = βi

0 < 1, and therefore the chain is transient. If ρ ≤ 1, the
latter probability is 1− v(i) = 1, and therefore the chain is recurrent.
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Example 9.4.3: 1-D random walk, take 3. The transition matrix of the
random walk on N with a reflecting barrier at 0,

P =

⎛

⎜
⎜
⎜
⎜
⎝

0 1
q 0 p

q 0 p
q 0 p

. . .

⎞

⎟
⎟
⎟
⎟
⎠

,

where p ∈ (0, 1), is clearly irreducible. Intuitively, if p > q, there is a drift to the
right, and one expects the chain to be transient. This will be proved formally by
showing that the probability v(i) of never visiting state 0 when starting from state
i ≥ 1 is strictly positive. In order to apply Theorem 9.4.1 with A = N − {0}, we
must find the general solution of u = Qu. This equation reads

u(1) = pu(2) ,

u(2) = qu(1) + pu(3) ,

u(3) = qu(2) + pu(4) ,

· · ·

and its general solution is u(i) = u(1)
∑i−1

j=0

(
q
p

)j

. The largest value of u(1) re-

specting the constraint u(i) ∈ [0, 1] is u(1) = 1−
(

q
p

)
. The solution v(i) is therefore

v(i) = 1−
(
q

p

)i

.

Time to Absorption

We now turn to the determination of the distribution of τ , the time of exit from the
transient set T . Theorem 9.4.1 says that v = {v(i)}i∈T , where v(i) = Pi(τ = ∞),
is the largest solution of v = Qv subject to the constraints 0T ≤ v ≤ 1T , where
Q is the restriction of P to the transient set T . The probability distribution of τ
when the initial state is i ∈ T is readily computed starting from the identity

Pi(τ = n) = Pi(τ ≥ n)− Pi(τ ≥ n + 1)

and the observation that for n ≥ 1, {τ ≥ n} = {Xn−1 ∈ T}, from which we obtain,
for n ≥ 1,

Pi(τ = n) = Pi(Xn−1 ∈ T )− P (Xn ∈ T ) =
∑

j∈T
(pij(n− 1)− pij(n)) .
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Now, pij(n) (i, j ∈ T ) is the general term of the matrix Qn, and therefore:

Theorem 9.4.4
Pi(τ = n) = {(Qn−1 −Qn)1T}i . (9.37)

In particular, if Pi(τ =∞) = 0,

Pi(τ > n) = {Qn1T}i .
Proof. Only the last statement remains to be proved. From (9.37),

Pi(n < τ ≤ n +m) =

m−1∑

j=0

{(Qn+j −Qn+j−1)1T}i

=
{(

Qn −Qn+m
)
1T

}
i
,

and therefore, if Pi(τ =∞) = 0, we obtain (9.37) by letting m ↑ ∞. �

Final Destination

We seek to compute the probability of absorption by a given recurrent class when
starting from a given transient state. As we shall see later, it suffices for the theory
to treat the case where the recurrent classes are singletons. We therefore suppose
that the transition matrix has the form

P =

(
I 0
B Q

)

. (9.38)

Let fij be the probability of absorption by recurrent class Rj = {j} when starting
from the transient state i. We have

Pn =

(
I 0
Ln Qn

)

,

where Ln = (I + Q + · · · + Qn)B. Therefore, limn↑∞ Ln = SB. For i ∈ T , the
(i, j) term of Ln is

Ln(i, j) = P (Xn = j|X0 = i) .

Now, if TRj
is the first time of visit to Rj after time 0, then

Ln(i, j) = Pi(TRj
≤ n) ,

since Rj is a closed state. Letting n go to ∞ gives the following:

Theorem 9.4.5 For an hmc with transition matrix P of the form (9.38), the
probability of absorption by recurrent class Rj = {j} starting from transient state
i is

Pi(TRj
<∞) = (SB)i,Rj

.
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The general case, where the recurrence classes are not necessarily singletons,
can be reduced to the singleton case as follows. Let P∗ be the matrix obtained
from the transition matrix P, by grouping for each j the states of recurrent class
Rj into a single state ĵ:

P∗ =

⎛

⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0

0 0
. . . 0

b1̂ b2̂ · · · Q

⎞

⎟
⎟
⎟
⎠

(9.39)

where bĵ = B(j)1T is obtained by summation of the columns of B(j), the matrix
consisting of the columns i ∈ Rj of B. The probability fiRj

of absorption by class

Rj when starting from i ∈ T equals f̂iĵ, the probability of ever visiting ĵ when
starting from i, computed for the chain with transition matrix P∗.

Example 9.4.6: Sibmating. In the reproduction model called sibmating (sister-
brother mating), two individuals are mated and two individuals from their offspring
are chosen at random to be mated, and this incestuous process goes on through
the subsequent generations.

Denote byXn the genetic type of the mating pair at the nth generation. Clearly,
{Xn}n≥0 is an hmc with six states representing the different pairs of genotypes
AA × AA, aa × aa, AA × Aa, Aa × Aa, Aa × aa, AA × aa, denoted respectively
1, 2, 3, 4, 5, 6. The following table gives the probabilities of occurrence of the
three possible genotypes in the descent of a mating pair:

AA AA
aa aa
AA Aa
Aa Aa
Aa aa
AA aa

AA Aa aa
1 0 0
0 0 1
1/2 1/2 0
1/4 1/2 1/4
0 1/2 1/2
0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

parents’ genotype

︷ ︸︸ ︷
descendant’s genotype

The transition matrix of {Xn}n≥0 is then easily deduced:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

1/4 1/2 1/4
1/16 1/16 1/4 1/4 1/4 1/8

1/4 1/4 1/2
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The set R = {1, 2} is absorbing, and the restriction of the transition matrix to the
transient set T = {3, 4, 5, 6} is

Q =

⎛

⎜
⎜
⎝

1/2 1/4 0 0
1/4 1/4 1/4 1/8
0 1/4 1/2 0
0 1 0 0

⎞

⎟
⎟
⎠ .

We find

S = (1−Q)−1 =
1

6

⎛

⎜
⎜
⎝

16 8 4 1
8 16 8 2
4 8 16 1
8 16 8 8

⎞

⎟
⎟
⎠ ,

and the absorption probability matrix is

SB = S

⎛

⎜
⎜
⎝

1/4 0
1/16 1/16
0 1/4
0 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

3/4 1/4
1/2 1/2
1/4 3/4
1/2 1/2

⎞

⎟
⎟
⎠ .

For instance, the (3, 2) entry, 3
4
, is the probability that when starting from a couple

of ancestors of type Aa × aa, the race will end up in genotype aa × aa.

9.5 The Markov Property on Graphs

This section introduces the Markov fields on a graph, a notion of special interest
in Physics.

Let G = (V, E) be a finite graph, and let v1 ∼ v2 denote the fact that 〈v1, v2〉 is
an edge of the graph.6 Such vertices are called neighbors (one of the other). One
sometimes refers to vertices of V as sites. The boundary with respect to ∼ of a set
A ⊂ V is the set

∂A := {v ∈ V \A ; v ∼ w for some w ∈ A} .

Let Λ be a finite set, called the phase space. A random field on V with phases in
Λ is a collection X = {X(v)}v∈V of random variables with values in Λ. A random
field can be regarded as a random variable taking its values in the configuration

6 Recall that, in the definition of an edge 〈v1, v2〉, v1 and v2 are distinct vertices.
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space E := ΛV , where a configuration is a function x : v ∈ V �→ x(v) ∈ Λ. For a
given configuration x and a given subset A ⊆ V , let

x(A) := (x(v), v ∈ A)

denote the restriction of x to A. If V \A denotes the complement of A in V , one
writes x = (x(A), x(V \A)). In particular, for fixed v ∈ V , x = (x(v), x(V \v)),
where V \v is a shorter way of writing V \{v}, the complement of the singleton {v}
in V .

Of special interest are the random fields characterized by local interactions.
This leads to the notion of a Markov random field. The “locality” is in terms of
the neighborhood structure inherited from the graph structure. More precisely,
for any v ∈ V , Nv := {w ∈ V ;w ∼ v} is the neighborhood of v. In the following,

Ñv denotes the set Nv ∪ {v}.

Definition 9.5.1 The random field X is called a Markov random field (mrf)

with respect to ∼ if for all sites v ∈ V , the random elements X(v) and X(V \Ñv)
are independent given X(Nv).

In symbols:

P (X(v) = x(v) | X(V \v) = x(V \v)) = P (X(v) = x(v) | X(Nv) = x(Nv)) (9.40)

for all x ∈ ΛV and all v ∈ V . Property (9.40) is of the Markov type in the sense
that the distribution of the phase at a given site is directly influenced only by the
phases of the neighboring sites.

Note that any random field is Markovian with respect to the trivial topology,
where the neighborhood of any site v is V \v. However, the interesting Markov
fields (from the point of view of modeling, simulation and optimization) are those
with relatively small neighborhoods.

Example 9.5.2: Markov Chain as Markov field. The Markov property
of a stochastic sequence {Xn}n≥0 implies (Exercise 9.7.18) that for all n ≥ 1, Xn is
independent of (Xk, k �∈ {n− 1, n, n+ 1}) given (Xn−1, Xn+1). Calling n a vertex,
Xn the value of the process at vertex n and the set {n−1, n+1} the neighborhood
of vertex n, the above property can be rephrased as: For all n ≥ 1, the value at
vertex n is independent of the values at vertices k �∈ {n − 1, n, n + 1} given the
values in the neighborhood of vertex n.
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Definition 9.5.3 The local characteristic of the mrf at site v is the function
πv : ΛV → [0, 1] defined by

πv(x) := P (X(v) = x(v) | X(Nv) = x(Nv)) .

The family {πv}v∈V is called the local specification of the mrf.

One sometimes writes πv(x) := π(x(v) | x(Nv)).

Theorem 9.5.4 Two positive distributions of a random field with a finite config-
uration space ΛV that have the same local specification are identical.

Proof. Enumerate V as {1, 2, . . . , K}. Therefore a configuration x ∈ ΛV is
represented as x = (x1, . . . , xK−1, xK) where xi ∈ Λ (1 ≤ i ≤ K). The following
identity

π(z1, z2, . . . , zk) =

K∏

i=1

π(zi | z1, . . . , zi−1, yi+1, . . . , yK)

π(yi | z1, . . . , zi−1, yi+1, . . . , yK)
π(y1, y2, . . . , yk) (�)

holds for any z, y ∈ ΛK . For the proof, write

π(z) =
K∏

i=1

π(z1, . . . , zi−1, zi, yi+1, . . . , yK)

π(z1, . . . , zi−1, yi, yi+1, . . . , yK)
π(y)

and use Bayes’ rule to obtain for each i (1 ≤ i ≤ K):

π(z1, . . . , zi−1, zi, yi+1, . . . , yK)

π(z1, . . . , zi−1, yi, yi+1, . . . , yK)
=

π(zi | z1, . . . , zi−1, yi+1, . . . , yK)

π(yi | z1, . . . , zi−1, yi+1, . . . , yK)
.

Let now π and π′ be two positive probability distributions on V with the same
local specification. Choose any y ∈ ΛV . Identity (�) shows that for all z ∈ ΛV ,

π′(z)
π(z)

=
π′(y)
π(y)

.

Therefore π′(z)
π(z)

is a constant, necessarily equal to 1 since π and π′ are probability
distributions. �

Gibbs Distributions

Consider the probability distribution

πT (x) =
1

ZT

e−
1
T
U(x) (9.41)



362 CHAPTER 9. MARKOV CHAINS

on the configuration space ΛV , where T > 0 is a “temperature”, U(x) is the
“energy” of configuration x and ZT is the normalizing constant, called the partition
function. Since πT (x) takes its values in [0, 1], necessarily −∞ < U(x) ≤ +∞.
Note that U(x) < +∞ if and only if πT (x) > 0. One of the challenges associated
with Gibbs models is obtaining explicit formulas for averages, considering that it
is generally hard to compute the partition function. (This is however feasible in
exceptional cases; see Exercise 9.7.19.)

Such distributions are of interest to physicists when the energy is expressed
in terms of a potential function describing the local interactions. The notion of
clique then plays a central role.

Definition 9.5.5 Any singleton {v} ⊂ V is a clique. A subset C ⊆ V with more
than one element is called a clique (with respect to ∼) if and only if any two
distinct sites of C are mutual neighbors. A clique C is called maximal if for any
site v /∈ C, C ∪ {v} is not a clique.

The collection of cliques will be denoted by C.

Definition 9.5.6 A Gibbs potential on ΛV relative to ∼ is a collection {VC}C⊆V

of functions VC : ΛV → R ∪ {+∞} such that

(i) VC ≡ 0 if C is not a clique, and

(ii) for all x, x′ ∈ ΛV and all C ⊆ V ,

x(C) = x′(C)⇒ VC(x) = VC(x
′) .

The energy function U is said to derive from the potential {VC}C⊆V if

U(x) =
∑

C

VC(x) .

The function VC depends only on the phases at the sites inside subset C. One
could write more explicitly VC(x(C)) instead of VC(x), but this notation will not
be used.

In this context, the distribution in (9.41) is called a Gibbs distribution (with
respect to ∼).

Example 9.5.7: Ising Model, take 1. In statistical physics, the following
model is regarded as a qualitatively correct idealization of a piece of ferromagnetic
material. Here V = Z

2
m = {(i, j) ∈ Z

2, (1 ≤ i, j ≤ m)} and Λ = {+1,−1},
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where ±1 is the orientation of the magnetic spin at a given site. The neighbor of
a site consists of its four closest sites. The Gibbs potential is

V{v}(x) = −H
k
x(v) ,

V〈v,w〉(x) = −J
k
x(v)x(w) ,

where 〈v, w〉 is the 2-element clique (v ∼ w). For physicists, k is the Boltzmann
constant, H is the external magnetic field, and J is the internal energy of an
elementary magnetic dipole. The energy function corresponding to this potential
is therefore

U(x) = −J
k

∑

〈v,w〉
x(v)x(w)− H

k

∑

v∈V
x(v) .

The Hammersley–Clifford Theorem

Gibbs distributions with an energy deriving from a Gibbs potential relative to
a neighborhood system are distributions of Markov fields relative to the same
neighborhood system.

Theorem 9.5.8 If X is a random field with a distribution π of the form π(x) =
1
Z
e−U(x), where the energy function U derives from a Gibbs potential {VC}C⊆V

relative to ∼, then X is a Markov random field with respect to ∼. Moreover, its
local specification is given by the formula

πv(x) =
e−

∑
C�v VC(x)

∑
λ∈Λ e

−∑
C�v VC(λ,x(V \v)) , (9.42)

where the notation
∑

C�v means that the sum extends over the sets C that contain
the site v.

Proof. First observe that the right-hand side of (9.42) depends on x only through
x(v) and x(Nv). Indeed, VC(x) depends only on (x(w), w ∈ C), and for a clique
C, if w ∈ C and v ∈ C, then either w = v or w ∼ v. Therefore, if it can be shown
that P (X(v) = x(v)|X(V \v) = x(V \v)) equals the right-hand side of (9.42), then
(Theorem 2.1.14) the Markov property is proved. By definition of conditional
probability,

P (X(v) = x(v) | X(V \v) = x(V \v)) = π(x)
∑

λ∈Λ π(λ, x(V \v))
. (†)

But

π(x) =
1

Z
e−

∑
C�v VC(x)−∑

C ��v VC(x),
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and similarly,

π(λ, x(V \v)) = 1

Z
e−

∑
C�v VC(λ,x(V \v))−∑

C ��v VC(λ,x(V \v)).

If C is a clique and v is not in C, then VC(λ, x(V \v)) = VC(x) and is therefore

independent of λ ∈ Λ. Therefore, after factoring out exp
{
−
∑

C ��v VC(x)
}
, the

right-hand side of (†) is found to be equal to the right-hand side of (9.42). �

The local energy at site v of configuration x is

Uv(x) =
∑

C�v
VC(x) .

With this notation, (9.42) becomes

πv(x) =
e−Uv(x)

∑
λ∈Λ e

−Uv(λ,x(V \v)) .

Example 9.5.9: Ising Model, take 2. The local characteristics in the Ising
model are

πv
T (x) =

e
1
kT {J

∑
w;w∼v x(w)+H}x(v)

e+
1
kT {J

∑
w;w∼v x(w)+H} + e−

1
kT {J

∑
w;w∼v x(w)+H} .

Theorem 9.5.8 above is the direct part of the Gibbs–Markov equivalence the-
orem: A Gibbs distribution relative to a neighborhood system is the distribution
of a Markov field with respect to the same neighborhood system. The converse
part (Hammersley–Clifford theorem) is important from a theoretical point of view,
since together with the direct part it concludes that Gibbs distributions and mrfs
are essentially the same objects.

Theorem 9.5.10 Let π > 0 be the distribution of a Markov random field with
respect to ∼. Then

π(x) =
1

Z
e−U(x)

for some energy function U deriving from a Gibbs potential {VC}C⊆V with respect
to ∼.

The proof is omitted,7 since in practice, the potential as well as the topology
of V can be obtained directly from the expression of the energy, as the following
example shows.

7 See for instance Theorem 10.1.11 of [4].
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Example 9.5.11: Markov Chains as Markov fields. Let V = {0, 1, . . .N}
and Λ = E, a finite space. A random field X on V with phase space Λ is therefore a
vector X with values in EN+1. Suppose that X0, . . . , XN is a homogeneous Markov
chain with transition matrix P = {pij}i,j∈E and initial distribution ν = {νi}i∈E .
In particular, with x = (x0, . . . , xN),

π(x) = νx0px0x1 · · · pxN−1xN
,

that is,

π(x) = e−U(x) ,

where

U(x) = − log νx0 −
N−1∑

n=0

(log pxnxn+1) .

Clearly, this energy derives from a Gibbs potential associated with the nearest-
neighbor topology for which the cliques are, besides the singletons, the pairs of
adjacent sites. The potential functions are:

V{0}(x) = − log νx0, V{n,n+1}(x) = − log pxnxn+1.

The local characteristic at site n, 2 ≤ n ≤ N − 1, can be computed from formula
(9.42), which gives

πn(x) =
exp(log pxn−1xn + log pxnxn+1)∑
y∈E exp(log pxn−1y + log pyxn+1)

,

that is,

πn(x) =
pxn−1xnpxnxn+1

p
(2)
xn−1xn+1

,

where p
(2)
ij is the general term of the two-step transition matrix P2. Similar compu-

tations give π0(x) and πN(x). We note that, in view of the neighborhood structure,
for 2 ≤ n ≤ N −1, Xn is independent of X0, . . . , Xn−2, Xn+2, . . . , XN given Xn−1

and Xn+1.

9.6 Monte Carlo Markov Chains

Let us return to the problem of generating a random variable with a given distri-
bution (see Section 3.2).
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Both the inverse method and the acceptance–rejection method apply in prin-
ciple when Z is a discrete random variable with values in a finite space E =
{1, 2, ..., r}. Denote by π the distribution of Z. The inverse method is in this
case always theoretically feasible. It consists in generating a random variable U
uniformly distributed on [0, 1] and letting Z = i if and only if

∑i−1
�=1 π(�) ≤ U <

∑i
�=1 π(�). When the size r of the state space E is large, problems arise that are

due to the small size of the intervals partitioning [0, 1] and to the cost of precision
in computing.

Another difficulty with the classical methods, besides the usual round-off errors,
is that the probability π is in important applications known only up to a normal-
izing factor, that is, π = Kπ̃, and then, the integral that gives the normalizing
factor K is difficult or impossible to compute. In physics, this is frequently the
case, because the partition function of a Gibbs distribution is usually unavailable
in closed form.

In random field simulation, another, maybe more important, reason is the
necessity to enumerate the configurations, which implies coding and decoding of a
mapping from the integers to the configuration space. The decoding part is usually
very difficult and a small error may lead to a far-out sample (the configurations
corresponding to close integers may be very different, which is a problem in image
processing).

The Monte Carlo Markov chain (mcmc) method for sampling a probability
distribution π on the finite space E partially avoids the problems just enumerated,
but at the cost of obtaining only an approximate sample.

The basic methodology is as follows. One constructs an irreducible aperiodic
hmc {Xn}n≥0 with state space E admitting π as stationary distribution. Since E
is finite, the chain is ergodic and therefore, for any initial distribution μ,

lim
n→∞

Pμ(Xn = i) = π(i) (i ∈ E)

and for any non-negative function ϕ : E → R,

lim
N→∞

1

N

N∑

n=1

ϕ(Xn) = Eπ[ϕ(X)] .

When n is “large,” we can consider that Xn has a distribution “close” to π. Of
course, one would like to know how accurately Xn imitates an E-valued random
variable Z with distribution π. For this we need estimates of the form

|μPn − π| ≤ Aαn ,
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where α < 1. This issue will not be treated in this book, and only the basic
problem, that of designing the mcmc algorithm, is considered. One looks for
an ergodic transition matrix P on E whose stationary distribution is the target
distribution π. There are infinitely many such transition matrices, and among
them there are infinitely many that correspond to a reversible chain, that is, such
that

π(i)pij = π(j)pji . (9.43)

We seek solutions of the form

pij = qijαij (9.44)

for j �= i, where Q = {qij}i,j∈E is an arbitrary irreducible transition matrix on
E, called the candidate-generating matrix: When the present state is i, the next
tentative state j is chosen with probability qij . When j �= i, this new state is
accepted with probability αij . Otherwise, the next state is the same state i. Hence,
the resulting probability of moving from i to j when i �= j is given by (9.44). It
remains to select the acceptance probabilities αij .

Example 9.6.1: The Metropolis Algorithm. In this example, the candidate-
generation mechanism is purely random, that is, qij = constant, and

αij = min

(

1,
π(j)

π(i)

)

.

Example 9.6.2: Barker’s Sampler. In the special case of a purely random
selection of the candidate,

αij =
π(j)

π(i) + π(j)
.

In each case, the reversibility condition (9.43) is satisfied and therefore π is the
stationary distribution (by Theorem 9.1.24).

Simulation of Random Fields

Consider a random field that changes randomly with time. In other words, we
have a stochastic process {Xn}n≥0 where

Xn = (Xn(v), v ∈ V )
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and Xn(v) ∈ Λ. The state at time n of this process is a random field on V with
phases in Λ, or equivalently, a random variable with values in the state space
E = ΛV , which for simplicity we assume finite. The stochastic process {Xn}n≥0

will be called a dynamical random field.

Our purpose now is to show how a given random field with probability distri-
bution

π(x) =
1

Z
e−E(x) (9.45)

can arise as the stationary distribution of a field-valued Markov chain.

The Gibbs sampler uses a strictly positive probability distribution (qv, v ∈ V )
on V , and the transition from Xn = x to Xn+1 = y is made according to the
following rule.

The new state y is obtained from the old state x by changing (or not) the value
of the phase at one site only. The site v to be changed (or not) at time n is chosen
independently of the past with probability qv. When site v has been selected, the
current configuration x is changed into y as follows: y(V \v) = x(V \v), and the
new phase y(v) at site v is selected with probability π(y(v) | x(V \v)). Thus, con-
figuration x is changed into y = (y(s), x(S\s)) with probability π(y(v) | x(V \v),
according to the local specification at site v. This gives for the non-null entries of
the transition matrix

P (Xn+1 = y | Xn = x) = qvπ(y(v) | x(V \v))1y(V \v)=x(V \v) . (9.46)

The corresponding chain is irreducible and aperiodic if qv > 0 (v ∈ V ). To prove
that π is the stationary distribution, we use the detailed balance test. For this, we
have to check that for all x, y ∈ ΛV ,

π(x)P (Xn+1 = y | Xn = x) = π(y)P (Xn+1 = x | Xn = y) ,

that is, in view of (9.46), for all v ∈ V ,

π(x)qvπ(y(v) | y(V \v)) = π(y)qvπ(x(v) | x(V \v)) .

But the last equality is just

π(x)qv
π(y(v), x(V \v)

P (X(V \v) = x(V \v)) = π(y(v), x(V \v))qv
π(x)

P (X(V \v) = x(V \v)) .

Example 9.6.3: Simulation of the Ising Model. The local specification
at site v depends only on the local configuration x(Nv). Note that small neigh-
borhoods speed up computations. Note also that the Gibbs sampler is a natural
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sampler, in the sense that in a piece of ferromagnetic material, for instance, the
spins are randomly changed according to the local specification. When nature
decides to update the orientation of a dipole, it does so according to the law of
statistical mechanics. It computes the local energy for each of the two possible
spins, E+ = E(+1, x(Nv)) and E− = E(−1, x(Nv)), and takes the corresponding
orientation with a probability proportional to eE+ and eE−, respectively.

Example 9.6.4: Gibbs sampler for random vectors. Clearly, Gibbs
sampling applies to any multivariate probability distribution

π(x(1), . . . , x(N))

on a set E = ΛN , where Λ is countable (but this restriction is not essential).

The basic step of the Gibbs sampler for the multivariate distribution π con-
sists in selecting a coordinate number i (1 ≤ i ≤ N) at random, and then choos-
ing the new value y(i) of the corresponding coordinate, given the present values
x(1), . . . , x(i− 1), x(i+ 1), . . . , x(N) of the other coordinates, with probability

π(y(i) | x(1), . . . , x(i− 1), x(i+ 1), . . . , x(N)) .

One checks as above that π is the stationary distribution of the corresponding
chain.

The Propp–Wilson Algorithm

We now present the basic idea of a theoretical method for obtaining an exact
sample of a given distribution π on a finite state space E, that is, a random
variable Z such that P (Z = i) = π(i) for all i ∈ E. The following algorithm, the
Propp–Wilson algorithm, is based on a coupling idea. One starts from an ergodic
transition matrix P with stationary distribution π, just as in the classical mcmc
method.

The algorithm is based on a representation of P in terms of a recurrence equa-
tion, that is, for given a function f and an iid sequence {Zn}n≥1 independent of
the initial state, the chain satisfies the recurrence

Xn+1 = f(Xn, Zn+1) . (9.47)

The algorithm constructs a family of hmcs with this transition matrix with the
help of a unique iid sequence of random vectors {Yn}n∈Z, called the updating
sequence, where Yn = (Zn+1(1), · · · , Zn+1(r)) is an r-dimensional random vector,
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and where the coordinates Zn+1(i) have a common distribution, that of Z1. For
each N ∈ Z and each k ∈ E, a process {XN

n (k)}n≥N is defined recursively by:

XN
N (k) = k ,

and, for n ≥ N ,
XN

n+1(k) = f(XN
n (k), Zn+1(X

N
n (k)) .

(Thus, if the chain is in state i at time n, it will be at time n + 1 in state j =
f(i, Zn+1(i).) Each of these processes is therefore an hmc with the transition
matrix P. Note that for all k, � ∈ E, and all M,N ∈ Z, the hmcs {XN

n (k)}n≥N

and {XM
n (�)}n≥M use at any time n ≥ max(M,N) the same updating random

vector Yn+1.

If, in addition to the independence of {Yn}n∈Z, the components Zn+1(1),
Zn+1(2), . . ., Zn+1(r) are, for each n ∈ Z, independent, we say that the updating
is componentwise independent.

Definition 9.6.5 The random time

τ+ = inf{n ≥ 0;X0
n(1) = X0

n(2) = · · · = X0
n(r)}

is called the forward coupling time (Figure 9.2). The random time

τ− = inf{n ≥ 1;X−n
0 (1) = X−n

0 (2) = · · · = X−n
0 (r)}

is called the backward coupling time (Figure 9.2).

00

1
2
3
4
5

E

−1−2−3−4−5−6−7−n
+1 +2 +3 +4

+n

τ− = 7 τ+ = 4

Figure 9.2: Backward and forward coupling

Thus, τ+ is the first time at which the chains {X0
n(i)}n≥0, 1 ≤ i ≤ r, coalesce.
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Lemma 9.6.6 When the updating is componentwise independent, the forward cou-
pling time τ+ is almost surely finite.

Proof. Consider the (immediate) extension of Theorem 9.3.8 to the case of r
independent hmcs with the same transition matrix. It cannot be applied directly
to our situation, because the chains are not independent. However, the probability
of coalescence in our situation is bounded below by the probability of coalescence
in the completely independent case. To see this, first construct the independent
chains model, using r independent iid componentwise independent updating se-
quences. The difference with our model is that we use too many updates. In order
to construct from this a set of r chains as in our model, it suffices to use for two
chains the same updates as soon as they meet. Clearly, the forward coupling time
of the so modified model is smaller than or equal to that of the initial completely
independent model. �

For a simpler notation, let τ− := τ . Let

Z = X−τ
0 (i) .

(This random variable is independent of i. In Figure 9.2, Z = 2.) Then,

Theorem 9.6.7 With a componentwise independent updating sequence, the back-
ward coupling time τ is almost surely finite. Also, the random variable Z has the
distribution π.

Proof. We shall show at the end of the current proof that for all k ∈ N,
P (τ ≤ k) = P (τ+ ≤ k), and therefore the finiteness of τ follows from that of
τ+ proven in the last lemma. Now, since for n ≥ τ , X−n

0 (i) = Z,

P (Z = j) = P (Z = j, τ > n) + P (Z = j, τ ≤ n)

= P (Z = j, τ > n) + P (X−n
0 (i) = j, τ ≤ n)

= P (Z = j, τ > n)− P (X−n
0 (i) = j, τ > n) + P (X−n

0 (i) = j)

= P (Z = j, τ > n)− P (X−n
0 (i) = j, τ > n) + pij(n)

= An − Bn + pij(n) .

But An and Bn are bounded above by P (τ > n), a quantity that tends to 0 as
n ↑ ∞ since τ is almost surely finite. Therefore

P (Z = j) = lim
n↑∞

pij(n) = π(j) .

It remains to prove the equality of the distributions of the forwards and backwards
coupling time. For this, select an arbitrary integer k ∈ N. Consider an updating
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Figure 9.3: τ+ ≤ k implies τ ′ ≤ k

sequence constructed from a bona fide updating sequence {Yn}n∈Z, by replacing
Y−k+1, Y−k+2, . . . , Y0 by Y1, Y2, . . . , Yk. Call τ

′ the backwards coupling time in the
modified model. Clearly τ and τ ′ have the same distribution.

Suppose that τ+ ≤ k. Consider in the modified model the chains starting at
time −k from states 1, . . . , r. They coalesce at time −k+ τ+ ≤ 0 (see Figure 9.3),
and consequently τ ′ ≤ k. Therefore τ+ ≤ k implies τ ′ ≤ k, so that

P (τ+ ≤ k) ≤ P (τ ′ ≤ k) = P (τ ≤ k) .

00

1
2
3
4
5

E

−1−2−3−4−5−6−7 +1 +2 +3 +4 +5 +6 +7

Y0 Y0Y1 Y1Y2 Y2Y3 Y3Y4 Y4Y5 Y5Y6 Y6 Y7Y7

Figure 9.4: τ ′ ≤ k implies τ+ ≤ k

Now, suppose that τ ′ ≤ k. Then, in the modified model, the chains starting
at time k − τ ′ from states 1, . . . , r must at time −k + τ+ ≤ 0 coalesce at time k.
Therefore (Figure 9.4), τ+ ≤ k. Therefore τ ′ ≤ k implies τ+ ≤ k, so that

P (τ ≤ k) = P (τ ′ ≤ k) ≤ P (τ+ ≤ k) .

�
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Note that the coalesced value at the forward coupling time is not a sample of
π (see Exercise 9.7.21).

The above exact sampling algorithm is often prohibitively time-consuming
when the state space is large. However, if the algorithm required the coalescence
of two, instead of r processes, then it would take less time. The Propp and Wilson
algorithm does this in a special, yet not rare, case, which we now describe.

It is now assumed that there exists a partial order relation on E, denoted by
&, with a minimal and a maximal element (say, respectively, 1 and r), and that
we can perform the updating in such a way that for all i, j ∈ E, all N ∈ Z, and
all n ≥ N ,

i & j ⇒ XN
n (i) & XN

n (j) .

However we do not require componentwise independent updating (but the updat-
ing vectors sequence remains iid). The corresponding sampling procedure is called
the monotone Propp–Wilson algorithm.

Define the backwards monotone coupling time

τm = inf{n ≥ 1;X−n
0 (1) = X−n

0 (r)} .

0

1

2

3

4

5

E

−1−2−3−4−5−6-n

τ = 6

Figure 9.5: The Monotone Propp–Wilson algorithm

Theorem 9.6.8 The monotone backwards coupling time τm is almost surely finite.
Also, the random variable X−τm

0 (1) = X−τm
0 (r) has the distribution π.

Proof. We can use most of the proof of Theorem 9.6.7. We need only to prove
independently that τ+ is finite. It is so because τ+ is dominated by the first time
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n ≥ 0 such that X0
n(r) = 1, and the latter is finite in view of the recurrence

assumption. �

Monotone coupling will occur with representations of the form (9.47) such that
for all z,

i & j ⇒ f(i, z) & f(j, z) ,

and if for all n ∈ Z, all i ∈ {1, . . . , r},

Zn+1(i) = Zn+1 .

Example 9.6.9: A dam model. We consider the following model of a dam
reservoir. The corresponding hmc, with values in E = {0, 2, . . . , r}, satisfies the
recurrence equation

Xn+1 = min{r,max(0, Xn + Zn+1)} ,

where, as usual, {Zn}n≥1 is iid. In this specific model, Xn is the content at time
n of a dam reservoir with maximum capacity r, and Zn+1 = An+1− c, where An+1

is the input into the reservoir during the time period from n to n+1, and c is the
maximum release during the same period. The updating rule is then monotone.

In practical implementations, instead of trying the times −1, −2, etc., one
may use successive starting times of the form αrT0. Let k be the first k for which
αkT0 ≥ τ−. The number of simulation steps used is 2

(
T0 + αT0 + · · ·+ αkT0

)
(the

factor 2 accounts for the fact that we are running two chains), that is,

2T0

(
αk+1 − 1

α− 1

)

< 2T0

(
α2

α− 1

)

αk−1 ≤ 2τ−
α2

α− 1

steps, where we have assumed that T0 ≤ τ−. In the best case, supposing we are
informed of the exact value of τ− by some oracle, the number of steps is 2τ−. The
ratio of the worst to best cases is α2

α−1
, which is minimized for α = 2. This is why

it is usually suggested to start the successive attempts of backward coalescence at
times of the form −2kT0 (k ≥ 0).

9.7 Exercises

Exercise 9.7.1. A counterexample

Find a simple example of an hmc {Xn}n≥0 with state space E = {1, 2, 3, 4, 5, 6}
such that

P (X2 = 6 |X1 ∈ {3, 4}, X0 = 2) �= P (X2 = 6 |X1 ∈ {3, 4}) .
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Exercise 9.7.2. Past, present, future
For an hmc {Xn}n≥0 with state space E, prove that for all n ∈ N, and all states
i0, i1, . . . , in−1, i, j1, j2, . . . , jk ∈ E,

P (Xn+1 = j1, . . . , Xn+k = jk | Xn = i, Xn−1 = in−1, . . . , X0 = i0)

= P (Xn+1 = j1, . . . , Xn+k = jk | Xn = i) .

Exercise 9.7.3. Given adjacent states

Let {Xn}n≥0 be an hmc with state space E and transition matrix P. Show that
for all n ≥ 1 and all k ≥ 2, Xn is conditionally independent of X0, . . ., Xn−2,
Xn+2, . . ., Xn+k given Xn−1, Xn+1. Compute the conditional distribution of Xn

given Xn−1, Xn+1.

Exercise 9.7.4. Street gangs

Three characters, A,B, and C, armed with guns, suddenly meet at the corner of a
Washington D.C. street, whereupon they naturally start shooting at one another.
Each street gang kid shoots every tenth second, as long as he is still alive. The
probabilities of a hit for A, B, and C are α, β, and γ respectively. A is the most
hated, and therefore, as long as he is alive, B and C ignore each other and shoot
at A. For historical reasons not developed here, A cannot stand B, and therefore
he shoots only at B while the latter is still alive. Lucky C is shot at if and only if
he is in the presence of A alone or B alone. What are the survival probabilities of
A,B, and C, respectively?

Exercise 9.7.5. The gambler’s ruin

(This exercise continues Example 9.1.10.) Compute the average duration of the
game when p = 1

2
.

Exercise 9.7.6. Records

Let {Zn}n≥1 be an iid sequence of geometric random variables: For k ≥ 0,
P (Zn = k) = (1 − p)kp, where p ∈ (0, 1). Let Xn = max(Z1, . . . , Zn) be the
record value at time n, and suppose X0 is an integer-valued random variable in-
dependent of the sequence {Zn}n≥1. Show that {Xn}n≥0 is an hmc and give its
transition matrix.

Exercise 9.7.7. Aggregation of states

Let {Xn}n≥0 be a hmc with state space E and transition matrix P, and let

(Ak, k ≥ 1) be a countable partition of E. Define the process {X̂n}n≥0 with state

space Ê = {1̂, 2̂, . . .} by X̂n = k̂ if and only if Xn ∈ Ak. Show that if
∑

j∈A�
pij
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is independent of i ∈ Ak for all k, �, then {X̂n}n≥0 is an hmc with transition
probabilities p̂k̂�̂ =

∑
j∈A�

pij (any i ∈ Ak).

Exercise 9.7.8. Truncated hmc

Let P be a transition matrix on the countable state space E, with the positive
stationary distribution π. Let A be a subset of the state space, and define the
truncation of P on A to be the transition matrix Q indexed by A and given by

qij = pij if i, j ∈ A, i �= j and qii = pii +
∑

k∈Ā
pik .

Show that if (P, π) is reversible, then so is (Q, π
π(A)

).

Exercise 9.7.9. Moving stones

Stones S1, . . . , SM are placed in line. At each time n a stone is selected at random,
and this stone and the one ahead of it in the line exchange positions. If the
selected stone is at the head of the line, nothing is changed. For instance, with
M = 5: Let the current configuration be S2S3S1S5S4 (S2 is at the head of the
line). If S5 is selected, the new situation is S2S3S5S1S4, whereas if S2 is selected,
the configuration is not altered. At each step, stone Si is selected with probability
αi > 0. Call Xn the situation at time n, for instance Xn = Si1 · · ·SiM , meaning
that stone Sij is in the jth position. Show that {Xn}n≥0 is an irreducible hmc

and that it has a stationary distribution given by the formula

π(Si1 · · ·SiM ) = CαM
i1
αM−1
i2
· · ·αiM ,

for some normalizing constant C.

Exercise 9.7.10. No stationary distribution

Show that the symmetric random walk on Z cannot have a stationary distribution.

Exercise 9.7.11. An interpretation of invariant measure

A countable number of particles move independently in the countable space E,
each according to a Markov chain with the transition matrix P. Let An(i) be the
number of particles in state i ∈ E at time n ≥ 0, and suppose that the random
variables A0(i), i ∈ E, are independent Poisson random variables with respective
means μ(i), i ∈ E, where μ = {μ(i)}i∈E is an invariant measure of P. Show that
for all n ≥ 1, the random variables An(i), i ∈ E, are independent Poisson random
variables with respective means μ(i), i ∈ E.

Exercise 9.7.12. Return time to the initial state
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Let τ be the first return time to initial state of an irreducible positive recurrent
hmc {Xn}n≥0, that is,

τ = inf{n ≥ 1;Xn = X0} ,
with τ = +∞ if Xn �= X0 for all n ≥ 1. Compute the expectation of τ when the
initial distribution is the stationary distribution π. Conclude that it is finite if and
only if E is finite.

Exercise 9.7.13. The snake chain

Let {Xn}n≥0 be an hmc with state space E and transition matrix P. Let for
L ≥ 1, Yn := (Xn, Xn+1, . . . , Xn+L).

(a) The process {Yn}n≥0 takes its values in F = EL+1. Prove that {Yn}n≥0 is an
hmc and give the general entry of its transition matrix. (The chain {Yn}n≥0 is
called the snake chain of length L+ 1 associated with {Xn}n≥0.)

(b) Show that if {Xn}n≥0 is irreducible, then so is {Yn}n≥0 if we restrict the state
space of the latter to be F = {(i0, . . . , iL) ∈ EL+1; pi0i1pi1i2 · · · piL−1iL > 0}. Show
that if the original chain is irreducible aperiodic, so is the snake chain.

(c) Show that if {Xn}n≥0 has a stationary distribution π, then {Yn}n≥0 also has a
stationary distribution. Which one?

Exercise 9.7.14. Product Markov chain

Let {X(1)
n }n≥0 and {X(2)

n }n≥0 be two independent irreducible and aperiodic hmcs
with the same transition matrix P. Define the product hmc {Zn}n≥0 taking its

values in E × E by Zn = (X
(1)
n , X

(2)
n ). Prove that it is indeed a hmc. What is its

n-step transition matrix? Prove that it is irreducible. Give a counterexample if
the hypothesis of aperiodicity is omitted.

Exercise 9.7.15. Proof of Lemma 9.2.18

Prove Lemma 9.2.18.

Exercise 9.7.16. iid Random Fields

A. Let (Z(v), v ∈ V ) be a family of iid random variables indexed by a finite set
V , with P (Z(v) = −1) = p, P (Z(v) = +1) = q = 1− p. Show that

P (Z = z) = Keγ
∑

v∈V z(s),

for some constants γ and K to be identified.

B. Do the same with P (Z(v) = 0) = p, P (Z(v) = +1) = q = 1− p.

Exercise 9.7.17. Two-state hmc as Gibbs Field
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Consider an hmc {Xn}n≥0 with state space E = {−1, 1} and transition matrix

P =

(
1− α α
β 1− β

)

,

where α, β ∈ (0, 1), and with the stationary initial distribution

(ν0, ν1) =
1

α + β
(β, α) .

Give a representation of Z := (X0, . . . , XN) as a Markov random field, that is,
give its local characteristics.

Exercise 9.7.18. Markov Chain as Markov field

Let {Xn}n≥0 be an hmc. Prove that for all n ≥ 1, Xn is independent of (Xk, k �∈
{n− 1, n, n+ 1}) given (Xn−1, Xn+1).

Exercise 9.7.19. Ising on the Torus

Consider the classical Ising model of Example 9.5.7, except that the site space
V = {1, 2, . . . , N} consists of N points arranged in this order on a circle. The
neighbors of site i are i+1 and i− 1, with the convention that site N +1 is site 1.
The phase space is Λ = {+1,−1}. Compute the partition function. Hint: express
the normalizing constant ZN in terms of the N -th power of the matrix

R =

(
R(+1,+1) R(+1,−1)
R(−1,+1) R(−1,−1)

)

=

(
eK+h e−K

e−K eK−h

)

,

where K := J
kT

and h := H
kT

.

Exercise 9.7.20. Monotonicity of the Gibbs Sampler

Let μ be an arbitrary probability measure on ΛV and let ν be the probability
measure obtained by applying the Gibbs sampler at an arbitrary site v ∈ V . Show
that dV (ν, π) ≤ dV (μ, π).

Exercise 9.7.21. A Counterexample

Let Z+ be the common value of the coalesced chains at the forwards coupling time
τ+ for the usual two-state ergodic hmc. Is the distribution of Z+ the stationary
distribution?

Exercise 9.7.22. Aperiodicity

a. Show that an irreducible transition matrix P with at least one state i ∈ E such
that pii > 0 is aperiodic.
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b. Let P be an irreducible transition matrix on the finite state space E. Show
that a necessary and sufficient condition for P to be aperiodic is the existence of
an integer m such that Pm has all its entries positive.

c. Consider an hmc that is irreducible with period d ≥ 2. Show that the restriction
of the transition matrix to any cyclic class is irreducible. Show that the restriction
of Pd to any cyclic class is aperiodic.

Exercise 9.7.23. Doubly stochastic transition matrix

A stochastic matrix P on the state space E is called doubly stochastic if for all
states i,

∑
j∈E pji = 1. Suppose in addition that P is irreducible, and that E

is infinite. Find the invariant measure of P. Show that P cannot be positive
recurrent.

Exercise 9.7.24. Returns to a given set

Let {Xn}n≥0 be an hmc on the state space E with transition matrix P. Let {τk}k≥1

be the successive return times to a given subset F ⊂ E. Assume these times are
almost surely finite. Let X0 ≡ 0 ∈ F , and define Yn = X(τn). Show that {Yn}n≥0

is an hmc with state space F .

Exercise 9.7.25. Null Recurrence of the 2-D symmetric random walk

Show that the 2-D symmetric random walk on Z2 is null recurrent.

Exercise 9.7.26. Transience of the 4-D symmetric random walk

Show that the projection of the 4-D symmetric random walk on Z3 is a lazy
symmetric random walk on Z3. Deduce from this that the 4-D symmetric random
walk is transient. More generally, show that the symmetric random walk on Zp,
p ≥ 5, is transient.

Exercise 9.7.27. Coupling time

Let P be an ergodic transition matrix on the finite state space E. Prove that for
any initial distributions μ and ν, one can construct two hmcs {Xn}n≥0 and {Yn}n≥0

on E with the same transition matrix P, and the respective initial distributions μ
and ν, in such a way that they couple at a finite time τ such that E[eατ ] <∞ for
some α > 0.

Exercise 9.7.28. The lazy random walk on the circle

The state space E := {0, 1, . . . , N − 1} consists of a succession of N equidistant
points on a circle in such a way that two points i and j such that j = i±1 modulo
N are neighbors. Consider the Markov chain {(Xn, Yn)}n≥0 with state space E×E
and representing two particles moving on E as follows. At each time n choose Xn
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or Yn with probability 1
2
and move the corresponding particle to the left or to the

right, equiprobably while the other particle remains still. The initial positions of
the particles are a and b respectively. Compute the average time it takes until the
two particles collide (the average coupling time of two lazy random walks).

Exercise 9.7.29. Coupling time for the 2-state hmc

Find the distribution of the first meeting time of two independent hmcs with state
space E = {1, 2} and transition matrix

P =

(
1− α α
β 1− β

)

,

where α, β ∈ (0, 1), when their initial states are different.

Exercise 9.7.30. Extension to negative times

Let {Xn}n≥0 be an hmc with state space E, transition matrix P, and suppose
that there exists a stationary distribution π > 0. Suppose moreover that the
initial distribution is π. Define the matrix Q = {qij}i,j∈E by (9.7). Construct
{X−n}n≥1, independent of {Xn}n≥1 given X0, as follows:

P (X−1 = i1, X−2 = i2, . . . , X−k = ik |X0 = i, X1 = j1, . . . , Xn = jn)

= P (X−1 = i1, X−2 = i2, . . . , X−k = ik |X0 = i) = qii1qi1i2 · · · qik−1ik

for all k ≥ 1, n ≥ 1, i, i1, . . . , ik, j1, . . . , jn ∈ E. Prove that {Xn}n∈Z is an hmc

with transition matrix P and P (Xn = i) = π(i), for all i ∈ E, all n ∈ Z.



Chapter 10

Poisson Processes

Poisson processes are particular types of random point processes. A random point
process on the line (resp. in space) is, roughly speaking, a countable random set
of points of the real line (resp. in some space 1).

In most applications to engineering and operations research, a point of a point
process on the line is the time of occurrence of some event, and this is why points
are also called events. For instance, the arrival times of customers at the desk of a
post office or of jobs at the central processing unit of a computer are point process
events. In biology the time of birth of an organism and in physiology the firing
time of a neuron are events. In applications to ecology, a point of a spatial point
process could be the location of a tree in a forest, or of a source of pollution. In a
communications context, it may represent the position of a cellphone or of a relay
antenna.

10.1 Poisson Processes on the Line

This section introduces the homogeneous Poisson process, the simplest example of
a random point process on the line.

Definition 10.1.1 A random point process on the line is a sequence {Tn}n∈Z of
real random variables such that, almost surely,

(i) · · · ≤ T−2 ≤ T−1 ≤ T0 ≤ 0 < T1 < T2 < · · · , and

(ii) lim|n|↑∞ T|n| = +∞.

The usual definition of a random point process is less restrictive. In particu-
lar, condition (i) is relaxed in the more general definition, where multiple points

1 In this book, Rm for m ≥ 2.
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(simultaneous arrivals to a ticket booth, for instance) are allowed. When condition
(i) holds, one speaks of a simple point process. Also, condition (ii) is not required
in the more general definition which allows with positive probability an explosion,
that is, an accumulation of events in finite time. However, conditions (i) and (ii)
fit the special case of homogeneous Poisson processes, the center of interest in this
section.

The sequence {Tn − Tn−1}n∈Z is called the inter-event sequence or, in the ap-
propriate context, the inter-arrival sequence. For any interval (a, b] in R,

N((a, b]) :=
∑

n∈Z
1(a,b](Tn)

is an integer-valued random variable counting the events occurring in the time
interval (a, b]. For typographical simplicity, it will be occasionally denoted by
N(a, b], omitting the external parentheses. If t ≥ 0, we sometimes let N(t) :=
N(0, t].

Since the interval (a, t] (t ≥ 0) is closed on the right, the trajectories (or sample
paths) t �→ N((a, t], ω) are right-continuous. They are non-decreasing, have limits
on the left at every time t and jump one unit upwards at each event of the point
process.

The family of random variables N := {N(a, b]}(a,b]⊂R is called the counting
process of the point process {Tn}n∈Z. Since the sequence of events can be recovered
from N , the latter also receives the appellation “point process.”

The Counting Process of an hpp

There exist several equivalent definitions of a Poisson process. The one adopted
here is the most practical.

Definition 10.1.2 A point process N on the positive half-line is called a homo-
geneous Poisson process (hpp) with intensity λ > 0 if

(α) for all times ti ∈ R (1 ≤ i ≤ k) such that t1 ≤ t2 ≤ · · · ≤ tk, the random
variables N(ti, ti+1] (1 ≤ i ≤ k) are independent, and

(β) for any interval (a, b] ⊂ R, N(a, b] is a Poisson random variable with mean
λ(b− a).

In particular,

P (N(a, b] = k) = e−λ(b−a) [λ(b− a)]k

k!
(k ≥ 0)
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and
E[N(a, b]] = λ(b− a) .

In this sense, λ is the average density of points.

Condition (α) is the property of independence of increments of Poisson pro-
cesses. It implies in particular that for any interval (a, b], the random variable
N(a, b] is independent of (N(c, d] (c ≤ d ≤ a). For this reason, Poisson processes
are sometimes called memoryless. A more precise statement is “the increments of
homogeneous Poisson processes have no memory of the past”.

The definition adopted for random point processes does not allow for multiple
points or explosions. But suppose it did. It turns out that requirements (α) and
(β) in Definition 10.1.2 suffice to prevent such occurrences.

A proof is as follows. Since E[N(a)] = λa < ∞, N(a) < ∞ almost surely.
Since this is true for all a ≥ 0, limn↑∞ Tn =∞ almost surely. Simplicity will follow
from P (D(a)) = 0 for all a ≥ 0, where

D(a) := {there exists multiple points in (0, a]} .

We prove this for D = D(1) (without loss of generality). The event

Dn :=

{

N

(
i

2n
,
i+ 1

2n

]

≥ 2 for some i (1 ≤ i ≤ 2n − 1)

}

decreases to D as n tends to infinity and therefore, by the monotone sequential
continuity of probability,

P (D) = lim
n↑∞

P (Dn) = 1− lim
n↑∞

P (Dn) .

But

P (Dn) = P

(
2n−1⋂

i=0

{

N

(
i

2n
,
i+ 1

2n

]

≤ 1

})

=

2n−1∏

i=0

P

(

N

(
i

2n
,
i+ 1

2n

]

≤ 1

)

=

2n−1∏

i=0

e−λ2−n

(1 + λ2−n) = e−λ(1 + λ2−n)2
n

.

The limit of the latter quantity is 1 as n ↑ ∞, and therefore, P (D) = 0.

Let
S1 := T1 and Sn := Tn − Tn−1(n ≥ 2) .

Theorem 10.1.3 The sequence {Sn}n≥1 of an hpp with intensity λ > 0 is iid

with a common exponential distribution of parameter λ.
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The cumulative distribution function of an arbitrary inter-event time is there-
fore

P (Sn ≤ t) = 1− e−λt .

Recall that
E[Sn] = λ−1 ,

that is, the average number of events per unit of time equals the inverse average
inter-event time.

Proof. Suppose we can show that for any n ≥ 1, the random vector T :=
(T1, . . . , Tn) admits the probability density function

fT (t1, . . . , tn) = λne−λtn1C(t1, . . . , tn) , (10.1)

where C := {(t1, . . . , tn); 0 < t1 < · · · < tn}. Since
S1 = T1, S2 = T2 − T1, . . . , Sn = Tn − Tn−1,

the formula of smooth change of variables gives for the probability density function
of S = (S1, . . . , Sn)

fS(s1, . . . , sn) = fT (s1, s1 + s2, . . . , s1 + · · ·+ sn) =

n∏

i=1

{λe−λsi1{si>0}} .

It remains to prove (10.1).

The proof that we now give is somewhat heuristic (and we let the reader dis-
cover why) but most convincing.

The probability density function of T at t = (t1, . . . , tn) is obtained as the limit
as h1, . . . , hn ∈ R+ tend to 0 of the quantity

P (∩ni=1{Ti ∈ (ti, ti + hi]})∏n
i=1 hi

, (10.2)

where it suffices to consider those (t1, . . . , tn) inside C since the points T1, . . . , Tn

are strictly ordered in increasing order. For sufficiently small h1, . . . , hn, the
event ∩ni=1{Ti ∈ (ti, ti + hi]} is the intersection of the events {N(0, t1] = 0},
∩n−1
i=1 {N(ti, ti + hi] = 1, N(ti + hi, ti+1] = 0} and {N(tn, tn + hn] ≥ 1}, and there-

fore the numerator of (10.2) equals

P (N(0, t1] = 0)

(
n−1∏

i=1

P (N(ti, ti + hi] = 1, N(ti + hi, ti+1] = 0)

)

× · · ·

· · · × P (N(tn, tn + hn] ≥ 1)

= e−λt1

n−1∏

i=1

(
e−λhiλhie

−λ(ti+1−ti−hi)
)
(1− e−λhn) = λn−1e−λtnh1 · · ·hn−1(1− e−λhn).
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Dividing by h1 · · ·hn and taking the limit as h1, . . . , hn tend to 0, we obtain
λne−λtn . �

Competing Poisson Processes

Let {T 1
n}n≥1 and {T 2

n}n≥1 be two independent hpps on R+ with respective intensi-
ties λ1 > 0 and λ2 > 0. Their superposition is defined to be the sequence {Tn}n≥1

formed by merging the two sequences {T 1
n}n≥1 and {T 2

n}n≥1 (see Figure 10.1). We
shall prove that

(i) the point processes {T 1
n}n≥1 and {T 2

n}n≥1 have no points in common, and

(ii) the point process {Tn}n≥1 is an hpp with intensity λ = λ1 + λ2.

T1 T2 T3 T4
t = 0 T5 T6 T7 T8

T 2
1 T 2

2 T 2
3 T 2

4

T 1
1 T 1

2 T 1
3 T 1

4

Figure 10.1: Superposition, or sum, of two point processes

Indeed, defining N by

N(a, b] := N1(a, b] +N2(a, b] ,

we see that condition (α) of Definition 10.1.2 is satisfied, in view of the indepen-
dence of N1 and N2. Also, N(a, b] being the sum of two independent Poisson
random variables of mean λ1(b − a) and λ2(b − a) is a Poisson variable of mean
λ(b − a) where λ = λ1 + λ2, and therefore, condition (β) of Definition 10.1.2 is
satisfied. This proves (ii). But N is simple, and therefore (i) is true.

The above result can be extended to several – possibly infinitely many – ho-
mogeneous Poisson processes as follows:
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Theorem 10.1.4 Let {Ni}i≥1 be a family of independent hpps with respective
positive intensities {λi}i≥1. Then,

(i) two distinct hpps of this family have no points in common, and

(ii) if λ :=
∑∞

i=1 λi < ∞, then N(t) :=
∑∞

i=1Ni(t) (t ≥ 0) defines the counting
process of an hpp with intensity λ.

Proof. Assertion (ii) has already been proven. Observe that for all t ≥ 0, N(t) is
almost surely finite since

E[N(t)] =
∞∑

i=1

E[Ni(t)] =

( ∞∑

i=1

λi

)

t <∞ .

In particular, N(a, b] is almost surely finite for all (a, b] ⊂ R+. The proof of lack
of memory of N is the same as in the case of two superposed Poisson processes.
Finally, N(a, b] is a Poisson random variable of mean λ(b− a) since

P (N(a, b] = k) = lim
n↑∞

P

(
n∑

i=1

Ni(a, b] = k

)

= lim
n↑∞

e−(
∑n

i=1 λi(b−a) [
∑n

i=1 λi(b− a)]k

k!

= e−λ(b−a) [λ(b− a)]k

k!
.

�

The next result is called the competition theorem because it features hpps
competing for the production of the first event.
Theorem 10.1.5 In the situation of Theorem 10.1.4, where λ :=

∑∞
i=1 λi < ∞,

denote by Z the first event time of N =
∑∞

i=1Ni and by J the index of the hpp

responsible for it (Z is the first event of NJ). Then

P (J = i, Z ≥ a) = P (J = i)P (Z ≥ a) =
λi

λ
e−λa . (10.3)

In particular, J and Z are independent, P (J = i) = λi

λ
and Z is exponential with

mean λ−1.

Proof.

A. We first prove the result for a finite number of Poisson processes. We have
to show that if X1, . . . , XK are K independent exponential variables with means
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Z = T 3
1 , J = 3

N4

N3

N2

N1

T 4
1

T 3
1

T 2
1

T 1
1

Competition among four point processes

λ−1
1 , . . . , λ−1

K and if JK is defined by XJK = ZK := ZK := inf(X1, . . . , XK), then

P (JK = i, ZK ≥ a) =
λi

λ1 + · · ·+ λK

exp{−(λ1 + · · ·+ λK)a} . (�)

First observe that

P (ZK ≥ a) = P
(
∩Kj=1{Xj ≥ a}

)
=

K∏

j=1

P (Xj ≥ a) =
K∏

j=1

e−λja = e−(λ1+···+λK)a .

Letting U := inf(X2, . . . , XK), we have

P (JK = 1, ZK ≥ a) = P (a ≤ X1 < U)

=

∫ ∞

a

P (U > x)λ1e
−λ1xdx =

∫ ∞

a

e−(λ2+···+λK)xλ1e
−λ1xdx

=
λ1

λ1 + · · ·+ λK
e−(λ1+···+λK)a .

This gives (�). Letting a = 0 yields P (JK = 1) = λ1

λ1+···+λK
. This, together with

(�) and the expression for P (ZK ≥ a) gives (10.3), for i = 1, without loss of
generality.

B. Suppose the result true for a finite number of hpps. Since the event
{JK = 1, ZK ≥ a} decreases to {J = 1, Z ≥ a} as K ↑ ∞, we have

P (J = 1, Z ≥ a) = lim
K↑∞

P (JK = 1, ZK ≥ a) ,

from which (10.3) follows, using the result of part A of the proof. �
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10.2 Generalities on Point Processes

A few definitions concerning general point processes are in order.

Let Δ be an arbitrary “dummy” element not in Rm. Let εa be the Dirac
measure at a if a ∈ Rm, the null measure if a = Δ.

Definition 10.2.1 Let {Xn}n∈N is a sequence of random variables with values in
Rm ∪{Δ}. The collection {Xn}n∈N is called a point process on Rm, and the Xn’s
are the points of this point process.

This point process may be represented by the (random) measure

N :=
∑

n∈N
εXn . (10.4)

In particular,

N(C) =
∑

n∈N
1C(Xn)

counts the number of points in C ∈ B(Rm). The Δ element plays the role of ∞
(“a point that does not exist”). Note that it may occur that for some of the values
in the list {Xn}n∈N are the same, thus allowing for multiple points.

Definition 10.2.2 The point process N is called simple if almost surely
N(ω)({c}) ≤ 1 for all c ∈ Rm.

Definition 10.2.3 The point process N is called locally finite if P (N(C) <∞) =
1 for all bounded measurable sets C ⊂ Rm.

Definition 10.2.4 The locally finite point process N is called a first-order point
process if E [N(C)] <∞ for all bounded measurable sets C ∈ Rm.

Example 10.2.5: The Binomial Point Process. This point process on R
m

has a (finite number) of points, T , where T is a binomial random variable of size
n and parameter p ∈ (0, 1):

P (T = k) =

(
n

k

)

pk(1− p)n−k (0 ≤ k ≤ n) .

If T = k, the k points are located independently of one another on R
m according

to the same probability distribution Q. It is locally finite. It is simple if and only
if Q is non-atomic. It is a first-order point process because T is integrable.
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Definition 10.2.6 Let N be a point process on Rm and let P be a probability
measure on (Ω,F). The distribution of N consists of the probability distributions
of the vectors (N(C1), . . . , N(CK)) (K ≥ 1, C1, . . . , CK ∈ B(Rm)).

Example 10.2.7: The Poisson process. Let ν be a σ-finite measure on Rm.
The point process N on Rm is called a Poisson process on Rm with intensity
measure ν if

(i) for all finite families of mutually disjoint sets C1, . . . , CK ∈ B(Rm), the
random variables N(C1), . . . , N(CK) are independent, and

(ii) for any set C ∈ B(Rm) such that ν(C) <∞,

P (N(C) = k) = e−ν(C) ν(C)k

k!
(k ≥ 0) .

If ν is of the form ν(C) =
∫
C
λ(x)dx for some non-negative measurable function

λ : Rm → R, the Poisson process N is said to admit the intensity function λ(x).
If in addition λ(x) ≡ λ, N is called a homogeneous Poisson process (hpp) on R

m

with intensity or rate λ.

Definition 10.2.8 A point process N on R
m is called stationary if for all families

of measurable sets C1, . . . , CK of Rm, K ≥ 1, the distribution of the random vector
(N(C1 + a), . . . , N(CK + a)) is independent of a ∈ R

m.

Example 10.2.9: A Stationary Grid, take 1. A grid on R
2 is a determin-

istic point process on R
2 whose points are

(nT1, mT2) (n,m ∈ Z) ,

where T1 and T2 are positive real numbers. It is not a stationary point process.
However, the shifted version of it,

(nT1 + V1, mT2 + V2) (n,m ∈ Z) ,

where V1 and V2 are independent random variables uniformly distributed on [0, T1)
and [0, T2) respectively, is stationary. This can be proved directly, or by using the
Laplace functional (Example 10.2.21).
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Independent Point Processes

Definition 10.2.10 The family Ni (i ∈ I) of point processes on Rm, where I is
an arbitrary index, is called independent if for all finite sets of distinct indices

i1, . . . , iK in I, all integers �i1, . . . , �iK , and all C1
i1
, . . . , C

�iK
iK

(Rm), the random
vectors

(Ni1(C
1
i1), . . . , Ni1(C

�i1
i1

)),

· · ·
(NiK (C

1
iK
), . . . , NiK(C

�iK
iK

))

are independent.

Marked Point Processes

Let N and {Xn}n∈N be as in Definition 10.2.1. Let (K,K) be some (Rd,B(Rd))
and let {Zn}n∈N be a random sequence with values in K.

Definition 10.2.11 The sequence {X̃n}n∈N, where

X̃n := (Xn, Zn) (n ∈ N) ,

defines a point process Ñ on Rm+d called a marked point process on R with marks
in K; {Zn}n∈N is the mark sequence and N is the basic point process.

The notation K for Rd is used for rendering the distinction between the marks
and the original point process N more visual.

The random variable

Ñ(C × L) :=
∑

n∈N
1C(Xn)1L(Zn) (C ∈ B(Rm), L ∈ K) (10.5)

counts the number of points in the original point process N in C with marks in
L. Note that since Δ /∈ C, the points Xn ∈ {Δ} do not appear in the sum above
(“points at infinity are excluded”). We shall occasionally use the notation NZ

instead of N .

The following phrases are then considered equivalent:

(i) “the marked point process {(Xn, Zn)}n∈N”,

(ii) “the marked point process Ñ”,
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(iii) “the marked point process (N,Z)”.

(iv) “the marked point process (NZ)”.

Definition 10.2.12 If in addition {Zn}n∈N is iid and independent of N , with
common probability distribution QZ , then N is called a marked point process with
independent iid marks.

Point Process Integrals

Since a point process is a sum of Dirac measures, point process integrals are in
fact sums.

Let μ be a measure on (Rm,B(Rm)) and let ϕ : (Rm,B(Rm))→ (R,B(R)) be
a measurable function for which the integral

∫
Rm ϕ dμ is well defined. This integral

is also denoted by μ(ϕ).

When N is a point process, the following notations represent the same mathe-
matical object (if it is well defined):

∑

n∈N
ϕ(Xn) ,

∫ m

R

ϕ(x)N(dx) , N(ϕ) .

In the first notation, we use the convention that the sum extends only to those
indices n such that Xn ∈ Rm, excluding the points “at infinity” (in fact, ϕ(Δ) is
not defined). In the situation of Definition 10.2.11, observe that

∫

Rm×K

ϕ(x, z)Ñ(dx× dz) =
∑

n∈N
ϕ(Xn, Zn),

with the same convention as the one just agreed upon concerning points at infinity.

The Intensity Measure

Definition 10.2.13 Let N be a locally finite point process on Rm. The set func-
tion

ν �→ ν(C) := E [N(C)] (C ∈ B(Rm))

defines a measure on (Rm,B(Rm)), called the mean measure or the intensity mea-
sure of N .

The intensity measure of a marked point process Ñ (Definition 10.2.11) is the

measure Ñ on (Rm ×K,B(Rm)⊗K) defined by

ν̃(C̃ :=
[
Ñ(C̃

]
(C̃ ∈ B(Rm)⊗K) .
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Example 10.2.14: The Intensity Measure of a Marked Point Pro-

cess with Independent iid Marks. Let Ñ be as in Definition 10.2.11. Denot-
ing by QZ the common distribution of the marks and by ν the intensity measure
of the basic point process N , the intensity measure of Ñ is the product measure
ν̃(dx× dz) = ν(dx)QZ(dz). The easy proof is left as an exercise.

Campbell’s Formula

Theorem 10.2.15 Let N be a point process on Rm with intensity measure ν.
Then, for all measurable functions ϕ : Rm → R which are either non-negative
or ν-integrable, the integral N(ϕ) is well defined (possibly infinite when ϕ is only
assumed to be non-negative) and

E [N(ϕ)] = ν(ϕ) . (10.6)

In particular, N(ϕ) is a.s. finite if ϕ is ν-integrable.

Proof. First, suppose that ϕ is a simple non-negative measurable function, that
is, of the form

L∑

h=1

αh1Ch
,

where L ∈ N+, αh ∈ R+ and C1, . . . , CL are disjoint measurable subsets of Rm.
Then

E[N(ϕ)] = E

[
L∑

h=1

ahN(Ch)

]

=
L∑

h=1

ahν(Ch) = ν(ϕ) .

Now let ϕ be a non-negative measurable function and let {ϕn}n∈N be a non-
decreasing sequence of simple non-negative measurable functions with limit ϕ.
Letting n ↑ ∞ in

E[N(ϕn)] = ν(ϕn)

yields the announced result, by monotone convergence. In the case where ϕ ∈
L1
R
(ν), since E [N(ϕ±)] = ν(ϕ±) < ∞, the random variables N(ϕ±) are P -a.s.

finite, and therefore N(ϕ) = N(ϕ+)−N(ϕ−) is well defined and finite, and

E[N(ϕ)] = E[N(ϕ+)]− E[N(ϕ−)] = ν(ϕ+)− ν(ϕ−) = ν(ϕ) .

�

Example 10.2.16: Campbell’s Formula for Marked Point Processes

with Independent iid Marks. Let Ñ be as in Definition 10.2.11. Campbell’s
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theorem then reads as follows. If the measurable function ϕ : Rm × K → R is
either non-negative or in L1

R
(ν ×QZ), then the sum

∑

n∈N
ϕ(Xn, Zn)

is P -a.s. well defined (possibly infinite if ϕ is only assumed non-negative) and

E

[
∑

n∈N
ϕ(Xn, Zn)

]

=

∫

Rm

E [ϕ(x, Z)] ν(dx) ,

where Z is a K-valued random variable with distribution QZ .

The Laplace Functional

This functional plays for point processes a role analogous to that of the usual
Laplace transform for random vectors.

Definition 10.2.17 Let N be a point process on Rm. The Laplace functional
of N is the mapping LN associating with a non-negative measurable function
ϕ : Rm → R+ the non-negative real number

LN (ϕ) := E
[
e−N(ϕ)

]
.

Example 10.2.18: The Laplace Functional of a Poisson Process.

Anticipating a later result (Theorem 10.3.7 thereof), the Laplace functional of a
Poisson process on R

m with intensity measure ν is

LN (ϕ) = exp

{∫

Rm

(
e−ϕ(x) − 1

)
ν(dx)

}

.

Theorem 10.2.19 The Laplace functional of a locally finite random measure N
on E characterizes its distribution.

Proof. It suffices to show that the Laplace functional of a point process N charac-
terizes its finite-dimensional distributions. For this, just observe that for all K ≥ 1
and all disjoint measurable sets C1, . . . , CK in B(Rm), the Laplace transform of
the vector (N(C1), . . . , N(CK)), that is, the function

(t1, . . . , tK) ∈ R
K
+ �→ E

[
e−t1N(C1)−···−tKN(CK)

]
,

is of the form E
[
e−N(ϕ)

]
, where ϕ = t11C1 + · · ·+ tK1CK

. �
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Corollary 10.2.20 A point process N on R
m is stationary if and only if its

Laplace functional LN is such that

LN (ϕ) = LN (Saϕ)

for all non-negative functions ϕ from R
m to R and all a ∈ R

m, where (Saϕ)(t) :=
ϕ(t− a).

Example 10.2.21: A Stationary Grid, take 2. In order to prove the
stationarity of the shifted grid of Example 10.2.9, it suffices to show that for any
non-negative function ϕ from R

2 to R, the quantity

E
[
e
∑

n,m∈Z
ϕ(nT1+V1+α,nT2+V2+β)

]

is independent of α, β ∈ R. This quantity equals

∫ T1

0

{∫ T2

0

e
∑

n,m∈Z
ϕ(nT1+v1+α,nT2+v2+β) dv2

}

dv1 .

The conclusion follows from the fact that for any non-negative function ψ : R→ R,

∫ T

0

ψ(nT + u+ α) du =

∫ T

0

ψ(nT + u) du

for all α ∈ R, by the shift-invariance of the Lebesgue measure.

Theorem 10.2.22 The family Ni (i ∈ I) of point processes on Rm, where I is
an arbitrary index set, is an independent family if and only if for any finite subset
J ⊆ I, and any collection ϕi (i ∈ J) of non-negative measurable functions from
Rm to R,

E
[
e−

∑
i∈J Ni(ϕi)

]
=

∏

i∈J
E

[
e−Ni(ϕi)

]
. (10.7)

Proof. The sufficiency follows immediately from the definition of independence
for point processes. The necessity is left as an exercise. �

Example 10.2.23: The Laplace Functional of Thinned Point Pro-

cesses. Let N be a simple point process on Rm with point sequence {Xn}n∈N.
Let {Zn}n∈N be an iid sequence of independent marks of N , each Zn taking its
values in {0, 1}, with probability p ∈ (0, 1) for the value 1. The point process
Nthin,p defined by

Nthin,p(C) :=
∑

n∈N
1C(Xn)Zn
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is called the p-thinning of N . Each point of N is retained in Nthin,p with probability
p, independently of everything else. We compute the Laplace functional of the
thinned point process:

LNthin,p
(ϕ) = E

[

exp

{

−
∑

n∈N
ϕ(Xn)Zn

}]

= lim
k↑∞

E

[

exp

{

−
k∑

n=1

ϕ(Xn)Zn

}]

.

But

E

[

exp

{

−
k∑

n=1

ϕ(Xn)Zn

}]

= E

[
k∏

n=1

exp (−ϕ(Xn)Zn)

]

= E

[

E

[
k∏

n=1

exp (−ϕ(Xn)Zn) |X1, . . . , Xk

]]

= E

[
k∏

n=1

E [exp (−ϕ(Xn)Zn) |X1, . . . , Xk]

]

= E

[
k∏

n=1

{p exp(−ϕ(Xn)) + (1− p)}
]

= E

[

exp

(
k∑

n=1

log (p exp(−ϕ(Xn)) + (1− p))

)]

.

Therefore finally, after letting k ↑ ∞,

LNthin,p
(ϕ) = LN

(
− log

(
pe−ϕ(·) + 1− p

))
.

For future reference, we record the intermediary result obtained in the line
before the last one in the above calculation:

LNthin,p
(ϕ) := E

[

exp

{∫

Rm

log
(
1− p(1− e−ϕ(x))

)
N(dx)

}]

. (10.8)

10.3 Spatial Poisson Processes

Recall the definition given in Example 10.2.7.
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Definition 10.3.1 Let ν be a σ-finite measure on Rm. The point process N on
Rm is called a Poisson process on Rm with intensity measure ν if

(i) for all finite families of mutually disjoint sets C1, . . . , CK ∈ B(Rm), the
random variables N(C1), . . . , N(CK) are independent, and

(ii) for any set C ∈ B(Rm) such that ν(C) <∞,

P (N(C) = k) = e−ν(C) ν(C)k

k!
(k ≥ 0) .

If ν is of the form ν(C) =
∫
C
λ(x)dx for some non-negative measurable function

λ : Rm → R, the Poisson process N is said to admit the intensity function λ(x).
If in addition λ(x) ≡ λ, N is called a homogeneous Poisson process (hpp) on R

m

with intensity or rate λ.

We now construct the Poisson process. The basic result is the following:

Theorem 10.3.2 Let T be a Poisson random variable of mean θ. Let {Zn}n≥1 be
an iid sequence of random elements with values in Rm and common distribution
Q. Assume that T is independent of {Zn}n≥1. The point process N on Rm defined
by

N(C) =

T∑

n=1

1C(Zn) (C ∈ B(Rm))

is a Poisson process with intensity measure ν(·) := θ ×Q(·).
Proof. It suffices to show that for any finite family C1, . . . , CK of pairwise disjoint
measurable sets of Rm with finite ν-measure and all non-negative reals t1, . . . , tK ,

E[e−
∑K

j=1 tjN(Cj )] = ΠK
j=1 exp

{
ν(Cj)(e

−tj − 1)
}
.

We have

K∑

j=1

tjN(Cj) =
K∑

j=1

tj

(
T∑

n=1

1Cj
(Zn)

)

=
T∑

n=1

(
K∑

j=1

tj1Cj
(Zn)

)

=
T∑

n=1

Yn ,

where Yn =
∑K

j=1 tj1Cj
(Zn). By Theorem 3.2.22,

E[e−
∑T

n=1 Yn] = gT (E[e−Y1 ]) ,

where gT is the generating function of T . Here, since T is Poisson mean θ,

gT (z) = exp {θ(z − 1)} .
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The random variable Y1 takes the values t1, . . . , tK and 0 with the respective prob-
abilities Q(C1), . . . , Q(CK) and 1−

∑K
j=1Q(Cj). Therefore

E[e−Y1 ] =
K∑

j=1

e−tjQ(Cj) + 1−
K∑

j=1

Q(Cj) = 1 +
K∑

j=1

(
e−tj − 1

)
Q(Cj) ,

from which we obtain the announced result. �

The above is a special case of what is to be done, that is, to construct a Poisson
process on Rm with an intensity measure ν that is σ-finite (not just finite). Such
a measure can be decomposed as

ν(·) =
∞∑

j=1

θj ×Qj(·) ,

where the θj ’s are positive real numbers and the Qj ’s are probability distributions
on Rm. One can construct independent Poisson processes Nj on E with respective
intensity measures θjQj(·). The result then follows from the following:

Theorem 10.3.3 Let ν be a σ-finite measure on Rm of the form ν =
∑∞

i=1 νi,
where the νi’s (i ≥ 1) are σ-finite measures on Rm. Let Ni (i ≥ 1) be a family of
independent Poisson processes on E with respective intensity measures νi (i ≥ 1).
Then the point process

N =

∞∑

j=1

Nj

is a Poisson process with intensity measure ν.

Proof. For mutually disjoint measurable sets C1, . . . , CK of finite ν-measures,
and non-negative reals t1, . . . , tK ,

E
[
e−

∑K
�=1 t�N(C�)

]
= E

[
e−

∑K
�=1 t�(

∑∞
j=1 Nj(C�))

]

= E
[
e− limn↑∞

∑K
�=1 t�(

∑n
j=1 Nj(C�))

]

= lim
n↑∞

E
[
e−

∑K
�=1 t�(

∑n
j=1 Nj(C�))

]
,
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by dominated convergence. But

E
[
e−

∑K
�=1 t�(

∑n
j=1 Nj(C�))

]
= E

[
e−

∑n
j=1(

∑K
�=1 t�Nj(C�))

]

=

n∏

j=1

E
[
e−

∑K
�=1 t�Nj(C�)

]
=

n∏

j=1

K∏

�=1

e−t�Nj(C�)

=

n∏

j=1

K∏

�=1

exp
{
(e−t� − 1)νj(C�)

}

=
n∏

j=1

exp

{
K∑

�=1

(
e−t� − 1

)
νj(C�)

}

= exp

{
K∑

�=1

(
e−t� − 1

)
(

n∑

j=1

νj(C�))

)}

.

Letting n ↑ ∞ we obtain, by dominated convergence,

E
[
e−

∑K
�=1 t�N(C�)

]
= exp

{
K∑

�=1

(
e−t� − 1

)
ν(C�)

}

.

Therefore N(C1), . . . , N(CK) are independent Poisson random variables with
respective means ν(C1), . . . , ν(CK). �

Theorem 10.3.4 Let N be a Poisson process on R
m with intensity measure ν.

(a) If ν is locally finite, then N is locally finite.

(b) If ν is locally finite and non-atomic, then N is simple.

Proof. (a) If C is a bounded measurable set, it is of finite ν-measure, and therefore
E[N(C)] = ν(C) <∞, which implies that N(C) <∞, P -almost surely.

(b) It suffices to show this for a finite intensity measure ν(·) = θ(·)Q, where θ
is a positive real number and Q is a non-atomic probability measure on R

m, and
then use the construction of Theorem 10.3.2. In turn, it suffices to show that for
each n ≥ 1, P (Zi = Zj for some pair (i, j) (1 ≤ i < j ≤ n) |N(Rm) = n) = 0.
This is the case because for iid vectors Z1, . . . , Zn with a non-atomic probability
distribution, P (Zi = Zj for some pair (i, j) (1 ≤ i < j ≤ n)) = 0. �

Example 10.3.5: Thinned Poisson Process. If the initial point process is
a Poisson process with the locally integrable intensity measure ν,

LNthin,p
(ϕ) = LN (ψ) = e−

∫
Rm(e−ψ(x)−1)ν(dx) ,
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where ψ(x) := − log
(
pe−ϕ(x) + 1− p

)
. Therefore e−ψ(x) = pe−ϕ(x) + 1 − p =

p(e−ϕ(x) − 1) + 1 and finally

LNthin,p
(ϕ) = e−

∫
Rm(e−ϕ(x)−1)pν(dx) .

We therefore retrieve the standard result: p-thinning a Poisson process of intensity
measure ν(·) results in a Poisson process of intensity measure νp(·) = pν(·).

Doubly Stochastic Poisson Processes

Doubly stochastic Poisson processes are also called Cox processes.

Let {λ(x)}x∈Rm be a real-valued non-negative stochastic process such that al-
most surely ∫

C

λ(x) dx <∞ for all bounded C ∈ B(Rm) .

A point process is constructed as follows: first generate the stochastic intensity
process {λ(x)}x∈Rm and, having done so, generate a Poisson process N with this
intensity. The resulting point process is called a doubly stochastic Poisson process
(or Cox process) with the (stochastic) intensity function {λ(x)}x∈Rm.

In the case where
λ(x) = Λ (x ∈ Rm) ,

where Λ is a non-negative finite random variable, the corresponding Cox process
is also called a mixed Poisson process.

The Covariance Formula

Let N be a Poisson process on Rm, with intensity measure ν. Recall Campbell’s
theorem (Theorem 10.2.15). Let ϕ : Rm → R̄ be a ν-integrable measurable func-
tion. Then N(ϕ) is a well-defined integrable random variable, and

E

[∫

Rm

ϕ(x)N(dx)

]

=

∫

Rm

ϕ(x) ν(dx) . (10.9)

Theorem 10.3.6 Let N be as above. Let ϕ, ψ : E → C be two ν-integrable
measurable functions such that moreover |ϕ|2 and |ψ|2 are ν-integrable. Then N(ϕ)
and N(ψ) are well-defined square-integrable random variables and

cov

(∫

Rm

ϕ(x)N(dx),

∫

Rm

ψ(x)N(dx)

)

=

∫

Rm

ϕ(x)ψ(x)∗ ν(dx) . (10.10)
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Proof. It is enough to consider the case of real functions. First suppose that ϕ
and ψ are simple non-negative Borel functions. We can always assume that

ϕ :=
K∑

h=1

ah1Ch
, ψ :=

K∑

h=1

bh1Ch
,

where C1, . . . , CK are disjointmeasurable subsets ofRm. In particular, ϕ(x)ψ(x) =∑K
h=1 ahbh1Ch

(x). Using the facts that if i �= j, N(Ci) and N(Cj) are independent,
and that a Poisson random variable with mean θ has variance θ,

E[N(ϕ)N(ψ)] =
K∑

h,l=1

ahblE[N(Ch)N(Cl)]

=

K∑

h,l=1
h�=l

ahblE[N(Ch)N(Cl)] +

K∑

l=1

alblE[N(Cl)
2]

=

K∑

h,l=1
h�=l

ahblE[N(Ch)]E[N(Cl)] +

K∑

l=1

alblE[N(Cl)
2] ,

and therefore

E[N(ϕ)N(ψ)] =

K∑

h,l=1
h�=l

ahblν(Ch)ν(Cl) +

k∑

l=1

albl[ν(Cl) + ν(Cl)
2]

=
k∑

h,l=1

ahblν(Ch)ν(Cl) +
k∑

l=1

alblν(Cl)

= ν(ϕ)ν(ψ) + ν(ϕψ) .

Let now ϕ, ψ be non-negative and let {ϕn}n≥1, {ψn}n≥1 be non-decreasing se-
quences of simple non-negative functions, with respective limits ϕ and ψ. Letting
n go to ∞ in the equality

E[N(ϕn)N(ψn)] = ν(ϕnψn) + ν(ϕn)ν(ψn)

yields the announced results, by monotone convergence.

We have that for any ν-integrable function ϕ : E → C

E [N(ϕ)] = E
[
N(ϕ+)

]
− E

[
N(ϕ−)

]
= ν(ϕ+)− ν(ϕ−) = ν(ϕ) .

Also by the result in the non-negative case, E [N(|ϕ|)2] = ν(|ϕ|2) + ν(|ϕ|)2 < ∞.
Therefore, since |N(ϕ)| ≤ N(|ϕ|), N(ϕ) is a square-integrable variable, as well
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as N(ψ) for the same reasons. Therefore, by Schwarz’s inequality, N(ϕ)N(ψ) is
integrable. We have

E [N(ϕ)N(ψ)] = E
[(
N(ϕ+)−N(ϕ−)

) (
N(ψ+)−N(ψ−)

)]

= E
[
N(ϕ+)N(ψ+)

]
+ E

[
N(ϕ−)N(ψ−)

]

−E
[
N(ϕ+)N(ψ−)

]
− E

[
N(ϕ−)N(ψ+)

]

=
(
ν(ϕ+ψ+) + ν(ϕ+)ν(ψ+)

)
+

(
ν(ϕ−ψ−) + ν(ϕ−)ν(ψ−)

)

−
(
ν(ϕ+ψ−) + ν(ϕ+)ν(ψ−)

)
−

(
ν(ϕ−ψ+) + ν(ϕ−)ν(ψ+)

)

= ν(ϕψ) + ν(ϕ)ν(ψ) ,

from which (10.10) follows. �

The Exponential Formula

We now turn to the exponential formula for Poisson processes.

Theorem 10.3.7 Let N be a Poisson process on Rm with intensity measure ν.
Let ϕ : Rm → R be a non-negative measurable function. Then,

E[e−
∫
Rm ϕ(x)N(dx))] = exp

{∫

Rm

(e−ϕ(x) − 1) ν(dx)

}

and

E[e
∫
Rm ϕ(x)N(dx))] = exp

{∫

Rm

(eϕ(x) − 1) ν(dx)

}

.

Proof. We prove the first formula, the proof of the second being similar. Suppose
that ϕ is simple and non-negative: ϕ =

∑K
h=1 ah1Ch

where C1, . . . , CK are mutually
disjoint measurable subsets of Rm. Then

E[e−N(ϕ)] = E
[
e−

∑K
h=1 ahN(Ch))

]
= E

[
K∏

h=1

e−ahN(Ch)

]

=
K∏

h=1

E
[
e−ahN(Ch)

]
=

K∏

h=1

exp
{
(e−ah − 1)ν(Ch)

}

= exp

{
K∑

h=1

(e−ah − 1)ν(Ch)

}

= exp
{
ν(e−ϕ − 1)

}
.

The formula is therefore true for non-negative simple functions. Take now a non-
decreasing sequence {ϕn}n≥1 of such functions converging to ϕ. For all n ≥ 1,

E[e−N(ϕn)] = exp
{
ν(e−ϕn − 1)

}
.
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By monotone convergence, the limit as n tends to ∞ of N(ϕn) is N(ϕ). Conse-
quently, by dominated convergence, the limit of the left-hand side is E[e−N(ϕ)]. The
function gn = −(e−ϕn−1) is a non-negative function increasing to g = −(e−ϕ−1),
and therefore, by monotone convergence, ν(e−ϕn − 1) = −ν(gn) converges to
ν(e−ϕ − 1) = −ν(g), which in turn implies that the right-hand side of the last
displayed equality tends to exp {ν(e−ϕ − 1)} as n tends to ∞. �

The covariance formula can of course be obtained from the exponential formula
by differentiation of t �→ E

[
e−tN(ϕ)

]
.

Example 10.3.8: The Maximum Formula. Let N be a simple Poisson pro-
cess on Rm with intensity measure ν and let ϕ : E → R. Then

P (sup
n∈N

ϕ(Xn) ≤ a) = exp

{

−
∫

Rm

1{ϕ(x)>a}ν(dx)
}

.

A direct proof based on the construction of Poisson processes in Section 10.3 is
possible (Exercise 10.5.21). We take another path and first prove that

lim
θ↑∞

E
[
e−θ

∑
n∈N

1{ϕ(Xn)>a}
]
= P (sup

n∈N
ϕ(Xn) ≤ a) . (�)

Indeed, the sum
∑

n∈N 1{ϕ(Xn)>a} is strictly positive, except when supn∈N ϕ(Xn) ≤
a, in which case it is null. Therefore

lim
θ↑∞

e−θ
∑

n∈N
1{ϕ(Xn)>a} = 1{supn∈N ϕ(Xn)≤a} .

Taking expectations yields (�), by dominated convergence. Now, by Theorem
10.3.7,

E
[
e−θ

∑
n∈N

1{ϕ(Xn)>a}
]
= exp

{∫

Rm

(
e−θ1{ϕ(x)>a} − 1

)
ν(dx)

}

= exp

{∫

Rm

(
e−θ − 1

)
1{ϕ(x)>a}ν(dx)

}

and the limit of the latter quantity as θ ↑ ∞ is exp
{
−
∫
Rm 1{ϕ(x)>a}ν(dx)

}
.

Example 10.3.9: The Laplace Functional of a Poisson Process. Ac-
cording to Theorem 10.3.7, the Laplace functional of a Poisson process N on Rm

with intensity measure ν is

LN (ϕ) = exp
{
ν
(
e−ϕ − 1

)}
.
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Theorem 10.3.10 Let Ni (i ∈ J) be a finite collection of simple point processes
on Rm. If for any collection ϕi : E → R+ (i ∈ J) of non-negative measurable
functions,

E
[
e−

∑
i∈J Ni(ϕi)

]
=

∏

i∈J
exp

{∫

Rm

(
e−ϕi(x) − 1

)
νi(dx)

}

, (10.11)

where νi, i ∈ J, is a collection of σ-finite measures on Rm, then Ni, i ∈ J, is
a family of independent Poisson processes with respective intensity measures νi,
i ∈ J .

Proof. Taking all the ϕi’s identically null except the first one, we have

E
[
e−N1(ϕ1)

]
= exp

{∫

Rm

(
e−ϕ1(x) − 1

)
ν1(dx)

}

,

and therefore N1 is a Poisson process with intensity measure ν1. Similarly, for any
i ∈ J , Ni is a Poisson process with intensity measure νi. Independence follows
from Theorem 10.2.22. �

Marked Spatial Poisson Processes

Let

(α) N be a simple and locally finite process onRm, with point sequence {Xn}n∈N,
and

(β) {Zn}n∈N be a sequence of random elements taking their values in the mea-
surable space (K,K) := (Rd,B(Rd)) for some integer d ≥ 1.

The sequence {Xn, Zn}n∈N is a marked point process, with the interpretation that
Zn is the mark associated with the point Xn. N is the base point process of the
marked point process, and {Zn}n∈N is the associated sequence of marks. One also
calls N a simple and locally finite point process on Rm with marks {Zn}n∈N in K.
If moreover

(1) N is a Poisson process with intensity measure ν,

(2) {Zn}n∈N is an iid sequence, and

(3) {Zn}n∈N and N are independent,
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the corresponding marked point process is called a Poisson process on Rm with
independent iid marks . This model can be slightly generalized by allowing the
mark distribution to depend on the location of the marked point. More precisely,
we replace (2) and (3) by

(2’) {Zn}n∈N is, conditionally on N , an independent sequence,

(3’) given Xn, the random vector Zn is independent of Xk (k ∈ N, k �= n), and

(4’) for all n ∈ N and all L ∈ K,

P (Zn ∈ L |Xn) = Q(Xn, L) ,

where Q(·, ·) is a stochastic kernel from (Rm,B(Rm)) to (K,K), that is, Q is
a function from Rm×K to [0, 1] such that for all L ∈ K the map x �→ Q(x, L)
is measurable, and for all x ∈ Rm, Q(x, ·) is a probability measure on (K,K).

Theorem 10.3.11 Let {Xn, Zn}n∈N be as in (α) and (β) above, and define the

point process Ñ on Rm ×K by

Ñ(A) =
∑

n∈N
1A(Xn, Zn) (A ∈ B(Rm)⊗K) . (10.12)

If conditions (1), (2’), (3’), and (4’) above are satisfied, then Ñ is a simple Poisson
process with intensity measure ν̃ given by

ν̃(C × L) =

∫

C

Q(x, L) ν(dx) (C ∈ B(Rm) , L ∈ K) .

Proof. In view of Theorem 10.2.19, it suffices to show that the Laplace functional
of Ñ has the appropriate form, that is, for any non-negative measurable function
ϕ̃ : E ×K → R,

E
[
e−Ñ(ϕ̃)

]
= exp

{∫
Rm

∫
K

(
e−ϕ̃(t,z) − 1

)
ν̃(dt× dz)

}
.

By dominated convergence,

E
[
e−Ñ(ϕ̃)

]
= E

[
e−

∑
n∈N

ϕ̃(Xn,Zn)
]
= lim

L↑∞
E

[
e−

∑
n≤L ϕ̃(Xn,Zn)

]
.
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For the time being, fix a positive integer L. Then, taking into account assumptions
(2’) and (3’),

E
[
e−

∑
n≤L ϕ̃(Xn,Zn)

]
= E

[
∏

n≤L

e−ϕ̃(Xn,Zn)

]

= E

[

E

[
∏

n≤L

e−ϕ̃(Xn,Zn) |Xj, j ≤ L

]]

= E
[
e−

∑
n≤L ψ(Xn)

]
,

where ψ(x) := − log
∫
K
e−ϕ̃(x,z)Q(x, dz), a non-negative function. Letting L ↑ ∞,

we have, by dominated convergence,

E
[
e−Ñ(ϕ̃)

]
= E

[
e−

∑
n∈N

ψ(Xn)
]
= E

[
e−N(ψ)

]

= exp

{∫

Rm

(
e−ψ(x) − 1

)
ν(dx)

}

= exp

{∫

Rm

[∫

K

e−ϕ̃(x,z)Q(x, dz)− 1

]

ν(dx)

}

= exp

{∫

Rm

[∫

K

(
e−ϕ̃(x,z) − 1

)
Q(x, dz)

]

ν(dx)

}

= exp

{∫

Rm

∫

K

(
e−ϕ̃(x,z) − 1

)
ν̃(dx× dz)

}

.

�

Example 10.3.12: The M/GI/∞Model, take 1. The model of this example
is of interest in queueing theory and in the traffic analysis of communications
networks. We adopt the queueing interpretation. Let N be an hpp on R with
intensity λ, and {σn}n∈Z be a sequence of random vectors taking their values in
R+ with probability distribution Q. Assume moreover that {σn}n∈Z and N are
independent. The n-th event time ofN , Tn, is the arrival time of the n-th customer,
and σn is her service time request. Define the point process Ñ on R× R+ by

Ñ(C) =
∑

n∈Z
1C(Tn, σn)

for all C ∈ B(R) ⊗ B(R+). According to Theorem 10.3.11, Ñ is a simple Poisson
process with intensity measure

ν̃(dt× dz) = λdt×Q(dz) .
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In the M/GI/∞ model,2 a customer arriving at time Tn is immediately served,
and therefore departs from the “system” at time Tn + σn. The number X(t) of
customers present in the system at time t is therefore given by the formula

X(t) =
∑

n∈Z
1(−∞,t](Tn)1(t,∞)(Tn + σn) .

(The n-th customer is in the system at time t if and only if she arrived at time
Tn ≤ t and departed at time Tn + σn > t.)

Assume that the service times have finite expectation: E [σ1] < ∞. Then, for all
t ∈ R, X(t) is a Poisson random variable with mean λE [σ1].

Proof. Observe that

X(t) = Ñ(C(t)) ,

where C(t) := {(s, σ); s ≤ t, s + σ > t} ⊂ R × R+. In particular, X(t) is a
Poisson random variable with mean

ν̃(C(t)) =

∫

R

∫

R+

1{s+σ>t}1{s≤t}ν̃(ds× dσ)

=

∫

R

∫

R+

1{s+σ>t}1{s≤t}λ ds×Q(dσ)

=

∫

R

(∫

R+

1{s+σ>t}Q(dσ)

)

1{s≤t}λ ds

= λ

∫ t

−∞
Q((t− s,+∞)) ds

= λ

∫ ∞

0

Q((s,+∞)) ds = λ

∫ ∞

0

P (σ1 > s)ds = λE[σ1] .

�

It can be shown that the departure process D of departure times, defined by

D(C) :=
∑

n∈Z
1C(Tn + σn) ,

is an hpp of intensity λ (Exercise 10.5.16).

2 “∞” represents the number of servers. This model is sometimes called a “queueing” system,
although in reality there is no queueing, since customers are served immediately upon arrival
and without interruption. It is in fact a “pure delay” system.
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Formulas such as Campbell’s first formula and the Poisson exponential formula
are straightforwardly extended to marked point processes.

In the situation prevailing in Theorem 10.3.11, consider sums of the type

Ñ(ϕ̃) :=
∑

n∈N
ϕ̃(Xn, Zn) , (10.13)

for functions ϕ̃ : Rm×K → R. Note that, denoting by Z1(x) any random element
of K with the distribution Q(x, dz),

ν̃(ϕ̃) =

∫

Rm

∫

K

ϕ̃(x, z)Q(x, dz) ν(dx) =

∫

Rm

E [ϕ̃(x, Z1(x))] ν(dx) ,

whenever the quantities involved have a meaning. Using this observation, the for-
mulas obtained in the previous subsection can be applied in terms of marked point
processes. The corollaries below do not require proofs, since they are reformula-
tions of previous results, namely Theorem 10.3.6 and Theorem 10.3.7.

Let 0 < p < ∞. Recall that a measurable function ϕ̃ : E × K → R (resp.
→ C) is said to be in Lp

R
(ν̃) (resp. Lp

C(ν̃)) if

∫

Rm

∫

K

|ϕ̃(x, z)|p ν(dx)Q(x, dz) <∞ .

Corollary 10.3.13 Suppose that ϕ̃ ∈ L1
C(ν̃). Then the sum (10.13) is well de-

fined, and moreover

E

[
∑

n∈N
ϕ̃(Xn, Zn)

]

=

∫

Rm

E [ϕ̃(x, Z1(x))] ν(dx) .

Let ϕ̃, ψ̃ : R×E → C be two measurable functions in L1
C(ν̃) ∩ L2

C(ν̃). Then

cov

(
∑

n∈N
ϕ̃(Xn, Zn),

∑

n∈N
ψ̃(Xn, Zn)

)

=

∫

Rm

E
[
ϕ̃(x, Z1(x))ψ̃(x, Z1(x))

∗
]
ν(dx) .

Corollary 10.3.14 Let ϕ̃ be a non-negative function from Rm ×K to R. Then,

E
[
e−

∑
n∈N

ϕ̃(Xn,Zn)
]
= exp

{∫

Rm

E
[
e−ϕ̃(x,Z1(x)) − 1

]
ν(dx)

}

.
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10.4 Operations on Poisson Processes

The framework and the results concerning marked Poisson processes is especially
convenient to study the effects of various operations on Poisson processes, such as
thinning, coloring, transportation, translation and filtering.

Thinning and Coloring

Thinning is the operation of randomly erasing points of a Poisson process. It is
a particular case of the independent coloring operation whereby the points of a
Poisson process are independently colored with the result of obtaining independent
Poisson processes, each one corresponding to a different color.

Theorem 10.4.1 Consider the situation depicted in Theorem 10.3.11. Let I be
an arbitrary index set and let {Li}i∈I be a family of disjoint measurable sets of K.
Define for each i ∈ I the simple point process Ni on R

m by

Ni(C) =
∑

n∈N
1C(Xn)1Li

(Zn) .

Then the family Ni (i ∈ I) is an independent family of Poisson processes with
respective intensity measures νi (i ∈ I), where

νi(dx) = Q(x, Li) ν(dx) .

Proof. According to the definition of independence, it suffices to consider a finite
index set I. Define the simple point process Ñ on R

m ×K as in (10.12). Then Ñ
is a Poisson process with intensity measure ν̃(C×L) =

∫
C
Q(x, L)ν(dx). Defining

ϕ̃(x, z) =
∑

i∈I ϕi(x)1Li
(z), we have

∑
i∈I Ni(ϕi) = Ñ(ϕ̃). Therefore

E
[
e−

∑
i∈I Ni(ϕi)

]
= E

[
e−Ñ(ϕ̃)

]

= exp

{∫

Rm

∫

K

(
e−ϕ̃(x,z) − 1

)
ν̃(dx× dz)

}

= exp

{∫

Rm

∫

K

(
e−ϕ̃(x,z) − 1

)
Q(x, dz)ν(dx)

}

= exp

{∫

Rm

∫

K

(
e−

∑
i∈I ϕi(x)1Li

(z) − 1
)
Q(x, dz)ν(dx)

}

= exp

{∫

Rm

∫

K

∑

i∈I

(
e−ϕi(x) − 1

)
1Li

(z)Q(x, dz)ν(dx)

}
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= exp

{∫

Rm

∑

i∈I

(
e−ϕi(x) − 1

)
Q(x, Li)ν(dx)

}

=
∏

i∈I
exp

{∫

Rm

(
e−ϕi(x) − 1

)
Q(x, Li)ν(dx)

}

.

Therefore,

E
[
e−

∑
i∈I Ni(ϕi)

]
=

∏

i∈I
exp

{∫

Rm

(
e−(ϕi) − 1

)
νi(dx)

}

and the result follows from Theorem 10.3.10. �

The above theorem is indeed about thinning. For instance the point process N1

is obtained by thinning of N , each point x of which being saved with probability
Q(x, L1).

Example 10.4.2: Erasures. Let in this special case K = {0, 1} and

P (Zn = 1 |Xn = x) = p(x) .

We shall now define the point processes Np and N
p
on Rm by

Np(C) =
∑

n≥1

Zn1C(Xn) and N
p
(C) =

∑

n≥1

(1− Zn)1C(Xn) .

The interpretation is that N
p
is obtained from N by erasing points, a point of the

original point process N located at x being erased with probability p(x) indepen-
dently of everything else.

By Theorem 10.4.1,his point t process is a Poisson process with intensity mea-
sure

νp(dx) := p(x)ν(dx) .

Transportation

This is the operation of moving the points of a Poisson process.

More precisely, consider the situation depicted in Theorem 10.3.11. Form a
point process N∗ on K by associating to a point Xn ∈ R

m a point Zn ∈ K:

N∗(L) :=
∑

n∈N
1L(Zn) ,



410 CHAPTER 10. POISSON PROCESSES

where L ∈ B(Rm). We then say that N∗ is obtained by transporting N via the
stochastic kernel Q(x, ·).
Theorem 10.4.3 N∗ is a Poisson process on K with intensity measure ν∗ given
by

ν∗(L) =
∫

Rm

ν(dx)Q(x, L) .

Proof. Let ϕ∗ : K → R be a non-negative measurable function. We have

E
[
e−N∗(ϕ∗)] = E

[
e−

∑
n∈N

ϕ∗(Zn)
]

= exp

{∫

Rm

∫

K

(
e−ϕ∗(z) − 1

)
ν(dx)Q(x, dz)

}

= exp

{∫

K

(
e−ϕ∗(z) − 1

)
∫

Rm

ν(dx)Q(x, dz)

}

.

�

Example 10.4.4: Translation. Let N be a Poisson process on R
m with

intensity measure ν and let {Vn}n∈N be an iid sequence random vectors of Rm

with common distribution Q. Form the point process N∗ on R
m by translating

each point Xn of N by Vn. Formally,

N∗(C) =
∑

n∈N
1C(Xn + Vn).

We are in the situation of Theorem 10.4.3 with Zn = Xn + Vn. In particular,
Q(x,A) = Q(A− x). It follows that N∗ is a Poisson process on R

m with intensity
measure

ν∗(L) =
∫

Rm

Q(L− x) ν(dx) ,

the convolution of ν and Q.

Poisson Shot Noise

Let N be a simple and locally finite point process on R
m with point sequence

{Xn}n∈N and with marks {Zn}n∈N in the measurable space (K,K). Let h : Rm ×
K → C be a measurable function. The complex-valued spatial stochastic process
{X(y)}y∈Rm given by

X(y) :=
∑

n∈N
h(y −Xn, Zn) , (10.14)
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where the right-hand side is assumed well defined (for instance, when h takes real
non-negative values), is called a spatial shot noise with random impulse response.
If N is a simple and locally finite Poisson process on R

m with independent iid

marks {Zn}n∈N, {X(y)}y∈Rm is called a Poisson spatial shot noise with random
impulse response and independent iid marks.

The following result is a direct application of Theorems 10.3.6 and 10.3.11.

Theorem 10.4.5 Consider the above Poisson spatial shot noise with random im-
pulse response and independent iid marks. Suppose that for all y ∈ R

m,

∫

Rm

E [|h(y − x, Z1)|] ν(dx) <∞

and ∫

Rm

E
[
|h(y − x, Z1)|2

]
ν(dx) <∞ .

Then the complex-valued spatial stochastic process {X(y)}y∈Rm given by (10.14) is
well defined, and for any y, ξ ∈ R

m, we have

E [X(y)] =

∫

Rm

E [h(y − x, Z1)] ν(dx)

and

cov (X(y + ξ), X(y)) =

∫

Rm

E [h(y − x, Z1)h
∗(y + ξ − x, Z1)] ν(dt) .

In the case where the base point process N is an hpp with intensity λ, we find
that

E [X(y)] = λ

∫

Rm

E [h(x, Z1)] dx

and

cov (X(y + ξ), X(y)) = λ

∫

Rm

E [h(x, Z1)h
∗(ξ + x, Z1)] dx .

Observe that these quantities do not depend on y ∈ R
m. The process {X(y)}y∈Rm

is therefore a wide-sense stationary process (see Chapter 12 for a definition).

10.5 Exercises

Exercise 10.5.1. Backward and forward recurrence times

Let {Tn}n∈Z be the sequence of event times of an hpp on R with the intensity λ > 0.
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For fixed t ∈ R, define the backward and forward recurrence times respectively by

B(t) = inf {t− Tn ; Tn ≤ t}
F (t) = inf {Tn − t ; Tn > t}

What is the distribution of the vector (B(t), F (t))? Compute E[B(t) + F (t)].

Exercise 10.5.2. Poisson and multinomial

Let N be a homogeneous Poisson process on Rm with intensity λ. Let C1, . . . ,
CK be disjoint bounded measurable sets of Rm, and call C their union. Let n be
an integer. What is the conditional distribution of the vector (N(C1), . . . , N(CK))
given that N(C) = n?

Exercise 10.5.3. Poisson under the line

A. Let Ñ be an hpp on R
2 with intensity 1. Let λ : R → R+ be a non-negative

locally integrable function. Define a point process N on R as follows. The point
t ∈ N if and only if there exists a z ∈ R such that 0 ≤ z ≤ λ(t) and (t, z) ∈ Ñ .
Prove that N is a Poisson process on R with intensity function λ(t).

B. Let N be a Poisson process on R with intensity function λ(t). Denoting by Tn

the n-th point of N strictly to the right of the origin, prove that Tn is an absolutely
continuous random variable and give its probability density. Give an expression
for the joint density of (Tn, Sn+1).

Exercise 10.5.4. Poissonian disks

Let N be a homogeneous Poisson process on R
2, of intensity λ. Draw around each

point x ∈ N a closed disk of radius a. Let X (y) be the number of disks covering
y ∈ R

2.

1) Compute for y ∈ R
2, θ ∈ R+

E
[
e−θX(y)

]
;

2) Deduce from this result the probability distribution of X (y);

3) Give the average area inside the square [0, T ]× [0, T ] that is not covered by a
disk;

4) This area is delimited by a curve. Give its average length (excluding the parts
on the boundaries of [0, T ]× [0, T ]).

Exercise 10.5.5. Line of sight

Consider a Poisson N on R
2 with diffuse and locally finite mean measure ν. There

is a random shape centered around each of its points. Let the generic shape S
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be distributed according to some probability distribution QS. Now consider two
arbitrary points A, B. We say that A and B can communicate if the line connecting
A and B does not intersect any of the existing shapes around the points of the
point process (for all n ≥ 1, the “existing shape around” Xn ∈ N is Xn +Sn, that
is Sn translated by Xn, where Sn is distributed according to QS). We assume that
{Sn}n≥1 is an iid sequence independent of N . What is the probability that A and
B can successfully communicate? Keep the calculations as general as possible, and
then, give the explicit result when N is an hpp of intensity λ and when the shape
is (1): a circle of fixed radius a; (2) a circle of random radius uniformly distributed
on [0, 1].

Exercise 10.5.6. Cellphones

Consider two independent Poisson processes N1 and N2 on R
m with respective

mean measures ν1 and ν2. Assume that νi(R
m) < ∞ , i = 1, 2. Compute the

average number of elements in N1 that see no point of N2 with distance a.

Exercise 10.5.7. Mutually singular

Let N be a point process on R defined on a measurable space (Ω,F). Let P1 and
P2 be two probability measures on (Ω,F) that make of N an hpp of intensity
λ1 > 0 and λ2 > 0 respectively.

Show that if λ1 �= λ2, P1 and P2 are mutually singular, that is to say, that there
exists a set A ∈ F such that P1(A) = 1 and P2(A) = 0.

Exercise 10.5.8. Coupled hpps

Let for i = 1, 2, λi : R+ → R be a non-negative measurable function, locally
integrable. Suppose that

∫ ∞

0

|λ1(t)− λ2(t)| dt <∞ .

Show that one can construct on the same probability space (Ω,F , P ) two Poisson
processes on R+, with respective intensity functions λ1(t) and λ2(t), with the
following coupling property:

There exists an almost surely finite random variable τ such that

P (N1(C ∩ [τ,∞)) = N2(C ∩ [τ,∞)), for all C ∈ B(R+)) = 1 .

What is the probability distribution of the last point Z of either N1 or N2 that is
not a shared point?
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Exercise 10.5.9. Gaussian limit of a shot noise

Consider the shot noise process {X(t)}t∈R given by

X(t) =
∑

n∈Z
h(t− Tn) ,

where {Tn}n∈Z is an hpp on R with intensity λ = nλ0 and h(t) = 1√
n
h0(t) for

some integrable function h0(t) such that
∫
R
h0(t) dt = 0. Show that the finite

distributions of {X(t)}t∈R converge as n ↑ ∞ to the finite distributions of a cen-
tered Gaussian process {Y (t)}t∈R with covariance function E [Y (t+ τ)Y (t)] =
λ0

∫
R
h0(s+ τ)h0(t) dt.

Exercise 10.5.10. Prove Theorem 10.2.22

Prove Theorem 10.2.22.

Exercise 10.5.11. Dropping humanitarian parcels

Parcels are dropped on the plane R
2. The impact times {Tn}n∈Z form a simple

Poisson process of mean measure ν, the impact locations {Zn}n∈Z are iid and
independent of the impact times, and their common probability distribution is Q.
A “shape” moves on R

2 in order to collect the parcels as they impact on it. More
precisely, there is for each time t ∈ R a measurable subset S(t) ∈ B(R2) and the
point process N̂ counting the parcels falling on the shape is defined by

N̂(C) =
∑

n∈Z
1C(Tn)1S(t)(Zn) .

Prove that N̂ is a Poisson process and give its mean measure.

Exercise 10.5.12. Poissonian disc clutters

Let N be a homogeneous Poisson process on R
2, of intensity λ. Draw around each

point x ∈ N a closed disk of radius a. Let X (y) be the number of disks covering
y ∈ R

2.

1) Compute for y ∈ R
2, θ ∈ R+

E
[
e−θX(y)

]
;

2) Deduce from this result the probability distribution of X (y);

3) Give the average surface inside the square [0, T ]× [0, T ] that is not covered by
a disk;

4) This surface is delimited by a curve. Give its average length (excluding the
parts on the boundaries of [0, T ]× [0, T ]).
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Exercise 10.5.13. Random points uniformly distributed on [0, 1]
Construct a point process N on R in the following way. First draw a finite integer-
valued random variable T , and then an iid sequence {Un}n≥1 uniformly distributed
on [0, 1], independent of T . Define αk := P (T = k) (k ≥ 0). Finally, let N =∑T

k=1 εUk
, where εa is the Dirac measure at a, and where

∑0
k=1 εUk

is the null
measure by convention. What is the Laplace functional of N? What about the
case where T is a Poisson variable of mean θ?

Exercise 10.5.14. Laplace functional of a contracted point process

Let N be a simple point process on R
m with point sequence {Xn}n∈N and let

α > 0. Define the “contracted”3 point process Nc,α defined by its sequence of
points {αXn}n∈N. Prove that its Laplace functional is

LNc,α(ϕ) = E

[

exp

(

−
∑

n∈Z
ϕ(αXn)

)]

= LN (ϕ(α ·)) .

Exercise 10.5.15. Distribution of the maximum interference

Let N be a homogeneous Poisson process on R
m of positive intensity λ and with

point sequence {Xn}n≥1. Let {Zn}n≥1 be an iid sequence of real non-negative
random variables with common distribution Q, and independent of N . Compute
the distribution of the random variable

max
n≥1

Zne
−β||Xn|| (β > 0) .

(The title of the exercise refers to mobile communications: Zn is the noise intensity
generated at point Xn, and e−β||Xn|| is an attenuation factor for a receiver located
at 0.)

Exercise 10.5.16. The M/GI/∞ model, take 2

In Example 10.3.12,

(i) prove that the departure process is a homogeneous Poisson process with
intensity λ,

(ii) compute cov(X(t), X(t+ τ)) for all t, τ ∈ R, τ ≥ 0, and

(iii) interpret the process {X(t)}t∈R as a shot noise in order to obtain the results
of Example 10.3.12, and of (i) and (ii), from the general results of Section
10.3 (subsection Marked Spatial Poisson Processes, page 403).

3 Of course, if α > 1, it is in fact dilated...
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Exercise 10.5.17. Lifting

Let N be a Poisson process on R with (locally integrable) intensity function
λ : R → R. Let {Tn}n∈Z be its sequence of points, and let {Un}n∈Z be an iid

sequence of random variables uniformly distributed on [0, 1]. Let N̂ be an hpp

on R × R+, with intensity 1, independent of N and of {Un}n∈Z. Define a point

process Ñ on R× R+ by

Ñ(C) :=
∑

n∈Z
1C((Tn, Unλ(Tn))) + N̂(C ∩ H̄) ,

where

H := {(t, z) ∈ R× R+ ; 0 ≤ z ≤ λ(t)} .

Show that Ñ is an hpp on R× R+ with intensity 1.

Exercise 10.5.18. Water Bombs

You are initially located at the origin (0, 0) of the plane at which is centered a disk
D of radius R. You run in a straight line from the origin to the “shelter point”
(0, R) at constant speed v. The reason why you are running is that water bombs
are being dropped on the disk D. The times of impact form an hpp of intensity
λ, and each impact is located independently of all the rest, uniformly on the disk.
You will get wet if the impact of the bomb is within distance a of your position at
the time of impact. Once arrived at the shelter point (0, R), the bombing stops.
What are your chances of not getting wet? Given that you did get wet, what is
the expected time that you remained dry?

Exercise 10.5.19. Smoking Pot at Saint Mary-Jane’s

Smoking pot was recently banned on the Saint Mary-Jane’s college campus. The
authorities noticed that the violators of the ban make use of a restroom in a
secluded wing of the campus. They consequently devised a strategy to send “cops”
to capture the culprits. Assume that the schoolboys’ arrival times in the restroom
premises form a Poisson process with independent iid marks. Let τn denote the
n-th arrival time of a schoolboy in the pot sanctuary (the restrooms) and let σn be
the time he spends smoking. Cops also form a Poisson process with independent
iid marks. Denote the k-th arrival time of a cop on the potential crime scene
by Tk and by Sk the lingering time there of the corresponding representative of
the college authority. The probability distribution of σ is Qs and that of S is
Qc. Assuming the point processes of students and of the cops to be hpps with
respective intensities λs > 0 and λc > 0, compute the average number of students
caught per unit of time.
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Exercise 10.5.20. Laplace functional of a homogeneous Cox process

Let N be a Cox process on R
m with constant intensity process, that is, ν(dx) :=

Λ�m(dx), where �m is the Lebesgue measure on R
m and Λ is a non-negative ran-

dom variable with Laplace transform LΛ(t) := E
[
e−tΛ

]
. Show that its Laplace

functional is

LN(ϕ) = LΛ

(∫

Rm

(1− e−ϕ(x)) dx

)

.

Exercise 10.5.21. The maximum formula

Give a direct proof of the result of Example 10.3.8 based on the construction of
Section 10.3.

Exercise 10.5.22. Likelihood ratio

Let N be an hpp on R of intensity 1, and let Λ be a non-negative random variable,
both defined on the same probability space (Ω,F , P ). Let T > 0 be a fixed real
number. Define

L(T ) = ΛN(T ) exp(−(Λ− 1)T ).

(1) Show that E[L(T )] = 1

(2) Define a probability Q on (Ω,F) by Q(A) = E[L(T )1A]. Show that under Q,
N restricted to the interval [0, T ] is a Cox process with intensity λ(t) = Λ.

(3) Show that for t ∈ [0, T ],

EQ[Λ|FN
t ] =

ϕ(N(t) + 1, t)

ϕ(N(t), t)

where

ϕ(n, t) =

∫

R+

λne−(λ−1)t dF (λ) ,

is the cdf of Λ.



Chapter 11

Brownian Motion

Brownian motion owes its name to the botanist Robert Brown who observed the
chaotic motion of pollen grains in a liquid. From the mathematical point of view,
it received attention from Albert Einstein and Louis Bachelier. The latter was
motivated by his interest in finance, finding that the model could serve to describe
the fluctuations of the stock market, and nowadays, its role in mathematical fi-
nance is well established. Brownian motion is also called the Wiener process, after
Norbert Wiener, who introduced it in the theory of stochastic systems driven by
white noise, a notion that we shall discuss in the next chapter.

11.1 Continuous-time Stochastic Processes

Some generalities on continuous stochastic processes are necessary before address-
ing the central topic of this chapter.

Definition 11.1.1 A stochastic process (or random process) is a family {X(t)}t∈T
of random variables taking their values in some measurable space (E, E) and de-
fined on the same probability space (Ω,F , P ).

(The spaces E of interest in this chapter are Rm (m ≥ 1), C, Z and N.)

It is called a real (resp., complex) stochastic process if it takes real (resp.,
complex) values, a continuous-time stochastic process when the index set T is R
or R+, and a discrete-time stochastic process when it is N or Z. When the index
set is N or Z, we also use the notation n instead of t for the time index, and write
Xn instead of X(t).

For each ω ∈ Ω, the function t �→ X(t, ω) is called a trajectory (more precisely,
the ω-trajectory). This is why a stochastic process is sometimes called a random
function.
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Example 11.1.2: Random sinusoid. Let A be some real non-negative random
variable, let ν0 ∈ R be a positive constant and let Φ be a random variable with
values in [0, 2π]. The formula

X(t) = A sin(2πν0t + Φ)

defines a stochastic process. For each sample ω ∈ Ω, the function t �→ X(t, ω) is a
sinusoid with frequency ν0, random amplitude A(ω) and random phase Φ(ω).

One way of describing the probabilistic behavior of a stochastic process is by
means of its finite-dimensional distribution.

Definition 11.1.3 The finite-dimensional (fidi) distribution of a stochastic pro-
cess {X(t)}t∈T is the collection of probability distributions of the random vectors

(X(t1), . . . , X(tk)) (k ≥ 1, t1, . . . , tk ∈ T) .

Definition 11.1.4 A stochastic process {X(t)}t∈R is said to be stationary iff for
all k ≥ 1 and all t1, . . . , tk ∈ R the probability distribution of the random vector

(X(t1 + τ), . . . , X(tk + τ))

is independent of τ .

Definition 11.1.5 A complex stochastic process {X(t)}t∈R is said to have in-
dependent increments if for all n ≥ 2 and for all mutually disjoint intervals
(a1, b1],. . . , (an, bn] of R, the random variables

X(b1)−X(a1), . . . , X(bn)−X(an)

are independent.

It is sometimes useful to view a stochastic process as a mappingX : T×Ω→ E,
defined by (t, ω) �→ X(t, ω).

Definition 11.1.6 The stochastic process {X(t)}t∈R is said to be measurable iff
the mapping from R × Ω into E defined by (t, ω) �→ X(t, ω) is measurable with
respect to B(R)⊗ F and E .
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In particular, by the Fubini–Tonelli theorem (Theorem 4.4.7), for any ω ∈ Ω
the mapping t �→ X(t, ω) is measurable with respect to the σ-fields B(R) and E .
Also, if E = R and if X(t) is non-negative, one can define the Lebesgue integral

∫

R

X(t, ω) dt

for each ω ∈ Ω, and also apply Tonelli’s theorem to obtain

E

[∫

R

X(t)dt

]

=

∫

R

E [X(t)] dt .

By Fubini’s theorem, the last equality also holds true for measurable stochastic
processes of arbitrary sign such that

∫
R
E [|X(t)|] dt <∞.

The next theorem tells us that the stochastic processes occurring in applications
are measurable.

Theorem 11.1.7 A right-continuous (resp., left-continuous) stochastic process
{X(t)}t∈R taking its values in Rm is measurable.

Proof. For all n ≥ 0 and all t ≥ 0, let

Xn(t) :=

n(2n−1)∑

k=−n(2n−1)

X((k + 1)/2−n) 1{[k2−n,(k+1)2−n)}(t) .

The stochastic process {Xn(t)}t∈R is measurable. If t �→ X(t, ω) is right-continuous,
X(t, ω) is the limit of Xn(t, ω) for all (t, ω) ∈ R×Ω, and therefore (t, ω) �→ X(t, ω)
is measurable. The case of a left-continuous process is treated in a similar manner.

�

Second-order Stochastic Processes

Definition 11.1.8 A complex stochastic process {X(t)}t∈T satisfying the condi-
tion

E[|X(t)|2] <∞ (t ∈ T)

is called a second-order stochastic process.

In particular, the mean function m : T → C and the covariance function
Γ : T×T→ C are well defined by

m(t) := E[X(t)]
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and
Γ(t, s) := cov (X(t), X(s)) = E[X(t)X(s)∗]−m(t)m(s)∗ .

When the mean function is the null function, the stochastic process is said to be
centered.

Theorem 11.1.9 Let {X(t)}t∈T be a second-order complex stochastic process with
mean function m and covariance function Γ. Then, for all s, t ∈ T,

E [|X(t)−m(t)|] ≤ Γ(t, t)
1
2

and
|Γ(t, s)| ≤ Γ(t, t)

1
2Γ(s, s)

1
2 .

Proof. Apply Schwarz’s inequality

E [|X| |Y |] ≤ E
[
|X|2

] 1
2 E

[
|Y |2

] 1
2

with X := X(t) − m(t) and Y := 1 for the first inequality, and with X :=
X(t)−m(t) and Y := X(s)−m(s) for the second one. �

Theorem 11.1.10 Let {X(t)}t∈R be a second-order complex-valued measurable
stochastic process with mean function m and covariance function Γ. Let f : R→ C
be a measurable function such that

∫

R

|f(t)|E [|X(t)|] dt <∞ . (11.1)

Then the integral
∫
R
f(t)X(t) dt is almost surely well defined and

E

[∫

R

f(t)X(t) dt

]

=

∫

R

f(t)m(t) dt .

Suppose in addition that f satisfies the condition

∫

R

|f(t)||Γ(t, t)| 12 dt <∞ (11.2)

and let g : R→ C be a function with the same properties as f . Then
∫
R
f(t)X(t) dt

is square-integrable and

cov

(∫

R

f(t)X(t) dt,

∫

R

g(t)X(t) dt

)

=

∫

R

∫

R

f(t)g∗(s)Γ(t, s) dt ds .

Remark: Since E[|X(t)|] ≤ E[1 + |X(t)|2] = 1 + Γ(t, t), condition (11.1) is
satisfied as soon as f is an integrable function such that

∫
R
|f(t)|Γ(t, t) dt <∞.
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Proof. By Tonelli’s theorem

E

[∫

R

|f(t)||X(t)| dt
]

=

∫

R

|f(t)|E [|X(t)|] dt <∞

and therefore
∫
R
|f(t)||X(t)| dt <∞ almost surely, so that almost surely the inte-

gral
∫
R
f(t)X(t) dt is well defined and finite. Also (Fubini)

E

[∫

R

f(t)X(t) dt

]

=

∫

R

E [f(t)X(t)] dt =

∫

R

f(t)E [X(t)] dt.

Suppose now (without loss of generality) that the process is centered. By Tonelli’s
theorem

E

[(∫

R

|f(t)||X(t)| dt
)(∫

R

|g(t)||X(t)| dt
)]

=

∫

R

∫

R

|f(t)||g(s)|E [|X(t)||X(s)|] dt ds .

But (Schwarz’s inequality) E [|X(t)||X(s)|] ≤ Γ(t, t)| 12Γ(s, s)| 12 , and therefore the
right-hand side of the last equality is bounded by

(∫

R

|f(t)|Γ(t, t)| 12 dt
)(∫

R

|g(s)|Γ(s, s)| 12 ds
)

<∞ .

One may therefore apply Fubini’s theorem to obtain

E

[(∫

R

f(t)X(t) dt

)(∫

R

g(t)X(t) dt

)]

=

∫

R

∫

R

f(t)g∗(s)E [X(t)X(s)] dt ds .

�

Obviously, for a stationary second-order complex stochastic process {X(t)}t∈R,
for all s, t ∈ R,

m(t) ≡ m, (11.3)

where m ∈ C and
Γ(t, s) = C(t− s) (11.4)

for some function C : R → C, also called the covariance function of the process.
The complex number m is called the mean of the process.

Definition 11.1.11 A second-order stochastic process {X(t)}t∈R is said to have
orthogonal increments if for all n ≥ 2 and for all mutually disjoint intervals
(a1, b1],. . . , (an, bn] of R, the random variables

X(b1)−X(a1), . . . , X(bn)−X(an)

are mutually orthogonal.
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Clearly, a centered second-order stochastic process with independent incre-
ments has a fortiori orthogonal increments.

Wide-sense Stationarity

Let T = R, R+, Z or N, and let {X(t)}t∈T be a second-order stochastic process.

Definition 11.1.12 If conditions (11.3) and (11.4) are satisfied for all s, t ∈ T,
the complex second-order stochastic process {X(t)}t∈T is called wide-sense station-
ary. In continuous time (T = R or R+) this appellation is reserved for wide-sense
stationary processes that have in addition a continuous covariance function.

There exist stochastic processes that are wide-sense stationary but not strictly
stationary (Exercise 11.6.1).

Note that C(0) = σ2
X , the variance of any of the random variables X(t).

As an immediate corollary of Theorem 11.1.9, we have:

Corollary 11.1.13 Let {X(t)}t∈T be a wide-sense stationary stochastic process
with mean m and covariance function C. Then

E [|X(t)−m|] ≤ C(0)
1
2

and
|C(τ)| ≤ C(0) .

Recall the definition of the correlation coefficient ρ between two non-trivial real
square-integrable random variables X and Y with respective means mX and mY

and respective variances σ2
X and σ2

Y :

ρ :=
cov (X, Y )

σXσY
.

The variable aX + b that minimizes the function F (a, b) := E
[
(Y − aX − b)2

]
is

Ŷ = mY +
cov (X, Y )

σ2
X

(X −mX)

and moreover

E

[(
Ŷ − Y

)2
]

=
(
1− ρ2

)
σ2
Y

(Theorem 3.3.9). This random variable is called the best linear-quadratic estimate
of Y given X, or the linear regression of Y on X.
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For a wss stochastic process with covariance function C, the function

ρ(τ) =
C(τ)

C(0)

is called the autocorrelation function. It is in fact, for any t, the correlation coeffi-
cient between X(t) and X(t+ τ). In particular, the best linear-quadratic estimate
of X(t+ τ) given X(t) is

X̂(t+ τ |t) := m+ ρ(τ)(X(t)−m) .

The estimation error is then, according to the above,

E

[(
X̂(t+ τ |t)−X(t + τ)

)2
]

= σ2
X

(
1− ρ(τ)2

)
.

In the continuous time case, this shows that if the support of the covariance
function is concentrated around τ = 0, the process tends to be “unpredictable”.
We shall come back to this when we discuss the notion of white noise.

Example 11.1.14: Harmonic process. Let {Uk}k≥1 be square-integrable
centered random variables that are mutually uncorrelated. Let {Φk}k≥1 be com-
pletely random phases, that is, real random variables uniformly distributed on
[0, 2π]. Suppose moreover that the U variables are independent of the Φ vari-
ables. Finally, suppose that

∑∞
k=1E[|Uk|2] < ∞. For all t ∈ R, the series on the

right-hand side of

X(t) =

∞∑

k=1

Uk cos(2πνkt+ Φk) ,

where the νk’s are arbitrary real numbers (frequencies), is convergent in the quadratic
mean and defines a centered wss stochastic process with covariance function

C(τ) =

∞∑

k=1

1

2
E[|Uk|2] cos(2πνkτ) .

(This stochastic process is called a harmonic process.)

We first do the proof for a finite number N of terms, that is with X(t) =∑N
k=1 Uk cos(2πνkt + Φk). We then have

E[X(t)] = E

[
N∑

k=1

Uk cos(2πνkt+ Φk)

]

=
N∑

k=1

E[Uk cos(2πνkt + Φk)] =
N∑

k=1

E[Uk]E[cos(2πνkt+ Φk)] = 0
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and

E[X(t + τ)X(t)∗] = E

[
N∑

k=1

N∑

�=1

UkU
∗
� cos(2πνk(t + τ) + Φk) cos(2πν�t + Φ�)

]

=

N∑

k=1

N∑

�=1

E[UkU
∗
� cos(2πνk(t+ τ) + Φk) cos(2πν�t+ Φ�)]

=
N∑

k=1

N∑

�=1

E[UkU
∗
� ]E[cos(2πνk(t + τ) + Φk) cos(2πν�t + Φ�)]

=

N∑

k=1

E[|Uk|2]E[cos(2πνk(t+ τ) + Φk) cos(2πνkt+ Φk)]

=
N∑

k=1

E[|Uk|2]E
[
1

2
(cos(2πνk(2t+ τ) + 2Φk) + cos(2πνkτ))

]

.

The announced result then follows since

E[cos(2πνk(2t+ τ) + 2Φk)] =
1

2π

∫ 2π

0

cos(2πνk(2t+ τ) + 2ϕ) dϕ = 0 .

The extension of this result to an infinite sum of complex exponentials is a straight-
forward consequence of the result of Example 6.4.8.

11.2 Gaussian Processes

Brownian motion is a particular type of Gaussian process, which we now introduce.

Gaussian processes are important for at least three reasons:

(1) because of their mathematical tractability due in particular to the stability
of the Gaussianity of stochastic processes: (α) by linear transformations
(Theorem 3.4.5) and (β) by limits in the quadratic mean (see Theorem 7.4.5),

(2) because of their ubiquity due to the many forms of the central limit theorem
(Theorem 7.2.1), and

(3) because the most important Gaussian process, Brownian motion, plays a
fundamental role in the noise theory in communications and in mathematical
finance.



11.2. GAUSSIAN PROCESSES 427

Let T be an arbitrary index.

Definition 11.2.1 The real-valued stochastic process {X(t)}t∈T is called a Gaus-
sian process if for all n ≥ 1 and for all t1, . . . , tn ∈ T, the random vector
(X(t1), . . . , X(tn)) is Gaussian.

In particular, its characteristic function is given by the formula

E

[

exp

{

i

n∑

j=1

ujX(tj)

}]

= exp

{

i

n∑

j=1

ujm(tj)−
1

2

n∑

j=1

n∑

k=1

ujukΓ(tj, tk)

}

,

(11.5)
where u1, . . . , un ∈ R and where m and Γ are the mean and covariance functions
respectively.

Theorem 11.2.2 For a Gaussian process with index set T = R or Z to be sta-
tionary, it is necessary and sufficient that m(t) = m and Γ(t, s) = C(t− s) for all
s, t ∈ T.

Proof. The necessity is obvious, whereas the sufficiency is proven by replacing
the t�’s in (11.5) by t� + h to obtain the characteristic function of

(X(t1 + h), . . . , X(tn + h))

namely,

exp

{

i

n∑

j=1

ujm−
1

2

n∑

j=1

n∑

k=1

ujukC(tj − tk)

}

,

and then observing that this quantity is independent of h. �

Example 11.2.3: Clipped Gaussian process, I. Let {X(t)}t∈R be a centered
stationary Gaussian process with covariance function CX(τ). Define the clipped
(or hard-limited) process

Y (t) = sign X(t) ,

with the convention sign X(t) = 0 if X(t) = 0 (note however that this occurs
with null probability if CX(0) = σ2

X > 0, which is henceforth assumed). Clearly
this stochastic process is centered. Moreover, it is unchanged when {X(t)}t∈R is
multiplied by a positive constant. In particular, we may assume that the variance
CX(0) equals 1, so that the covariance matrix of the vector (X(0), X(τ))T is

Γ(τ) =

(
1 ρX(τ)

ρX(τ) 1

)

,
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where ρX(τ) is the correlation coefficient of X(0) and X(τ). We assume that Γ(τ)
is invertible, that is, |ρX(τ)| < 1.

We then have the Van Vleck–Middleton formula:

CY (τ) =
2

π
sin−1

(
CX(τ)

CX(0)

)

.

Proof. Since for each t the random variable Y (t) takes the values ±1 and 0,
the latter with null probability, we can express the autocovariance function of the
clipped process as

CY (τ) = 2{P (X(0) > 0, X(τ) > 0) − P (X(0) > 0, X(τ) < 0)} ,

where it was noted that

P (X(0) < 0, X(τ) < 0) = P (X(0) > 0, X(τ) > 0)

and that
P (X(0) < 0, X(τ) > 0) = P (X(0) > 0, X(τ) < 0) .

The result then follows from that of Exercise 3.6.33 with ρ = ρX(τ). �

The Wiener Process

Definition 11.2.4 By definition, a standard Brownian motion, or standard Wiener
process, is a continuous centered Gaussian process {W (t)}t∈R with independent
increments, such that W (0) = 0, and such that for any interval [a, b] ⊂ R, the
variance of W (b)−W (a) is equal to b− a.

In particular, the vector (W (t1), . . . ,W (tk)) with 0 < t1 < . . . < tk admits the
probability density function

1

(
√
2π)k

√
t1 (t2 − t1) · · · (tk − tk−1)

e
− 1

2

(
x21
t1

+
(x1+x2)

2

t2−t1
+···+ (x1+···+xk)2

tk−tk−1

)

.

Note for future reference that for s, t ∈ R+,

E[W (t)W (s)] = t ∧ s . (11.6)
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In fact, for 0 ≤ s ≤ t,

E[W (t)W (s)] = E[(W (t)−W (s))W (s)] + E[W (s)2]

= E[(W (t)−W (s))(W (s)−W (0))] + E[(W (s)−W (0))2]

= 0 + s = t ∧ s .

We now give the description of theWiener process as limit of a properly rescaled
(both in time and amplitude) symmetric random walk. Let {Xn}n≥0 be a sym-
metric random walk on Z starting from 0, of the form

Xn =

n∑

k=1

Zk ,

where {Zn}n≥1 is an iid sequence of {−1,+1}-valued random variables with
P (Zn = −1) = P (Zn = 1) = 1

2
. Construct a continuous time stochastic pro-

cess {X(t)}t≥0 from this sequence as follows:

X(t) = δX�t/Δ� = δ

�t/Δ�∑

k=1

Zk .

(Recall the notation 'a( = sup{k ∈ N; k ≤ a}.) Since the Zk’s are centered and of
variance 1, we have that

E [X(t)] = 0 , Var (X(t)) = (δ)2 × 't/Δ( .

Let Δ and δ tend to 0 in such a way that the limit is not trivial. With re-
spect to this goal, the choice Δ = δ is not satisfactory since E [X(t)] = 0 and
limt↓0 Var (X(t)) = 0, leading to a null process. If we take δ2 = Δ, we have
E [X(t)] = 0 and limΔ↓0Var (X(t)) = t. We show that in this case, for all
t1, . . . , tm inR+ forming an increasing sequence, the limit distribution of the vector
(X(t1), . . . , X(tm)) is that corresponding to a Wiener process.

We consider the case m = 1, the general case being an easy adaptation. Let
t1 = t. In this case, since by the central limit theorem

∑n
k=1 Zk√
n

→ N (0, 1)

we have, by Slutsky’s lemma (Theorem 7.1.6),

X(t)√
t

=
∑�t/Δ

k=1 Zk√
� t
Δ
�

√
� t
Δ
�√

t
Δ

→ N (0, 1) .

Therefore, at the limit (in distribution), X(t) is a centered Gaussian variable with
variance

√
t.
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Pathology

Definition 11.2.4 of the Wiener process does not say much about the qualitative
behavior of this process. Although the trajectories of the Brownian motion are,
almost surely, continuous functions, their behavior is rather chaotic. First of all
we observe that, for fixed t0 > 0, the random variable

W (t0 + h)−W (t0)

h
∼ N

(
0, h−1

)

and therefore it cannot converge in distribution as h ↓ 0 since the limit of its
characteristic function is the null function, which is not a characteristic function.
In particular, it does not converge almost surely to any random variable. Therefore,
for any t0 > 0,

P (t �→W (t) is not differentiable at t0) = 1 .

But the situation is even more dramatic:

Theorem 11.2.5 Almost all the paths of the Wiener process are nowhere differ-
entiable.

We shall not prove this result here,1 but state one of its consequences.

Corollary 11.2.6 Almost all the paths of the Wiener process are of unbounded
variation on finite intervals.

Proof. This is because any function of bounded variation is differentiable almost
everywhere (with respect to Lebesgue measure).2 �

The Brownian Bridge

This is the process {X(t)}t∈[0,1] obtained from the standard Brownian motion
{W (t)}t∈[0,1] by

X(t) := W (t)− tW (1) (t ∈ [0, 1]) .

It is a Gaussian process since for all t1, . . . , tk ∈ [0, 1], (X(t1), . . . , X(tk)) is Gaus-
sian vector, being a linear function of the Gaussian vector (W (t1), . . . ,W (tk),W (1)).
In particular, since it is a centered Gaussian process, its distribution is entirely
characterized by its covariance function and a simple calculation (Exercise 11.6.5)
gives

cov (X(t), X(s)) = s(1− t) (0 ≤ s ≤ t ≤ 1) .

1 See for instance [7], Theorem 11.2.8.
2 See for instance Corollary 6, section 5.2 of [15].
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In particular, X(0) = X(1) = 0.

The Brownian bridge {X(t)}t∈[0,1] is distributionwise a Wiener process
{W (t)}t∈[0,1] conditioned by W (1) = 0. This statement is problematic in that
the conditioning event has a null probability. However, it is true “at the limit”:

Theorem 11.2.7 Let f : Rk → R be a bounded and continuous function. Then,
for any 0 ≤ t1 < t2 < · · · < tk ≤ 1,

lim
ε↓0

E [f(W (t1), . . . ,W (tk)) | |W (1)| ≤ ε] = E [f(X(t1), . . . , X(tk))] .

Proof.

E [f(W (t1), . . . ,W (tk)) | |W (1)| ≤ ε]

= E [f(X(t1) + t1W (1), . . . , X(tk) + tkW (1)) | |W (1)| ≤ ε]

=
E
[
f(X(t1) + t1W (1), . . . , X(tk) + tkW (1))1|W (1)|≤ε

]

P (|W (1)| ≤ ε)
.

In view of the independence of {X(t)}t∈[0,1] and W (1) (Exercise 11.6.7), this last
quantity equals

∫ +ε

−ε
e−

1
2
x2
E [f(X(t1) + t1x, . . . , X(tk) + tkx)] dx

∫ +ε

−ε
e−

1
2
x2
dx

,

which tends to E [f(X(t1), . . . , X(tk))] as ε ↓ 0. �

Gauss–Markov Processes

We now investigate another type of Gaussian processes, those having the additional
property of being Markovian. We first give the general definition of a Markov
process:

Definition 11.2.8 Let T beR+ or N. A real-valued stochastic process {X(t)}t∈Tis
called a Markov process if for f : R → R that is non-negative or such that
E [|f(X(t))|] <∞ (t ∈ T),

E [f(X(t))|X(s), X(t1), . . . , X(tk)] = E [f(X(t))|X(s)] (11.7)

for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ s ≤ t.

Of course this definition fits the special case of Markov chains.
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Example 11.2.9: Wiener is Gauss–Markov. The Wiener process is a
Gauss–Markov process (Exercise 11.6.9).

Example 11.2.10: A discrete-time Gauss–Markov process. A discrete-
time stochastic process {Xn}n≥0 defined by Xn+1 = aXn + εn+1 (n ≥ 0), where
{εn}n≥1 is an iid centered Gaussian sequence andX0 is a Gaussian random variable
independent of this sequence, is a Gauss–Markov process (Exercise 11.6.9).

The stochastic processes that are Gaussian and Markovian are in fact Wiener
processes with a different time scale. The proof starts with a simple lemma.

Lemma 11.2.11 Let {X(t)}t≥0 be a centered Gaussian process with covariance
function Γ such that Γ(t, t) > 0 for all t ≥ 0. If in addition it is Markov, then for
all t > s > t0 ≥ 0,

Γ(t, t0) =
Γ(t, s)Γ(s, t0)

Γ(s, s)
. (11.8)

Proof. By the Gaussian property, the linear regression of X(t) on X(t0) is equal
to the conditional expectation of X(t) given X(t0):

E [X(t)|X(t0)] =
Γ(t, t0)

Γ(t0, t0)
X(t0) . (�)

Using this remark and the Markov property,

E [X(t)|X(t0)] = E [E [X(t)|X(t0), X(s)] |X(t0)]

= E [E [X(t)|X(s)] |X(t0)] = E

[
Γ(t, s)

Γ(s, s)
X(s)|X(t0)

]

=
Γ(t, s)

Γ(s, s)
E [X(s)|X(t0)] =

Γ(t, s)

Γ(s, s)

Γ(s, t0)

Γ(t0, t0)
X(t0) .

Comparing with the right-hand side of (�), and since P (X(t0) �= 0) > 0 (in fact
= 1), we obtain (11.8). �

Theorem 11.2.12 Let {X(t)}t≥0 be a centered Gaussian process with continuous
covariance function Γ such that Γ(t, t) > 0 for all t ≥ 0. It is Markov if and only
there exist functions f, g : R+ → R+ such that for all s, t ≥ 0

Γ(t, s) = f(t ∨ s)g(t ∧ s) . (11.9)
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Proof.

Necessity. Suppose the process is Gauss–Markov. Let

ρ(t, s) :=
Γ(t, s)

(Γ(t, t))
1
2 (Γ(s, s))

1
2

denote its autocorrelation function. By Eqn. (11.8), for all t > s > t0 ≥ 0,

ρ(t, t0) = ρ(t, s)ρ(s, t0) . (��)

We show that ρ(t, s) > 0 for all t, s ≥ 0. Indeed, assuming s > t and using (��)
repeatedly, for all n ≥ 1,

ρ(t, s) =

n−1∏

k=0

ρ

(

t+
k(s− t)

n
, t+

(k + 1)(s− t)

n

)

,

and therefore, using the facts that ρ(u, u) = 1 for all u and that ρ is uniformly
continuous on bounded rectangles, we can choose n large enough as to make all
the elements in the above product positive. Therefore, we may divide by ρ(t, t0)
and write (��) as

ρ(t, s) =
ρ(t, t0)

ρ(s, t0)
or

Γ(t, s) = ρ(t, t0)Γ(t, t)
1
2 × Γ(s, s)

1
2

ρ(s, t0)
,

from which we obtain the desired conclusion (here s = t ∧ s and t = t ∨ s).

Sufficiency. Suppose that the process is Gaussian and that (11.8) holds true.
Assume t > s. Therefore Γ(t, s) = f(t)g(s). By Schwarz’s inequality, Γ(t, s) ≤
Γ(t, t)

1
2 (Γ(s, s))

1
2 or, equivalently, f(t)g(s) ≤ (f(t)g(t)f(s)g(s))

1
2 . Therefore, the

function

τ(t) =
g(t)

f(t)

is monotone non-decreasing. In particular, the centered Gaussian process

Y (t) = f(t)W (τ(t))

is Markov (because the Wiener process is Markov). Its covariance function is

E [Y (t)Y (s)] = f(t)f(s)E [W (τ(t))W (τ(s))]

= f(t)f(s)(τ(t) ∧ τ(s))

= f(t)f(s)τ(s) = f(t)g(s) .
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Since it has the same covariance as {X(t)}t≥0 and since both processes are centered
and Gaussian, they have the same distribution. In particular {X(t)}t≥0 is Markov.

�

Theorem 11.2.13 A wss Gaussian stochastic process {X(t)}t≥0 is Markov if and
only if its covariance function has the form

C(τ) = C(0)e−λ|τ |

for some λ ≥ 0.

Proof. If {X(t)}t≥0 is wss, Γ(t, s) = C(t− s) and therefore, with ρ(t) := C(t)
C(0)

,

ρ(t + s) = ρ(t)ρ(s) ,

which implies that ρ(t) = ceαt for some α ∈ R. Here c = 1 since ρ(0) = 1. Now

ρ(1) = C(1)
C(0)

= eα. But (Schwarz’s inequality) C(1) ≤ 1 so that α ≤ 0. �

11.3 The Wiener–Doob Integral

The Doob stochastic integral, a special case of which is the Wiener stochastic
integral ∫

R

f(t) dW (t) (�)

that is defined for a certain class of measurable functions f , is not of the usual
types. For instance, it cannot be defined pathwise as a Stieltjes–Lebesgue integral
since the trajectories of the Brownian motion are of unbounded variation (Corol-
lary 11.2.6). Nor can this integral be interpreted as

∫
R
f(t)Ẇ (t) dt (where the dot

denotes derivation), since the Brownian motion sample paths are not differentiable
(Theorem 11.2.5).

The integral in (�) will therefore be defined in a radically different way. In
fact, the Doob stochastic integral will be defined more generally, with respect to
a process with centered and uncorrelated increments.

Definition 11.3.1 Let {Z(t)}t∈R be a complex stochastic process such that for all
intervals [t1, t2] ⊂ R the increments Z(t2)−Z(t1) are in L2

C(P ), centered and such
that for some locally finite measure μ on (R,B(R)):

E[(Z(t2)− Z(t1))(Z(t4)− Z(t3))
∗] = μ((t1, t2] ∩ (t3, t4])
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for all [t1, t2] ⊂ R and all [t3, t4] ⊂ R. Such stochastic process {Z(t)}t∈R is
called a stochastic process with centered and uncorrelated increments, and μ is its
structural measure.

In particular, if the intervals (t1, t2] and (t3, t4] are disjoint, Z(t2)− Z(t1) and
Z(t4)− Z(t3) are orthogonal elements of the Hilbert space L2

C(P ).

Example 11.3.2: Wiener process. The Wiener process {W (t)}t∈R is a pro-
cess with centered and uncorrelated increments whose structural measure is the
Lebesgue measure.

Gaussian Subspaces

Before proceeding to the construction of the Wiener–Doob integral, the definition
of a Gaussian subspace is necessary.

Definition 11.3.3 Let {Xi}i∈I be an arbitrary collection of complex (resp., real)
random variables in L2

C(P ) (resp., L2
R(P )). The Hilbert subspace of L2

C(P ) (resp.,
L2
R(P )) consisting of the closure of the vector space of finite linear complex (resp.,

real) combinations of elements of {Xi}i∈I is called the complex (resp., real) Hilbert
subspace generated by {Xi}i∈I , and is denoted by HC(Xi, i ∈ I) (resp.,
HR(Xi, i ∈ I)).

More explicitly, in the complex case for instance: the Hilbert subspace
HC(Xi, i ∈ I) ⊆ L2

C(P ) consists of all complex square-integrable random vari-
ables that are limits in the quadratic mean (that is, limits in L2

C(P )) of some
sequence of finite complex linear combinations of elements in the set {Xi}i∈I .

Definition 11.3.4 A collection {Xi}i∈I of real random variables defined on the
same probability space, where I is an arbitrary index set, is called a Gaussian
family if for all finite set of indices i1, . . . , ik ∈ I, the random vector (Xi1 , . . . , Xik)
is Gaussian. A Hilbert subspace G of the real Hilbert space L2

R(P ) is called a
Gaussian (Hilbert) subspace if it is a Gaussian family.

Theorem 11.3.5 Let {Xi}i∈I be a Gaussian family of random variables of L2
R(P ).

Then the Hilbert subspace HR(Xi, i ∈ I) generated by {Xi}i∈I is a Gaussian sub-
space of L2

R(P ).

Proof. By definition, the Hilbert subspace HR(Xi, i ∈ I) consists of all the
random variables in L2

R(P ) that are limits in the quadratic mean of finite linear
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combinations of elements of the family {Xi}i∈I . The result follows from that in
Example 7.4.5. �

Construction of the Wiener–Doob Integral

This integral is defined for all integrands f ∈ L2
C(μ) in the following manner.

First, we define it for all f ∈ L, the vector subspace of L2
C(μ) formed by the finite

complex linear combinations of interval indicator functions

f(t) =
N∑

i=1

αi1(ai,bi](t) .

For such functions, by definition,

∫

R

f(t) dZ(t) :=
N∑

i=1

αi(Z(bi)− Z(ai)) .

Observe that this random variable belongs to the Hilbert subspace HC(Z) of L
2
C
(P )

generated by {Z(t)}t∈R. One easily verifies that the linear mapping

ϕ : f ∈ L �→
∫

R

f(t) dZ(t) ∈ L2
C(P )

is an isometry, that is,

∫

R

|f(t)|2 μ(dt) = E

[∣
∣
∣
∣

∫

R

f(t) dZ(t)

∣
∣
∣
∣

2
]

.

Since L is a dense subset of L2
C(μ)

3, ϕ can be uniquely extended to an isometric
linear mapping of L2

C(μ) into HC(Z) (Theorem A.0.6). We continue to call this
extension ϕ and then define, for all f ∈ L2

C(μ), the Doob integral of f with respect
to {Z(t)}t∈R by ∫

R

f(t) dZ(t) := ϕ(f) .

The fact that ϕ is an isometry is expressed by the Doob isometry formula

E

[(∫

R

f(t) dZ(t)

)(∫

R

g(t) dZ(t)

)∗]
=

∫

R

f(t)g∗(t)μ(dt) , (11.10)

3 The proof is not obvious. See for instance Theorem 9.4 of Théorie de l’intégration, M.
Biane and G. Pagès, Vuibert, Paris, 2004.
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where f and g are in L2
C(μ). Note also that for all f ∈ L2

C(μ):

E

[∫

R

f(t) dZ(t)

]

= 0 , (11.11)

since the Doob integral is the limit in L2
C(μ) of random variables of the type∑N

i=1 αi(Z(bi)− Z(ai)) that have mean 0 (use the continuity of the inner product
in L2

C(P )).

A Formula of Integration by Parts

Theorem 11.3.6 Let {W (t)}t∈R+ be a standard Wiener process and denote by
HR(W ) the Gaussian real Hilbert space that it generates. The Wiener integral
Y =

∫
R+

f(t) dW (t), where f ∈ L2
R(R+), is characterized by the following two

properties:

(a) Y ∈ HR(W );

(b) E [YW (s)] =
∫ s

0
f(t) dt for all s ≥ 0.

Proof. Necessity: We have already noted that, by construction,
∫
R+

f(t) dW (t) ∈
HR(W ). As for (b), this is just the isometry formula

E

[∫

R+

f(t) dW (t)

∫

R+

1{s≤t} dW (t)

]

=

∫ s

0

f(t) dt .

Sufficiency: Since Y −
∫ t

0
f(s) dW (s) is in HR(W ), it suffices to show that this

random variable is orthogonal to the generators W (s), s ∈ R+, of HR(W ) and
therefore is the null element of HR(W ), and therefore Y =

∫ t

0
f(s) dW (s), P -a.s.

But, by (b) and, again, by the isometry formula,

E

[(

Y −
∫

R+

f(u) dW (u)

)

W (s)

]

=

∫ s

0

f(t) dt−
∫ s

0

f(t) dt = 0 .

�

Theorem 11.3.7 Let {W (t)}t∈R be a standard Wiener process. Let T be a posi-
tive real number and let f : [0, T ]→ R be a continuously differentiable function. In

particular f ∈ L2
R([0, T ]) and therefore the integral

∫ T

0
f(t) dW (t) is well defined.

Then: ∫ T

0

f(t) dW (t) +

∫ T

0

f ′(t)W (t) dt = f(T )W (T ) .
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Proof. By Theorem 11.3.6, it suffices to prove that for all s ∈ [0, T ],

E

[(

f(T )W (T )−
∫ T

0

f ′(t)W (t) dt

)

W (s)

]

=

∫ s

0

f(t) dt ,

which, using the equality E [W (a)W (b)] = min(a, b), reduces to

f(T )s−E

[(∫ T

0

f ′(t)W (t) dt

)

W (s)

]

=

∫ s

0

f(t)dt .

By Fubini:

E

[(∫ T

0

f ′(t)W (t) dt

)

W (s)

]

=

∫ T

0

f ′(t)E [W (t)W (s)] dt

=

∫ T

0

f ′(t)min(t, s) dt .

We therefore have to check that

f(T )s−
∫ s

0

f ′(t)t dt− s

∫ T

s

f ′(t) dt =
∫ s

0

f(t)dt ,

or

f(T )s−
∫ s

0

f ′(t)t dt− s(f(T )− f(s)) =

∫ s

0

f(t)dt .

But this is

−
∫ s

0

f ′(t)t dt+ sf(s) =

∫ s

0

f(t)dt ,

which follows by integration by parts. �

11.4 Two Applications

Langevin’s Equation

Definition 11.4.1 Let {W (t)}t∈R be a standard Wiener process, and let for all
t ∈ R

X(t) = (2α)
1
2

∫ t

−∞
e−α(t−s) σ dW (s) ,

where α > 0 and σ > 0. The process {X(t)}t∈R defined in this way is called the
Ornstein–Uhlenbeck process.
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Since for all t ∈ R, X(t) belongs to HR(W ), it is a Gaussian process (Theorem
11.3.5). It is centered, with covariance function

Γ(t, s) = e−α|t−s| ,

as follows directly from the isometry formula (11.10).

Definition 11.4.2 The Langevin equation is, by definition, the equation

dV (t) + αV (t) dt = σ dW (t)

to be interpreted as

V (t)− V (0) + α

∫ t

0

V (s) ds = σW (t) .

Theorem 11.4.3 The unique solution of the Langevin equation with initial value
V (0) is

V (t) = e−αtV (0) +

∫ t

0

e−α(t−s)σ dW (s) .

In particular, with the choice V (0) =
∫ 0

−∞ eαs dW (s),

V (t) =

∫ t

−∞
e−α(t−s)σ dW (s)

is the Ornstein–Uhlenbeck process.

Proof. Using the integration by parts formula of Theorem 11.3.7, the Langevin
equation is found to be equivalent to

V (t) = e−αtV (0) + σW (t)−
∫ t

0

αe−α(t−s)σW (s) ds . (�)

By the (classical) formula of integration by parts,

e−αu

∫ u

0

e+αsσW (s) ds = −
∫ u

0

e−αt

(∫ t

0

e+αsσW (s) ds

)

dt+ σ

∫ u

0

W (t) dt .

Therefore, integrating both sides of (�) from 0 to u

α

∫ u

0

V (t) dt = (1− e−αu)V (0) +

∫ u

0

αe−α(u−s)σW (s) ds
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and finally:

V (u)− V (0) + α

∫ u

0

V (t) dt

= V (u)− e−αuV (0) +

∫ u

0

αe−α(u−s)σW (s) ds = σW (u) .

We now prove unicity. Let V ′ be another solution with the same initial value.
With U := V − V ′, we therefore have

U(t) = α

∫ t

0

U(s) ds ,

whose unique solution is the null function, by Gronwall’s lemma:

Lemma 11.4.4 Let x : R+ → R be a positive locally integrable real function such
that

x(t) ≤ a+ b

∫ t

0

x(s) (�)

for some a ≥ 0 and b > 0. Then

x(t) ≤ aebt .

�

Proof. Multiplying (�) by e−bt, we have

e−btx(t) ≤ ae−bt + be−bt

∫ t

0

x(s) ds

or, equivalently

ae−bt ≥ e−btx(t)− be−bt

∫ t

0

x(s) ds

=
d

dt
e−bt

∫ t

0

x(s) ds .

Integrating this inequality:

a

b
(1− e−bt) ≥ e−bt

∫ t

0

x(s) ds .

Substituting this into (�):

x(t) ≤ a+ be−bt a

b
(1− e−bt) = aebt .

�
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The Cameron–Martin Formula

This result is of interest in communications and detection theory. One will recog-
nize the likelihood ratio associated with the hypothesis “signal plus white Gaussian
noise” against the hypothesis “white Gaussian noise only”.

Theorem 11.4.5 Let {X(t)}t≥0 be, with respect to probability P , a Wiener process
with variance σ2 and let γ : R→ R be in L2

R
(�). For any T ∈ R+, the formula

dQ

dP
= e

1
σ2{

∫ T
0 γ(t)dX(t)− 1

2

∫ T
0 γ2(t)dt} (11.12)

defines a probability measure Q on (Ω,F) with respect to which

X(t)−
∫ t

0

γ(s) ds

is, on the interval [0, T ], a Wiener process with variance σ2.

The proof of Theorem 11.4.5 is based on the following preliminary result.

Lemma 11.4.6 Let {X(t)}t≥0 be a Wiener process with variance σ2 and let ϕ :
R→ R be in L2

R
(�). Then, for any T ∈ R+,

E
[
e
∫ T
0 ϕ(t)dX(t)

]
= e

1
2
σ2

∫ T
0 ϕ2(t)dt . (11.13)

Proof. First consider the case

ϕ(t) =
N∑

k=1

αk1(ak ,bk](t) , (11.14)

where αk ∈ R and the intervals (ak, bk] are disjoint. For this special case, formula
(11.13) reduces to

E
[
e
∑N

k=1 αk(X(bk)−X(ak))
]
= e

1
2
σ2

∑N
k=1 α

2
k(bk−ak) ,

and therefore follows directly from the independence of the increments of a Wiener
process and from the Gaussian property of these increments, in particular, the
formula giving the Laplace transform of the centered Gaussian variableX(b)−X(a)
with variance σ2(b− a):

E
[
eα(X(b)−X(a))

]
= e

1
2
σ2α2(b−a) .
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Let now {ϕn}n≥1 be a sequence of functions of type (11.14) converging in L2
R
(�)

to ϕ (in particular, limn↑∞
∫ T

0
ϕ2
n(t)dt =

∫ T

0
ϕ2(t)dt). Therefore,

lim
n↑∞

∫ T

0

ϕn(t)dX(t) =

∫ T

0

ϕ(t)dX(t),

where the latter convergence is in L2
R
(P ). This convergence can be assumed to

take place almost surely by taking if necessary a subsequence. From the equality

E
[
e
∫ T
0 ϕn(t)dX(t)

]
= eσ

2
∫ T
0 ϕ2

n(t)dt

we can then deduce (11.13), at least if the sequence of random variables in the
left-hand side is uniformly integrable. This is the case because the quantity

E

[∣
∣
∣e

∫ T
0

ϕn(t)dX(t)
∣
∣
∣
2
]

= E
[
e2

∫ T
0

ϕn(t)dX(t)
]
= e2σ

2
∫ T
0

ϕ2
n(t)dt

is uniformly bounded, and therefore the uniform integrability claim follows from
Theorem 6.5.5, with G(t) = t2. �

We may now turn to the proof of Theorem 11.4.5.

Proof. The fact that (11.12) properly defines a probability Q, that is, that the
expectation of the right-hand side of (11.12) equals 1, follows from Lemma 11.4.6
with ϕ(t) = 1

σ2 γ(t).

Letting

Y (t) := X(t)−
∫ t

0

γ(s)ds ,

we have to prove that this centered stochastic process is Gaussian. To do this, we
must show that

EQ

[
e
∑N

k=1 αk(Y (bk)−Y (ak))
]
= e

1
2
σ2

∑N
k=1 α

2
k(bk−ak) ,

where αk ∈ R and the intervals (ak, bk] ⊆ [0, T ] are disjoint, that is, letting ψ(t) =∑N
k=1 αk1(ak ,bk](t),

EQ

[
e
∫ T
0 ψ(t)dY (t)

]
= e

1
2
σ2

∫ T
0 ψ2(t)dt ,

or equivalently,

EP

[
dQ

dP
e
∫ T
0 ψ(t)(dX(t)−γ(t)dt)

]

= e
1
2
σ2

∫ T
0 ψ2(t)dt ,
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that is,

EP

[
e

1
σ2{

∫ T
0 γ(t)dX(t)− 1

2

∫ T
0 γ2(t)dt}e

∫ T
0 ψ(t)(dX(t)−γ(t)dt)

]
= e

1
2
σ2

∫ T
0 ψ2(t)dt .

Simplifying:

EP

[

e
∫ T
0 (ψ(t)+

1
σ2 γ(t))dX(t)−∫ T

0 (γ(t)ψ(t))dt− 1
2

∫ T
0

γ2(t)

σ2 dt

]

= e
1
2
σ2

∫ T
0 ψ2(t)dt ,

and using (11.13) with ϕ(t) = ψ(t) + 1
σ2 γ(t), the left-hand side is equal to

EP

[

e
1
2
σ2

∫ T
0 (ψ(t)+

1
σ2 γ(t))

2
dt−∫ T

0
(γ(t)ψ(t))dt− 1

2

∫ T
0

γ2(t)

σ2 dt

]

.

The proof is completed since

1

2
σ2

∫ T

0

(

ψ(t) +
1

σ2
γ(t)

)2

dt−
∫ T

0

(γ(t)ψ(t)) dt− 1

2

∫ T

0

γ2(t)

σ2

=
1

2
σ2

∫ T

0

ψ2(t)dt .

�

11.5 Fractal Brownian Motion

The Wiener process {W (t)}t≥0 has the following property. If c is a positive con-

stant, the process {Wc(t)}t≥0 := {c− 1
2W (ct)}t≥0 is also a Wiener process. It is

indeed a centered Gaussian process with independent increments, null at the time
origin, and for 0 < a < b,

E
[
|Wc(b)−Wc(a)|2

]
= c−1E

[
|W (cb)−W (ca)|2

]
= c−1(cb− ca) = b− a .

This is a particular instance of a self-similar stochastic process.

Definition 11.5.1 A real-valued stochastic process {Y (t)}t≥0 is called self-similar
with (Hurst) self-similarity parameter H if for any c > 0,

{Y (t)}t≥0
D∼ {c−HY (ct)}t≥0 ,

where the symbol
D∼ means “have the same distribution”, or “have the same finite-

dimensional distribution”, depending on the context.
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The Wiener process is therefore self-similar with similarity parameter H = 1
2
.

It follows from the definition that Y (t)
D∼ tHY (1), and therefore, if P (Y (1) �=

0) > 0:

If H < 0, Y (t)→ 0 in distribution as t→∞ and Y (t)→∞ in distribution as
t→ 0.

If H > 0, Y (t) → ∞ in distribution as t → 0 and Y (t) → 0 in distribution as
t→∞.

If H = 0, Y (t) has a distribution independent of t.

In particular, when H �= 0, a self-similar process cannot be stationary (strictly
or in the wide sense).

We shall be interested in self-similar processes that have stationary increments.

Theorem 11.5.2 Let {Y (t)}t≥0 be a non-negative self-similar stochastic process
with stationary increments and self-similarity parameter H > 0 (in particular,
Y (0) = 0). Its covariance function is given by

Γ(s, t) := cov (Y (s), Y (t)) =
1

2
σ2

[
t2H − |t− s|2H + s2H

]
,

where σ2 = E [(Y (t+ 1)− Y (t))2] = E [Y (1)2].

Proof. Assume without loss of generality that the process is centered. Let 0 ≤
s ≤ t. Then

E
[
(Y (t)− Y (s))2

]
= E

[
(Y (t− s)− Y (0))2

]

= E
[
(Y (t− s))2

]
= σ2(t− s)2H

and

2E [Y (t)Y (s)] = E
[
Y (t)2

]
+ E

[
Y (s)2

]
− E

[
(Y (t)− Y (s))2

]
,

hence the result. �

The fractal Brownian motion is a Gaussian process that in a sense generalizes
the Wiener process.

Definition 11.5.3 A fractal Brownian motion on R+ with Hurst parameter H ∈
(0, 1) is a centered Gaussian process {BH(t)}t≥0 with continuous paths such that
BH(0) = 0, and with covariance function

E[BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (11.15)
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We shall prove the existence of the fractal Brownian motion by constructing it
as a Wiener integral. More precisely, define for 0 < H < 1, wH(t, s) := 0 for t ≤ s,

wH(t, s) := (t− s)H− 1
2 for 0 ≤ s ≤ t

and

wH(t, s) := (t− s)H− 1
2 − (−s)H− 1

2 for s < 0.

Observe that for any c > 0

wH(ct, s) = cH− 1
2wH(t, sc

−1).

Define

BH(t) :=

∫

R

wH(t, s) dW (s) .

The Wiener integral of the right-hand side is, more explicitly,

A− B :=

∫ t

0

(t− s)H− 1
2 dW (s) −

∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dW (s). (11.16)

It is well defined and with the change of variable u = c−1s it becomes

cH− 1
2

∫

R

wH(t, u) dW (cu) .

Using the self-similarity of the Brownian motion, the process defined by the last
display has the same distribution as the process defined by

cH− 1
2 c

1
2

∫

R

wH(t, u) dW (u).

Therefore {BH(t)}t≥0 is self-similar with similarity parameter H .

It is tempting to rewrite (11.16) as Z(t)− Z(0), where

Z(t) =

∫ t

−∞
(t− s)H− 1

2 dW (s).

However this last integral is not well defined as a Doob integral since for all H > 0,
the function s→ (t− s)H− 1

21{s≤t} is not in L2
R
(R).
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11.6 Exercises

Exercise 11.6.1. Wide-sense stationary, but not stationary

Give a simple example of a discrete-time stochastic process that is wide-sense
stationary, but not strictly stationary. Do the same for a continuous-time wide-
sense stationary process.

Exercise 11.6.2. Close relatives of the Brownian motion

Let {W (t)}t≥0 be a standard Brownian motion. What can you say about the
process {X(t)}t∈[0,1], where:

A. X(t) = tW
(
1
t

)
with X(0) := 0? (You will admit continuity of the process at

time 0.)

B. X(t) = W (1)−W (1− t)?

Exercise 11.6.3. Squared Brownian motion

1. Show that for a Brownian motion {W (t)}t≥0,

E
[
|W (t)−W (s)|4

]
= 3 |t− s|2 .

2. Let {X(t)}t∈R be a centered wide-sense stationary Gaussian process with covari-
ance function CX . Compute the probability that X(t1) > X(t2) where t1, t2 ∈ R

are fixed times.

3. Give the mean function and the covariance function of the process {X(t)2}t∈R.

Exercise 11.6.4. Continuity of the covariance function

Prove that for the covariance function of a complex wide-sense stationary process
{X(t)}t≥0 to be continuous, it suffices that it be continuous at the origin, and that
this is in turn equivalent to continuity in the quadratic mean of the stochastic
process, that is, for all R,

lim
h→0

E
[
|X(t+ h)−X(t)|2

]
= 0 .

Show that in fact, the covariance function is then uniformly continuous on R.

Exercise 11.6.5. A basic formula

Let {W (t)}t≥0 be a standard Wiener process. Prove that for s, t ∈ R+,

E[W (t)W (s)] = t ∧ s .

Let {Y (t)}t≥0 be a Brownian bridge. Prove that

cov (X(t), X(s)) = s(1− t) (0 ≤ s ≤ t ≤ 1) .
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Exercise 11.6.6. A representation of the Brownian bridge

Let {W (t)}t≥0 be a standard Brownian motion. Let for t ∈ [0, 1),

Y (t) := (1− t)

∫ t

0

dW (s)

1− s
ds .

(i) Prove that the integral in the right-hand side is well defined on [0, 1) as a
Wiener integral.

(ii) Prove that as t ↓ 0, Y (t)→ 0 in quadratic mean.

(iii) Define Y (0) := 0. Show that {Y (t)}t∈[0,1] is a Gaussian process.

(iv) Show that {Y (t)}t∈[0,1] is (has the same distribution as) a Brownian bridge.

Exercise 11.6.7. Brownian bridge

Let {W (t)}t∈[0,1] be a Wiener process. Show that the Brownian bridge

{X(t) := W (t)− tW (1)}t∈[0,1]

is a Gaussian process independent of W (1) and compute its autocovariance func-
tion. Show that the process {X(1− t)}t∈[0,1] is a Brownian bridge.

Exercise 11.6.8. Structural measure

Let {Z(t)}t∈R be a second-order real-valued centered stochastic process, right-
continuous in the quadratic mean, such that Z(0) = 0 and with uncorrelated
increments (for all a ≤ b ≤ c ≤ d, we have that E [(Z(b)− Z(a))(Z(d)− Z(c))] =
0). Show that there exists a locally finite measure μ on (R,B(R)) such that

E
[
(Z(b)− Z(a))2

]
= μ((a, b]) .

Exercise 11.6.9. Some Gauss–Markov processes

A. Show that the Wiener process is a Gauss–Markov process.

B. Show that a discrete-time stochastic process {Xn}n≥1 defined by Xn+1 = aXn+
εn+1 (n ≥ 0), where {εn}n≥1 is an iid centered Gaussian sequence and X0 is
a Gaussian random variable independent of this sequence, is a Gauss–Markov
process.

C. For each t ≥ 0, let X(t) = a(t)W (τ(t)), where {W (t)}t≥0 is a standard Wiener
process, a : R+ → R and τ : R+ → R are measurable functions, and moreover
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τ is strictly increasing, with τ(0) = 0. Prove that {X(t)}t≥0 is a Gauss–Markov
stochastic process and give explicitly the functions f and g of Theorem 11.2.12.

Exercise 11.6.10. The Ornstein–Uhlenbeck process.

Let
X(t) := e−αtW (e2αt) (t ≥ 0)

where {W (t)}t∈≥0 is a standard Wiener process and α is a positive real number.
Prove that {X(t)}t∈≥0 is an Ornstein–Uhlenbeck process.

Exercise 11.6.11. Ornstein–Uhlenbeck is Gauss–Markov

Show that the Ornstein–Uhlenbeck process is a Gauss–Markov process. Describe
the functions f and τ in its representation as

X(t) = f(t)W (τ(t)) .

Exercise 11.6.12. Micropulses and fractal Brownian motion.

Let N̄ε be a Poisson process on R × R+ with the mean measure ν(dt × dz) =
1
2ε2

z−1−θ dt × dz, where 0 < θ < 1 and ε > 0. For all t ≥ 0, let S+
0,t =

{(s, z) : 0 < s < t, t− s < z} and S−
0,t = {(s, z) : −∞ < s < 0, −s < z < t− s} ,

and define4

Xε(t) = ε
{
N̄ε(S

+
0,t)− N̄ε(S

−
0,t)

}
.

(1) Show that Xε(t) is well defined for all t ≥ 0.

(2) Compute for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn the characteristic function of
(Xε(t1), . . . , Xε(tn)).

(3) Show that for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, (Xε(t1), . . . , Xε(tn)) converges
in distribution to (BH(t1), . . . , BH(tn)) as ε ↓ 0, where {BH(t)}t≥0 is a fractal

Brownian motion (fBm) with Hurst parameter H = 1−θ
2

and variance E [BH(1)
2] =

θ−1(1 − θ)−1. Recall that {BH(t)}t≥0 is called an fBm with Hurst parameter H ,

0 < H < 1
2
, if it is a centered Gaussian process such thatBH(0) = 0 with covariance

function

E [BH(t)BH(s)] =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
E

[
BH(1)

2
]
.

4 R. Cioczek-Georges and B.B. Mandelbrot, A class of micropulses and antipersistent fractal
Brownian motion, Stochastic Processes and their Applications, 60, pp. 1–18, (1995).



Chapter 12

Wide-sense Stationary Processes

This chapter concerns a topic of interest in many fields of application, most notably
signal processing and communications theory, as well as econometrics and the
earth sciences. The main notion here is that of power spectrum (power spectral
measure).

12.1 The Power Spectral Measure

As we shall now see, the classical Fourier analysis of square-integrable (with respect
to Lebesgue measure) functions has a counterpart in the theory of wide-sense
stationary processes.

Consider first a wss stochastic process {X(t)}t∈R with integrable and continu-
ous covariance function C. The Fourier transform f of this covariance function is
therefore well defined by

f(ν) :=

∫

R

e−2iπντC(τ) dτ . (12.1)

It is called the power spectral density (psd). It turns out that it is non-negative
and integrable, as we shall soon see. Since it is integrable, the Fourier inversion
formula

C(τ) =

∫

R

e2iπντf(ν) dν (12.2)

holds almost everywhere, and in fact everywhere since both sides of the equality
are continuous (Example 4.1.24).1 In the context of wss stochastic processes,
(12.2) is called the Bochner formula. Letting τ = 0 in this formula, we obtain,

1 See for instance [5], Theorem 1.1.8.
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since C(0) = Var (X(t) := σ2,

σ2 =

∫

R

f(ν)dν . (12.3)

Example 12.1.1: The Ornstein–Uhlenbeck process. Let {X(t)}t∈≥0 be
an Ornstein–Uhlenbeck process. It is a centered Gaussian process, and, using
(11.6), we have for t ≥ s,

E[X(t)X(s)] = E[e−αtW (e2αt)e−αsW (e2αs)]

= e−α(t+s)E[W (e2αt)W (e2αs)]

= e−α(t+s) min(e2αte2αs)

= e−α(t+s)e2αs = e−α(t−s) ,

and therefore, for all s, t ∈ R+

E[X(t)X(s)] = e−α|t−s| .

It is therefore a wss stochastic process with integrable covariance function, and
its power spectral density is then the Fourier transform of the covariance function:

f(ν) =

∫

R

e−2iπντe−α|τ |dτ =
2α

α2 + 4π2ν2
.

Not all wss stochastic processes admit a power spectral density. For instance,
consider a wide-sense stationary process with a covariance function of the form

C(τ) =
∑

k∈Z
Pke

2iπνkτ , (12.4)

where
Pk ≥ 0 and

∑

k∈Z
Pk <∞ (12.5)

(say, the harmonic process of Example 11.1.14). Clearly, this covariance function
is not integrable, and in fact there does not exist a power spectral density. In par-
ticular, a representation of the covariance function such as (12.2) is not available,
at least if the function f is interpreted in the ordinary sense. However, there is
a formula such as (12.2) if we consent to define the psd in this case to be the
pseudo-function

f(ν) =
∑

k∈Z
Pk δ(ν − νk) , (12.6)
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where δ(ν − a) is the delayed Dirac pseudo-function informally defined by
∫

R

ϕ(ν) δ(ν − a) dν = ϕ(a) .

Indeed, with such a convention,
∫

R

f(ν)e2iπντf(ν) dν =
∑

k∈Z
Pk

∫

R

e2iπντδ(ν − νk) dν =
∑

k∈Z
Pke

2iπνkτ .

The General Case

Remember that the characteristic function ϕ of a real random variable X has the
following properties:

A. it is hermitian symmetric, that is, ϕ(−u) = ϕ(u)∗, and it is uniformly
bounded: |ϕ(u)| ≤ ϕ(0),

B. it is uniformly continuous on R, and

C. it is definite non-negative, in the sense that for all integers n, all u1, . . . ,
un ∈ R, and all z1, . . . , zn ∈ C,

n∑

j=1

n∑

k=1

ϕ(uj − uk)zjz
∗
k ≥ 0

(just observe that the left-hand side equals E

[∣
∣
∣
∑n

j=1 zje
iujX

∣
∣
∣
2
]

).

It turns out that Properties A , B and C characterize characteristic functions up
to a multiplicative constant. This is the content of Bochner’s theorem (Theorem
7.1.7), which is now recalled for easier reference:

Let ϕ : R → C be a function satisfying properties A, B and C. Then there
exists a constant 0 ≤ β <∞ and a real random variable X such that for all u ∈ R,

ϕ(u) = βE
[
eiuX

]
.

Bochner’s theorem is all that is needed to define the power spectral measure
of a wide-sense stationary stochastic process continuous in the quadratic mean.

Theorem 12.1.2 Let {X(t)}t∈R be a wss stochastic process continuous in the
quadratic mean, with covariance function C. Then, there exists a unique measure
μ on R such that

C(τ) =

∫

R

e2iπντμ(dν) . (12.7)
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In particular, μ is a finite measure:

μ(R) = C(0) = Var (X(0)) <∞ . (12.8)

Proof. It suffices to observe that the covariance function of a wss stochastic
process that is continuous in the quadratic mean shares the properties A, B and
C of the characteristic function of a real random variable. Indeed,

(a) it is hermitian symmetric, and |C(τ)| ≤ C(0) (Schwarz’s inequality),

(b) it is uniformly continuous, and

(c) it is definite non-negative, in the sense that for all integers n, all τ1, . . . ,
τn ∈ R, and all z1, . . . , zn ∈ C,

n∑

j=1

n∑

k=1

C(τj − τk)zjz
∗
k ≥ 0

(just observe that the left-hand side is equal to E

[∣
∣
∣
∑n

j=1 zjX(tj)
∣
∣
∣
2
]

).

Therefore, by Theorem 7.1.7, the covariance function C is up to a multiplica-
tive constant a characteristic function. This is exactly what (12.7) says, since μ
thereof is a finite measure, that is, up to a multiplicative constant, a probability
distribution.

Uniqueness of the power spectral measure follows from the fact that a finite
measure (up to a multiplicative constant: a probability) on R is characterized by
its Fourier transform (Theorem 5.3.2). �

Special Cases

The case of an absolutely continuous spectrum corresponds to the situation where
μ admits a density f with respect to Lebesgue measure: μ(dν) = f(ν) dν. (In
particular, f is non-negative and integrable with respect to Lebesgue measure.)
As we saw before, we then say that the wss stochastic process in question admits
the power spectral density (psd) f .

The case of a “line spectrum” corresponds to a spectral measure that is a
weighted sum of Dirac measures:

μ(dν) =
∑

k∈Z
Pk ενk(dν) .

Since μ is a measure, the Pk’s are non-negative, and since μ is a finite measure,
they have a finite sum.
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12.2 Filtering of wss Stochastic Processes

We recall a few standard results concerning the (convolutional) filtering of deter-
ministic functions.

Let f, g : (R,B(R))→ (R,B(R)) be integrable functions with respective Fourier

transforms f̂ and ĝ. Then (Exercise 4.5.12),

∫

R

∫

R

|f(t− s)g(s)| dt ds <∞ ,

and therefore, for almost all t ∈ R, the function s �→ f(t − s)g(s) is Lebesgue
integrable. In particular, the convolution

(f ∗ g)(t) :=
∫

R

f(t− s)g(s) ds

is almost everywhere well defined. For all t such that the last integral is not defined,
set (f ∗ g)(t) = 0. Then f ∗ g is Lebesgue integrable and its Fourier transform is

f̂ ∗ g = f̂ ĝ, where f̂ , ĝ are the Fourier transforms of f and g, respectively (Exercise
4.5.13).

Let h : (R,B(R)) → (R,B(R)) be an integrable function. The operation that
associates to the integrable function x : (R,B(R)) → (R,B(R)) the integrable
function

y(t) :=

∫

R

h(t− s)x(s) ds

is called a stable convolutional filter. The function h is called the impulse response
of the filter, and x and y are respectively the input and the output of this filter.
The Fourier transform ĥ of the impulse response is the transmittance of the filter.

Let now {X(t)}t∈R be a wss stochastic process with continuous covariance
function CX . We examine the effect of filtering on this process. The output
process is the process defined by

Y (t) :=

∫

R

h(t− s)X(s)ds . (12.9)

Note that the integral (12.9) is well defined under the integrability condition
for the impulse response h. This follows from Theorem 11.1.10 according to which
the integral ∫

R

f(s)X(s, ω) ds
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is well defined for P -almost all ω when f is integrable (in the special case of
wss stochastic processes, m(t) = m and Γ(t, t) = C(0) + |m|2, and therefore the
conditions on f and g thereof reduce to integrability of these functions). Referring
to the same theorem, we have

E[

∫

R

f(t)X(t) dt] =

∫

R

f(t)E[X(t)] dt = m

∫

R

f(t) dt . (12.10)

Let now f, g : R → C and be integrable functions. As a special case of Theorem
11.1.10, we have

cov

(∫

R

f(t)X(t) dt ,

∫

R

g(s)X(s) ds

)

=

∫

R

∫

R

f(t)g∗(s)C(t− s) dt ds . (12.11)

We shall see that, in addition,

cov

(∫

R

f(t)X(t) dt ,

∫

R

g(s)X(s) ds

)

=

∫

R

∫

R

f̂(−ν)ĝ∗(−ν)μ(dν) . (12.12)

Proof. Assume without loss of generality that m = 0. From Bochner’s represen-
tation of the covariance function, we obtain for the last double integral in (12.11)

∫

R

∫

R

f(t)g∗(s)
(∫

R

e+2jπν(t−s) μ(dν)

)

dt ds

=

∫

R

(∫

R

f(t)e+2jπνtdt

)(∫

R

g(s)e+2jπνs ds

)∗
μ(dν) .

Here again we have to justify the change of order of integration using Fubini’s
theorem. For this, it suffices to show that the function

(t, s, ν) �→
∣
∣f(t)g∗(s)e+2jπν(t−s)

∣
∣ = |f(t)| |g(s)| 1R(ν)

is integrable with respect to the product measure � × � × μ. This is indeed true,
the integral being equal to (

∫
R
|f(t)| dt)× (

∫
R
|g(t)| dt)× μ(R). �

In view of the above results, the right-hand side of formula (12.9) is well defined.
Moreover

Theorem 12.2.1 When the input process {X(t)}t∈R is a wss stochastic process
with power spectral measure μX , the output {Y (t)}t∈R of a stable convolutional

filter of transmittance ĥ is a wss stochastic process with the power spectral measure

μY (dν) = |ĥ(ν)|2μX(dν) . (12.13)

This formula will be referred to as the fundamental filtering formula.
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Proof. Just apply formulas (12.10) and (12.12) with the functions

f(u) := h(t− u), g(v) := h(s− v),

to obtain

E[Y (t)] = m

∫

R

h(t)dt ,

and

E[(Y (t)−m)(Y (s)−m)∗] =
∫

R

|ĥ(ν)|2e+2jπν(t−s)μ(dν) .

�

Example 12.2.2: Two special cases. In particular, if the input process
admits a psd fX , the output process also admits a psd given by

fY (ν) = |ĥ(ν)|2fX(ν) dν .

When the input process has a line spectrum, the power spectral measure of the
output process takes the form

μY (dν) =

∞∑

k=1

Pk|ĥ(νk)|2ενk(dν) .

White Noise

By analogy with Optics, one calls white noise any centered wss stochastic process
{B(t)}t∈R with constant power spectral density fB(ν) = 1. Such a definition
presents a theoretical difficulty, because

∫ +∞

−∞
fB(ν) dν = +∞ ,

which contradicts the finite power property of wide-sense stationary processes. We
have therefore to find other ways to deal with white noise.

Heuristics I: The Large Flat Spectrum Approach

From a pragmatic point of view, one could define a white noise to be a centered
wss stochastic process whose psd is constant over a “large”, yet bounded, range
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of frequencies [−A,+A]. The calculations below show what happens as A tends
to infinity. Let therefore {X(t)}t∈R be a centered wss stochastic process with psd

f(ν) = 1[−A,+A](ν) .

Let ϕ1, ϕ2 : R→ C be two functions in L1
C(R)∩L2

C(R) with Fourier transforms
ϕ̂1 and ϕ̂2, respectively. Then

lim
A↑∞

E

[(∫

R

ϕ1(t)X(t) dt

)(∫

R

ϕ2(t)X(t) dt

)∗]
=

∫

R

ϕ1(t)ϕ
∗
2(t) dt

=

∫

R

ϕ̂1(ν)ϕ̂
∗
2(ν) dν .

Proof. We have

E

[(∫

R

ϕ1(t)X(t) dt

)(∫

R

ϕ2(t)X(t) dt

)∗]
=

∫

R

∫

R

ϕ1(u)ϕ2(v)
∗CX(u− v) du dv .

The latter quantity is equal to

∫ +∞

−∞
ϕ1(u)ϕ2(v)

∗
(∫ +A

−A

e2iπν(u−v) dν

)

du dv

=

∫ +A

−A

(∫ +∞

−∞
ϕ1(u)e

2iπνu du

)(∫ +∞

−∞
ϕ2(v)

∗e−2iπνv dv

)

dν

=

∫ +A

−A

ϕ̂1(−ν)ϕ̂2(−ν)∗ dν ,

and the limit of this quantity as A ↑ ∞ is:

∫ +∞

−∞
ϕ̂1(ν)ϕ̂

∗
2(ν) dν =

∫ +∞

−∞
ϕ1(t)ϕ2(t)

∗ dt ,

where the last equality is the Plancherel–Parseval identity. �

Let now h : R→ C be in L1
C(R) ∩ L2

C(R), and define

Y (t) =

∫

R

h(t− s)X(s) ds .

Applying the above result with ϕ1(u) = h(t−u) and ϕ2(v) = h(t+ τ − v), we find
that the covariance function CY of this wss stochastic process is such that

lim
A↑∞

CY (τ) =

∫

R

e2iπντ |ĥ(ν)|2 dν .
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The limit is finite since ĥ ∈ L2
C(R) and is a covariance function corresponding to

a bona fide (that is, integrable) pdf fY (ν) = |ĥ(ν)|2 . With f(ν) ≡ 1, we formally
retrieve the usual filtering formula,

fY (ν) = |ĥ(ν)|2f(ν) .

Heuristics II: The Approximate Derivative Approach

Here, we consider the white Gaussian noise. The heuristic approach in this
case substitutes for {B(t)}t∈R the “finitesimal” derivative of the Brownian motion

Bh(t) =
W (t+ h)−W (t)

h
.

For fixed h > 0 this defines a proper wss stochastic process centered, with covari-
ance function

Ch(τ) =
(h− |τ |)+

h2

and (Exercise 12.5.6) power spectral density

fh(ν) =

(
sin πνh

πνh

)2

. (12.14)

Note that, as h ↓ 0, the power spectral density tends to the constant func-
tion 1, the power spectral density of the “white noise”. At the same time, the
covariance function “tends to the Dirac function” and the energy Ch(0) =

1
h
tends

to infinity. This is another feature of white noise: unpredictability. Indeed, for
τ ≥ h, the value Bh(t + τ) cannot be predicted from the value Bh(t), since both
are independent random variables.

One then lets ∫

R+

f(t)B(t) dt :=

∫

R+

f(t)Bh(t) dt .

The Wiener Approach to White Noise

The third approach to white noise differs from the previous ones, involving
limits, in that it consists in working right away “at the limit”.

In this approach, one does not attempt to define the white noise {B(t)}t∈R
directly (for good reasons since it does not exist as a bona fide wss stochastic pro-
cess, as we noted earlier). Instead, the symbolic integral

∫
R
f(t)B(t) dt is defined,

for integrands f to be described below, by
∫

R

f(t)B(t) dt :=

∫

R

f(t) dZ(t) , (12.15)
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where {Z(t)}t∈R is a centered stochastic process with uncorrelated increments.
One then says that {B(t)}t∈R is a white noise and that {Z(t)}t∈R is an integrated
white noise.

When {Z(t)}t∈R ≡ {W (t)}t∈R, a standard Brownian motion, {B(t)}t∈R is called
a Gaussian white noise.

In the Gaussian white noise case, we have that for all f, g ∈ L2
C(R),

E

[∫

R

f(t)B(t) dt

]

= 0 ,

and by the isometry formulas for the Doob–Wiener integral,

E

[(∫

R

f(t)B(t) dt

)(∫

R

g(t) B(t) dt

)∗]
=

∫

R

f(t)g(t)∗ dt ,

which can be formally rewritten, using the Dirac symbolism:

∫

R

f(t)g(s)∗E [B(t)B∗(s)] dt ds =
∫

R

f(t)g(s)∗ δ(t− s) dt ds .

Hence “the covariance function of the white noise {B(t)}t∈R is a Dirac pseudo-
function: CB(τ) = δ(τ)”.

Let {B(t)}t∈R be a white noise with structural measure 1, for example the
Gaussian white noise. Let h : R → C be in L1

C ∩ L2
C and define the output of a

filter with impulse response h when the white noise {B(t)}t∈R is the input, by

Y (t) =

∫

R

h(t− s)B(t) ds.

By the isometry formula for the Wiener–Doob integral,

E[Y (t)Y (s)∗] =
∫

R

h(t− s− u)h∗(u) du ,

and therefore (Plancherel–Parseval equality)

CY (τ) =

∫

R

e2iπντ |ĥ(ν)|2 dν .

The stochastic process {Y (t)}t∈R is therefore centered and wss, with power spec-
tral density

fY (ν) = |ĥ(ν)|2fB(ν) ,
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where

fB(ν) := 1 .

We therefore once more recover formally the fundamental equation of linear filter-
ing of wss continuous-time stochastic processes.

The connection with the approximate derivative approach is the following: For
all f ∈ L2

C(R) ∩ L1
C(R),

lim
h↓0

∫

R

f(t)Bh(t) dt =

∫

R

f(t) dW (t)

in the quadratic mean. The proof is omitted.

12.3 The Cramér–Khinchin Decomposition

Almost surely, a trajectory of a stationary stochastic process is neither in L1
C(�)

nor in L2
C(�), unless it is identically null. The formal argument will not be given

here 2, but the examples show this convincingly. Therefore such trajectory does
not have a Fourier transform in the usual senses. There exists however, in some
particular sense, a kind of Fourier spectral decomposition of the trajectories of a
wss stochastic process, as we shall now see.

Theorem 12.3.1 Let {X(t)}t∈R be a centered wss stochastic process, continuous
in the quadratic mean, and let μ be its power spectral measure. There exists a
unique (more precision below the theorem) centered stochastic process {x(ν)}ν∈R
with uncorrelated increments and with structural measure μ, such that for all t ∈ R,
P -a.s.,

X(t) =

∫

R

e2iπνt dx(ν) , (12.16)

where the integral on the right-hand side is a Doob integral.

The decomposition (12.16) is unique in the following sense: If there exists
another centered stochastic process {x̃(ν)}ν∈R with uncorrelated increments, and
with finite structural measure μ̃, such that for all t ∈ R, we have P -a.s., X(t) =∫
R
e2iπνt dx̃(ν) , then for all a, b ∈ R, a ≤ b, x̃(b)− x̃(a) = x(b)− x(a), P -a.s.

We shall say: “dx(ν) is the (Cramer–Khinchin) spectral decomposition” of the
wss stochastic process.

2 See Remark 12.1.1 of [7].
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Proof. 1. Denote by H(X) the vector subspace of L2
C(P ) formed by the finite

complex linear combinations of the type

Z =

K∑

k=1

λkX(tk)

and let us denote by ϕ the mapping of H(X) into L2
C(μ) defined by

ϕ : Z �→
K∑

k=1

λke
2iπνtk .

Using Bochner’s theorem, we verify that it is a linear isometry ofH(X) into L2
C(μ):

E

⎡

⎣

∣
∣
∣
∣
∣

K∑

k=1

λkX(tk)

∣
∣
∣
∣
∣

2
⎤

⎦ =
K∑

k=1

K∑

�=1

λkλ
∗
�E [X(tk)X(t�)

∗]

=

K∑

k=1

K∑

�=1

λkλ
∗
�C(tk − t�) =

K∑

k=1

K∑

�=1

λkλ
∗
�

∫

R

e2iπν(tk−t�) μ(dν)

=

∫

R

(
K∑

k=1

K∑

�=1

λkλ
∗
�e

2iπν(tk−t�)

)

μ(dν) =

∫

R

∣
∣
∣
∣
∣

K∑

k=1

λke
2iπνtk

∣
∣
∣
∣
∣

2

μ(dν) .

2. This isometric linear mapping can be uniquely extended to an isometric linear
mapping (that we shall continue to call ϕ) from H(X), the closure of H(X), into
L2
C(μ) (Theorem A.0.6). As the combinations

∑K
k=1 λke

2iπνtk are dense in L2
C(μ)

when μ is a finite measure 3, ϕ is onto. Therefore, it is a linear isometric bijection
between H(X) and L2

C(μ).

3. Let x(ν0) be the random variable in H(X) that corresponds in this isometry to
the function 1(−∞,ν0](ν) of L

2
C(μ). First, observe that

E[x(ν2)− x(ν1)] = 0

since H(X) is the closure in L2
C(P ) of a family of centered random variables. Also,

by isometry,

E[(x(ν2)− x(ν1))(x(ν4)− x(ν3))
∗] =

∫

R

1(ν1,ν2](ν)1(ν3,ν4](ν)μ(dν)

= μ((ν1, ν2] ∩ (ν3, ν4]) .

3 This will be admitted.
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One can therefore define the Doob integral
∫
R
f(ν) dx(ν) for all f ∈ L2

C(μ).

4. Let now

Zn(t) :=
∑

k∈Z
e2iπt(k/2

n)

(

x

(
k + 1

2n

)

− x

(
k

2n

))

.

We have

lim
n→∞

Zn(t) =

∫

R

e2iπνt dx(ν)

(limit in L2
C(P )). In fact,

Zn(t) =

∫

R

fn(t, ν) dx(ν) ,

where
fn(t, ν) :=

∑

k∈Z
e2iπt(k/2

n)1(k/2n,(k+1)/2n](ν) ,

and therefore, by isometry,

E

∣
∣
∣
∣Zn(t)−

∫

R

e2iπνt dx(ν)

∣
∣
∣
∣

2

=

∫

R

|e2iπνt − fn(t, ν)|2 μ(dν) ,

a quantity which tends to zero when n tends to infinity (by dominated convergence,
using the fact that μ is a bounded measure). On the other hand, by definition of
ϕ,

Zn(t)
ϕ�→ fn(t, ν) .

Since, for fixed t, limn→∞ Zn(t) =
∫
R
e2iπνt dx(ν) in L2

C(P ) and limn→∞ fn(t, ν) =
e2iπνt in L2

C(μ), ∫

R

e2iπνt dx(ν)
ϕ�→ e2iπνt .

But, by definition of ϕ,
X(t)

ϕ�→ e2iπνt .

Therefore X(t) =
∫
R
e2iπνt dx(ν) .

5. We now prove uniqueness. Suppose that there exists another spectral de-
composition dx̃(ν). Denote by G the set of finite linear combinations of complex
exponentials. Since by hypothesis

∫

R

e2iπνt dx(ν) =

∫

R

e2iπνt dx̃(ν) ( = X(t))

we have ∫

R

f(ν) dx(ν) =

∫

R

f(ν) dx̃(ν)



462 CHAPTER 12. WIDE-SENSE STATIONARY PROCESSES

for all f ∈ G, and therefore, for all f ∈ L2
C(μ) ∩ L2

C(μ̃) ⊆ L2
C(

1
2
(μ+ μ̃)) because G

is dense in L2
C(

1
2
(μ+ μ̃)). In particular, with f = 1(a,b],

x(b)− x(a) = x̃(b)− x̃(a) .

�

More details can be obtained as to the continuity properties (in the quadratic
mean) of the increments of the spectral decomposition. For instance, it is right-
continuous in the quadratic mean, and it admits a left-hand limit in the quadratic
mean at any point ν ∈ R. If such limit is denoted by x(ν−), then, for all a ∈ R,

E[|x(a)− x(a−)|2] = μ({a}) .

Proof. The right-continuity follows from the continuity of the (finite) measure μ:

lim
h↓0

E[|x(a + h)− x(a)|2] = lim
h↓0

μ((a, a+ h]) = μ(∅) = 0 .

As for the existence of left-hand limits, it is guaranteed by the Cauchy criterion,
since for all a ∈ R,

lim
h,h′↓0,h<h′

E[|x(a− h)− x(a− h′)|2] = lim
h,h′↓0,h<h′

μ((a− h′, a− h]) = 0 .

Finally,

E[|x(a)− x(a−)|2] = lim
h↓0

E[|x(a)− x(a− h)|2] = lim
h↓0

μ((a− h, a]) = μ({a}) .

�

Theorem 12.3.2 Let {X(t)}t∈R be a wss stochastic process continuous in the
quadratic mean. It is real if and only if its spectral decomposition is hermitian
symmetric, that is, for all [a, b] ⊂ R,

x(b)− x(a) = (x(−a−)− x(−b−))∗ .
Proof. If the stochastic process is real,

X(t) =

∫

R

e2iπνt dx(ν) =

(∫

R

e2iπνt dx(ν)

)∗

=

∫

R

e−2iπνt dx∗(ν) =
∫

R

e2iπνt dx∗(−ν) ,
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and therefore, by uniqueness of the spectral decomposition, dx(ν) = dx∗(−ν).
Similarly, if dx(ν) = dx∗(−ν),

X(t) =

∫

R

e2iπνt dx(ν)

=

∫

R

e2iπνt dx∗(−ν) =
(∫

R

e2iπνt dx(ν)

)∗
= X(t)∗ ,

and therefore the process is real. �

Theorem 12.3.3 Let {X(t)}t∈R be a centered wss stochastic process continuous
in the quadratic mean. Then

HC(x(ν); ν ∈ R) = HC(X(t); t ∈ R)

and both Hilbert subspaces are identical with

{Z =

∫

R

g(ν) dx(ν); g ∈ L2
C(μ)} .

Proof. 1. For all ν ∈ R, x(ν) ∈ HC(X(t); t ∈ R) (by definition of x(ν); see the
proof of Theorem 12.3.1). Therefore,

HC(x(ν); ν ∈ R) ⊆ HC(X(t); t ∈ R).

On the other hand, for all t ∈ R, X(t) =
∫
R
e−2iπνt dx(ν) ∈ HC(x(ν); ν ∈ R).

Therefore

HC(X(t); t ∈ R) ⊆ HC(x(ν); ν ∈ R) .

2. Defining H := {Z =
∫
R
g(ν) dx(ν); g ∈ L2

C(μ)}, then H ⊆ HC(x(ν). Moreover,
since H contains all the X(t) =

∫
R
e−2iπνt dx(ν), HC(X(t); t ∈ R) ⊆ H . Therefore

HC(X(t); t ∈ R) ⊆ H ⊆ HC(x(ν)

and the conclusion follows from Part 1 of the proof. �

A Plancherel–Parseval Formula

The following result is the analog of the Plancherel–Parseval formula of classical
Fourier analysis.



464 CHAPTER 12. WIDE-SENSE STATIONARY PROCESSES

Theorem 12.3.4 Let f : R → C be in L1
C(R) with Fourier transform f̂ . Let

{X(t)}t∈R be a centered wss stochastic process with power spectral measure μ and
Cramér–Khinchin spectral decomposition dx(ν). Then:

∫

R

f̂(ν)∗dx(ν) =
∫

R

f(t)∗X(t) dt . (12.17)

Proof. Since f̂ is bounded and continuous (as the Fourier transform of an inte-
grable function), and since μ is a finite measure, we have that f̂ ∈ L2

C(μ), and

∑

n

f̂

(
k

2n

)

1( k
2n

, k+1
2n

] → f̂ in L2
C(μ)

and therefore (all limits in the following sequence of equalities are in L2
C(P )):

∫

R

f̂(ν)∗ dx(ν) = lim
n→∞

n2n−1∑

−n2n

f̂

(
k

2n

)∗ (
x

(
k + 1

2n

)

− x

(
k

2n

))

= lim
n→∞

n2n−1∑

−n2n

(∫

R

f ∗(t)e+2iπ(k/2n)t dt

)(

x

(
k + 1

2n

)

− x

(
k

2n

))

= lim
n→∞

∫

R

f ∗(t)
n2n−1∑

−n2n

[

e+2iπ(k/2n)t

(

x

(
k + 1

2n

)

− x

(
k

2n

))]

dt

= lim
n→∞

∫

R

f ∗(t)Xn(t) dt ,

where

Xn(t) =
n2n−1∑

−n2n

e+2iπ(k/2n)t

(

x

(
k + 1

2n

)

− x

(
k

2n

))

→ X(t) in L2
C(P ) .

The announced result will then follow once we prove that

lim
n→∞

∫

R

f ∗(t)Xn(t) dt =

∫

R

f ∗(t)X(t) dt ,

where the limit is in L2
C(P ). In fact, with Yn(t) = X(t)−Xn(t),

E

[∣
∣
∣
∣

∫

R

f(t)Yn(t) dt

∣
∣
∣
∣

2
]

=

∫

R

∫

R

f(t)f(s)∗E [Yn(t)Yn(s)
∗] dt ds .
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But limn↑∞ Yn(t) = 0 (in L2
C(P )) and therefore limn↑∞E [Yn(t)Yn(s)

∗] = 0. More-
over E [Yn(t)Yn(s)

∗] is uniformly bounded in n. Therefore, by dominated conver-
gence,

lim
n↑∞

∫

R

∫

R

f(t)f(s)∗E [Yn(t)Yn(s)
∗] dt ds = 0 .

�

Example 12.3.5: Convolutional filtering. Let h ∈ L1
C(R) and let ĥ be

its Fourier transform. Then
∫

R

h(t− s)X(s) ds =

∫

R

ĥ(ν)e2iπνt dx(ν) . (12.18)

Proof. It suffices to apply (12.17) to the function s �→ h∗(t − s), whose Fourier
transform is ĥ(ν)∗e−2iπνt. �

Linear Operations on wss Stochastic Processes

A function g : R → C in L2
C(μ) defines a linear operation on the centered wss

stochastic process {X(t)}t∈R (called the input) by associating with it the centered
stochastic process (called the output)

Y (t) =

∫

R

e2iπνtg(ν) dx(ν) . (12.19)

On the other hand, the calculation of the covariance function

CY (τ) = E[Y (t)Y (t+ τ)∗]

of the output gives, by isometry,

CY (τ) =

∫

R

e2iπντ |g(ν)|2 μX(dν) ,

where μX is the power spectral measure of the input. The power spectral measure
of the output process is then

μY (dν) = |g(ν)|2 μX(dν) . (12.20)

This is similar to the formula obtained when {Y (t)}t∈R is the output of a

stable convolutional filter with impulse response h and transmittance ĥ: μY (dν) =



466 CHAPTER 12. WIDE-SENSE STATIONARY PROCESSES

|ĥ(ν)|2 μX(dν). We therefore say that g is the transmittance of the “filter” (12.19).
Note however that this filter is not necessarily of the convolutional type, since g
may well not be the Fourier transform of an integrable function (for instance it
may be unbounded, as the next example shows).

Example 12.3.6: Differentiation. Let {X(t)}t∈R be a wss stochastic pro-
cesses with spectral measure μX such that

∫

R

|ν|2 μX(dν) <∞ . (12.21)

Then

lim
h→0

X(t+ h)−X(t)

h
=

∫

R

(2iπν)e2iπνtdx(ν) ,

where the limit is in the quadratic mean. The linear operation corresponding to
the transmittance g(ν) = 2iπν is therefore the differentiation in quadratic mean.

Proof. Let h ∈ R. From the equality

X(t+ h)−X(t)

h
−

∫

R

(2iπν)e2iπνtdx(ν) =

∫

R

e2iπνt
(
e2iπνh − 1

h
− 2iπν

)

dx(ν)

we have, by isometry,

lim
h→0

E

[∣
∣
∣
∣
X(t+ h)−X(t)

h
−

∫

R

(2iπν)e2iπνtdx(ν)

∣
∣
∣
∣

2
]

= lim
h→0

∫

R

∣
∣
∣
∣
e2iπνh − 1

h
− 2iπν

∣
∣
∣
∣

2

μX(dν) .

The latter limit is 0, by dominated convergence, since
∣
∣
∣ e

2iπνh−1
h
− 2iπν

∣
∣
∣
2

≤ 4π2ν2

and in view of the hypothesis (12.21). �

“A line spectrum corresponds to a combination of sinusoids.” More precisely:
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Theorem 12.3.7 Let {X(t)}t∈R be a centered wss stochastic processes with spec-
tral measure

μX(dν) =
∑

k∈Z
Pk ενk(dν) ,

where ενk is the Dirac measure at νk ∈ R, Pk ∈ R+ and
∑

k∈Z Pk <∞. Then

X(t) =
∑

k∈Z
Uke

2iπνkt ,

where {Uk}k∈Z is a sequence of centered uncorrelated square-integrable complex
variables, and E[|Uk|2] = Pk.

Proof. Let
g(ν) =

∑

k∈Z
1{νk}(ν) .

It is in L2
C(μX), as is 1 − g(ν). Also

∫
R
|1 − g(ν)|2 μX(dν) = 0, and in particular∫

R
(1− g(ν))e2iπνt dx(ν) = 0. Therefore

X(t) =

∫

R

g(ν)e2iπνt dx(ν)

=
∑

k∈Z
e2iπνkt(x(νk)− x(νk−)) .

We conclude by defining Uk = x(νk)− x(νk−). �

Linear Transformations of Gaussian Processes

We call a linear transformation of the wss stochastic process {X(t)}t∈R a trans-
formation of it into the second-order process (not wss in general)

Y (t) =

∫

R

g(ν, t) dx(ν) , (12.22)

where ∫

R

|g(t, ν)|2 μX(dν) <∞ for all t ∈ R .

Theorem 12.3.8 Every linear transformation of a Gaussian wss stochastic pro-
cess yields a Gaussian stochastic process.

Proof. Let {X(t)}t∈R be centered, Gaussian, wss, with Cramer–Khinchin de-
composition dx(ν). For each ν ∈ R, the random variable x(ν) is in HR(X), by
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construction. Now, if {X(t)}t∈R is a Gaussian process, HR(X) is a Gaussian sub-
space. But (Theorem 12.3.3) HR(X) = HR(x). Therefore the process (12.22) is in
HC(X), hence Gaussian. �

Example 12.3.9: Convolutional filtering of a wss Gaussian process.

In particular, if {X(t)}t∈R is a Gaussian wss process with Cramer–Khinchin de-
composition dx(ν), and if g ∈ L2

C(μX), the process

Y (t) =

∫

R

e2iπνtg(ν) dx(ν)

is a Gaussian process.

A particular case is when g = ĥ, the Fourier transform of a filter with integrable
impulse response h; the signal {Y (t)}t∈R is the one obtained by convolutional
filtering of {X(t)}t∈R with this filter.

12.4 Multivariate wss Stochastic Processes

Let {X(t)}t∈R be a stochastic process with values in E := CL, where L is an
integer greater than or equal to 2: X(t) = (X1(t), . . . , XL(t)). This process is
assumed to be of the second order, that is:

E[||X(t)||2] <∞ for all t ∈ R ,

and centered. Furthermore, it will be assumed that it is wide-sense stationary,
in the sense that the mean vector of X(t) and the cross-covariance matrix of the
vectors X(t + τ) and X(t) do not depend upon t. The matrix-valued function C
defined by

C(τ) = cov (X(t+ τ), X(t)) (12.23)

is called the (matrix) covariance function of the stochastic process. Its general
entry is

Cij(τ) = cov(Xi(t), Xj(t+ τ)) .

Therefore, each of the processes {Xi(t)}t∈R is a wss stochastic process, but, fur-
thermore, they are stationarily correlated or “jointly wss”. The vector-valued
stochastic process {X(t)}t∈R is then called a multivariate wss stochastic process .
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Example 12.4.1: Signal plus noise. The following model frequently appears
in signal processing:

Y (t) = S(t) +B(t) ,

where {S(t)}t∈R and {B(t)}t∈R are two uncorrelated centered wss stochastic pro-
cesses with respective covariance functions CS and CB. Then,

{
(Y (t), S(t))T

}
t∈R

is a bivariatewss stochastic process. In fact, by the assumption of non-correlation:

C(τ) =

(
CS(τ) + CB(τ) CS(τ)

CS(τ) CS(τ)

)

.

We shall need at this point a minor extension of the notion of measure.

Definition 12.4.2 A finite complex measure on the measurable space (X,X ) is,
by definition, a mapping μ : X → C of the form

μ = μR + iμI ,

where μR and μI are finite measures on (X,X ). The integral of a measurable
function f : (X,X )→ (R,B(R) with respect to such measure is defined by

∫

X

f(x)μ(dx) :=

∫

X

f(x)μR(dx) + i

∫

X

f(x)μI(dx)

whenever f is integrable with respect to both μR and μI .

Theorem 12.4.3 Let {X(t)}t∈R be an L-dimensional multivariate wss stochastic
process. For all r, s (1 ≤ r, s ≤ L) there exists a finite complex measure μrs such
that

Crs(τ) =

∫

R

e2iπντμrs(dν) . (12.24)

Proof. (The case r = 1, s = 2). Let us consider the stochastic processes

Y (t) = X1(t) +X2(t) , Z(t) = iX1(t) +X2(t) .

These are wss stochastic processes with respective covariance functions

CY (τ) = C1(τ) + C2(τ) + C12(τ) + C21(τ),

CZ(τ) = −C1(τ) + C2(τ) + iC12(τ)− iC21(τ) .
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¿From these two equalities we deduce

C12(τ) =
1

2
{[CY (τ)− C1(τ)− C2(τ)]− i[CZ(τ)− C1(τ) + C2(τ)]} ,

from which the result follows with

μ12 =
1

2
{[μY − μ1 − μ2]− i[μZ − μ1 + μ2]} .

�

The matrix
M := {μij}1≤i,j≤k

(whose entries are finite complex measures) is the interspectral power measure
matrix of the multivariate wss stochastic process {X(t)}t∈R. It is clear that for
all z = (z1, . . . , zk) ∈ Ck, U(t) = zTX(t) defines a wss stochastic process with
spectral measure μU = zM z† (recall that † means transpose conjugate).

The link between the interspectral measure μ12 and the Cramer–Khinchin de-
compositions dx1(ν) and dx2(ν) is the following:

E[x1(ν2)− x1(ν1))(x2(ν4)− x2(ν3))
∗] = μ12((ν1, ν2] ∪ (ν3, ν4]) .

This is a particular case of the following: for all functions gi : R→ C, gi ∈ L2
C(μi)

(i = 1, 2)

E

[(∫

R

g1(ν) dx1(ν)

)(∫

R

g2(ν) dx2(ν)

)∗]
=

∫

R

g1(ν)g2(ν)
∗ μ12(dν) . (12.25)

Indeed, equality (12.25) is true for g1(ν) = e2iπt1ν , g2(ν) = e2iπt2ν , since it then
reduces to

E[X1(t)X2(t)
∗] =

∫

π

e2iπ(t1−t2)ν μ12(dν) .

This is therefore verified for g1, g2 ∈ E , the set of finite linear combinations of
functions of the type ν �→ e2iπtν (t ∈ R). But E is dense in L2

C(μi) (i = 1, 2),4 and
therefore the equality (12.25) is true for all gi ∈ L2

C(μi) (i = 1, 2).

Theorem 12.4.4 The interspectral measure μ12 is absolutely continuous with re-
spect to each of the spectral measures μ1 and μ2.

Proof. This means that μ12(A) = 0 whenever μ1(A) = 0 or μ2(A) = 0. Indeed,

μ12(A) = E

[(∫

A

dZ1

)(∫

A

dZ2

)∗]

4 This will be admitted.
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and μ1(A) = 0 implies
∫
A
dZ1 = 0 since

E

[∣
∣
∣
∣

∫

A

dZ1

∣
∣
∣
∣

2
]

= μ1(A).

�

Therefore, each of the spectral measures μij is absolutely continuous with re-
spect to the trace

TrM :=

k∑

j=1

μj

of the power spectral measure matrix. By the Radon–Nikodym theorem there
exists a function gij : R→ C such that

μij(A) =

∫

A

gij(ν) Tr M(dν) .

We say that the matrix
g(ν) = {gij(ν)}1≤i,j≤k

is the canonical spectral density matrix of {X(t)}t∈R. One should insist that it
is not required that the stochastic processes {Xi(t)}t∈R, 1 ≤ i ≤ k, admit power
spectral densities.

The correlation matrix C(τ) has, with the above notations, the representation

C(τ) =

∫

R

e2iπντg(ν) Tr M(dν) .

If each of thewss stochastic processes {Xi(t)}t∈R admits a spectral density, {X(t)}t∈R
admits an interspectral density matrix

f(ν) = {fij(ν)}1≤i,j≤k ,

that is:

Cij(τ) = cov (Xi(t+ τ), Xj(t)) =

∫

R

e2iπντfij(ν) dν .

Example 12.4.5: Interferences. Let {X(t)}t∈R be a centered wss stochas-
tic process with power spectral measure μX . Let h1, h2 : R → C be integrable
functions with respective Fourier transforms ĥ1 and ĥ2. Define for i = 1, 2,

Yi(t) =

∫

R

hi(t− s)X(s) ds .
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The wss stochastic processes {Y1(t)}t∈R and {Y2(t)}t∈R are stationarily correlated.
In fact (assuming that they are centered, without loss of generality),

E[Y1(t + τ)Y2(t)
∗] = E

[(∫

R

h1(t+ τ − s)X(s) ds

)(∫

R

h2(t− s)X(s) ds

)∗]

=

∫

R

∫

R

h1(t+ τ − u)h∗
2(t− v)CX(u− v) du dv

=

∫

R

∫

R

h1(τ − u)h∗
2(−v)CX(u− v) du dv ,

and this quantity depends only upon τ . Replacing CX(u− v) by its expression in
terms of the spectral measure μX , one obtains

CY1Y2(τ) =

∫

R

e2iπντT1(ν)T
∗
2 (ν)μX(dν) .

The power spectral matrix of the bivariate process {Y1(t), Y2(t)}t∈R is therefore

μY (dν) =

(
|T1(ν)|2 T1(ν)T

∗
2 (ν)

T ∗
1 (ν)T2(ν) |T2(ν)|2

)

μX(dν) .

Band-pass Stochastic Processes

Let {X(t)}t∈R be a centered wss stochastic process with power spectral measure
μX and Cramér–Khinchin decomposition dx(ν). This process is assumed real, and
therefore

μX(−dν) = μX(dν), dx(−ν) = dx(ν)∗ .

Definition 12.4.6 The above wss stochastic process is called band-pass (ν0, B),
where ν0 > B > 0, if the support of μX is contained in the frequency band
[−ν0 − B,−ν0 + B] ∪ [ν0 − B, ν0 + B]. It is called base-band (B) in if in ad-
dition ν0 = 0.

Our purpose is to show that such a band-pass stochastic process admits the
following quadrature decomposition

X(t) = M(t) cos 2πν0t−N(t) sin 2πν0t , (12.26)

where {M(t)}t∈R and {N(t)}t∈R, called the quadrature components, are real base-
band (B) wss stochastic process. To prove this, let G(ν) := − i sign(ν) (= 0 if
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ν = 0). The function G is the so-called Hilbert filter transmittance. The quadrature
process associated with {X(t)}t∈R is defined by

Y (t) =

∫

R

G(ν)e2iπνt dx(ν) .

The right-hand side of the preceding equality is well defined since∫
R
|G(ν)|2 μX(dν) = μX(R) < ∞. Moreover, this stochastic process is real, since

its spectral decomposition is hermitian symmetric. The analytic process associated
with {X(t)}t∈R is, by definition, the stochastic process

Z(t) = X(t) + iY (t) =

∫

R

(1 + iG(ν))e2iπνt dx(ν) = 2

∫

(0,∞)

e2iπνt dx(ν) .

Taking into account that |G(ν)|2 = 1, the preceding expressions and the Wiener
isometry formulas lead to the following properties:

μY (dν) = μX(dν), CY (τ) = CX(τ), CXY (τ) = −CY X(τ),

μZ(dν) = 4 1R+(ν)μX(dν), CZ(τ) = 2 {CX(τ) + iCY X(τ)} ,

and
E[Z(t+ τ)Z(t)] = 0 . (�)

Defining the complex envelope of {X(t)}t∈R by

U(t) = Z(t)e−2iπν0t , (��)

it follows from this definition that

CU(τ) = e−2iπν0τCZ(τ), μU(dν) = μZ(dν + ν0), (†)

whereas (�) and (��) give

E[U(t + τ)U(t)] = 0 . (††)

The quadrature components {M(t)}t∈R and {N(t)}t∈R of {X(t)}t∈R are the real
wss stochastic processes defined by

U(t) = M(t) + iN(t) .

Since

X(t) = Re{Z(t)} = Re{U(t)e2iπν0t} ,
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we have the decomposition (12.26). Taking (††) into account we obtain:

CM(τ) = CN(τ) =
1

4
{CU(τ) + CU(τ)

∗} ,

and

CMN(τ) = CNM(τ) =
1

4i
{CU(τ)− CU(τ)

∗} , (♦)

and the corresponding relations for the spectra

μM(dν) = μN(dν) = {μX(dν − ν0) + μX(dν + ν0)} 1[−B,+B](ν) .

From (♦) and the observation that CU(0) = CU(0)
∗ (since CU(0) = E[|U(0)|2]

is real), we deduce CMN(0) = 0, that is to say,

E[M(t)N(t)] = 0 . (12.27)

If, furthermore, the original process has a power spectral measure that is sym-
metric about ν0 in the band [ν0 − B, ν0 + B], the same holds for the spectrum
of the analytic process and, by (†), the complex envelope has a spectral measure
symmetric about 0, which implies CU(τ) = CU(τ)

∗ and then, by (♦),

E[M(t)N(t + τ)] = 0 . (12.28)

In summary:

Theorem 12.4.7 Let {X(t)}t∈R be a centered real band-pass (ν0, B) wss stochas-
tic process. The values of its quadrature components at a given time are uncor-
related. Moreover, if the original stochastic process has a power spectral measure
symmetric about ν0, the quadrature component processes are uncorrelated.

More can be said when the original process is Gaussian. In this case, the
quadrature component processes are jointly Gaussian (being obtained from the
original Gaussian process by linear operations). In particular, for all t ∈ R, M(t)
and N(t) are jointly Gaussian and uncorrelated, and therefore independent.

If moreover the original process has a spectrum symmetric about ν0, then, by
(12.28), M(t1) and N(t2) (t1, t2 ∈ R) are uncorrelated jointly Gaussian variables,
and therefore independent. In other words, the quadrature component processes
are two independent centered Gaussian wss stochastic processes.
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12.5 Exercises

Exercise 12.5.1. Approximate derivative of the Brownian motion

Prove Formula 12.14.

Exercise 12.5.2. Stationarization of a cyclic stochastic process

Let {Y (t)}t≥0 be the stochastic process taking its values in {−1,+1} defined by

Y (t) := Z × (−1)n on (nT, (n + 1)T ] (n ≥ 0) ,

where T is a positive real number and Z is a random variable equidistributed on
{−1,+1}.

(1) Show that {Y (t)}t≥0 is not a stationary (neither strictly nor in the wide sense)
stochastic process.

(2) Let now U be a random variable uniformly distributed on [0, T ] and indepen-
dent of Z. Define for all t ≥ 0,

X(t) = Y (t− U)+ .

Show that {X(t)}t≥0 is a strictly stationary stochastic process and compute its
covariance function.

Exercise 12.5.3. An ergodic property

Let {X(t)}t≥0 be a wide-sense stationary stochastic process with mean m and
covariance function C (τ). Prove that in order that

lim
T↑∞

1

T

∫ T

0

X (s) ds = mX

holds in the quadratic mean, it is necessary and sufficient that

lim
T↑∞

1

T

∫ T

0

(
1− u

T

)
C (u) du = 0 . (12.29)

Show that this condition is satisfied in particular when the covariance function is
integrable.

Exercise 12.5.4. Symmetric power spectral measure

Show that the power spectral measure of a real wss stochastic process is symmet-
ric.

Exercise 12.5.5. Products of independent wss stochastic processes

Let {X(t)}t∈R and {Y (t)}t∈R be two independent centered wss stochastic pro-
cesses of respective covariance functions CX (τ) and CY (τ).
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1. Show that Z (t) := X(t)Y (t) (t ∈ R) is a wss stochastic process. Give its
mean and covariance function.

2. Assume in addition that {X(t)}t∈R is the harmonic process of Example
11.1.14. Suppose that {Y (t)}t∈R admits a power spectral density fY (ν).
Give the power spectral density fZ (ν) of {Z (t)}t∈R.

Exercise 12.5.6. The approximate derivative of a Wiener process

Let {W (t)}t≥0 be a Wiener process. Show that for a > 0, the stochastic process

Xa (t) :=
W (t+ a)−W (t)

a
(t ∈ R)

is a wss stochastic process. Compute its mean, its covariance function and its
power spectral density.

Exercise 12.5.7. The square of a band-limited white noise

Let {X(t)}t∈R be a wide-sense stationary centered Gaussian process with covari-
ance function CX(τ) and with the power spectral density

fX(ν) =
N0

2
1[−B,+B] (ν) ,

where N0 > 0 and B > 0.

1. Let Y (t) = X(t)2. Show that {Y (t)}t∈R is a wide-sense stationary process.

2. Give its power spectral density fY (ν).

Exercise 12.5.8. Projection of white noise onto an orthonormal base

Let the set of square-integrable functions ϕ : [0, T ]→ R (1 ≤ i ≤ N) be such that

∫ T

0

ϕi(t)ϕj(t) dt = δij (1 ≤ i, j ≤ N),

and let {B(t)}t∈R be a Gaussian white noise with psd 1. Show that the vector
B = (B1, . . . , BN)

T defined by

Bi =

∫ T

0

B(t)ϕi(t) dt (1 ≤ i ≤ N)

is a centered Gaussian vector with covariance matrix ΓB = I, the identity matrix
of size N (In particular, the components B1, . . . , BN are identically distributed,
independent, and centered Gaussian random variables with common variance 1.)
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Exercise 12.5.9. An iid sequence carried by an hpp

Let N be a homogeneous Poisson process on R+ of intensity λ > 0, and let
{Zn}n≥0 be an iid sequence of integrable real random variables, centered, with
finite variance σ2, and independent of N .

1) Show that {ZN((0,t])}t≥0 is a wide-sense stationary stochastic process and give
its covariance function.

2) Give its power spectral density.

3) Compute P (X (t1) = X (t2)) and P (X (t1) > X (t2)).

Exercise 12.5.10. Poisson shot noises

Let N1, N2 and N3 be three independent homogeneous Poisson processes on R

with respective intensities θ1 > 0, θ2 > 0 and θ3 > 0. Let {X1(t)}t∈R be the shot
noise constructed on N1+N3 with an impulse function h : R→ R that is bounded
and with compact support (null outside a finite interval). Let {X2(t)}t∈R be the
shot noise constructed on N2 +N3 with the same impulse function h.

Compute the power spectral density of the wide-sense stationary process {X(t)}t∈R,
where X(t) = X1(t) +X2(t).

Exercise 12.5.11. Flip-flop
Let N be an hpp on R+ with intensity λ. Define the (telegraph or flip-flop) process
{X (t)}t≥0 with state space E = {+1,−1} by

X (t) = Z (−1)N(t) ,

where X (0) = Z is an E-valued random variable independent of the counting
process N . (Thus the telegraph process switches between −1 and +1 at each
event of N .) The probability distribution of Z is arbitrary.

1. Compute P (X (t + s) = j|X (s) = i) for all t, s ≥ 0 and all i, j ∈ E.

2. Give, for all i ∈ E, the limit of P (X (t) = i) as t tends to ∞.

3. Show that when P (Z = 1) = 1
2
, the process is a stationary process and give

its power spectral measure.

Exercise 12.5.12. Flip-flop with limited memory

Let N be a HPP on R with intensity λ > 0. Define for all t ∈ R

X(t) = (−1)N((t,t+a]) .
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1. Show that {X(t)}t∈R is a wss stochastic process.

2. Compute its power spectral density.

3. Give the best affine estimate of X (t + τ) in terms of X(t), that is, find α, β
minimizing

E
[
|X (t+ τ)− (α+ βX(t))|2

]
, when τ > 0.

Exercise 12.5.13. Jumping phase

Define for each t ∈ R, t ≥ 0,
X(t) = eiΦN(t),

where {N (t)}t≥0 is the counting process of a homogeneous Poisson process on R+

with intensity λ > 0, and {Φn}n≥0 is an iid sequence of random variables uniformly
distributed on [0, 2π], and independent of the Poisson process.

Show that {X(t)}t≥0 is a wide-sense stationary process, give its covariance function
CX (τ) and its power spectral measure.



Appendix A

A Review of Hilbert Spaces

Basic Definitions

Let H be a vector space with scalar field K = C or R, endowed with a map
(x, y) ∈ H ×H → 〈x, y〉 ∈ K such that for all x, y, z ∈ H and all λ ∈ K,

1. 〈y, x〉 = 〈x, y〉∗,

2. 〈λy, x〉 = λ〈y, x〉,

3. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,

4. 〈x, x〉 ≥ 0 ; and 〈x, x〉 = 0 if and only if x = 0.

Then H is called a pre-Hilbert space over K and 〈x, y〉 is called the inner product
of x and y. For any x ∈ E, define

‖x‖2 = 〈x, x〉 .

The parallelogram identity

‖x‖2 + ‖y‖2 = 1

2
(‖x+ y‖2 + ‖x− y‖2)

is obtained by expanding the right-hand side and using the equality

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re {〈x, y〉} .

The polarization identity

〈x, y〉 = 1

4

{
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

}

is checked by expanding the right-hand side. It shows in particular that two inner
products 〈·, ·〉1 and 〈·, ·〉2 on E such that ‖ · ‖1 = ‖ · ‖2 are identical.
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Schwarz’s Inequality

Theorem A.0.1 For all x, y ∈ H,

|〈x, y〉| ≤ ‖x‖ × ‖y‖ .

Equality occurs if and only if x and y are colinear.

Proof. Say K = C. If x and y are colinear, that is, x = λy for some λ ∈ C, the
inequality is obviously an equality. If x and y are linearly independent, then for
all λ ∈ C, x+ λy �= 0. Therefore

0 < ‖x+ λy‖2 = ‖x‖2 + |λy|2‖λy‖2 + λ∗〈x, y〉+ λ〈x, y〉∗

= ‖x‖2 + |λ|2‖y‖2 + 2Re(λ∗〈x, y〉) .

Take u ∈ C, |u| = 1, such that u∗〈x, y〉 = |〈x, y〉|. Take any t ∈ R and put λ = tu.
Then

0 < ‖x‖2 + t2‖y‖2 + 2t|〈x, y〉| .
This being true for all t ∈ R, the discriminant of the second degree polynomial in t
of the right-hand side must be strictly negative, that is, 4|〈x, y〉|2−4‖x‖2×‖y‖2 <
0. �
Theorem A.0.2 The mapping x → ‖x‖ is a norm on E, that is to say, for all
x, y ∈ E, and all α ∈ C,

(a) ‖x‖ ≥ 0; and ‖x‖ = 0 if and only if x = 0,

(b) ‖αx‖ = |α| ‖x‖, and

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Proof. The proof of (a) and (b) is immediate. For (c) write

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈y, x〉

and
(‖x‖+ ‖y‖)2 = ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ .

It therefore suffices to prove

〈x, y〉+ 〈y, x〉 = 2Re(〈x, y〉) ≤ 2 ‖x‖‖y‖ ,

which follows from Schwarz’s inequality. �

The norm ‖ · ‖ induces a metric d(·, ·) on H by

d(x, y) = ‖x− y‖ .
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Recall that a mapping d : E×E → R+ is called a metric on E if, for all x, y, z ∈ E,

(a′) d(x, y) ≥ 0; and d(x, y) = 0 if and only if x = y,

(b′) d(x, y) = d(y, x), and

(c′) d(x, y) ≥ d(x, z) + d(z, y).

The above properties are immediate consequences of (a), (b), and (c) of Theorem
A.0.2. When endowed with a metric, a space H is called a metric space.

Definition A.0.3 A pre-Hilbert space H is called a Hilbert space if it is a com-
plete metric space with respect to the metric d.

By this, the following is meant: If {xn}n≥1 is a Cauchy sequence in H , that is, if
limm,n↑∞ d(xm, xn) = 0, then there exists an x ∈ H such that limn↑∞ d(xn, x) = 0.

Theorem A.0.4 Let {xn}n≥1 and {yn}n≥1 be sequences in a Hilbert space H that
converge to x and y, respectively. Then,

lim
m,n↑∞

〈xn, ym〉 = 〈x, y〉 .

In other words, the inner product of a Hilbert space is bicontinuous. In partic-
ular, the norm x �→ ‖x‖ is a continuous function from H to R+.

Proof. We have for all h1, h2 in H ,

|〈x+ h1, y + h2〉 − 〈x, y〉| = |〈x, h2〉+ 〈h1, y〉+ 〈h1, h2〉| .

By Schwarz’s inequality |〈x, h2〉| ≤ ‖x‖‖h2‖, |〈h1, y〉| ≤ ‖y‖‖h1‖, and |〈h1, h2〉| ≤
‖h1‖‖h2‖. Therefore

lim
‖h1‖,‖h2‖↓0

|〈x+ h1, y + h2〉 − 〈x, y〉| = 0 .

�

Isometric Extension

Definition A.0.5 Let H and K be two Hilbert spaces with inner products denoted
by 〈·, ·〉H and 〈·, ·〉K, respectively, and let ϕ : H �→ K be a linear mapping such
that for all x, y ∈ H

〈ϕ(x), ϕ(y)〉K = 〈x, y〉H .

Then, ϕ is called a linear isometry from H into K. If, moreover, ϕ is from H
onto K, then H and K are said to be isomorphic.

APPENDIX A. A REVIEW OF HILBERT SPACES
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Note that a linear isometry is necessarily injective, since ϕ(x) = ϕ(y) implies
ϕ(x− y) = 0, and therefore

0 = ‖ϕ(x− y)‖K = ‖x− y‖H ,

which implies x = y. In particular, if the linear isometry is onto, it is bijective.

Recall that a subset A ∈ E, where (E, d) is a metric space, is said to be dense
in E if, for all x ∈ E, there exists a sequence {xn}n≥1 in A converging to x.

Theorem A.0.6 Let H and K be two Hilbert spaces with inner products denoted
by 〈·, ·〉H and 〈·, ·〉K, respectively. Let V be a vector subspace of H that is dense in
H, and ϕ : V �→ K be a linear isometry from V to K. Then, there exists a unique
linear isometry ϕ̃ : H �→ K whose restriction to V is ϕ.

Proof. We shall first define ϕ̃(x) for x ∈ H . Since V is dense in H , there exists a
sequence {xn}n≥1 in V converging to x. Since ϕ is isometric,

‖ϕ(xn)− ϕ(xm)‖K = ‖xn − xm‖H for all m,n ≥ 1 .

In particular, {ϕ(xn)}n≥1 is a Cauchy sequence in K and therefore it converges to
some element of K, which we denote by ϕ̃(x).

The definition of ϕ̃(x) is independent of the sequence {xn}n≥1 converging to x.
Indeed, for another such sequence {yn}n≥1,

lim
n↑∞
‖ϕ(xn)− ϕ(yn)‖K = lim

n↑∞
‖xn − yn‖H = 0 .

The mapping ϕ̃ : H �→ K so constructed is clearly an extension of ϕ (for x ∈ V
one can take for an approximating sequence of x the sequence {xn}n≥1 such that
xn ≡ x).

The mapping ϕ̃ is linear. Indeed, let x, y ∈ H , α, β ∈ C, and let {xn}n≥1

and {yn}n≥1 be two sequences in V converging to x and y, respectively. Then
{αxn + βyn}n≥1 converges to αx+ βy. Therefore

lim
n↑∞

ϕ(αxn + βyn) = ϕ̃(αx+ βy) .

But

ϕ(αxn + βyn) = αϕ(xn) + βϕ(yn)→ αϕ̃(x) + βϕ̃(y)

tends to ϕ̃(αx+ βy) = αϕ̃(x) + βϕ̃(y).
The mapping ϕ̃ is isometric since, in view of the bicontinuity of the inner

product and of the isometricity of ϕ, if {xn}n≥1 and {yn}n≥1 are two sequences in
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V converging to x and y, respectively, then

〈ϕ̃(x), ϕ̃(y)〉K = lim
n↑∞
〈ϕ(xn), ϕ(yn)〉K

= lim
n↑∞
〈xn, yn〉H = 〈x, y〉H .

�

Orthogonal Projection

A subset G of a Hilbert space H is said to be closed in H if every convergent
sequence of G has a limit in G.

Theorem A.0.7 Let G ⊆ H be a vector subspace of the Hilbert space H. Endow
G with the inner product which is the restriction to G of the inner product on H.
Then, G is a Hilbert space if and only if G is closed in H.

G is then called a Hilbert subspace of H .

Proof. (i) Assume that G is closed. Let {xn}n∈N be a Cauchy sequence in G. It
is a fortiori a Cauchy sequence in H , and therefore it converges in H to some x,
and this x must be in G, because it is a limit of elements of G and G is closed.

(ii) Assume that G is a Hilbert space with the inner product induced by the
inner product of H . In particular every convergent sequence {xn}n∈N of elements
of G converges to some element of G. Therefore G is closed. �

Definition A.0.8 Two elements x, y of the Hilbert space H are said to be or-
thogonal if 〈x, y〉 = 0. Let G be a Hilbert subspace of the Hilbert space H. The
orthogonal complement of G in H, denoted G⊥, is defined by

G⊥ = {z ∈ H : 〈z, x〉 = 0 for all x ∈ G} .

Clearly, G⊥ is a vector space over C. Moreover, it is closed in H since if {zn}n≥1

is a sequence of elements of G⊥ converging to z ∈ H then, by continuity of the
inner product,

〈z, x〉 = lim
n↑∞
〈zn, x〉 = 0 for all x ∈ H .

Therefore G⊥ is a Hilbert subspace of H .

Note that a decomposition x = y + z where y ∈ G and z ∈ G⊥ is necessarily
unique. Indeed, let x = y′ + z′ be another such decomposition. Then, letting
a = y− y′, b = z− z′, we have that 0 = a+ b where a ∈ G and b ∈ G⊥. Therefore,
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in particular, 0 = 〈a, a〉 + 〈a, b〉. But 〈a, b〉 = 0, and therefore 〈a, a〉 = 0, which
implies that a = 0. Similarly, b = 0.

Theorem A.0.9 Let G be a Hilbert subspace of H. For all x ∈ H, there exists a
unique element y ∈ G such that x− y ∈ G⊥. Moreover,

‖y − x‖ = inf
u∈G
‖u− x‖ . (A.1)

Proof. Let d(x,G) = infz∈G d(x, z) and let {yn}n≥1 be a sequence in G such that

d(x,G)2 ≤ d(x, yn)
2 ≤ d(x,G)2 +

1

n
. (�)

The parallelogram identity gives, for all m,n ≥ 1,

‖yn − ym‖2 = 2(‖x− yn‖2 + ‖x− ym‖2)− 4‖x− 1

2
(ym + yn)‖2 .

Since 1
2
(yn + ym) ∈ G,

‖x− 1

2
(ym + yn)‖2 ≥ d(x,G)2,

and therefore

‖yn − ym‖2 ≤ 2

(
1

n
+

1

m

)

.

The sequence {yn}n≥1 is therefore a Cauchy sequence in G and consequently it
converges to some y ∈ G since G is closed. Passing to the limit in (�) gives (A.1).

Uniqueness of y satisfying (A.1): Let y′ ∈ G be another such element. Then

‖x− y′‖ = ‖x− y‖ = d(x,G) ,

and from the parallelogram identity

‖y − y′‖2 = 2‖y − x‖2 + 2‖y′ − x‖2 − 4‖x− 1

2
(y + y′)‖2

= 4d(x,G)2 − 4‖x− 1

2
(y + y′)‖2 .

Since 1
2
(y + y′) ∈ G,

‖x− 1

2
(y + y′)‖2 ≥ d(x,G)2 ,

and therefore ‖y − y′‖2 ≤ 0, which implies ‖y − y′‖2 = 0 and therefore y = y′.
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It now remains to show that x − y is orthogonal to G, that is, 〈x − y, z〉 = 0
for all z ∈ G. Since this is trivially true if z = 0, we may assume z �= 0. Because
y + λz ∈ G for all λ ∈ R,

‖x− (y + λz)‖2 ≥ d(x,G)2 ,

that is,
‖x− y‖2 + 2λRe {〈x− y, z〉}+ λ2‖z‖2 ≥ d(x,G)2 .

Since ‖x− y‖2 = d(x,G)2, we have

− 2λRe {〈x− y, z〉}+ λ2‖z‖2 ≥ 0 for all λ ∈ R,

which implies Re {〈x− y, z〉} = 0. The same type of calculation with λ ∈ iR (pure
imaginary) leads to *{〈x− y, z〉} = 0. Therefore 〈x− y, z〉 = 0.

That y is the unique element of G such that y−x ∈ G⊥ follows from the remark
preceding Theorem A.0.9. �

Definition A.0.10 The element y in Theorem A.0.9 is called the orthogonal pro-
jection of x on G and is denoted by PG(x).

The projection theorem states, in particular, that for any x ∈ G there is a
unique decomposition

x = y + z, y ∈ G, z ∈ G⊥,

and that y = PG(x), the (unique) element of G closest to x. Therefore

Theorem A.0.11 The orthogonal projection y = PG(x) is characterized by the
two following properties:

(1) y ∈ G;

(2) 〈y − x, z〉 = 0 for all z ∈ G.

This characterization is known as the projection principle of Hilbert spaces.

Let C be a collection of vectors in the Hilbert space H . The linear span of
C, denoted span(C) is, by definition, the set of all finite linear combinations of
vectors of C. This is a vector space. The closure of this vector space, span(C),
is called the Hilbert subspace generated by C. By definition, x belongs to this
subspace if and only if there exists a sequence of vectors {xn}n≥1 such that

(i) for all n ≥ 1, xn is a finite linear combination of vectors of C, and

(ii) limn↑∞ xn = x.
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Theorem A.0.12 An element x̂ ∈ H is the projection of x onto G = span(C)
if and only if

(α) x̂ ∈ G, and

(β) 〈x− x̂, z〉 = 0 for all z ∈ C.

Note that we have to satisfy requirement not for all z ∈ G, but only for all
z ∈ C.

The proof is easy. We have to show that 〈x− x̂, z〉 = 0 for all z ∈ G. But z =
limn↑∞ zn, where {zn}n≥1 is a sequence of vectors of span(C) such that limn↑∞ zn =
z. By hypothesis, for all n ≥ 1, 〈x − x̂, zn〉 = 0. Therefore, by continuity of the
inner product,

〈x− x̂, z〉 = lim
n↑∞
〈x− x̂, zn〉 = 0 .
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