ABSTRACT EROSION BY A LOAD TRAVERSING A ROUTED
NETWORK ON A DIRECTED GRAPH WITH APPLICATIONS
TO PROCESSES AND GAMES

Definition. A directed graph is a quadruple (X, X’, 1,1) such that 1,1: X —
X' are maps that give the base and head of an edge in X where X’ is the set
of nodes. Note that the map L x 7: X — X’ x X’ given by (L x 1)(x) = (L
(z),1 (2)) is not necessarily injective—there may be more than one edge with base
2z’ € X’ and head 3/ € X'.

Definition. A cancellative monoid C is a halfgroup if its group of units is trivial,
in symbols C* = {1}. A homomorphism of halfgroups is a monoid homomor-
phism.

Exercise. Prove that a nontrivial halfgroup has infinitely many elements.

The shorthand Halfgroups is used as follows: by “f: X — Halfgroups is a map”
is meant there is some implicit set Y such that each element of Y is a halfgroup,
and f: X — Y is a map.

WARNING: In general, the quotient of a halfgroup by a monoid congruence is not
a halfgroup, as it may posses nontrivial invertible elements.

Exercise. Let I be an index set and (C;);es an indexed collection of halfgroups.

Prove that the direct product X;.; C; and direct sum €, ; C; are halfgroups.

Definition. Let C' and D be halfgroups. A map a: C — D is an accumulator if
a(l) =1 and a(ed) € a(e)D for all ¢,d € C.

The shorthand Accumulators is used as follows: by “f: X — Accumulators is a
map” is meant there are implicit sets Y and Z such that each each element of Y is
a halfgroup, each element of Z is a triple (a,C, D) where C;D € Y, a: C — D is
an accumulator, and f: X — Z is a map.

Proposition. Let C and D be halfgroups. Then

(1) every homomorphism ¢: C' — D is an accumulator, and
(2) if a,b: C — C are accumulators, then so is their composition a o b.

Proof. Omitted. O

Points 1 and 2 of the preceding proposition imply that the subset of accumulators
in the set of unary operators on a halfgroup form a monoid under composition of
maps, with the identity map service as the identity for the monoid of accumulators.
For a halfgroup C, let Acc(C') be the monoid of accumulators on C.

Definition. Let C and D be halfgroups. Let Acc(C, D) be the set of accumu-
lators with domain C' and codomain D. Let a: C' — D be an accumulator. The

shift of a by an element ¢ € C is the unique map b = a < ¢: C' — D such that
a(ed) = a(e)b(d) for all d € C.
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Proposition. Let C and D be halfgroups. If a: C'— D is an accumulator, then

(1) a « c¢is an accumulator for all ¢ € C,
(2) C acts on Acc(C, D) on the right by shift, and
(3) a=a <+ cfor all c € C iff a is a homomorphism.

Proof. Points 1 and 3 are left to the reader as an exercise. For point 2, first note
that @ < 1 = a for all accumulators. Let ¢,d € C. Let b = a < ¢, e = a < (cd),
and f = b < d For all ¢ € C, we have a(cg) = a(c)b(g), a(edg) = a(cd)e(g),
and b(dg) = b(d) f(g). This gives a(cdg) = a(ed)e(g) = a(c)b(d)e(g) and a(edg) =
a(c)b(dg) = a(c)b(d)f(g), so by cancellation we obtain e(g) = f(g), hence a +
(cd) = (a + ¢) + d. O

Definition. Let C be a halfgroup and a: C' — C an accumulator. The conjugate
of a by the monoid automorphism ¢: C' — C'is poaop 1. Let Aut(C) be the group
of monoid automorphisms on C' with multiplication composition of maps.

Proposition. Let C be a halfgroup. Then Aut(C) acts on Acc(C) on the left by

p-a=poaand p-a=aop t and on the right by a-¢ =aop anda-p = ¢~ 'oa.

Proof. Omitted U

Lemma. (Square lemma) Let C,D,E, and F be halfgroups, let a: C — D and
b: E — F be accumulators, and let ¢: C' — E and 1¢p: D — F be homomorphisms
such that 1 oa =bo . Then for all c € C, we have ¥ o (a + ¢) = (b + ¢(c)) o .

Proof. Let ¢,d € C,and let e = a < c and f = b < ¢(a). Then we have ¢(a(cd)) =
bla()e(d)) = vla(e))ple(d)) = bp(e))b(e(d)) and tlalcd)) = bl (cd)) = blg(c)p(d)) =
b(p(c)) f(p(d)), so cancelling by b(p(c)) on the left yields 1 (e(d)) = f(e(d)).

[Note: the shifted accumulators a < ¢ and b < ¢(c) also satisfy the hypothesis
of the square lemma.

O

Exercise. Let C be a halfgroup, a: C — C' an accumulator, and ¢: C — C a
homomorphism. Prove that (a o ¢) < ¢ = (a < ¢(c)) o ¢ for all ¢ € C.

NETWORKS ON DIRECTED GRAPHS

Definition. Let X be a directed graph. A network on X is a triple (C,r,ap)
such that C': X’ — Halfgroups, i.e. C(a') is a halfgroup for all 2’ € X', r =
(rer)arexs, is the route, an indexed collection of maps r(2’,-): Cpr — X such that
L (r(2',¢)) = o’ for all 2’ € X' and ¢ € C(2'), and ap: X — Accumulators,
ap(z,): C(L (z)) = C(T (x)) is the link along edge x.

Given a directed graph X and network (C,r,ag) on X, we can calculate a single
step of the load (x(, co)—where ¢y € C(xy), is the content and z(, € X' is the
location—and the successor link accumulators as it passes through the network
according to the route r as follows:

(1) the route map selects the edge g = r(xj, co) the load will travel along and
gives the successor location z} =1 (r(z(, co)),

(2) thelink ag(zo,-): C(z() — C(x}) gives the successor content ¢; = ag(xo, o),
and
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(3) as the load traverses the edge o, it erodes the link ag (o, -), and we calculate
the successor links a; as follows:

{a‘l(ya'):ao(ya') 1fy7éx0 .

a1($07 ) = ao(wo, )+ co

Iterating, this load yields the traversal sequence (z),,c¢y,x,) and erosion se-
quence a, for all n € N.

The preceding description is for a network with a single load. To expand
this to multiple loads, let a = ap, require every link a(z,-) to be a homomor-
phism, and let I be an index set. Since shift preserves homomorphisms, the links
a(x,-) do not change as loads traverse the network. To each i € I we assign
a load (), cio). To calculate the traversal sequence, we let xf; =1 (r(zy, cio)),
xi0 = (g, Cio), ci1 = a(xi0, o), and iterate, forming the multi-load traversal
sequence (&}, Cin, Tin)icr for all n € N.

Definition. Let X and Y be directed graphs, v: X — Y an injective map from
the edges of X to the edges of Y, and v': X’ — Y’ a map from the nodes X’ to the
nodes Y. Suppose that v is compatible with the base and head maps, i.e. for all
edges x € X, we have v/(L (x)) =L (y(z)) and v/ (T (x)) =1 (v(x)). Let (C,r,a)
be a network on X and (D, s,b) a network on Y. A homomorphism of networks
from X to Y adapted to the edge and node maps (v,~') is an indexed collection
(¢2)arex of homomorphisms ¢(z’,-): C(z') — C(y'(2’)) that are compatible with
the route maps and link accumulators, i.e. for all 2’ € X’ and ¢ € C(z'), we have

(1) y(r(@';c)) = s(v'(2'), p(2', ¢)), and
(2) for all z € X and ¢ € C(L (z)), we have p(T (x),a(z,c)) = b(y(x), p(L

(), ¢))-

Theorem. Let X,Y,v,7,(C,r,a),(D,s,b), and (¢.)zecx be as above, and let
(x4, o) be aload for (C,a,r). The operation of applying the network homomorphism
@ commutes with calculating the routes and traversal sequence for the load.

Proof. We must prove that if y), = v/(x(), do = ¢(z(, o), (T, Cn, Tn) is the (Cy 7, a)
traversal sequence for the load (xf,co), and (y.,,dn,yn) is the (D, s,b) traversal
sequence for the load (y(, dp), then for all n, we have y, = (), yn = v(zy), and
dyn, = p(x),, cn).

Let ¢ = (P(xf), ), 0= p(2,), e = a(zo, ), f=byo,), £ = C(I6)7 F = C(21),
G = D(y(), and H = D(y}). First, note that E, F, G, and H together with 1,6, e,
and f satisfy the hypothesis for the square lemma. Consider the traversal of the
first link: before traversal, each pair of links 2 and y = y(z) together with the node
homomorphisms ¢(L (z),-) and ¢(1 (x),-) along with C(L (x)),C(1 (z)),D(L
(y)), and D(7 (y)) satisfy the hypothesis for the square lemma. Since 7 is injective,
traversal erosion, i.e. replacing a(zo, ) with a(xg, ) < ¢o and b(yo, ) with b(yo, ) +
©(xy, ¢) preserves this condition: for z = x¢ and y = yo, this follows from the square
lemma, and for & # xq, this follows trivially. The commutativity conditions (points
1 and 2 in the definition above) establish the first step. The proof by induction is
left to the reader as an exercise. O

The edge map v in the last theorem must be injective, or else the conclusion does
not hold:
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Example. Let X be the directed graph with a single node z’ and edges z,, indexed
by {0,1,2,...}, and let (C,r,a) be the following network on it: define C(z') = N,
let the route map be r(2’,i) = x; with links a(z,,4) = i2. Since a route is never
traversed more than once, the content of the traversal sequence started with load
(2',2) is 22". Now let Y be the directed graph with single node ' and single edge
y, and let (D, s,bg) be the following network on it: define D(y") = N, route map
s(y’,i) = y with link by(y,i) = i2. Define the node map 7': X’ — Y’ to be v(z') =
y', the edge map v: X — Y to be y(z,) =y, and let (', -): C(z') = D(y') be the
identity map ¢(2’,7) = 4. All of the conditions of the preceding theorem have been
satisfied except injectivity of 4. For convenience, we calculate the shift of f(x) = 22
here: for t € N, we have (f + t)(z) = (v+t)2—t? = 2242x2t. If dy = 2, the traversal
of the load (y', dp) can be calculated as follows: dy =4, bi(y, ) = bo(y,-) + 2, ds =
(bo(y, )  2)(4) = 16416 = 32, by(y, -) = (bo  6), ds = (bo(y, )  6)(32) = 1408,
so traversal does not commute with the homomorphism (z’, ). Intuitively, this is
because traversal in X erodes different links, but traversal in Y cumulatively erodes
the same link.



