
ABSTRACT EROSION BY A LOAD TRAVERSING A ROUTED
NETWORK ON A DIRECTED GRAPH WITH APPLICATIONS

TO PROCESSES AND GAMES

Definition. A directed graph is a quadruple (X,X ′,⊥, ↑) such that ⊥, ↑ : X →
X ′ are maps that give the base and head of an edge in X where X ′ is the set
of nodes. Note that the map ⊥ × ↑ : X → X ′ × X ′ given by (⊥ × ↑)(x) = (⊥
(x), ↑ (x)) is not necessarily injective—there may be more than one edge with base
x′ ∈ X ′ and head y′ ∈ X ′.

Definition. A cancellative monoid C is a halfgroup if its group of units is trivial,
in symbols C× = {1}. A homomorphism of halfgroups is a monoid homomor-
phism.

Exercise. Prove that a nontrivial halfgroup has infinitely many elements.

The shorthand Halfgroups is used as follows: by “f : X → Halfgroups is a map”
is meant there is some implicit set Y such that each element of Y is a halfgroup,
and f : X → Y is a map.

warning: In general, the quotient of a halfgroup by a monoid congruence is not
a halfgroup, as it may posses nontrivial invertible elements.

Exercise. Let I be an index set and (Ci)i∈I an indexed collection of halfgroups.
Prove that the direct product×i∈I Ci and direct sum

⊕
i∈I Ci are halfgroups.

Definition. Let C and D be halfgroups. A map a : C → D is an accumulator if
a(1) = 1 and a(cd) ∈ a(c)D for all c, d ∈ C.

The shorthand Accumulators is used as follows: by “f : X → Accumulators is a
map” is meant there are implicit sets Y and Z such that each each element of Y is
a halfgroup, each element of Z is a triple (a,C,D) where C,D ∈ Y, a : C → D is
an accumulator, and f : X → Z is a map.

Proposition. Let C and D be halfgroups. Then

(1) every homomorphism ϕ : C → D is an accumulator, and
(2) if a, b : C → C are accumulators, then so is their composition a ◦ b.

Proof. Omitted. �

Points 1 and 2 of the preceding proposition imply that the subset of accumulators
in the set of unary operators on a halfgroup form a monoid under composition of
maps, with the identity map service as the identity for the monoid of accumulators.
For a halfgroup C, let Acc(C) be the monoid of accumulators on C.

Definition. Let C and D be halfgroups. Let Acc(C,D) be the set of accumu-
lators with domain C and codomain D. Let a : C → D be an accumulator. The
shift of a by an element c ∈ C is the unique map b = a ← c : C → D such that
a(cd) = a(c)b(d) for all d ∈ C.
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Proposition. Let C and D be halfgroups. If a : C → D is an accumulator, then

(1) a← c is an accumulator for all c ∈ C,
(2) C acts on Acc(C,D) on the right by shift, and
(3) a = a← c for all c ∈ C iff a is a homomorphism.

Proof. Points 1 and 3 are left to the reader as an exercise. For point 2, first note
that a ← 1 = a for all accumulators. Let c, d ∈ C. Let b = a ← c, e = a ← (cd),
and f = b ← d For all g ∈ C, we have a(cg) = a(c)b(g), a(cdg) = a(cd)e(g),
and b(dg) = b(d)f(g). This gives a(cdg) = a(cd)e(g) = a(c)b(d)e(g) and a(cdg) =
a(c)b(dg) = a(c)b(d)f(g), so by cancellation we obtain e(g) = f(g), hence a ←
(cd) = (a← c)← d. �

Definition. Let C be a halfgroup and a : C → C an accumulator. The conjugate
of a by the monoid automorphism ϕ : C → C is ϕ◦a◦ϕ−1. Let Aut(C) be the group
of monoid automorphisms on C with multiplication composition of maps.

Proposition. Let C be a halfgroup. Then Aut(C) acts on Acc(C) on the left by
ϕ ·a = ϕ◦a and ϕ ·a = a◦ϕ−1 and on the right by a ·ϕ = a◦ϕ and a ·ϕ = ϕ−1 ◦a.

Proof. Omitted �

Lemma. (Square lemma) Let C,D,E, and F be halfgroups, let a : C → D and
b : E → F be accumulators, and let ϕ : C → E and ψ : D → F be homomorphisms
such that ψ ◦ a = b ◦ ϕ. Then for all c ∈ C, we have ψ ◦ (a← c) = (b← ϕ(c)) ◦ ϕ.

Proof. Let c, d ∈ C, and let e = a← c and f = b← ϕ(a). Then we have ψ(a(cd)) =
ψ(a(c)e(d)) = ψ(a(c))ψ(e(d)) = b(ϕ(c))ψ(e(d)) and ψ(a(cd)) = b(ϕ(cd)) = b(ϕ(c)ϕ(d)) =
b(ϕ(c))f(ϕ(d)), so cancelling by b(ϕ(c)) on the left yields ψ(e(d)) = f(ϕ(d)).

[Note: the shifted accumulators a← c and b← ϕ(c) also satisfy the hypothesis
of the square lemma.] �

Exercise. Let C be a halfgroup, a : C → C an accumulator, and ϕ : C → C a
homomorphism. Prove that (a ◦ ϕ)← c = (a← ϕ(c)) ◦ ϕ for all c ∈ C.

Networks on directed graphs

Definition. Let X be a directed graph. A network on X is a triple (C, r, a0)
such that C : X ′ → Halfgroups, i.e. C(x′) is a halfgroup for all x′ ∈ X ′, r =
(rx′)x′∈X′ , is the route, an indexed collection of maps r(x′, ·) : Cx′ → X such that
⊥ (r(x′, c)) = x′ for all x′ ∈ X ′ and c ∈ C(x′), and a0 : X → Accumulators,
a0(x, ·) : C(⊥ (x))→ C(↑ (x)) is the link along edge x.

Given a directed graph X and network (C, r, a0) on X, we can calculate a single
step of the load (x′0, c0)—where c0 ∈ C(x′0), is the content and x′0 ∈ X ′ is the
location—and the successor link accumulators as it passes through the network
according to the route r as follows:

(1) the route map selects the edge x0 = r(x′0, c0) the load will travel along and
gives the successor location x′1 =↑ (r(x′0, c0)),

(2) the link a0(x0, ·) : C(x′0)→ C(x′1) gives the successor content c1 = a0(x0, c0),
and
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(3) as the load traverses the edge x0, it erodes the link a0(x0, ·), and we calculate
the successor links a1 as follows:{

a1(y, ·) = a0(y, ·) if y 6= x0

a1(x0, ·) = a0(x0, ·)← c0
.

Iterating, this load yields the traversal sequence (x′n, cn, xn) and erosion se-
quence an for all n ∈ N.

The preceding description is for a network with a single load. To expand
this to multiple loads, let a = a0, require every link a(x, ·) to be a homomor-
phism, and let I be an index set. Since shift preserves homomorphisms, the links
a(x, ·) do not change as loads traverse the network. To each i ∈ I we assign
a load (x′i0, ci0). To calculate the traversal sequence, we let x′i1 =↑ (r(x′i0, ci0)),
xi0 = r(x′i0, ci0), ci1 = a(xi0, ci0), and iterate, forming the multi-load traversal
sequence (x′in, cin, xin)i∈I for all n ∈ N.

Definition. Let X and Y be directed graphs, γ : X → Y an injective map from
the edges of X to the edges of Y, and γ′ : X ′ → Y ′ a map from the nodes X ′ to the
nodes Y ′. Suppose that γ is compatible with the base and head maps, i.e. for all
edges x ∈ X, we have γ′(⊥ (x)) =⊥ (γ(x)) and γ′(↑ (x)) =↑ (γ(x)). Let (C, r, a)
be a network on X and (D, s, b) a network on Y. A homomorphism of networks
from X to Y adapted to the edge and node maps (γ, γ′) is an indexed collection
(ϕx′)x′∈X′ of homomorphisms ϕ(x′, ·) : C(x′)→ C(γ′(x′)) that are compatible with
the route maps and link accumulators, i.e. for all x′ ∈ X ′ and c ∈ C(x′), we have

(1) γ(r(x′, c)) = s(γ′(x′), ϕ(x′, c)), and
(2) for all x ∈ X and c ∈ C(⊥ (x)), we have ϕ(↑ (x), a(x, c)) = b(γ(x), ϕ(⊥

(x), c)).

Theorem. Let X,Y, γ, γ′, (C, r, a), (D, s, b), and (ϕx′)x′∈X′ be as above, and let
(x′0, c0) be a load for (C, a, r). The operation of applying the network homomorphism
ϕ commutes with calculating the routes and traversal sequence for the load.

Proof. We must prove that if y′0 = γ′(x′0), d0 = ϕ(x′0, c0), (x
′
n, cn, xn) is the (C, r, a)

traversal sequence for the load (x′0, c0), and (y′n, dn, yn) is the (D, s, b) traversal
sequence for the load (y′0, d0), then for all n, we have y′n = γ′(x′n), yn = γ(xn), and
dn = ϕ(x′n, cn).

Let ψ = ϕ(x′0, ·), θ = ϕ(x′1, ·), e = a(x0, ·), f = b(y0, ·), E = C(x′0), F = C(x′1),
G = D(y′0), and H = D(y′1). First, note that E,F,G, and H together with ψ, θ, e,
and f satisfy the hypothesis for the square lemma. Consider the traversal of the
first link: before traversal, each pair of links x and y = γ(x) together with the node
homomorphisms ϕ(⊥ (x), ·) and ϕ(↑ (x), ·) along with C(⊥ (x)), C(↑ (x)), D(⊥
(y)), and D(↑ (y)) satisfy the hypothesis for the square lemma. Since γ is injective,
traversal erosion, i.e. replacing a(x0, ·) with a(x0, ·)← c0 and b(y0, ·) with b(y0, ·)←
ϕ(x′0, c) preserves this condition: for x = x0 and y = y0, this follows from the square
lemma, and for x 6= x0, this follows trivially. The commutativity conditions (points
1 and 2 in the definition above) establish the first step. The proof by induction is
left to the reader as an exercise. �

The edge map γ in the last theorem must be injective, or else the conclusion does
not hold:
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Example. Let X be the directed graph with a single node x′ and edges xn indexed
by {0, 1, 2, ...}, and let (C, r, a) be the following network on it: define C(x′) = N,
let the route map be r(x′, i) = xi with links a(xn, i) = i2. Since a route is never
traversed more than once, the content of the traversal sequence started with load
(x′, 2) is 22

n

. Now let Y be the directed graph with single node y′ and single edge
y, and let (D, s, b0) be the following network on it: define D(y′) = N, route map
s(y′, i) = y with link b0(y, i) = i2. Define the node map γ′ : X ′ → Y ′ to be γ(x′) =
y′, the edge map γ : X → Y to be γ(xn) = y, and let ϕ(x′, ·) : C(x′)→ D(y′) be the
identity map ϕ(x′, i) = i. All of the conditions of the preceding theorem have been
satisfied except injectivity of γ. For convenience, we calculate the shift of f(x) = x2

here: for t ∈ N, we have (f ← t)(x) = (x+t)2−t2 = x2+2xt. If d0 = 2, the traversal
of the load (y′, d0) can be calculated as follows: d1 = 4, b1(y, ·) = b0(y, ·)← 2, d2 =
(b0(y, ·)← 2)(4) = 16+16 = 32, b2(y, ·) = (b0 ← 6), d3 = (b0(y, ·)← 6)(32) = 1408,
so traversal does not commute with the homomorphism ϕ(x′, ·). Intuitively, this is
because traversal in X erodes different links, but traversal in Y cumulatively erodes
the same link.


