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Introduction

About this book
This second volume of “Basic Analysis” is meant to be a seamless continuation. The
chapter numbers start where the first volume left off. The book started with my notes for a
second-semester undergraduate analysis at University of Wisconsin—Madison in 2012,
which I taught more or less with Rudin’s book. Some of the material and some of the
proofs are similar to Rudin, though I try to provide more detail and context. In 2016, I
taught a second-semester undergraduate analysis at Oklahoma State University, modifying
and cleaning up the notes, this time using them as the main text. I have since taught the
course several more times, adding chapter  11 (originally written for the Wisconsin course),
and making many other smaller improvments.

I plan to eventually add a few more topics. I will try to preserve the numbering in
subsequent editions as always. The new topics planned would add chapters onto the end
of the book, or add sections to end of existing chapters, and I will try as hard as possible to
leave exercise numbers unchanged.

For the most part, this second volume depends on the non-optional parts of volume I,
while some of the optional parts are also used. Higher order derivatives (but not Taylor’s
theorem itself) are used in  8.6 ,  9.3 ,  10.6 . Exponentials, logarithms, and improper integrals
are used in a few examples and exercises, and they are heavily used in  chapter 11 .

An alternate plan for a two-semester course is that some bits of the first volume, such
as metric spaces, are covered in the second semester, while some of the optional topics of
volume I are covered in the first semester. Leaving metric spaces for the second semester
makes the second semester the “multivariable” part of the course.

Several possibilities for things to cover after metric spaces, depending on time are:
1)  8.1 – 8.5 ,  10.1 – 10.5 ,  10.7 (multivariable calculus, focus on multivariable integral).
2) Chapter  8 , chapter  9 ,  10.1 and  10.2 (multivariable calculus, focus on path integrals).
3) Chapters  8 ,  9 , and  10 (multivariable calculus, path integrals, multivariable integrals).
4) Chapters  8 , (maybe  9 ), and  11 (multivariable differential calculus, some advanced

analysis).
5) Chapter  8 , chapter  9 ,  11.1 ,  11.6 ,  11.7 (a simpler variation of the above).
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Chapter 8

Several Variables and Partial Derivatives

8.1 Vector spaces, linear mappings, and convexity
Note: 3 lectures

8.1.1 Vector spaces
The euclidean space ℝ𝑛 has already made an appearance in the metric space chapter. In
this chapter, we extend the differential calculus we created for one variable to several
variables. The key idea in differential calculus is to approximate differentiable functions by
linear functions (approximating the graph by a straight line). In several variables, we must
introduce a little bit of linear algebra before we can move on. We start with vector spaces
and linear mappings of vector spaces.

While it is common to use ®𝑣 or the bold v for elements of ℝ𝑛 , especially in the applied
sciences, we use just plain old 𝑣, which is common in mathematics. That is, 𝑣 ∈ ℝ𝑛 is a
vector, which means 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) is an 𝑛-tuple of real numbers. 

†
 It is common to

write and treat vectors as column vectors, that is, 𝑛-by-1 matrices:

𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) =
[ 𝑣1
𝑣2
...
𝑣𝑛

]
We do so when convenient. We call real numbers scalars to distinguish them from vectors.

We often think of vectors as a direction and a magnitude and draw the vector as an
arrow. The vector (𝑣1, 𝑣2, . . . , 𝑣𝑛) is represented by an arrow from the origin to the point
(𝑣1, 𝑣2, . . . , 𝑣𝑛). When we think of vectors as arrows, they are not based at the origin
necessarily; a vector is simply the direction and the magnitude, and it does not know where
it starts. There is a natural algebraic structure when thinking of vectors as arrows. We can
add vectors as arrows by following one vector and then the other. And we can take scalar
multiples of vectors as arrows by rescaling the magnitude. See  Figure 8.1 .

†Subscripts are used for many purposes, so sometimes we may have several vectors that may also be
identified by subscript, such as a finite or infinite sequence of vectors 𝑦1 , 𝑦2 , . . ..
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𝑥2 (𝑣1, 𝑣2)

𝑥1

𝑤

𝑣 + 𝑤 𝑣
2𝑣𝑣

Figure 8.1: Vector as an arrow in ℝ2, and the meaning of addition and scalar multiplication.

Each vector also represents a point in ℝ𝑛 . Usually, we think of 𝑣 ∈ ℝ𝑛 as a point if
we are thinking of ℝ𝑛 as a metric space, and we think of it as an arrow if we think of the
so-called vector space structure on ℝ𝑛 (addition and scalar multiplication). Let us define the
abstract notion of a vector space, as there are many other vector spaces than just ℝ𝑛 .

Definition 8.1.1. Let 𝑋 be a set together with the operations of addition, + : 𝑋 × 𝑋 → 𝑋,
and multiplication, · : ℝ×𝑋 → 𝑋, (we usually write 𝑎𝑥 instead of 𝑎 · 𝑥). 𝑋 is called a vector
space (or a real vector space) if the following conditions are satisfied:

(i) (Addition is associative) If 𝑢, 𝑣, 𝑤 ∈ 𝑋, then 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤.
(ii) (Addition is commutative) If 𝑢, 𝑣 ∈ 𝑋, then 𝑢 + 𝑣 = 𝑣 + 𝑢.

(iii) (Additive identity) There is a 0 ∈ 𝑋 such that 𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑋.
(iv) (Additive inverse) For each 𝑣 ∈ 𝑋, there is a−𝑣 ∈ 𝑋, such that 𝑣+(−𝑣) = 0.
(v) (Distributive law) If 𝑎 ∈ ℝ, 𝑢, 𝑣 ∈ 𝑋, then 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣.

(vi) (Distributive law) If 𝑎, 𝑏 ∈ ℝ, 𝑣 ∈ 𝑋, then (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣.
(vii) (Multiplication is associative) If 𝑎, 𝑏 ∈ ℝ, 𝑣 ∈ 𝑋, then (𝑎𝑏)𝑣 = 𝑎(𝑏𝑣).

(viii) (Multiplicative identity) 1𝑣 = 𝑣 for all 𝑣 ∈ 𝑋.
Elements of a vector space are usually called vectors, even if they are not elements of ℝ𝑛

(vectors in the “traditional” sense). If 𝑌 ⊂ 𝑋 is a subset that is a vector space itself using
the same operations, then 𝑌 is called a subspace or a vector subspace of 𝑋.

Multiplication by scalars works as one would expect. For example, 2𝑣 = (1 + 1)𝑣 =
1𝑣 + 1𝑣 = 𝑣 + 𝑣, similarly 3𝑣 = 𝑣 + 𝑣 + 𝑣, and so on. One particular fact we often use is that
0𝑣 = 0, where the zero on the left is 0 ∈ ℝ and the zero on the right is 0 ∈ 𝑋. To see this,
start with 0𝑣 = (0 + 0)𝑣 = 0𝑣 + 0𝑣, and add −(0𝑣) to both sides to obtain 0 = 0𝑣. Similarly,
−𝑣 = (−1)𝑣, which follows by (−1)𝑣 + 𝑣 = (−1)𝑣 + 1𝑣 = (−1 + 1)𝑣 = 0𝑣 = 0. Such algebraic
facts which follow quickly from the definition will be taken for granted from now on.

Example 8.1.2: The set ℝ𝑛 is a vector space, addition and multiplication by a scalar is done
componentwise: If 𝑎 ∈ ℝ, 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) ∈ ℝ𝑛 , and 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ ℝ𝑛 , then

𝑣 + 𝑤 B (𝑣1, 𝑣2, . . . , 𝑣𝑛) + (𝑤1, 𝑤2, . . . , 𝑤𝑛) = (𝑣1 + 𝑤1, 𝑣2 + 𝑤2, . . . , 𝑣𝑛 + 𝑤𝑛),
𝑎𝑣 B 𝑎(𝑣1, 𝑣2, . . . , 𝑣𝑛) = (𝑎𝑣1, 𝑎𝑣2, . . . , 𝑎𝑣𝑛).
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We will mostly deal with “finite-dimensional” vector spaces that can be regarded as
subsets of ℝ𝑛 , but other vector spaces are useful in analysis. It is better to think of even
such simpler vector spaces abstractly abstract notion rather than as ℝ𝑛 .

Example 8.1.3: A trivial example of a vector space is 𝑋 B {0}. The operations are defined
in the obvious way: 0 + 0 B 0 and 𝑎0 B 0. A zero vector must always exist, so all vector
spaces are nonempty sets, and this 𝑋 is the smallest possible vector space.

Example 8.1.4: The space 𝐶([0, 1],ℝ) of continuous functions on the interval [0, 1] is a
vector space. For two functions 𝑓 and 𝑔 in 𝐶([0, 1],ℝ) and 𝑎 ∈ ℝ, we make the obvious
definitions of 𝑓 + 𝑔 and 𝑎 𝑓 :

( 𝑓 + 𝑔)(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥), (𝑎 𝑓 )(𝑥) B 𝑎
(
𝑓 (𝑥)) .

The 0 is the function that is identically zero. We leave it as an exercise to check that all the
vector space conditions are satisfied. The space 𝐶1([0, 1],ℝ) of continuously differentiable
functions is a subspace of 𝐶([0, 1],ℝ).

Example 8.1.5: The space of polynomials 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + · · · + 𝑐𝑚𝑡𝑚 (of arbitrary degree 𝑚)
is a vector space, denoted by ℝ[𝑡] (coefficients are real and the variable is 𝑡). The operations
are defined in the same way as for functions above. Suppose there are two polynomials,
one of degree 𝑚 and one of degree 𝑛. Assume 𝑛 ≥ 𝑚 for simplicity. Then

(𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + · · · + 𝑐𝑚𝑡𝑚) + (𝑑0 + 𝑑1𝑡 + 𝑑2𝑡2 + · · · + 𝑑𝑛𝑡𝑛) =
(𝑐0 + 𝑑0) + (𝑐1 + 𝑑1)𝑡 + (𝑐2 + 𝑑2)𝑡2 + · · · + (𝑐𝑚 + 𝑑𝑚)𝑡𝑚 + 𝑑𝑚+1𝑡𝑚+1 + · · · + 𝑑𝑛𝑡𝑛

and
𝑎(𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + · · · + 𝑐𝑚𝑡𝑚) = (𝑎𝑐0) + (𝑎𝑐1)𝑡 + (𝑎𝑐2)𝑡2 + · · · + (𝑎𝑐𝑚)𝑡𝑚 .

Despite what it looks like, ℝ[𝑡] is not equivalent to ℝ𝑛 for any 𝑛. In particular, it is not
“finite-dimensional.” We will make this notion precise in just a little bit. One can make a
finite-dimensional vector subspace by restricting the degree. For example, if P𝑛 is the set
of polynomials of degree 𝑛 or less, then P𝑛 is a finite-dimensional vector space, and we
could identify it with ℝ𝑛+1.

Above, the variable 𝑡 is really just a formal placeholder. By setting 𝑡 equal to a real
number, we obtain a function. So the space ℝ[𝑡] can be thought of as a subspace of 𝐶(ℝ,ℝ).
If we restrict the range of 𝑡 to [0, 1], ℝ[𝑡] can be identified with a subspace of 𝐶([0, 1],ℝ).

Proposition 8.1.6. For 𝑆 ⊂ 𝑋 to be a vector subspace of a vector space 𝑋, we only need to check:

1) 0 ∈ 𝑆.
2) 𝑆 is closed under addition: If 𝑥, 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆.
3) 𝑆 is closed under scalar multiplication: If 𝑥 ∈ 𝑆 and 𝑎 ∈ ℝ, then 𝑎𝑥 ∈ 𝑆.
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Items 2) and 3) ensure that addition and scalar multiplication are indeed defined on 𝑆.
Item 1) is required to fulfill item  (iii) from the definition of vector space. Existence of
additive inverse −𝑣, item  (iv) , follows because −𝑣 = (−1)𝑣 and item 3) says that −𝑣 ∈ 𝑆 if
𝑣 ∈ 𝑆. All other properties are certain equalities that are already satisfied in 𝑋 and thus
must be satisfied in a subset.

It is possible to use other fields than ℝ in the definition (for example, it is common to
use the complex numbers ℂ), but let us stick with the real numbers 

*
 .

8.1.2 Linear combinations and dimension
Definition 8.1.7. Suppose 𝑋 is a vector space, 𝑥1, 𝑥2, . . . , 𝑥𝑚 ∈ 𝑋 are vectors, and
𝑎1, 𝑎2, . . . , 𝑎𝑚 ∈ ℝ are scalars. Then

𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑚𝑥𝑚
is called a linear combination of the vectors 𝑥1, 𝑥2, . . . , 𝑥𝑚 .

For a subset 𝑌 ⊂ 𝑋, let span(𝑌), or the span of 𝑌, be the set of all linear combinations of
all finite subsets of 𝑌. We say 𝑌 spans span(𝑌). By convention, define span(∅) B {0}.
Example 8.1.8: Let 𝑌 B

{(1, 1)} ⊂ ℝ2. Then

span(𝑌) = {(𝑥, 𝑥) ∈ ℝ2 : 𝑥 ∈ ℝ
}
.

That is, span(𝑌) is the line through the origin and the point (1, 1).
Example 8.1.9: Let 𝑌 B

{(1, 1), (0, 1)} ⊂ ℝ2. Then

span(𝑌) = ℝ2,

as every point (𝑥, 𝑦) ∈ ℝ2 can be written as a linear combination

(𝑥, 𝑦) = 𝑥(1, 1) + (𝑦 − 𝑥)(0, 1).
Example 8.1.10: Let 𝑌 B {1, 𝑡 , 𝑡2, 𝑡3, . . .} ⊂ ℝ[𝑡], and 𝐸 B {1, 𝑡2, 𝑡4, 𝑡6, . . .} ⊂ ℝ[𝑡]. The
span of 𝑌 is all polynomials,

span(𝑌) = ℝ[𝑡].
The span of 𝐸 is the set of polynomials with even powers of 𝑡 only.

Suppose we have two linear combinations of vectors from 𝑌. One linear combination
uses the vectors {𝑥1, 𝑥2, . . . , 𝑥𝑚}, and the other uses {�̃�1, �̃�2, . . . , �̃�𝑛}. We can write their
sum using vectors from the union {𝑥1, 𝑥2, . . . , 𝑥𝑚} ∪ {�̃�1, �̃�2, . . . , �̃�𝑛}:

(𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑚𝑥𝑚) + (𝑏1�̃�1 + 𝑏2�̃�2 + · · · + 𝑏𝑛 �̃�𝑛)
= 𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑚𝑥𝑚 + 𝑏1�̃�1 + 𝑏2�̃�2 + · · · + 𝑏𝑛 �̃�𝑛 .

*If you want a very funky vector space over a different field, ℝ itself is a vector space over the field ℚ.
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So the sum is also a linear combination of vectors from 𝑌. Similarly, a scalar multiple of a
linear combination of vectors from 𝑌 is a linear combination of vectors from 𝑌:

𝑏(𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑚𝑥𝑚) = 𝑏𝑎1𝑥1 + 𝑏𝑎2𝑥2 + · · · + 𝑏𝑎𝑚𝑥𝑚 .
Finally, 0 ∈ span(𝑌); if𝑌 is nonempty, 0 = 0𝑣 for some 𝑣 ∈ 𝑌. We have proved the following
proposition.
Proposition 8.1.11. Let 𝑋 be a vector space and 𝑌 ⊂ 𝑋 is a subset. Then the set span(𝑌) is a
vector subspace of 𝑋.

Every linear combination of elements in a subspace is an element of that subspace. So
span(𝑌) is the smallest subspace that contains 𝑌. In particular, if 𝑌 is already a vector
subspace, then span(𝑌) = 𝑌.

Definition 8.1.12. A set of vectors {𝑥1, 𝑥2, . . . , 𝑥𝑚} ⊂ 𝑋 is linearly independent 

*
 if the equation

𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑚𝑥𝑚 = 0 (8.1)

has only the trivial solution 𝑎1 = 𝑎2 = · · · = 𝑎𝑚 = 0. By convention, ∅ is linearly independent.
A set that is not linearly independent is linearly dependent. A linearly independent set of
vectors 𝐵 ⊂ 𝑋 such that span(𝐵) = 𝑋 is called a basis of 𝑋. We generally consider the basis
as not just a set, but as an ordered 𝑚-tuple: 𝑥1, 𝑥2, . . . , 𝑥𝑚 .

Suppose 𝑑 is largest integer for which 𝑋 contains a set of 𝑑 linearly independent vectors.
We then say 𝑑 is the dimension of 𝑋, and we write dim 𝑋 B 𝑑. If 𝑋 contains a set of 𝑑
linearly independent vectors for arbitrarily large 𝑑, we say 𝑋 is infinite-dimensional and
write dim 𝑋 B ∞. For the trivial vector space {0}, we define dim {0} B 0.

A subset of a linearly independent set is clearly linearly independent. So if a set contains
𝑑 linearly independent vectors, it also contains a set of 𝑚 linearly independent vectors for
all 𝑚 ≤ 𝑑. Moreover, if a set does not have 𝑑 + 1 linearly independent vectors, no set of
more than 𝑑 + 1 vectors is linearly independent. So 𝑋 is of dimension is 𝑑 if there is a set of
𝑑 linearly independent vectors, but no set of 𝑑 + 1 vectors is linearly independent.

No element of a linearly independent set can be zero, and a set with one nonzero
element is always linearly independent. In particular, {0} is the only vector space of
dimension 0. Every other vector space has a positive dimension or is infinite-dimensional.
As the empty set is linearly independent, it is a basis of {0}.

As an example, the set 𝑌 of the two vectors in  Example 8.1.9  is a basis of ℝ2, and
so dim ℝ2 ≥ 2. We will see in a moment that every vector subspace of ℝ𝑛 has a finite
dimension, and that dimension is less than or equal to 𝑛. So every set of 3 vectors in ℝ2 is
linearly dependent, and dim ℝ2 = 2.

If a set is linearly dependent, then one of the vectors is a linear combination of the
others. In ( 8.1 ), if 𝑎𝑘 ≠ 0, then we solve for 𝑥𝑘 :

𝑥𝑘 =
−𝑎1
𝑎𝑘

𝑥1 + · · · + −𝑎𝑘−1
𝑎𝑘

𝑥𝑘−1 + −𝑎𝑘+1
𝑎𝑘

𝑥𝑘+1 + · · · + −𝑎𝑚
𝑎𝑚

𝑥𝑚 .

*For an infinite set𝑌 ⊂ 𝑋, we say𝑌 is linearly independent if every finite subset of𝑌 is linearly independent
in the sense given. However, this situation only comes up in infinitely many dimensions.
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The vector 𝑥𝑘 has at least two different representations as linear combinations of the vectors
{𝑥1, 𝑥2, . . . , 𝑥𝑚}. The one above and 𝑥𝑘 itself. For instance, the set

{(0, 1), (2, 3), (5, 0)} in
ℝ2 is linearly dependent:

3(0, 1) − (2, 3) + 2(1, 0) = 0, so (2, 3) = 3(0, 1) + 2(1, 0).
Proposition 8.1.13. Suppose a vector space 𝑋 has basis 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. Then every 𝑦 ∈ 𝑋
has a unique representation of the form

𝑦 =
𝑛∑
𝑘=1

𝑎𝑘 𝑥𝑘

for some scalars 𝑎1, 𝑎2, . . . , 𝑎𝑛 .

Proof. As 𝑋 is the span of 𝐵, every 𝑦 ∈ 𝑋 is a linear combination of elements of 𝐵. Suppose

𝑦 =
𝑛∑
𝑘=1

𝑎𝑘 𝑥𝑘 =
𝑛∑
𝑘=1

𝑏𝑘 𝑥𝑘 .

Then
𝑛∑
𝑘=1

(𝑎𝑘 − 𝑏𝑘)𝑥𝑘 = 0.

By linear independence of the basis, 𝑎𝑘 = 𝑏𝑘 for all 𝑘, and so the representation is unique. □

For ℝ𝑛 , we define the standard basis of ℝ𝑛 :

𝑒1 B (1, 0, 0, . . . , 0), 𝑒2 B (0, 1, 0, . . . , 0), . . . , 𝑒𝑛 B (0, 0, 0, . . . , 1).
We use the same letters 𝑒𝑘 for any ℝ𝑛 , and which space ℝ𝑛 we are working in is understood
from context. A direct computation shows that {𝑒1, 𝑒2, . . . , 𝑒𝑛} really is a basis of ℝ𝑛 ; it
spans ℝ𝑛 and is linearly independent. In fact,

𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
𝑛∑
𝑘=1

𝑎𝑘 𝑒𝑘 .

Proposition 8.1.14. Let 𝑋 be a vector space and 𝑑 a nonnegative integer.
(i) If 𝑋 is spanned by 𝑑 vectors, then dim 𝑋 ≤ 𝑑.
(ii) If 𝑇 is a linearly independent set and 𝑣 ∈ 𝑋 \ span(𝑇), then 𝑇 ∪ {𝑣} is linearly independent.
(iii) dim 𝑋 = 𝑑 if and only if 𝑋 has a basis of 𝑑 vectors. In particular, dim ℝ𝑛 = 𝑛.
(iv) If 𝑌 ⊂ 𝑋 is a vector subspace and dim 𝑋 = 𝑑, then dim 𝑌 ≤ 𝑑.
(v) If dim 𝑋 = 𝑑 and a set 𝑇 of 𝑑 vectors spans 𝑋, then 𝑇 is linearly independent.
(vi) If dim 𝑋 = 𝑑 and a set 𝑇 of 𝑚 vectors is linearly independent, then there is a set 𝑆 of 𝑑 −𝑚

vectors such that 𝑇 ∪ 𝑆 is a basis of 𝑋.
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In particular, the last item says that if dim𝑋 = 𝑑 and 𝑇 is a set of 𝑑 linearly independent
vectors, then 𝑇 spans 𝑋. Another thing to note is that item  (iii) implies that every basis of a
finite dimensional vector space has the same number of elements.

Proof. All statements hold trivially when 𝑑 = 0, so assume 𝑑 ≥ 1.
We start with  (i) . Suppose 𝑆 B {𝑥1, 𝑥2, . . . , 𝑥𝑑} spans 𝑋, and 𝑇 B {𝑦1, 𝑦2, . . . , 𝑦𝑚} is a

linearly independent subset of 𝑋. We wish to show that 𝑚 ≤ 𝑑. As 𝑆 spans 𝑋, write

𝑦1 =
𝑑∑
𝑘=1

𝑎𝑘,1𝑥𝑘 ,

for some numbers 𝑎1,1, 𝑎2,1, . . . , 𝑎𝑑,1. One of the 𝑎𝑘,1 is nonzero, otherwise 𝑦1 would be
zero. Without loss of generality, suppose 𝑎1,1 ≠ 0. Solve

𝑥1 =
1
𝑎1,1

𝑦1 −
𝑑∑
𝑘=2

𝑎𝑘,1
𝑎1,1

𝑥𝑘 .

In particular, {𝑦1, 𝑥2, . . . , 𝑥𝑑} spans 𝑋, since 𝑥1 can be obtained from {𝑦1, 𝑥2, . . . , 𝑥𝑑}.
Therefore, there are some numbers for some numbers 𝑎1,2, 𝑎2,2, . . . , 𝑎𝑑,2, such that

𝑦2 = 𝑎1,2𝑦1 +
𝑑∑
𝑘=2

𝑎𝑘,2𝑥𝑘 .

As 𝑇 is linearly independent—and so {𝑦1, 𝑦2} is linearly independent—one of the 𝑎𝑘,2 for
𝑘 ≥ 2 must be nonzero. Without loss of generality suppose 𝑎2,2 ≠ 0. Solve

𝑥2 =
1
𝑎2,2

𝑦2 − 𝑎1,2
𝑎2,2

𝑦1 −
𝑑∑
𝑘=3

𝑎𝑘,2
𝑎2,2

𝑥𝑘 .

In particular, {𝑦1, 𝑦2, 𝑥3, . . . , 𝑥𝑑} spans 𝑋.
We continue this procedure. If 𝑚 < 𝑑, we are done. Suppose 𝑚 ≥ 𝑑. After 𝑑 steps, we

obtain that {𝑦1, 𝑦2, . . . , 𝑦𝑑} spans 𝑋. Any other vector 𝑣 in 𝑋 is a linear combination of
{𝑦1, 𝑦2, . . . , 𝑦𝑑} and hence cannot be in 𝑇 as 𝑇 is linearly independent. So 𝑚 = 𝑑.

We continue with  (ii) . Suppose 𝑇 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} is linearly independent, does not
span 𝑋, and 𝑣 ∈ 𝑋 \ span(𝑇). Suppose 𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑚𝑥𝑚 + 𝑎𝑚+1𝑣 = 0 for some scalars
𝑎1, 𝑎2, . . . , 𝑎𝑚+1. If 𝑎𝑚+1 ≠ 0, then 𝑣 would be a linear combination of 𝑇, so 𝑎𝑚+1 = 0. Then,
as 𝑇 is linearly independent, 𝑎1 = 𝑎2 = · · · = 𝑎𝑚 = 0. So 𝑇 ∪ {𝑣} is linearly independent.

We move to  (iii) . If dim 𝑋 = 𝑑, then there must exist some linearly independent set
𝑇 of 𝑑 vectors, and 𝑇 must span 𝑋, otherwise we could choose a larger set of linearly
independent vectors via  (ii) . So we have a basis of 𝑑 vectors. On the other hand, if we have
a basis of 𝑑 vectors, the dimension is at least 𝑑 as a basis is linearly independent. A basis
also spans 𝑋, and so by  (i) we know that dimension is at most 𝑑. Hence the dimension of
𝑋 must equal 𝑑. The “in particular” follows by noting that {𝑒1, 𝑒2, . . . , 𝑒𝑛} is a basis of ℝ𝑛 .



14 CHAPTER 8. SEVERAL VARIABLES AND PARTIAL DERIVATIVES

To see  (iv) , suppose 𝑌 ⊂ 𝑋 is a vector subspace, where dim 𝑋 = 𝑑. As 𝑋 cannot contain
𝑑 + 1 linearly independent vectors, neither can 𝑌.

For  (v) , suppose 𝑇 is a set of 𝑚 vectors that is linearly dependent and spans 𝑋. We will
show that 𝑚 > 𝑑. One of the vectors is a linear combination of the others. If we remove it
from 𝑇, we obtain a set of 𝑚 − 1 vectors that still span 𝑋. Hence 𝑑 = dim 𝑋 ≤ 𝑚 − 1 by  (i) .

For  (vi) suppose 𝑇 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} is a linearly independent set. First, 𝑚 ≤ 𝑑 by
definition of dimension. If 𝑚 = 𝑑, the set 𝑇 must span 𝑋 as in the proof of  (iii) , otherwise
we could add another vector to 𝑇. If 𝑚 < 𝑑, 𝑇 cannot span 𝑋 by  (iii) . So find 𝑣 not in the
span of 𝑇. Via  (ii) , the set 𝑇 ∪ {𝑣} is a linearly independent set of 𝑚 + 1 elements. Therefore,
we repeat this procedure 𝑑 −𝑚 times to find a set of 𝑑 linearly independent vectors. Again,
they must span 𝑋, otherwise we could add yet another vector. □

8.1.3 Linear mappings
When 𝑌 ≠ ℝ, a function 𝑓 : 𝑋 → 𝑌 is often called a mapping or a map rather than a function.

Definition 8.1.15. A map 𝐴 : 𝑋 → 𝑌 of vector spaces 𝑋 and 𝑌 is linear (we also say 𝐴 is a
linear transformation or a linear operator) if for all 𝑎 ∈ ℝ and all 𝑥, 𝑦 ∈ 𝑋,

𝐴(𝑎𝑥) = 𝑎𝐴(𝑥) and 𝐴(𝑥 + 𝑦) = 𝐴(𝑥) + 𝐴(𝑦).
We usually write 𝐴𝑥 instead of 𝐴(𝑥) if 𝐴 is linear. If 𝐴 is one-to-one and onto, then we say
𝐴 is invertible, and we denote the inverse by 𝐴−1. If 𝐴 : 𝑋 → 𝑋 is linear, then we say 𝐴 is a
linear operator on 𝑋.

We write 𝐿(𝑋,𝑌) for the set of linear maps from 𝑋 to 𝑌, and 𝐿(𝑋) for the set of linear
operators on 𝑋. If 𝑎 ∈ ℝ and 𝐴, 𝐵 ∈ 𝐿(𝑋,𝑌), define the maps 𝑎𝐴 and 𝐴 + 𝐵 by

(𝑎𝐴)(𝑥) B 𝑎𝐴𝑥, (𝐴 + 𝐵)(𝑥) B 𝐴𝑥 + 𝐵𝑥.
If 𝐴 ∈ 𝐿(𝑌, 𝑍) and 𝐵 ∈ 𝐿(𝑋,𝑌), define the map 𝐴𝐵 : 𝑋 → 𝑍 as the composition 𝐴 ◦ 𝐵,

𝐴𝐵𝑥 B 𝐴(𝐵𝑥).
Finally, denote by 𝐼 ∈ 𝐿(𝑋) the identity: the linear operator such that 𝐼𝑥 = 𝑥 for all 𝑥.

Proposition 8.1.16. Let 𝑋, 𝑌, and 𝑍 be vector spaces.
(i) If 𝐴 ∈ 𝐿(𝑋,𝑌), then 𝐴0 = 0.
(ii) If 𝐴, 𝐵 ∈ 𝐿(𝑋,𝑌), then 𝐴 + 𝐵 ∈ 𝐿(𝑋,𝑌).
(iii) If 𝐴 ∈ 𝐿(𝑋,𝑌) and 𝑎 ∈ ℝ, then 𝑎𝐴 ∈ 𝐿(𝑋,𝑌).
(iv) If 𝐴 ∈ 𝐿(𝑌, 𝑍) and 𝐵 ∈ 𝐿(𝑋,𝑌), then 𝐴𝐵 ∈ 𝐿(𝑋, 𝑍).
(v) If 𝐴 ∈ 𝐿(𝑋,𝑌) is invertible, then 𝐴−1 ∈ 𝐿(𝑌, 𝑋).

In particular, 𝐿(𝑋,𝑌) is a vector space, where 0 ∈ 𝐿(𝑋,𝑌) is the linear map that takes
everything to 0. As 𝐿(𝑋) is not only a vector space, but also admits a product (composition),
it is called an algebra.
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Proof. We leave the first four items as a quick exercise,  Exercise 8.1.20 . Let us prove the last
item. Let 𝑎 ∈ ℝ and 𝑦 ∈ 𝑌. As 𝐴 is onto, then there is an 𝑥 ∈ 𝑋 such that 𝑦 = 𝐴𝑥. As it is
also one-to-one, 𝐴−1(𝐴𝑧) = 𝑧 for all 𝑧 ∈ 𝑋. So

𝐴−1(𝑎𝑦) = 𝐴−1(𝑎𝐴𝑥) = 𝐴−1 (𝐴(𝑎𝑥)) = 𝑎𝑥 = 𝑎𝐴−1(𝑦).
Similarly, let 𝑦1, 𝑦2 ∈ 𝑌 and 𝑥1, 𝑥2 ∈ 𝑋 be such that 𝐴𝑥1 = 𝑦1 and 𝐴𝑥2 = 𝑦2, then

𝐴−1(𝑦1 + 𝑦2) = 𝐴−1(𝐴𝑥1 + 𝐴𝑥2) = 𝐴−1 (𝐴(𝑥1 + 𝑥2)
)
= 𝑥1 + 𝑥2 = 𝐴−1(𝑦1) + 𝐴−1(𝑦2). □

Proposition 8.1.17. If 𝐴 ∈ 𝐿(𝑋,𝑌) is linear, then it is completely determined by its values on a
basis of 𝑋. Furthermore, if 𝐵 is a basis of 𝑋, then every function 𝐴 : 𝐵 → 𝑌 extends to a linear
function 𝐴 on 𝑋.

We only prove this proposition for finite-dimensional spaces, as we do not need
infinite-dimensional spaces. 

*
 

Proof. Let {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a basis of 𝑋, and let 𝑦𝑘 B 𝐴𝑥𝑘 . Every 𝑥 ∈ 𝑋 has a unique
representation

𝑥 =
𝑛∑
𝑘=1

𝑏𝑘 𝑥𝑘

for some numbers 𝑏1, 𝑏2, . . . , 𝑏𝑛 . By linearity,

𝐴𝑥 = 𝐴
𝑛∑
𝑘=1

𝑏𝑘𝑥𝑘 =
𝑛∑
𝑘=1

𝑏𝑘 𝐴𝑥𝑘 =
𝑛∑
𝑘=1

𝑏𝑘 𝑦𝑘 .

The “furthermore” follows by setting 𝑦𝑘 B 𝐴(𝑥𝑘), and then for 𝑥 =
∑𝑛
𝑘=1 𝑏𝑘 𝑥𝑘 , defining

the extension as 𝐴(𝑥) B ∑𝑛
𝑘=1 𝑏𝑘 𝑦𝑘 . The function is well-defined by uniqueness of the

representation of 𝑥. We leave it to the reader to check that 𝐴 is linear. □

For a linear map, it is sufficient to check injectivity at the origin. That is, if the only 𝑥 such
that 𝐴𝑥 = 0 is 𝑥 = 0, then 𝐴 is one-to-one, because if 𝐴𝑦 = 𝐴𝑧, then 𝐴(𝑦 − 𝑧) = 0. For this
reason, one often studies the nullspace of 𝐴, that is, {𝑥 ∈ 𝑋 : 𝐴𝑥 = 0}. For finite-dimensional
vector spaces (and only in finitely many dimensions) we have the following special case of
the so-called rank-nullity theorem from linear algebra.

Proposition 8.1.18. If 𝑋 is a finite-dimensional vector space and 𝐴 ∈ 𝐿(𝑋), then 𝐴 is one-to-one
if and only if it is onto.

Proof. Let {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a basis for 𝑋. First suppose 𝐴 is one-to-one. Let 𝑐1, 𝑐2, . . . , 𝑐𝑛
be such that

0 =
𝑛∑
𝑘=1

𝑐𝑘 𝐴𝑥𝑘 = 𝐴
𝑛∑
𝑘=1

𝑐𝑘 𝑥𝑘 .

*For infinite-dimensional spaces, the proof is essentially the same, but a little trickier to write. Moreover,
we haven’t even defined what a basis is for infinite-dimensional spaces.
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As 𝐴 is one-to-one, the only vector that is taken to 0 is 0 itself. Hence,

0 =
𝑛∑
𝑘=1

𝑐𝑘 𝑥𝑘 ,

and so 𝑐𝑘 = 0 for all 𝑘 as {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a basis. So {𝐴𝑥1, 𝐴𝑥2, . . . , 𝐴𝑥𝑛} is linearly
independent. By  Proposition 8.1.14  and the fact that the dimension is 𝑛, we conclude
{𝐴𝑥1, 𝐴𝑥2, . . . , 𝐴𝑥𝑛} spans 𝑋. Consequently, 𝐴 is onto, as any 𝑦 ∈ 𝑋 can be written as

𝑦 =
𝑛∑
𝑘=1

𝑎𝑘 𝐴𝑥𝑘 = 𝐴
𝑛∑
𝑘=1

𝑎𝑘 𝑥𝑘 .

For the other direction, suppose 𝐴 is onto. Suppose that for some 𝑐1, 𝑐2, . . . , 𝑐𝑛 ,

0 = 𝐴
𝑛∑
𝑘=1

𝑐𝑘 𝑥𝑘 =
𝑛∑
𝑘=1

𝑐𝑘 𝐴𝑥𝑘 .

As 𝐴 is determined by the action on the basis, {𝐴𝑥1, 𝐴𝑥2, . . . , 𝐴𝑥𝑛} spans 𝑋. So by
 Proposition 8.1.14 , the set is linearly independent, and 𝑐𝑘 = 0 for all 𝑘. In other words, if
𝐴𝑥 = 0, then 𝑥 = 0. Thus, 𝐴 is one-to-one. □

We leave the proof of the next proposition as an exercise.

Proposition 8.1.19. If 𝑋 and 𝑌 are finite-dimensional vector spaces, then 𝐿(𝑋,𝑌) is also finite-
dimensional.

We can identify a finite-dimensional vector space 𝑋 of dimension 𝑛 with ℝ𝑛 , provided
we fix a basis {𝑥1, 𝑥2, . . . , 𝑥𝑛} in 𝑋. That is, we define a bĳective linear map 𝐴 ∈ 𝐿(𝑋,ℝ𝑛) by
𝐴𝑥𝑘 B 𝑒𝑘 , where {𝑒1, 𝑒2, . . . , 𝑒𝑛} is the standard basis in ℝ𝑛 . We have the correspondence

𝑛∑
𝑘=1

𝑐𝑘 𝑥𝑘 ∈ 𝑋 𝐴↦→ (𝑐1, 𝑐2, . . . , 𝑐𝑛) ∈ ℝ𝑛 .

8.1.4 Convexity
A subset𝑈 of a vector space is convex if whenever 𝑥, 𝑦 ∈ 𝑈 , the line segment from 𝑥 to 𝑦
lies in 𝑈 . That is, if the convex combination (1 − 𝑡)𝑥 + 𝑡𝑦 is in 𝑈 for all 𝑡 ∈ [0, 1]. We write
[𝑥, 𝑦] for this line segment. See  Figure 8.2 .

In ℝ, convex sets are precisely the intervals, which are also precisely the connected sets.
In two or more dimensions there are lots of nonconvex connected sets. For example, the
set ℝ2 \ {0} is connected, but not convex—for any 𝑥 ∈ ℝ2 \ {0} where 𝑦 B −𝑥, we find
(1/2)𝑥 + (1/2)𝑦 = 0, which is not in the set. Balls (in the standard metric) in ℝ𝑛 are convex. It
is a useful enough result to state as a proposition, but we leave its proof as an exercise.

Proposition 8.1.20. Let 𝑥 ∈ ℝ𝑛 and 𝑟 > 0. The ball 𝐵(𝑥, 𝑟) ⊂ ℝ𝑛 is convex.



8.1. VECTOR SPACES, LINEAR MAPPINGS, AND CONVEXITY 17

𝑥

𝑦

(1 − 𝑡)𝑥 + 𝑡𝑦

𝑈

Figure 8.2: Convexity.

Example 8.1.21: A convex combination is, in particular, a linear combination. So every
vector subspace 𝑉 of a vector space 𝑋 is convex.

Example 8.1.22: Let 𝐶([0, 1],ℝ) be the vector space of continuous real-valued functions on
ℝ. Let 𝑉 ⊂ 𝐶([0, 1],ℝ) be the set of those 𝑓 such that∫ 1

0
𝑓 (𝑥) 𝑑𝑥 ≤ 1 and 𝑓 (𝑥) ≥ 0 for all 𝑥 ∈ [0, 1].

Then 𝑉 is convex. Take 𝑡 ∈ [0, 1], and note that if 𝑓 , 𝑔 ∈ 𝑉 , then (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑔(𝑥) ≥ 0 for
all 𝑥. Furthermore,∫ 1

0

((1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑔(𝑥)) 𝑑𝑥 = (1 − 𝑡)
∫ 1

0
𝑓 (𝑥) 𝑑𝑥 + 𝑡

∫ 1

0
𝑔(𝑥) 𝑑𝑥 ≤ 1.

Note that 𝑉 is not a vector subspace of 𝐶([0, 1],ℝ). The function 𝑓 (𝑥) B 1 is in 𝑉 , but 2 𝑓
and − 𝑓 is not.

Proposition 8.1.23. The intersection of two convex sets is convex. In fact, if {𝐶𝜆}𝜆∈𝐼 is an
arbitrary collection of convex sets in a vector space, then

𝐶 B
⋂
𝜆∈𝐼

𝐶𝜆 is convex.

Proof. If 𝑥, 𝑦 ∈ 𝐶, then 𝑥, 𝑦 ∈ 𝐶𝜆 for all 𝜆 ∈ 𝐼, and hence if 𝑡 ∈ [0, 1], then (1− 𝑡)𝑥 + 𝑡𝑦 ∈ 𝐶𝜆

for all 𝜆 ∈ 𝐼. Therefore, (1 − 𝑡)𝑥 + 𝑡𝑦 ∈ 𝐶 and 𝐶 is convex. □

A useful construction using intersections of convex sets is the convex hull. Given a
subset 𝑆 of a vector space 𝑋, define the convex hull of 𝑆 as the intersection of all convex
sets containing 𝑆:

co(𝑆) B
⋂

{𝐶 ⊂ 𝑋 : 𝑆 ⊂ 𝐶, and 𝐶 is convex}.

That is, the convex hull is the smallest convex set containing 𝑆. By  Proposition 8.1.23 , the
intersection of convex sets is convex. Hence the convex hull is convex.
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Example 8.1.24: The convex hull of {0, 1} in ℝ is [0, 1]. Proof: A convex set containing 0
and 1 must contain [0, 1], so [0, 1] ⊂ co({0, 1}). The set [0, 1] is convex and contains {0, 1},
so co({0, 1}) ⊂ [0, 1].

Linear mappings preserve convex sets. So in some sense, convex sets are the right sort
of sets when considering linear mappings or changes of coordinates.

Proposition 8.1.25. Let 𝑋,𝑌 be vector spaces, 𝐴 ∈ 𝐿(𝑋,𝑌), and let 𝐶 ⊂ 𝑋 be convex. Then
𝐴(𝐶) is convex.

Proof. Take two points 𝑝, 𝑞 ∈ 𝐴(𝐶). Pick 𝑢, 𝑣 ∈ 𝐶 such that 𝐴𝑢 = 𝑝 and 𝐴𝑣 = 𝑞. As 𝐶 is
convex, then (1 − 𝑡)𝑢 + 𝑡𝑣 ∈ 𝐶 for all 𝑡 ∈ [0, 1], so

(1 − 𝑡)𝑝 + 𝑡𝑞 = (1 − 𝑡)𝐴𝑢 + 𝑡𝐴𝑣 = 𝐴
((1 − 𝑡)𝑢 + 𝑡𝑣) ∈ 𝐴(𝐶). □

8.1.5 Exercises
Exercise 8.1.1: Show that in ℝ𝑛 (with the standard euclidean metric), for every 𝑥 ∈ ℝ𝑛 and every 𝑟 > 0, the
ball 𝐵(𝑥, 𝑟) is convex.

Exercise 8.1.2: Verify that ℝ𝑛 is a vector space.

Exercise 8.1.3: Let 𝑋 be a vector space. Prove that a finite set of vectors {𝑥1 , 𝑥2 , . . . , 𝑥𝑛} ⊂ 𝑋 is linearly
independent if and only if for every 𝑘 = 1, 2, . . . , 𝑛

span
({𝑥1 , . . . , 𝑥𝑘−1 , 𝑥𝑘+1 , . . . , 𝑥𝑛}

)
⊊ span

({𝑥1 , 𝑥2 , . . . , 𝑥𝑛}
)
.

That is, the span of the set with one vector removed is strictly smaller.

Exercise 8.1.4: Show that the set 𝑋 ⊂ 𝐶([0, 1],ℝ) of those functions such that
∫ 1

0 𝑓 = 0 is a vector subspace.
Compare  Exercise 8.1.16 .

Exercise 8.1.5 (Challenging): Prove𝐶([0, 1],ℝ) is an infinite-dimensional vector space where the operations
are defined in the obvious way: 𝑠 = 𝑓 + 𝑔 and𝑚 = 𝑎 𝑓 are defined as 𝑠(𝑥) B 𝑓 (𝑥)+ 𝑔(𝑥) and𝑚(𝑥) B 𝑎 𝑓 (𝑥).
Hint: For the dimension, think of functions that are only nonzero on the interval (1/𝑛+1, 1/𝑛).
Exercise 8.1.6: Let 𝑘 : [0, 1]2 → ℝ be continuous. Show that 𝐿 : 𝐶([0, 1],ℝ) → 𝐶([0, 1],ℝ) defined by

𝐿 𝑓 (𝑦) B
∫ 1

0
𝑘(𝑥, 𝑦) 𝑓 (𝑥) 𝑑𝑥

is a linear operator. That is, first show that 𝐿 is well-defined by showing that 𝐿 𝑓 is continuous whenever 𝑓 is,
and then showing that 𝐿 is linear.

Exercise 8.1.7: Let P𝑛 be the vector space of polynomials in one variable of degree 𝑛 or less. Show that P𝑛 is
a vector space of dimension 𝑛 + 1.

Exercise 8.1.8: Let ℝ[𝑡] be the vector space of polynomials in one variable 𝑡. Let 𝐷 : ℝ[𝑡] → ℝ[𝑡] be the
derivative operator (derivative in 𝑡). Show that 𝐷 is a linear operator.
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Exercise 8.1.9: Let us show that  Proposition 8.1.18  only works in finite dimensions. Take the space of
polynomials ℝ[𝑡] and define the operator 𝐴 : ℝ[𝑡] → ℝ[𝑡] by 𝐴

(
𝑃(𝑡)) B 𝑡𝑃(𝑡). Show that 𝐴 is linear and

one-to-one, but show that it is not onto.

Exercise 8.1.10: Finish the proof of  Proposition 8.1.17  in the finite-dimensional case. That is, suppose
{𝑥1 , 𝑥2 , . . . 𝑥𝑛} is a basis of 𝑋, {𝑦1 , 𝑦2 , . . . 𝑦𝑛} ⊂ 𝑌, and define a function

𝐴(𝑥) B
𝑛∑
𝑘=1

𝑏𝑘𝑦𝑘 , if 𝑥 =
𝑛∑
𝑘=1

𝑏𝑘𝑥𝑘 .

Prove that 𝐴 : 𝑋 → 𝑌 is linear.

Exercise 8.1.11: Prove  Proposition 8.1.19  . Hint: A linear transformation is determined by its action on
a basis. So given two bases {𝑥1 , . . . , 𝑥𝑛} and {𝑦1 , . . . , 𝑦𝑚} for 𝑋 and 𝑌 respectively, consider the linear
operators 𝐴 𝑗𝑘 that send 𝐴 𝑗𝑘𝑥 𝑗 = 𝑦𝑘 , and 𝐴 𝑗𝑘𝑥ℓ = 0 if ℓ ≠ 𝑗.

Exercise 8.1.12 (Easy): Suppose 𝑋 and 𝑌 are vector spaces and 𝐴 ∈ 𝐿(𝑋,𝑌) is a linear operator.

a) Show that the nullspace 𝑁 B {𝑥 ∈ 𝑋 : 𝐴𝑥 = 0} is a vector space.

b) Show that the range 𝑅 B {𝑦 ∈ 𝑌 : 𝐴𝑥 = 𝑦 for some 𝑥 ∈ 𝑋} is a vector space.

Exercise 8.1.13 (Easy): Show by example that a union of convex sets need not be convex.

Exercise 8.1.14: Compute the convex hull of the set of 3 points
{(0, 0), (0, 1), (1, 1)} in ℝ2.

Exercise 8.1.15: Show that the set
{(𝑥, 𝑦) ∈ ℝ2 : 𝑦 > 𝑥2} is a convex set.

Exercise 8.1.16: Show that the set 𝑋 ⊂ 𝐶([0, 1],ℝ) of those functions such that
∫ 1

0 𝑓 = 1 is a convex set,
but not a vector subspace. Compare  Exercise 8.1.4 .

Exercise 8.1.17: Show that every convex set in ℝ𝑛 is connected using the standard topology on ℝ𝑛 .

Exercise 8.1.18: Suppose 𝐾 ⊂ ℝ2 is a convex set such that the only point of the form (𝑥, 0) in 𝐾 is the point
(0, 0). Further suppose that (0, 1) ∈ 𝐾 and (1, 1) ∈ 𝐾. Show that if (𝑥, 𝑦) ∈ 𝐾 and 𝑥 ≠ 0, then 𝑦 > 0.

Exercise 8.1.19: Prove that an arbitrary intersection of vector subspaces is a vector subspace. That is, if 𝑋
is a vector space and {𝑉𝜆}𝜆∈𝐼 is an arbitrary collection of vector subspaces of 𝑋, then

⋂
𝜆∈𝐼 𝑉𝜆 is a vector

subspace of 𝑋.

Exercise 8.1.20 (Easy): Finish the proof of  Proposition 8.1.16 , that is, prove the first four items of the
proposition.
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8.2 Analysis with vector spaces

Note: 3 lectures

8.2.1 Norms

Let us start measuring the size of vectors and hence distance.

Definition 8.2.1. If 𝑋 is a vector space, then we say a function ∥·∥ : 𝑋 → ℝ is a norm if

(i) ∥𝑥∥ ≥ 0, with ∥𝑥∥ = 0 if and only if 𝑥 = 0.
(ii) ∥𝑐𝑥∥ = |𝑐 | ∥𝑥∥ for all 𝑐 ∈ ℝ and 𝑥 ∈ 𝑋.

(iii) ∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥ for all 𝑥, 𝑦 ∈ 𝑋 (triangle inequality).

A vector space equipped with a norm is called a normed vector space.

Given a norm (any norm) on a vector space𝑋, define a distance 𝑑(𝑥, 𝑦) B ∥𝑥 − 𝑦∥, which
makes 𝑋 into a metric space (exercise). So what you know about metric spaces applies to
normed vector spaces. Before defining the standard norm on ℝ𝑛 , we define the standard
scalar dot product on ℝ𝑛 . For 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 define

𝑥 · 𝑦 B
𝑛∑
𝑘=1

𝑥𝑘 𝑦𝑘 .

Dot product is linear in each variable separately—in more fancy language, it is bilinear.
That is, if 𝑦 is fixed, the map 𝑥 ↦→ 𝑥 · 𝑦 is a linear map from ℝ𝑛 to ℝ. Similarly, if 𝑥 is fixed,
𝑦 ↦→ 𝑥 · 𝑦 is linear. It is symmetric in the sense that 𝑥 · 𝑦 = 𝑦 · 𝑥. Define the euclidean norm as

∥𝑥∥ B ∥𝑥∥ℝ𝑛 B
√
𝑥 · 𝑥 =

√
(𝑥1)2 + (𝑥2)2 + · · · + (𝑥𝑛)2.

We will normally write ∥𝑥∥, only in the rare instance when it is necessary to emphasize
that we are talking about the euclidean norm will we write ∥𝑥∥ℝ𝑛 . Unless otherwise stated,
if we talk about ℝ𝑛 as a normed vector space, we mean the standard euclidean norm. It is
easy to see that the euclidean norm satisfies  (i) and  (ii) . To prove that  (iii) holds, the key
inequality is the so-called Cauchy–Schwarz inequality we saw before. As this inequality
is so important, we state and prove a slightly stronger version using the notation of this
chapter.

Theorem 8.2.2 (Cauchy–Schwarz inequality). Let 𝑥, 𝑦 ∈ ℝ𝑛 , then

|𝑥 · 𝑦 | ≤ ∥𝑥∥ ∥𝑦∥ = √
𝑥 · 𝑥√𝑦 · 𝑦,

with equality if and only if 𝑥 = 𝜆𝑦 or 𝑦 = 𝜆𝑥 for some 𝜆 ∈ ℝ.
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Proof. If 𝑥 = 0 or 𝑦 = 0, then the theorem holds trivially. So assume 𝑥 ≠ 0 and 𝑦 ≠ 0.
If 𝑥 is a scalar multiple of 𝑦, that is, 𝑥 = 𝜆𝑦 for some 𝜆 ∈ ℝ, then the theorem holds

with equality:

|𝑥 · 𝑦 | = |𝜆𝑦 · 𝑦 | = |𝜆| |𝑦 · 𝑦 | = |𝜆| ∥𝑦∥2 = ∥𝜆𝑦∥ ∥𝑦∥ = ∥𝑥∥ ∥𝑦∥.

Fixing 𝑥 and 𝑦, ∥𝑥 + 𝑡𝑦∥2 is a quadratic polynomial as a function of 𝑡:

∥𝑥 + 𝑡𝑦∥2 = (𝑥 + 𝑡𝑦) · (𝑥 + 𝑡𝑦) = 𝑥 · 𝑥 + 𝑥 · 𝑡𝑦 + 𝑡𝑦 · 𝑥 + 𝑡𝑦 · 𝑡𝑦 = ∥𝑥∥2 + 2𝑡(𝑥 · 𝑦) + 𝑡2∥𝑦∥2.

If 𝑥 is not a scalar multiple of 𝑦, then ∥𝑥 + 𝑡𝑦∥2 > 0 for all 𝑡. So the polynomial ∥𝑥 + 𝑡𝑦∥2 is
never zero. Elementary algebra says that the discriminant must be negative:

4(𝑥 · 𝑦)2 − 4∥𝑥∥2∥𝑦∥2 < 0.

In other words, (𝑥 · 𝑦)2 < ∥𝑥∥2∥𝑦∥2. □

Item  (iii) , the triangle inequality in ℝ𝑛 , follows from:

∥𝑥 + 𝑦∥2 = 𝑥 · 𝑥 + 𝑦 · 𝑦 + 2(𝑥 · 𝑦) ≤ ∥𝑥∥2 + ∥𝑦∥2 + 2
(∥𝑥∥ ∥𝑦∥) = (∥𝑥∥ + ∥𝑦∥)2.

The distance 𝑑(𝑥, 𝑦) B ∥𝑥 − 𝑦∥ is the standard distance (standard metric) on ℝ𝑛 that
we used when we talked about metric spaces.

Definition 8.2.3. Let 𝐴 ∈ 𝐿(𝑋,𝑌). Define

∥𝐴∥ B sup
{∥𝐴𝑥∥ : 𝑥 ∈ 𝑋 with ∥𝑥∥ = 1

}
.

The number ∥𝐴∥ (possibly ∞) is called the operator norm. We will see below that it is indeed
a norm on 𝐿(𝑋,𝑌) for finite-dimensional spaces. Again, when necessary to emphasize
which norm we are talking about, we may write it as ∥𝐴∥𝐿(𝑋,𝑌).

For example, if 𝑋 = ℝ1 with norm ∥𝑥∥ = |𝑥 |, elements of 𝐿(𝑋) are multiplication
by scalars, 𝑥 ↦→ 𝑎𝑥, and we identify 𝑎 ∈ ℝ with the corresponding element of 𝐿(𝑋). If
∥𝑥∥ = |𝑥 | = 1, then |𝑎𝑥 | = |𝑎 |, so the operator norm of 𝑎 is |𝑎 |.

By linearity,
𝐴 𝑥

∥𝑥∥
 = ∥𝐴𝑥∥

∥𝑥∥ for all nonzero 𝑥 ∈ 𝑋. The vector 𝑥
∥𝑥∥ is of norm 1. Therefore,

∥𝐴∥ = sup
{∥𝐴𝑥∥ : 𝑥 ∈ 𝑋 with ∥𝑥∥ = 1

}
= sup

𝑥∈𝑋
𝑥≠0

∥𝐴𝑥∥
∥𝑥∥ .

This implies, assuming ∥𝐴∥ ≠ ∞ to avoid a technicality when 𝑥 = 0, that for every 𝑥 ∈ 𝑋,

∥𝐴𝑥∥ ≤ ∥𝐴∥∥𝑥∥.

Conversely, if one shows ∥𝐴𝑥∥ ≤ 𝐶∥𝑥∥ for all 𝑥, then ∥𝐴∥ ≤ 𝐶.
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It is not hard to see from the definition that ∥𝐴∥ = 0 if and only if 𝐴 = 0, where 𝐴 = 0
means that 𝐴 takes every vector to the zero vector. It is also not difficult to compute the
operator norm of the identity operator:

∥𝐼∥ = sup
𝑥∈𝑋
𝑥≠0

∥𝐼𝑥∥
∥𝑥∥ = sup

𝑥∈𝑋
𝑥≠0

∥𝑥∥
∥𝑥∥ = 1.

The operator norm is not always so easy to compute using the definition alone, nor is it
easy to read off the form of the operator. Consider ℝ2 and the operator 𝐴 ∈ 𝐿(ℝ2) that
takes (𝑥, 𝑦) to (𝑥 + 𝑦, 2𝑥). Unit norm vectors can be written as

(±𝑡 ,±√1 − 𝑡2) for 𝑡 ∈ [0, 1]
(or perhaps

(
cos(𝜃), sin(𝜃))). One then maximizes

∥𝐴(𝑥, 𝑦)∥ =
√(

𝑡 ±
√

1 − 𝑡2
)2

+ 4𝑡2

to find ∥𝐴∥ =
√

3 + √
5. More generally, one often does two steps. For instance, consider

the operator 𝐵 ∈ 𝐿 (𝐶([0, 1],ℝ),ℝ)
taking a continuous 𝑓 to 𝑓 (0). If ∥ 𝑓 ∥ = 1 (the uniform

norm), then clearly | 𝑓 (0)| ≤ 1, so |𝐵 𝑓 | ≤ 1, meaning ∥𝐵∥ ≤ 1. To prove it is equal to 1, note
that the constant function 1 has norm 1, so 𝐵1 = 1, meaning ∥𝐵∥ ≥ 1. So ∥𝐵∥ = 1.

The operator norm is not always a norm on 𝐿(𝑋,𝑌), in particular, ∥𝐴∥ is not always
finite for 𝐴 ∈ 𝐿(𝑋,𝑌). We prove below that ∥𝐴∥ is finite when 𝑋 is finite-dimensional. The
operator norm being finite is equivalent to 𝐴 being continuous. For infinite-dimensional
spaces, neither statement needs to be true. For an example, consider the vector space of
continuously differentiable functions on [0, 2𝜋] using the uniform norm. The functions
𝑡 ↦→ sin(𝑛𝑡) have norm 1, but their derivatives have norm 𝑛. So differentiation, which is a
linear operator valued in the space of continuous functions, has infinite operator norm on
this space. We will stick to finite-dimensional spaces.

Given a finite-dimensional vector space 𝑋, we often think of ℝ𝑛 , although if we have a
norm on 𝑋, the norm might not be the standard euclidean norm. In the exercises, you can
prove that every norm on ℝ𝑛 is “equivalent” to the euclidean norm in that the topology it
generates is the same. For simplicity, we only prove the following proposition for euclidean
spaces, and the proof for general finite-dimensional spaces is left as an exercise.
Proposition 8.2.4. Let𝑋 and𝑌 be normed vector spaces,𝐴 ∈ 𝐿(𝑋,𝑌), and𝑋 is finite-dimensional.
Then ∥𝐴∥ < ∞, and 𝐴 is uniformly continuous (Lipschitz with constant ∥𝐴∥).
Proof. As we said we only prove the proposition for euclidean spaces, so suppose that
𝑋 = ℝ𝑛 and the norm is the standard euclidean norm. The general case is left as an exercise.

Let {𝑒1, 𝑒2, . . . , 𝑒𝑛} be the standard basis of ℝ𝑛 . Write 𝑥 ∈ ℝ𝑛 , with ∥𝑥∥ = 1, as

𝑥 =
𝑛∑
𝑘=1

𝑐𝑘 𝑒𝑘 .

Since 𝑒𝑘 · 𝑒ℓ = 0 whenever 𝑘 ≠ ℓ and 𝑒𝑘 · 𝑒𝑘 = 1, we have 𝑐𝑘 = 𝑥 · 𝑒𝑘 . By Cauchy–Schwarz,

|𝑐𝑘 | = |𝑥 · 𝑒𝑘 | ≤ ∥𝑥∥ ∥𝑒𝑘 ∥ = 1.
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Then

∥𝐴𝑥∥ =
 𝑛∑
𝑘=1

𝑐𝑘 𝐴𝑒𝑘

 ≤
𝑛∑
𝑘=1

|𝑐𝑘 | ∥𝐴𝑒𝑘 ∥ ≤
𝑛∑
𝑘=1

∥𝐴𝑒𝑘 ∥.

The right-hand side does not depend on 𝑥. We found a finite upper bound for ∥𝐴𝑥∥
independent of 𝑥, so ∥𝐴∥ < ∞.

Take normed vector spaces 𝑋 and 𝑌, and 𝐴 ∈ 𝐿(𝑋,𝑌) with ∥𝐴∥ < ∞. For 𝑣, 𝑤 ∈ 𝑋,

∥𝐴𝑣 − 𝐴𝑤∥ = ∥𝐴(𝑣 − 𝑤)∥ ≤ ∥𝐴∥ ∥𝑣 − 𝑤∥.

As ∥𝐴∥ < ∞, then the inequality above says that 𝐴 is Lipschitz with constant ∥𝐴∥. □

Proposition 8.2.5. Let 𝑋, 𝑌, and 𝑍 be finite-dimensional normed vector spaces 

*
 .

(i) If 𝐴, 𝐵 ∈ 𝐿(𝑋,𝑌) and 𝑐 ∈ ℝ, then

∥𝐴 + 𝐵∥ ≤ ∥𝐴∥ + ∥𝐵∥ , ∥𝑐𝐴∥ = |𝑐 | ∥𝐴∥.

In particular, the operator norm is a norm on the vector space 𝐿(𝑋,𝑌).
(ii) If 𝐴 ∈ 𝐿(𝑋,𝑌) and 𝐵 ∈ 𝐿(𝑌, 𝑍), then

∥𝐵𝐴∥ ≤ ∥𝐵∥ ∥𝐴∥.

Proof. First, since all the spaces are finite-dimensional, then all the operator norms are
finite, and the statements make sense to begin with.

For  (i) , let 𝑥 ∈ 𝑋 be arbitrary. Then

∥(𝐴 + 𝐵)𝑥∥ = ∥𝐴𝑥 + 𝐵𝑥∥ ≤ ∥𝐴𝑥∥ + ∥𝐵𝑥∥ ≤ ∥𝐴∥ ∥𝑥∥ + ∥𝐵∥ ∥𝑥∥ = (∥𝐴∥ + ∥𝐵∥) ∥𝑥∥.
So ∥𝐴 + 𝐵∥ ≤ ∥𝐴∥ + ∥𝐵∥. Similarly,

∥(𝑐𝐴)𝑥∥ = |𝑐 | ∥𝐴𝑥∥ ≤ (|𝑐 | ∥𝐴∥) ∥𝑥∥.
Thus ∥𝑐𝐴∥ ≤ |𝑐 | ∥𝐴∥. Next,

|𝑐 | ∥𝐴𝑥∥ = ∥𝑐𝐴𝑥∥ ≤ ∥𝑐𝐴∥ ∥𝑥∥.

Hence |𝑐 | ∥𝐴∥ ≤ ∥𝑐𝐴∥.
For  (ii) , write

∥𝐵𝐴𝑥∥ ≤ ∥𝐵∥ ∥𝐴𝑥∥ ≤ ∥𝐵∥ ∥𝐴∥ ∥𝑥∥. □

A norm defines a metric, giving a metric space topology on 𝐿(𝑋,𝑌) for finite-dimensional
vector spaces. So, we can talk about open/closed sets, continuity, convergence, etc.

*If we strike the “In particular” part and interpret the algebra with infinite operator norms properly,
namely decree that 0 times ∞ is 0, then this result also holds for infinite-dimensional spaces.
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Proposition 8.2.6. Let 𝑋 be a finite-dimensional normed vector space. Let 𝐺𝐿(𝑋) ⊂ 𝐿(𝑋) be the
set of invertible linear operators. 

*
 

(i) If 𝐴 ∈ 𝐺𝐿(𝑋), 𝐵 ∈ 𝐿(𝑋), and

∥𝐴 − 𝐵∥ <
1

∥𝐴−1∥ , (8.2)

then 𝐵 ∈ 𝐺𝐿(𝑋), that is, 𝐵 is invertible. In particular, 𝐺𝐿(𝑋) is open.
(ii) 𝐴 ↦→ 𝐴−1 is a continuous function on 𝐺𝐿(𝑋).

We illustrate this proposition on a simple example. Consider 𝑋 = ℝ1, where linear
operators are just numbers 𝑎 and the operator norm of 𝑎 is |𝑎 |. The operator 𝑎 is invertible
(𝑎−1 = 1/𝑎) whenever 𝑎 ≠ 0. The condition |𝑎 − 𝑏 | < 1

|𝑎−1 | indeed implies that 𝑏 is not zero.
Moreover, 𝑎 ↦→ 1/𝑎 is a continuous function. When the dimension is 2 or higher, there are
other noninvertible operators than just zero, and things are a bit more difficult.

Proof. Let us prove  (i) . We know something about 𝐴−1 and 𝐴− 𝐵; they are linear operators.
So apply them to a vector:

𝐴−1(𝐴 − 𝐵)𝑥 = 𝑥 − 𝐴−1𝐵𝑥.

Therefore,

∥𝑥∥ = ∥𝐴−1(𝐴 − 𝐵)𝑥 + 𝐴−1𝐵𝑥∥
≤ ∥𝐴−1∥ ∥𝐴 − 𝐵∥ ∥𝑥∥ + ∥𝐴−1∥ ∥𝐵𝑥∥.

Assume 𝑥 ≠ 0 and so ∥𝑥∥ ≠ 0. Using ( 8.2 ), we obtain

∥𝑥∥ < ∥𝑥∥ + ∥𝐴−1∥ ∥𝐵𝑥∥.
Thus ∥𝐵𝑥∥ ≠ 0 for all 𝑥 ≠ 0, and consequently 𝐵𝑥 ≠ 0 for all 𝑥 ≠ 0. So 𝐵 is one-to-one; if
𝐵𝑥 = 𝐵𝑦, then 𝐵(𝑥 − 𝑦) = 0, so 𝑥 = 𝑦. As 𝐵 is a one-to-one linear mapping from 𝑋 to 𝑋,
which is finite-dimensional, it is also onto by  Proposition 8.1.18 . Therefore, 𝐵 is invertible.
It follows that, in particular, 𝐺𝐿(𝑋) is open.

Let us prove  (ii) . We must show that the inverse is continuous. Fix a 𝐴 ∈ 𝐺𝐿(𝑋). Let
𝐵 be near 𝐴, specifically ∥𝐴 − 𝐵∥ < 1

2∥𝐴−1∥ . Then ( 8.2 ) is satisfied and 𝐵 is invertible. A
similar computation as above (using 𝐵−1𝑦 instead of 𝑥) gives

∥𝐵−1𝑦∥ ≤ ∥𝐴−1∥ ∥𝐴 − 𝐵∥ ∥𝐵−1𝑦∥ + ∥𝐴−1∥ ∥𝑦∥ ≤ 1
2 ∥𝐵

−1𝑦∥ + ∥𝐴−1∥ ∥𝑦∥ ,
or

∥𝐵−1𝑦∥ ≤ 2∥𝐴−1∥ ∥𝑦∥.
So ∥𝐵−1∥ ≤ 2∥𝐴−1∥.

Now
𝐴−1(𝐴 − 𝐵)𝐵−1 = 𝐴−1(𝐴𝐵−1 − 𝐼) = 𝐵−1 − 𝐴−1,

*𝐺𝐿(𝑋) is called the general linear group, that is where the acronym GL comes from.
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and

∥𝐵−1 − 𝐴−1∥ = ∥𝐴−1(𝐴 − 𝐵)𝐵−1∥ ≤ ∥𝐴−1∥ ∥𝐴 − 𝐵∥ ∥𝐵−1∥ ≤ 2∥𝐴−1∥2∥𝐴 − 𝐵∥.
Therefore, as 𝐵 tends to 𝐴, ∥𝐵−1 − 𝐴−1∥ tends to 0, and so the inverse operation is a
continuous function at 𝐴. □

8.2.2 Matrices
Once we fix a basis in a finite-dimensional vector space𝑋, we can represent a vector of𝑋 as an
𝑛-tuple of numbers—a vector inℝ𝑛 . Same can be done with 𝐿(𝑋,𝑌), bringing us to matrices,
which are a convenient way to represent finite-dimensional linear transformations. Suppose
{𝑥1, 𝑥2, . . . , 𝑥𝑛} and {𝑦1, 𝑦2, . . . , 𝑦𝑚} are bases for vector spaces 𝑋 and 𝑌 respectively. A
linear operator is determined by its values on the basis. Given 𝐴 ∈ 𝐿(𝑋,𝑌), 𝐴𝑥 𝑗 is an
element of 𝑌. Define the numbers 𝑎𝑖 , 𝑗 via

𝐴𝑥 𝑗 =
𝑚∑
𝑖=1

𝑎𝑖 , 𝑗 𝑦𝑖 , (8.3)

and write them as a matrix, which we, by slight abuse of notation, also call 𝐴,

𝐴 =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛
𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛
...

... . . . ...
𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛

 .
We sometimes write 𝐴 as [𝑎𝑖 , 𝑗]. We say 𝐴 is an 𝑚-by-𝑛 matrix. The 𝑗th column of the matrix
contains precisely the coefficients that represent 𝐴𝑥 𝑗 in terms of the basis {𝑦1, 𝑦2, . . . , 𝑦𝑚}.
Given the numbers 𝑎𝑖 , 𝑗 , then via the formula ( 8.3 ), we find the corresponding linear
operator, as it is determined by the action on a basis. Hence, once we fix bases on 𝑋 and 𝑌,
we have a one-to-one correspondence between 𝐿(𝑋,𝑌) and the 𝑚-by-𝑛 matrices. When

𝑧 =
𝑛∑
𝑗=1

𝑧 𝑗 𝑥 𝑗 ,

then

𝐴𝑧 =
𝑛∑
𝑗=1

𝑧 𝑗 𝐴𝑥 𝑗 =
𝑛∑
𝑗=1

𝑧 𝑗

(
𝑚∑
𝑖=1

𝑎𝑖 , 𝑗 𝑦𝑖

)
=

𝑚∑
𝑖=1

©«
𝑛∑
𝑗=1

𝑎𝑖 , 𝑗 𝑧 𝑗
ª®¬ 𝑦𝑖 ,

which gives rise to the familiar rule for matrix multiplication, thinking of 𝑧 as a column
vector, that is, an 𝑛-by-1 matrix. More generally, if 𝐵 is an 𝑛-by-𝑟 matrix with entries 𝑏 𝑗 ,𝑘 ,
then the matrix for 𝐶 = 𝐴𝐵 is an 𝑚-by-𝑟 matrix whose (𝑖 , 𝑘)th entry 𝑐𝑖 ,𝑘 is

𝑐𝑖 ,𝑘 =
𝑛∑
𝑗=1

𝑎𝑖 , 𝑗 𝑏 𝑗 ,𝑘 .
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A way to remember it is if you order the indices as we do, that is row, column, and put the
elements in the same order as the matrices, then the “middle index” is “summed-out.”

There is a one-to-one correspondence between matrices and linear operators in 𝐿(𝑋,𝑌),
once we fix bases in 𝑋 and 𝑌. If we choose different bases, we get different matrices. This
is an important distinction. The operator 𝐴 acts on elements of 𝑋, while the matrix is
something that works with 𝑛-tuples of numbers, that is, vectors of ℝ𝑛 . By convention, we
use standard bases in ℝ𝑛 unless otherwise specified, and we identify 𝐿(ℝ𝑛 ,ℝ𝑚) with the
set of 𝑚-by-𝑛 matrices.

A linear mapping changing one basis to another is represented by a square matrix in
which the columns represent vectors of the second basis in terms of the first basis. We call
such a linear mapping a change of basis. So for two choices of a basis in an 𝑛-dimensional
vector space, there is a linear mapping (a change of basis) taking one basis to the other, and
this corresponds to an 𝑛-by-𝑛 matrix which does the corresponding operation on ℝ𝑛 .

Suppose 𝑋 = ℝ𝑛 , 𝑌 = ℝ𝑚 , and all the bases are just the standard bases. Using the
Cauchy–Schwarz inequality, with 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑛) ∈ ℝ𝑛 , compute

∥𝐴𝑐∥2 =
𝑚∑
𝑖=1

©«
𝑛∑
𝑗=1

𝑎𝑖 , 𝑗 𝑐 𝑗
ª®¬

2

≤
𝑚∑
𝑖=1

©«©«
𝑛∑
𝑗=1

(𝑎𝑖 , 𝑗)2ª®¬ ©«
𝑛∑
𝑗=1

(𝑐 𝑗)2ª®¬ª®¬ = ©«
𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑎𝑖 , 𝑗)2ª®¬ ∥𝑐∥2.

In other words, we have a bound on the operator norm (note that equality rarely happens)

∥𝐴∥ ≤
√√√ 𝑚∑

𝑖=1

𝑛∑
𝑗=1

(𝑎𝑖 , 𝑗)2.

The right hand side is the euclidean norm on ℝ𝑛𝑚 , the space of all the entries of the matrix.
If the entries go to zero, then ∥𝐴∥ goes to zero. Conversely,

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑎𝑖 , 𝑗)2 =
𝑛∑
𝑗=1

∥𝐴𝑒 𝑗 ∥2 ≤
𝑛∑
𝑗=1

∥𝐴∥2 = 𝑛∥𝐴∥2.

So if the operator norm of 𝐴 goes to zero, so do the entries. In particular, if 𝐴 is fixed and 𝐵
is changing, then the entries of 𝐵 go to the entries of 𝐴 if and only if 𝐵 goes to 𝐴 in operator
norm (∥𝐴 − 𝐵∥ goes to zero). We have proved:

Proposition 8.2.7. The topology (the set of open sets) on 𝐿(ℝ𝑛 ,ℝ𝑚) is the same whether we
consider 𝐿(ℝ𝑛 ,ℝ𝑚) as a metric space using the operator norm, or the euclidean metric of ℝ𝑛𝑚 .

In particular, let 𝑆 be a metric space and let 𝜋 : 𝐿(ℝ𝑛 ,ℝ𝑚) → ℝ𝑛𝑚 identify an operator with
the 𝑛𝑚-tuple of entries of the corresponding matrix. Then 𝑓 : 𝑆 → 𝐿(ℝ𝑛 ,ℝ𝑚) is continuous if and
only if 𝜋 ◦ 𝑓 : 𝑆 → ℝ𝑛𝑚 is continuous. Similarly for 𝑔 : 𝐿(ℝ𝑛 ,ℝ𝑚) → 𝑆 and 𝑔 ◦𝜋−1 : ℝ𝑛𝑚 → 𝑆.
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8.2.3 Determinants
A certain number can be assigned to square matrices that measures how the corresponding
linear mapping stretches space. In particular, this number, called the determinant, can be
used to test for invertibility of a matrix.

Define the symbol sgn(𝑥) (read “sign of 𝑥”) for a number 𝑥 by

sgn(𝑥) B

−1 if 𝑥 < 0,
0 if 𝑥 = 0,
1 if 𝑥 > 0.

A permutation 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑛) is a reordering of (1, 2, . . . , 𝑛). Define

sgn(𝜎) = sgn(𝜎1, . . . , 𝜎𝑛) B
∏
𝑝<𝑞

sgn(𝜎𝑞 − 𝜎𝑝). (8.4)

Here
∏

stands for multiplication, similarly to how
∑

stands for summation.
Every permutation can be obtained by a sequence of transpositions (switchings of two

elements). A permutation is even (resp. odd) if it takes an even (resp. odd) number of
transpositions to get from (1, 2, . . . , 𝑛) to 𝜎. For instance, (2, 4, 3, 1) is two transpositions
away from (1, 2, 3, 4) and is therefore even: (1, 2, 3, 4) → (2, 1, 3, 4) → (2, 4, 3, 1). Being
even or odd is well-defined: sgn(𝜎) is 1 if 𝜎 is even and −1 if 𝜎 is odd (exercise). This fact
follows since applying a transposition changes the sign and sgn(1, 2, . . . , 𝑛) = 1.

Let 𝑆𝑛 be the set of all permutations on 𝑛 elements (the symmetric group). Let 𝐴 = [𝑎𝑖 , 𝑗]
be a square 𝑛-by-𝑛 matrix. Define the determinant of 𝐴 as

det(𝐴) B
∑
𝜎∈𝑆𝑛

sgn(𝜎)
𝑛∏
𝑖=1

𝑎𝑖 ,𝜎𝑖 .

Proposition 8.2.8.
(i) det(𝐼) = 1.
(ii) For every 𝑗 = 1, 2, . . . , 𝑛, the function 𝑥 𝑗 ↦→ det

([𝑥1 𝑥2 · · · 𝑥𝑛]
)

is linear.
(iii) If two columns of a matrix are interchanged, then the determinant changes sign.
(iv) If two columns of 𝐴 are equal, then det(𝐴) = 0.
(v) If a column is zero, then det(𝐴) = 0.
(vi) 𝐴 ↦→ det(𝐴) is a continuous function on 𝐿(ℝ𝑛).
(vii) det

( [
𝑎 𝑏
𝑐 𝑑

] )
= 𝑎𝑑 − 𝑏𝑐, and det

([𝑎]) = 𝑎.
In fact, the determinant is the unique function that satisfies  (i) ,  (ii) , and  (iii) , but we

digress. By  (ii) , we mean that if we fix all the vectors 𝑥1, . . . , 𝑥𝑛 except for 𝑥 𝑗 , and let
𝑣, 𝑤 ∈ ℝ𝑛 be two vectors, and 𝑎, 𝑏 ∈ ℝ be scalars, then

det
([𝑥1 · · · 𝑥 𝑗−1 (𝑎𝑣 + 𝑏𝑤) 𝑥 𝑗+1 · · · 𝑥𝑛]

)
=

𝑎 det
([𝑥1 · · · 𝑥 𝑗−1 𝑣 𝑥 𝑗+1 · · · 𝑥𝑛]

) + 𝑏 det
([𝑥1 · · · 𝑥 𝑗−1 𝑤 𝑥 𝑗+1 · · · 𝑥𝑛]

)
.
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Proof. We go through the proof quickly, as you have likely seen it before. Item  (i) is trivial.
For  (ii) , note that each term in the definition of the determinant contains exactly one
factor from each column. Item  (iii) follows as switching two columns is switching the two
corresponding numbers in every element in 𝑆𝑛 . Hence, all the signs are changed. Item  (iv) 

follows because if two columns are equal, and we switch them, we get the same matrix
back. So item  (iii) says the determinant must be 0. Item  (v) follows because the product in
each term in the definition includes one element from the zero column. Item  (vi) follows
as det is a polynomial in the entries of the matrix and hence continuous (as a function of
the entries of the matrix). A function defined on matrices is continuous in the operator
norm if and only if it is continuous as a function of the entries ( Proposition 8.2.7  ). Finally,
item  (vii) is a direct computation. □

The determinant tells us about areas and volumes, and how they change. For example,
in the 1-by-1 case, a matrix is just a number, and the determinant is exactly this number. It
says how the linear mapping “stretches” the space. Similarly, suppose 𝐴 ∈ 𝐿(ℝ2) is a linear
transformation. It can be checked directly that the area of the image of the unit square
𝐴

([0, 1]2) is |det(𝐴)|, see  Figure 8.3 for an example. This works with arbitrary figures,
not just the unit square: The absolute value of the determinant tells us the stretch in the
area. The sign of the determinant tells us if the image is flipped (changes orientation)
or not. In ℝ3 it tells us about the 3-dimensional volume, and in 𝑛 dimensions about the
𝑛-dimensional volume. We claim this without proof.

10 0

1

10 0

1

2

−1

Figure 8.3: Image of the unit square [0, 1]2 via the matrix
[ 1 1−1 1

]
. The image is a square of side√

2, thus of area 2, and the determinant of the matrix is 2.

Proposition 8.2.9. If 𝐴 and 𝐵 are 𝑛-by-𝑛 matrices, then det(𝐴𝐵) = det(𝐴)det(𝐵). Furthermore,
𝐴 is invertible if and only if det(𝐴) ≠ 0 and in this case, det(𝐴−1) = 1

det(𝐴) .

Proof. Let 𝑏1, 𝑏2, . . . , 𝑏𝑛 be the columns of 𝐵. Then

𝐴𝐵 = [𝐴𝑏1 𝐴𝑏2 · · · 𝐴𝑏𝑛].

That is, the columns of 𝐴𝐵 are 𝐴𝑏1, 𝐴𝑏2, . . . , 𝐴𝑏𝑛 .
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Let 𝑏 𝑗 ,𝑘 denote the elements of 𝐵 and 𝑎 𝑗 the columns of𝐴. By linearity of the determinant,

det(𝐴𝐵) = det
([𝐴𝑏1 𝐴𝑏2 · · · 𝐴𝑏𝑛]

)
= det ©«


𝑛∑
𝑗=1

𝑏 𝑗 ,1𝑎 𝑗 𝐴𝑏2 · · · 𝐴𝑏𝑛

ª®¬
=

𝑛∑
𝑗=1

𝑏 𝑗 ,1 det
([𝑎 𝑗 𝐴𝑏2 · · · 𝐴𝑏𝑛]

)
=

∑
1≤ 𝑗1 , 𝑗2 ,..., 𝑗𝑛≤𝑛

𝑏 𝑗1 ,1𝑏 𝑗2 ,2 · · · 𝑏 𝑗𝑛 ,𝑛 det
([𝑎 𝑗1 𝑎 𝑗2 · · · 𝑎 𝑗𝑛 ]

)
= ©«

∑
(𝑗1 , 𝑗2 ,..., 𝑗𝑛)∈𝑆𝑛

𝑏 𝑗1 ,1𝑏 𝑗2 ,2 · · · 𝑏 𝑗𝑛 ,𝑛 sgn(𝑗1, 𝑗2, . . . , 𝑗𝑛)ª®¬det
([𝑎1 𝑎2 · · · 𝑎𝑛]

)
.

In the last equality, we sum over the elements of 𝑆𝑛 instead of all 𝑛-tuples for integers
between 1 and 𝑛, because when two columns in the determinant are the same, then the
determinant is zero. Reordering the columns to the original ordering to obtains the sgn.

The conclusion that det(𝐴𝐵) = det(𝐴)det(𝐵) follows by recognizing that the expression
in parentheses above is the determinant of 𝐵. We obtain this by plugging in 𝐴 = 𝐼. The
expression we get for the determinant of 𝐵 has rows and columns swapped, so as a bonus,
we have also just proved that the determinant of a matrix and its transpose are equal.

Let us prove the “Furthermore.” If 𝐴 is invertible, then 𝐴−1𝐴 = 𝐼. Consequently
det(𝐴−1)det(𝐴) = det(𝐴−1𝐴) = det(𝐼) = 1. If 𝐴 is not invertible, then it is not one-to-one,
and so 𝐴 takes some nonzero vector to zero. In other words, the columns of 𝐴 are linearly
dependent. Suppose

𝑛∑
𝑘=1

𝛾𝑘 𝑎𝑘 = 0,

where not all 𝛾𝑘 are equal to 0. Without loss of generality, suppose 𝛾1 ≠ 0. Take

𝐵 B



𝛾1 0 0 · · · 0
𝛾2 1 0 · · · 0
𝛾3 0 1 · · · 0
...

...
... . . . ...

𝛾𝑛 0 0 · · · 1


.

Using the definition of the determinant (there is only a single permutation 𝜎 for which∏𝑛
𝑖=1 𝑏𝑖 ,𝜎𝑖 is nonzero) we find det(𝐵) = 𝛾1 ≠ 0. Then det(𝐴𝐵) = det(𝐴)det(𝐵) = 𝛾1 det(𝐴).

The first column of 𝐴𝐵 is zero, and hence det(𝐴𝐵) = 0. We conclude det(𝐴) = 0. □

Proposition 8.2.10. Determinant is independent of the basis: If 𝐴 and 𝐵 are 𝑛-by-𝑛 matrices and
𝐵 is invertible, then

det(𝐴) = det(𝐵−1𝐴𝐵).
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Proof. det(𝐵−1𝐴𝐵) = det(𝐵−1)det(𝐴)det(𝐵) = 1
det(𝐵) det(𝐴)det(𝐵) = det(𝐴). □

If in one basis 𝐴 is the matrix representing a linear operator, then for another basis we
can find a matrix 𝐵 such that the matrix 𝐵−1𝐴𝐵 takes us to the first basis, applies 𝐴 in the
first basis, and takes us back to the basis we started with. Let 𝑋 be a finite-dimensional
vector space. Let Φ ∈ 𝐿(𝑋,ℝ𝑛) take a basis {𝑥1, . . . , 𝑥𝑛} to the standard basis {𝑒1, . . . , 𝑒𝑛}
and let Ψ ∈ 𝐿(𝑋,ℝ𝑛) take another basis {𝑦1, . . . , 𝑦𝑛} to the standard basis. Let 𝑇 ∈ 𝐿(𝑋) be
a linear operator and let a matrix 𝐴 represent the operator in the basis {𝑥1, . . . , 𝑥𝑛}. Then
𝐵 would be such that we have the following diagram 

*
 :

ℝ𝑛 ℝ𝑛

𝑋 𝑋

ℝ𝑛 ℝ𝑛

𝐵−1𝐴𝐵

𝐵

Ψ−1

𝑇

Ψ

Φ

𝐴

Φ−1

𝐵−1

The two ℝ𝑛s on the bottom row represent 𝑋 in the first basis, and the ℝ𝑛s on top represent
𝑋 in the second basis.

If we compute the determinant of the matrix 𝐴, we obtain the same determinant if we
use any other basis; in the other basis the matrix would be 𝐵−1𝐴𝐵. Consequently,

det : 𝐿(𝑋) → ℝ

is a well-defined function without the need to fix a basis. That is, det is defined on 𝐿(𝑋),
not just on matrices.

There are three types of so-called elementary matrices. Let 𝑒1, 𝑒2, . . . , 𝑒𝑛 be the standard
basis on ℝ𝑛 as usual. First, for 𝑗 = 1, 2, . . . , 𝑛 and 𝜆 ∈ ℝ, 𝜆 ≠ 0, define the first type of an
elementary matrix, an 𝑛-by-𝑛 matrix 𝐸 by

𝐸𝑒𝑖 B

{
𝑒𝑖 if 𝑖 ≠ 𝑗 ,

𝜆𝑒𝑖 if 𝑖 = 𝑗.

Given any 𝑛-by-𝑚 matrix 𝑀 the matrix 𝐸𝑀 is the same matrix as 𝑀 except with the 𝑗th
row multiplied by 𝜆. It is an easy computation (exercise) that det(𝐸) = 𝜆.

Next, for 𝑗 , 𝑘 with 𝑗 ≠ 𝑘 and 𝜆 ∈ ℝ, define the second type of an elementary matrix 𝐸 by

𝐸𝑒𝑖 B

{
𝑒𝑖 if 𝑖 ≠ 𝑗 ,

𝑒𝑖 + 𝜆𝑒𝑘 if 𝑖 = 𝑗.

Given any 𝑛-by-𝑚 matrix 𝑀 the matrix 𝐸𝑀 is the same matrix as 𝑀 except with 𝜆 times
the 𝑘th row added to the 𝑗th row. It is an easy computation (exercise) that det(𝐸) = 1.

*This is a so-called commutative diagram. Following arrows in any way should end up with the same result.
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Finally, for 𝑗 and 𝑘 with 𝑗 ≠ 𝑘, define the third type of an elementary matrix 𝐸 by

𝐸𝑒𝑖 B


𝑒𝑖 if 𝑖 ≠ 𝑗 and 𝑖 ≠ 𝑘,

𝑒𝑘 if 𝑖 = 𝑗 ,

𝑒 𝑗 if 𝑖 = 𝑘.

Given any 𝑛-by-𝑚 matrix 𝑀 the matrix 𝐸𝑀 is the same matrix with 𝑗th and 𝑘th rows
swapped. It is an easy computation (exercise) that det(𝐸) = −1.
Proposition 8.2.11. Let 𝑇 be an 𝑛-by-𝑛 invertible matrix. Then there exists a finite sequence of
elementary matrices 𝐸1, 𝐸2, . . . , 𝐸𝑘 such that

𝑇 = 𝐸1𝐸2 · · ·𝐸𝑘 ,
and

det(𝑇) = det(𝐸1)det(𝐸2) · · ·det(𝐸𝑘).
The proof is left as an exercise. The proposition says we can compute the determinant

via elementary row operations. We do not have to factor the matrix into a product of
elementary matrices completely. It is sufficient to do row operations until we find an upper
triangular matrix, that is, a matrix [𝑎𝑖 , 𝑗] where 𝑎𝑖 , 𝑗 = 0 if 𝑖 > 𝑗. Computing determinant of
such a matrix is not difficult (exercise).

Factorization into elementary matrices (or variations on elementary matrices) is useful
in proofs involving an arbitrary linear operator, by reducing to a proof for an elementary
matrix, similarly as the computation of the determinant.

8.2.4 Exercises
Exercise 8.2.1: For a vector space 𝑋 with a norm ∥·∥, show that 𝑑(𝑥, 𝑦) B ∥𝑥 − 𝑦∥ makes 𝑋 a metric space.

Exercise 8.2.2 (Easy): Show that for square matrices 𝐴 and 𝐵, det(𝐴𝐵) = det(𝐵𝐴).
Exercise 8.2.3: For 𝑥 ∈ ℝ𝑛 , define

∥𝑥∥∞ B max
{|𝑥1 |, |𝑥2 |, . . . , |𝑥𝑛 |

}
,

sometimes called the sup or the max norm.

a) Show that ∥·∥∞ is a norm on ℝ𝑛 (defining a different distance).

b) What is the unit ball 𝐵(0, 1) in this norm?

Exercise 8.2.4: For 𝑥 ∈ ℝ𝑛 , define

∥𝑥∥1 B
𝑛∑
𝑘=1

|𝑥𝑘 |,

sometimes called the 1-norm (or 𝐿1 norm).

a) Show that ∥·∥1 is a norm on ℝ𝑛 (defining a different distance, sometimes called the taxicab distance).

b) What is the unit ball 𝐵(0, 1) in this norm? Think about what it is in ℝ2 and ℝ3. Hint: It is, for example,
a convex hull of a finite number of points.
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Exercise 8.2.5: Using the euclidean norm on ℝ2, compute the operator norm of the operators in 𝐿(ℝ2) given
by the matrices:

a)
[ 1 0

0 2
]

b)
[ 0 1
−1 0

]
c)

[ 1 1
0 1

]
d)

[ 0 1
0 0

]
Exercise 8.2.6: Using the standard euclidean norm ℝ𝑛 , show:

a) Suppose 𝐴 ∈ 𝐿(ℝ,ℝ𝑛) is defined for 𝑥 ∈ ℝ by 𝐴𝑥 B 𝑥𝑎 for a vector 𝑎 ∈ ℝ𝑛 . Then the operator norm
∥𝐴∥𝐿(ℝ,ℝ𝑛) = ∥𝑎∥ℝ𝑛 . (That is, the operator norm of 𝐴 is the euclidean norm of 𝑎.)

b) Suppose 𝐵 ∈ 𝐿(ℝ𝑛 ,ℝ) is defined for 𝑥 ∈ ℝ𝑛 by 𝐵𝑥 B 𝑏 · 𝑥 for a vector 𝑏 ∈ ℝ𝑛 . Then the operator norm
∥𝐵∥𝐿(ℝ𝑛 ,ℝ) = ∥𝑏∥ℝ𝑛 .

Exercise 8.2.7: Suppose 𝜎 = (𝜎1 , 𝜎2 , . . . , 𝜎𝑛) is a permutation of (1, 2, . . . , 𝑛).
a) Show that we can make a finite number of transpositions (switching of two elements) to get to (1, 2, . . . , 𝑛).
b) Using the definition ( 8.4 ) show that 𝜎 is even if sgn(𝜎) = 1 and 𝜎 is odd if sgn(𝜎) = −1. In particular,

showing that being odd or even is well-defined.

Exercise 8.2.8: Verify the computation of the determinant for the three types of elementary matrices.

Exercise 8.2.9: Prove  Proposition 8.2.11 .

Exercise 8.2.10:

a) Suppose 𝐷 = [𝑑𝑖 , 𝑗] is an 𝑛-by-𝑛 diagonal matrix, that is, 𝑑𝑖 , 𝑗 = 0 whenever 𝑖 ≠ 𝑗. Show that
det(𝐷) = 𝑑1,1𝑑2,2 · · · 𝑑𝑛,𝑛 .

b) Suppose 𝐴 is a diagonalizable matrix. That is, there exists a matrix 𝐵 such that 𝐵−1𝐴𝐵 = 𝐷 for a
diagonal matrix 𝐷 = [𝑑𝑖 , 𝑗]. Show that det(𝐴) = 𝑑1,1𝑑2,2 · · · 𝑑𝑛,𝑛 .

Exercise 8.2.11: Take the vector space of polynomials ℝ[𝑡] and let 𝐷 ∈ 𝐿(ℝ[𝑡]) be differentiation (we
proved in an earlier exercise that 𝐷 is a linear operator). Given 𝑃(𝑡) = 𝑐0 + 𝑐1𝑡 + · · · + 𝑐𝑛𝑡𝑛 ∈ ℝ[𝑡] define
∥𝑃∥ B sup

{|𝑐 𝑗 | : 𝑗 = 0, 1, 2, . . . , 𝑛
}
.

a) Show that ∥·∥ is a norm on ℝ[𝑡].
b) Prove ∥𝐷∥ = ∞. Hint: Consider the polynomials 𝑡𝑛 as 𝑛 tends to infinity.

Exercise 8.2.12: We finish the proof of  Proposition 8.2.4 . Let 𝑋 be a finite-dimensional normed vector space
with basis {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}. Denote by ∥·∥𝑋 the norm on 𝑋, by ∥·∥ℝ𝑛 the standard euclidean norm on ℝ𝑛 ,
and by ∥·∥𝐿(𝑋,𝑌) the operator norm.

a) Define 𝑓 : ℝ𝑛 → ℝ,
𝑓 (𝑐1 , 𝑐2 , . . . , 𝑐𝑛) B ∥𝑐1𝑥1 + 𝑐2𝑥2 + · · · + 𝑐𝑛𝑥𝑛 ∥𝑋 .

Show 𝑓 is continuous.

b) Show that there exist numbers 𝑚 and 𝑀 such that if 𝑐 = (𝑐1 , 𝑐2 , . . . , 𝑐𝑛) ∈ ℝ𝑛 with ∥𝑐∥ℝ𝑛 = 1, then
𝑚 ≤ ∥𝑐1𝑥1 + 𝑐2𝑥2 + · · · + 𝑐𝑛𝑥𝑛 ∥𝑋 ≤ 𝑀.

c) Show that there exists a number 𝐵 such that if ∥𝑐1𝑥1 + 𝑐2𝑥2 + · · · + 𝑐𝑛𝑥𝑛 ∥𝑋 = 1, then |𝑐 𝑗 | ≤ 𝐵.

d) Use part c) to show that if 𝑋 is a finite-dimensional vector space and 𝐴 ∈ 𝐿(𝑋,𝑌), then ∥𝐴∥𝐿(𝑋,𝑌) < ∞.
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Exercise 8.2.13: Let 𝑋 be a finite-dimensional vector space with basis {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}.
a) Let ∥·∥𝑋 be a norm on 𝑋, 𝑐 = (𝑐1 , 𝑐2 , . . . , 𝑐𝑛) ∈ ℝ𝑛 , and ∥·∥ℝ𝑛 the standard euclidean norm on ℝ𝑛 .

Prove that there exist numbers 𝑚, 𝑀 > 0 such that for all 𝑐 ∈ ℝ𝑛 ,

𝑚∥𝑐∥ℝ𝑛 ≤ ∥𝑐1𝑥1 + 𝑐2𝑥2 + · · · + 𝑐𝑛𝑥𝑛 ∥𝑋 ≤ 𝑀∥𝑐∥ℝ𝑛 .

Hint: See the previous exercise.

b) Use part a) to show that if ∥·∥1 and ∥·∥2 are two norms on 𝑋, then there exist numbers 𝑚, 𝑀 > 0
(perhaps different from above) such that for all 𝑥 ∈ 𝑋,

𝑚∥𝑥∥1 ≤ ∥𝑥∥2 ≤ 𝑀∥𝑥∥1.

c) Show that𝑈 ⊂ 𝑋 is open in the metric defined by ∥𝑥 − 𝑦∥1 if and only if𝑈 is open in the metric defined
by ∥𝑥 − 𝑦∥2. So convergence of sequences and continuity of functions is the same in either norm.

Exercise 8.2.14: Let 𝐴 be an upper triangular matrix. Find a formula for the determinant of 𝐴 in terms of
the diagonal entries, and prove that your formula works.

Exercise 8.2.15: Given an 𝑛-by-𝑛 matrix 𝐴, prove that |det(𝐴)| ≤ ∥𝐴∥𝑛 (the norm on 𝐴 is the operator
norm). Hint: One way to do it is to first prove it in the case ∥𝐴∥ = 1, which means that all columns are of
norm 1 or less, then prove that this means that |det(𝐴)| ≤ 1 using linearity.

Exercise 8.2.16: Consider  Proposition 8.2.6 where 𝑋 = ℝ𝑛 (for all 𝑛) using the euclidean norm.

a) Prove that the estimate ∥𝐴 − 𝐵∥ < 1
∥𝐴−1∥ is the best possible: For every 𝐴 ∈ 𝐺𝐿(ℝ𝑛), find a 𝐵 where

equality is satisfied and 𝐵 is not invertible. Hint: Difficulty is that ∥𝐴∥∥𝐴−1∥ is not always 1. Prove
that a vector 𝑥1 can be completed to a basis {𝑥1 , . . . , 𝑥𝑛} such that 𝑥1 · 𝑥 𝑗 = 0 for 𝑗 ≥ 2. For the right 𝑥1,
make it so that (𝐴 − 𝐵)𝑥 𝑗 = 0 for 𝑗 ≥ 2.

b) For every fixed 𝐴 ∈ 𝐺𝐿(ℝ𝑛), let M denote the set of matrices 𝐵 such that ∥𝐴 − 𝐵∥ < 1
∥𝐴−1∥ . Prove that

while every 𝐵 ∈ M is invertible, ∥𝐵−1∥ is unbounded as a function of 𝐵 on M.

Let 𝐴 be an 𝑛-by-𝑛 matrix. A 𝜆 ∈ ℂ (possibly complex even for a real matrix) is an eigenvalue of
𝐴 if there is a nonzero (possibly complex) vector 𝑥 ∈ ℂ𝑛 such that 𝐴𝑥 = 𝜆𝑥 (the multiplication by
complex vectors is the same as for real vectors; if 𝑥 = 𝑎 + 𝑖𝑏 for real vectors 𝑎 and 𝑏, and 𝐴 is a real
matrix, then 𝐴𝑥 = 𝐴𝑎 + 𝑖𝐴𝑏). The number

𝜌(𝐴) B sup
{|𝜆| : 𝜆 is an eigenvalue of 𝐴

}
is the spectral radius of 𝐴. Here |𝜆| is the complex modulus. We state without proof that at least one
eigenvalue always exists, and there are no more than 𝑛 distinct eigenvalues of 𝐴. You can therefore
assume that 0 ≤ 𝜌(𝐴) < ∞. The exercises below hold for complex matrices, but feel free to assume
they are real matrices.

Exercise 8.2.17: Let 𝐴, 𝑆 be 𝑛-by-𝑛 matrices, where 𝑆 is invertible. Prove that 𝜆 is an eigenvalue of 𝐴, if
and only if it is an eigenvalue of 𝑆−1𝐴𝑆. Then prove that 𝜌(𝑆−1𝐴𝑆) = 𝜌(𝑆). In particular, 𝜌 is a well-defined
function on 𝐿(𝑋) for every finite-dimensional vector space 𝑋.
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Exercise 8.2.18: Let 𝐴 be an 𝑛-by-𝑛 matrix 𝐴.

a) Prove 𝜌(𝐴) ≤ ∥𝐴∥. (See above for definition of 𝜌.)

b) For every 𝑘 ∈ ℕ, prove 𝜌(𝐴) ≤ ∥𝐴𝑘 ∥1/𝑘 .

c) Suppose lim
𝑘→∞

𝐴𝑘 = 0 (limit in the operator norm). Prove that 𝜌(𝐴) < 1.

Exercise 8.2.19: We say a set 𝐶 ⊂ ℝ𝑛 is symmetric if 𝑥 ∈ 𝐶 implies −𝑥 ∈ 𝐶.

a) Let ∥·∥ be any given norm on ℝ𝑛 . Show that the closed unit ball 𝐶(0, 1) (using the metric induced by
this norm) is a compact symmetric convex set.

b) (Challenging) Let 𝐶 ⊂ ℝ𝑛 be a compact, but note symmetric convex set and 0 ∈ 𝐶. Show that

∥𝑥∥ B inf
{
𝜆 : 𝜆 > 0 and 𝑥

𝜆
∈ 𝐶

}
is a norm on ℝ𝑛 , and 𝐶 = 𝐶(0, 1) (the closed unit ball) in the metric induced by this norm.

Hint: Feel free to the result of  Exercise 8.2.13  part c). In particular, whether a set is “compact” is independent
of the norm.
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8.3 The derivative
Note: 2–3 lectures

8.3.1 The derivative
For a function 𝑓 : ℝ → ℝ, we defined the derivative at 𝑥 as

lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

.

In other words, there is a number 𝑎 (the derivative of 𝑓 at 𝑥) such that

lim
ℎ→0

���� 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

− 𝑎
���� = lim

ℎ→0

���� 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝑎ℎ
ℎ

���� = lim
ℎ→0

| 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝑎ℎ |
|ℎ | = 0.

Multiplying by 𝑎 is a linear map in one dimension: ℎ ↦→ 𝑎ℎ. Namely, we think of
𝑎 ∈ 𝐿(ℝ1,ℝ1), which is the best linear approximation of how 𝑓 changes near 𝑥. We use this
interpretation to extend differentiation to more variables.

Definition 8.3.1. Let𝑈 ⊂ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ𝑚 a function. We say 𝑓 is differentiable
at 𝑥 ∈ 𝑈 if there exists an 𝐴 ∈ 𝐿(ℝ𝑛 ,ℝ𝑚) such that

lim
ℎ→0
ℎ∈ℝ𝑛

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥
∥ℎ∥ = 0.

We will show momentarily that 𝐴, if it exists, is unique. We write𝐷 𝑓 (𝑥) B 𝐴, or 𝑓 ′(𝑥) B 𝐴,
and we say 𝐴 is the derivative of 𝑓 at 𝑥. When 𝑓 is differentiable at every 𝑥 ∈ 𝑈 , we say
simply that 𝑓 is differentiable. See  Figure 8.4 for an illustration.

For a differentiable function, the derivative of 𝑓 is a function from 𝑈 to 𝐿(ℝ𝑛 ,ℝ𝑚).
Compare to the one-dimensional case, where the derivative is a function from 𝑈 to ℝ,
but we really want to think of ℝ here as 𝐿(ℝ1,ℝ1). As in one dimension, the idea is that
a differentiable mapping is “infinitesimally close” to a linear mapping, and this linear
mapping is the derivative.

Notice the norms in the definition. The norm in the numerator is on ℝ𝑚 , and the norm
in the denominator is on ℝ𝑛 where ℎ lives. Normally it is understood that ℎ ∈ ℝ𝑛 from
context (the formula makes no sense otherwise). We will not explicitly say so from now on.
Let us prove, as promised, that the derivative is unique.
Proposition 8.3.2. Let 𝑈 ⊂ ℝ𝑛 be an open subset and 𝑓 : 𝑈 → ℝ𝑚 a function. Suppose 𝑥 ∈ 𝑈
and there exist 𝐴, 𝐵 ∈ 𝐿(ℝ𝑛 ,ℝ𝑚) such that

lim
ℎ→0

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥
∥ℎ∥ = 0 and lim

ℎ→0

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐵ℎ∥
∥ℎ∥ = 0.

Then 𝐴 = 𝐵.
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Figure 8.4: Illustration of a derivative for a function 𝑓 : ℝ2 → ℝ. The vector ℎ is shown in the
𝑥1𝑥2-plane based at (𝑥1 , 𝑥2), and the vector 𝐴ℎ ∈ ℝ1 is shown along the 𝑦 direction.

Proof. Suppose ℎ ∈ ℝ𝑛 , ℎ ≠ 0. Compute

∥(𝐴 − 𝐵)ℎ∥
∥ℎ∥ =

∥−(
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ) + 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐵ℎ∥

∥ℎ∥
≤ ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥

∥ℎ∥ + ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐵ℎ∥
∥ℎ∥ .

So ∥(𝐴−𝐵)ℎ∥
∥ℎ∥ → 0 as ℎ → 0. Given 𝜖 > 0, for all nonzero ℎ in some 𝛿-ball around the origin

we have

𝜖 >
∥(𝐴 − 𝐵)ℎ∥

∥ℎ∥ =

(𝐴 − 𝐵) ℎ
∥ℎ∥

 .
For any given 𝑣 ∈ ℝ𝑛 with ∥𝑣∥ = 1, if ℎ = (𝛿/2) 𝑣, then ∥ℎ∥ < 𝛿 and ℎ

∥ℎ∥ = 𝑣. So
∥(𝐴 − 𝐵)𝑣∥ < 𝜖. Taking the supremum over all 𝑣 with ∥𝑣∥ = 1, we get the operator norm
∥𝐴 − 𝐵∥ ≤ 𝜖. As 𝜖 > 0 was arbitrary, ∥𝐴 − 𝐵∥ = 0, or in other words 𝐴 = 𝐵. □

Example 8.3.3: If 𝑓 (𝑥) = 𝐴𝑥 for a linear mapping 𝐴, then 𝑓 ′(𝑥) = 𝐴:

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥
∥ℎ∥ =

∥𝐴(𝑥 + ℎ) − 𝐴𝑥 − 𝐴ℎ∥
∥ℎ∥ =

0
∥ℎ∥ = 0.

Example 8.3.4: Let 𝑓 : ℝ2 → ℝ2 be defined by

𝑓 (𝑥, 𝑦) = (
𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦)

)
B (1 + 𝑥 + 2𝑦 + 𝑥2, 2𝑥 + 3𝑦 + 𝑥𝑦).

Let us show that 𝑓 is differentiable at the origin and compute the derivative directly using
the definition. If the derivative exists, it is in 𝐿(ℝ2,ℝ2), so it can be represented by a 2-by-2
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matrix
[
𝑎 𝑏
𝑐 𝑑

]
. Suppose ℎ = (ℎ1, ℎ2). We need the following expression to go to zero.

∥ 𝑓 (ℎ1, ℎ2) − 𝑓 (0, 0) − (𝑎ℎ1 + 𝑏ℎ2, 𝑐ℎ1 + 𝑑ℎ2)∥
∥(ℎ1, ℎ2)∥ =√((1 − 𝑎)ℎ1 + (2 − 𝑏)ℎ2 + ℎ2

1
)2 + ((2 − 𝑐)ℎ1 + (3 − 𝑑)ℎ2 + ℎ1ℎ2

)2√
ℎ2

1 + ℎ2
2

.

If we choose 𝑎 = 1, 𝑏 = 2, 𝑐 = 2, 𝑑 = 3, the expression becomes√
ℎ4

1 + ℎ2
1ℎ

2
2√

ℎ2
1 + ℎ2

2

= |ℎ1 |

√
ℎ2

1 + ℎ2
2√

ℎ2
1 + ℎ2

2

= |ℎ1 |.

This expression does indeed go to zero as ℎ → 0. The function 𝑓 is differentiable at the
origin and the derivative 𝑓 ′(0) is represented by the matrix

[ 1 2
2 3

]
.

Proposition 8.3.5. Let 𝑈 ⊂ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ𝑚 be differentiable at 𝑝 ∈ 𝑈 . Then 𝑓 is
continuous at 𝑝.

Proof. Another way to write the differentiability of 𝑓 at 𝑝 is to consider

𝑟(ℎ) B 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝑓 ′(𝑝)ℎ.
The function 𝑓 is differentiable at 𝑝 if ∥𝑟(ℎ)∥

∥ℎ∥ goes to zero as ℎ → 0, so 𝑟(ℎ) itself goes to zero.
The mapping ℎ ↦→ 𝑓 ′(𝑝)ℎ is a linear mapping between finite-dimensional spaces, hence
continuous and 𝑓 ′(𝑝)ℎ → 0 as ℎ → 0. Thus, 𝑓 (𝑝 + ℎ) must go to 𝑓 (𝑝) as ℎ → 0. That is, 𝑓
is continuous at 𝑝. □

Differentiation is a linear operator on the space of differentiable functions.
Proposition 8.3.6. Suppose𝑈 ⊂ ℝ𝑛 is open, 𝑓 : 𝑈 → ℝ𝑚 and 𝑔 : 𝑈 → ℝ𝑚 are differentiable at
𝑝 ∈ 𝑈 , and 𝛼 ∈ ℝ. Then the functions 𝑓 + 𝑔 and 𝛼 𝑓 are differentiable at 𝑝,

( 𝑓 + 𝑔)′(𝑝) = 𝑓 ′(𝑝) + 𝑔′(𝑝), and (𝛼 𝑓 )′(𝑝) = 𝛼 𝑓 ′(𝑝).
Proof. Let ℎ ∈ ℝ𝑛 , ℎ ≠ 0. Then 𝑓 (𝑝 + ℎ) + 𝑔(𝑝 + ℎ) − (

𝑓 (𝑝) + 𝑔(𝑝)) − (
𝑓 ′(𝑝) + 𝑔′(𝑝))ℎ

∥ℎ∥
≤ ∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝑓 ′(𝑝)ℎ∥

∥ℎ∥ + ∥𝑔(𝑝 + ℎ) − 𝑔(𝑝) − 𝑔′(𝑝)ℎ∥
∥ℎ∥ ,

and ∥𝛼 𝑓 (𝑝 + ℎ) − 𝛼 𝑓 (𝑝) − 𝛼 𝑓 ′(𝑝)ℎ∥
∥ℎ∥ = |𝛼 | ∥ 𝑓 (𝑝 + ℎ)) − 𝑓 (𝑝) − 𝑓 ′(𝑝)ℎ∥

∥ℎ∥ .

The limits as ℎ goes to zero of the right-hand sides are zero by hypothesis. The result
follows. □
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If 𝐴 ∈ 𝐿(ℝ𝑛 ,ℝ𝑚) and 𝐵 ∈ 𝐿(ℝ𝑚 ,ℝ𝑘) are linear maps, then they are their own derivative.
The composition 𝐵𝐴 ∈ 𝐿(ℝ𝑛 ,ℝ𝑘) is also its own derivative, and so the derivative of the com-
position is the composition of the derivatives. As differentiable maps are “infinitesimally
close” to linear maps, they have the same property:

Theorem 8.3.7 (Chain rule). Let𝑈 ⊂ ℝ𝑛 and𝑉 ⊂ ℝ𝑚 be open sets, 𝑓 : 𝑈 → ℝ𝑚 be differentiable
at 𝑝 ∈ 𝑈 , 𝑓 (𝑈) ⊂ 𝑉 , and let 𝑔 : 𝑉 → ℝℓ be differentiable at 𝑓 (𝑝). Then 𝐹 : 𝑈 → ℝℓ defined by

𝐹(𝑥) B 𝑔
(
𝑓 (𝑥))

is differentiable at 𝑝, and
𝐹′(𝑝) = 𝑔′

(
𝑓 (𝑝)) 𝑓 ′(𝑝).

Without the points where things are evaluated, we write 𝐹′ = (𝑔 ◦ 𝑓 )′ = 𝑔′ 𝑓 ′. The
derivative of the composition 𝑔 ◦ 𝑓 is the composition of the derivatives of 𝑔 and 𝑓 : If
𝑓 ′(𝑝) = 𝐴 and 𝑔′

(
𝑓 (𝑝)) = 𝐵, then 𝐹′(𝑝) = 𝐵𝐴, just as for linear maps.

Proof. Let 𝐴 B 𝑓 ′(𝑝) and 𝐵 B 𝑔′
(
𝑓 (𝑝)) . Take a nonzero ℎ ∈ ℝ𝑛 and write 𝑞 B 𝑓 (𝑝),

𝑘 B 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝). Let
𝑟(ℎ) B 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ.

Then 𝑟(ℎ) = 𝑘 − 𝐴ℎ or 𝐴ℎ = 𝑘 − 𝑟(ℎ), and 𝑓 (𝑝 + ℎ) = 𝑞 + 𝑘. We look at the quantity we
need to go to zero:

∥𝐹(𝑝 + ℎ) − 𝐹(𝑝) − 𝐵𝐴ℎ∥
∥ℎ∥ =

∥𝑔 ( 𝑓 (𝑝 + ℎ)) − 𝑔
(
𝑓 (𝑝)) − 𝐵𝐴ℎ∥

∥ℎ∥
=

∥𝑔(𝑞 + 𝑘) − 𝑔(𝑞) − 𝐵 (
𝑘 − 𝑟(ℎ)) ∥

∥ℎ∥
≤ ∥𝑔(𝑞 + 𝑘) − 𝑔(𝑞) − 𝐵𝑘∥

∥ℎ∥ + ∥𝐵∥ ∥𝑟(ℎ)∥∥ℎ∥
=

∥𝑔(𝑞 + 𝑘) − 𝑔(𝑞) − 𝐵𝑘∥
∥𝑘∥

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝)∥
∥ℎ∥ + ∥𝐵∥ ∥𝑟(ℎ)∥∥ℎ∥ .

First, ∥𝐵∥ is a constant and 𝑓 is differentiable at 𝑝, so the term ∥𝐵∥ ∥𝑟(ℎ)∥
∥ℎ∥ goes to 0. Next,

because 𝑓 is continuous at 𝑝, 𝑘 goes to 0 as ℎ goes to 0. Thus ∥𝑔(𝑞+𝑘)−𝑔(𝑞)−𝐵𝑘∥
∥𝑘∥ goes to 0,

because 𝑔 is differentiable at 𝑞. Finally,

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝)∥
∥ℎ∥ ≤ ∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥

∥ℎ∥ + ∥𝐴ℎ∥
∥ℎ∥ ≤ ∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥

∥ℎ∥ + ∥𝐴∥.

As 𝑓 is differentiable at 𝑝, for small enough ℎ, the quantity ∥ 𝑓 (𝑝+ℎ)− 𝑓 (𝑝)−𝐴ℎ∥
∥ℎ∥ is bounded.

Hence, the term ∥ 𝑓 (𝑝+ℎ)− 𝑓 (𝑝)∥
∥ℎ∥ stays bounded as ℎ goes to 0. Therefore, ∥𝐹(𝑝+ℎ)−𝐹(𝑝)−𝐵𝐴ℎ∥

∥ℎ∥
goes to zero, and 𝐹′(𝑝) = 𝐵𝐴, which is what was claimed. □
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8.3.2 Partial derivatives
There is another way to generalize the derivative from one dimension. We hold all but one
variable constant and take the regular one-variable derivative.

Definition 8.3.8. Let 𝑓 : 𝑈 → ℝ be a function on an open set𝑈 ⊂ ℝ𝑛 . If the following limit
exists, we write

𝜕 𝑓
𝜕𝑥 𝑗

(𝑥) B lim
ℎ→0

𝑓 (𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗 + ℎ, 𝑥 𝑗+1, . . . , 𝑥𝑛) − 𝑓 (𝑥)
ℎ

= lim
ℎ→0

𝑓 (𝑥 + ℎ𝑒 𝑗) − 𝑓 (𝑥)
ℎ

.

We call 𝜕 𝑓
𝜕𝑥 𝑗

(𝑥) the partial derivative of 𝑓 with respect to 𝑥 𝑗 . See  Figure 8.5 . Here ℎ is a
number, not a vector.

For a mapping 𝑓 : 𝑈 → ℝ𝑚 , we write 𝑓 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑚), where 𝑓𝑘 are real-valued
functions. We then take partial derivatives of the components, 𝜕 𝑓𝑘

𝜕𝑥 𝑗
.

G1

G2

H = 5 (G1, G2)
H

(G1, G2)

slope = % 5
%G2

(G1, G2)

Figure 8.5: Illustration of a partial derivative for a function 𝑓 : ℝ2 → ℝ. The 𝑦𝑥2-plane where 𝑥1

is fixed is marked in dotted line, and the slope of the tangent line in the 𝑦𝑥2-plane is 𝜕 𝑓
𝜕𝑥2

(𝑥1 , 𝑥2).

Partial derivatives are easier to compute with all the machinery of calculus, and they
provide a way to compute the derivative of a function.

Proposition 8.3.9. Let 𝑈 ⊂ ℝ𝑛 be open and let 𝑓 : 𝑈 → ℝ𝑚 be differentiable at 𝑝 ∈ 𝑈 . Then
all the partial derivatives at 𝑝 exist and, in terms of the standard bases of ℝ𝑛 and ℝ𝑚 , 𝑓 ′(𝑝) is
represented by the matrix 

𝜕 𝑓1
𝜕𝑥1

(𝑝) 𝜕 𝑓1
𝜕𝑥2

(𝑝) . . . 𝜕 𝑓1
𝜕𝑥𝑛

(𝑝)
𝜕 𝑓2
𝜕𝑥1

(𝑝) 𝜕 𝑓2
𝜕𝑥2

(𝑝) . . . 𝜕 𝑓2
𝜕𝑥𝑛

(𝑝)
...

... . . . ...
𝜕 𝑓𝑚
𝜕𝑥1

(𝑝) 𝜕 𝑓𝑚
𝜕𝑥2

(𝑝) . . . 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑝)


.
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In other words,

𝑓 ′(𝑝) 𝑒 𝑗 =
𝑚∑
𝑘=1

𝜕 𝑓𝑘
𝜕𝑥 𝑗

(𝑝) 𝑒𝑘 .

If 𝑣 =
∑𝑛
𝑗=1 𝑐 𝑗 𝑒 𝑗 = (𝑐1, 𝑐2, . . . , 𝑐𝑛), then

𝑓 ′(𝑝) 𝑣 =
𝑛∑
𝑗=1

𝑚∑
𝑘=1

𝑐 𝑗
𝜕 𝑓𝑘
𝜕𝑥 𝑗

(𝑝) 𝑒𝑘 =
𝑚∑
𝑘=1

©«
𝑛∑
𝑗=1

𝑐 𝑗
𝜕 𝑓𝑘
𝜕𝑥 𝑗

(𝑝)ª®¬ 𝑒𝑘 .
Proof. Fix a 𝑗 and note that for nonzero ℎ, 𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝)

ℎ
− 𝑓 ′(𝑝) 𝑒 𝑗

 =

 𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝) − 𝑓 ′(𝑝) ℎ𝑒 𝑗
ℎ


=

∥ 𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝) − 𝑓 ′(𝑝) ℎ𝑒 𝑗 ∥
∥ℎ𝑒 𝑗 ∥ .

As ℎ goes to 0, the right-hand side goes to zero by differentiability of 𝑓 . Hence,

lim
ℎ→0

𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝)
ℎ

= 𝑓 ′(𝑝) 𝑒 𝑗 .

The limit is in ℝ𝑚 . Represent 𝑓 in components 𝑓 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑚). Taking a limit in ℝ𝑚

is the same as taking the limit in each component separately. So for every 𝑘, the partial
derivative

𝜕 𝑓𝑘
𝜕𝑥 𝑗

(𝑝) = lim
ℎ→0

𝑓𝑘(𝑝 + ℎ𝑒 𝑗) − 𝑓𝑘(𝑝)
ℎ

exists and is equal to the 𝑘th component of 𝑓 ′(𝑝) 𝑒 𝑗 , which is the 𝑗th column of 𝑓 ′(𝑝), and
we are done. □

The converse of the proposition is not true. Just because the partial derivatives exist, does
not mean that the function is differentiable. See the exercises. However, when the partial
derivatives are continuous, we will prove that the converse holds. One of the consequences
of the proposition above is that if 𝑓 is differentiable on 𝑈 , then 𝑓 ′ : 𝑈 → 𝐿(ℝ𝑛 ,ℝ𝑚) is a
continuous function if and only if all the 𝜕 𝑓𝑘

𝜕𝑥 𝑗
are continuous functions.

8.3.3 Gradients, curves, and directional derivatives
Let𝑈 ⊂ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ a differentiable function. We define the gradient as

∇ 𝑓 (𝑥) B
𝑛∑
𝑗=1

𝜕 𝑓
𝜕𝑥 𝑗

(𝑥) 𝑒 𝑗 .

The gradient gives a way to represent the action of the derivative as a dot product:
𝑓 ′(𝑥) 𝑣 = ∇ 𝑓 (𝑥) · 𝑣.
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Suppose 𝛾 : (𝑎, 𝑏) ⊂ ℝ → ℝ𝑛 is differentiable. Such a function and its image is
sometimes called a curve, or a differentiable curve. Write 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛). For the
purposes of computation, we identify 𝐿(ℝ1) and ℝ as we did when we defined the
derivative in one variable. We also identify 𝐿(ℝ1,ℝ𝑛) with ℝ𝑛 . We treat 𝛾 ′(𝑡) both as an
operator in 𝐿(ℝ1,ℝ𝑛) and the vector

(
𝛾 ′

1 (𝑡), 𝛾 ′
2 (𝑡), . . . , 𝛾 ′

𝑛(𝑡)
)

in ℝ𝑛 . Using  Proposition 8.3.9 ,
if 𝑣 ∈ ℝ𝑛 is 𝛾 ′(𝑡) acting as a vector, then ℎ ↦→ ℎ 𝑣 (for ℎ ∈ ℝ1 = ℝ) is 𝛾 ′(𝑡) acting as an
operator in 𝐿(ℝ1,ℝ𝑛). We often use this slight abuse of notation when dealing with curves.
The vector 𝛾 ′(𝑡) is called a tangent vector. See  Figure 8.6 .

𝛾(𝑎) 𝛾
((𝑎, 𝑏))

𝛾(𝑡) 𝛾(𝑏)𝛾 ′(𝑡)

Figure 8.6: Differentiable curve and its derivative as a vector (for clarity assuming 𝛾 defined on
[𝑎, 𝑏]). The tangent vector 𝛾 ′(𝑡) points along the curve.

Suppose 𝛾
((𝑎, 𝑏)) ⊂ 𝑈 and let

𝑔(𝑡) B 𝑓
(
𝛾(𝑡)) .

The function 𝑔 is differentiable. Treating 𝑔′(𝑡) as a number,

𝑔′(𝑡) = 𝑓 ′
(
𝛾(𝑡))𝛾 ′(𝑡) =

𝑛∑
𝑗=1

𝜕 𝑓
𝜕𝑥 𝑗

(
𝛾(𝑡)) 𝑑𝛾𝑗

𝑑𝑡
(𝑡) =

𝑛∑
𝑗=1

𝜕 𝑓
𝜕𝑥 𝑗

𝑑𝛾𝑗
𝑑𝑡
.

For convenience, we often leave out the points where we are evaluating, such as above on
the far right-hand side. With the notation of the gradient and the dot product the equation
becomes

𝑔′(𝑡) = (∇ 𝑓 )(𝛾(𝑡)) · 𝛾 ′(𝑡) = ∇ 𝑓 · 𝛾 ′.

We use this idea to define derivatives in a specific direction. A direction is simply a
vector pointing in that direction. Pick a vector 𝑢 ∈ ℝ𝑛 such that ∥𝑢∥ = 1, and fix 𝑥 ∈ 𝑈 . We
define the directional derivative as

𝐷𝑢 𝑓 (𝑥) B 𝑑
𝑑𝑡

���
𝑡=0

[
𝑓 (𝑥 + 𝑡𝑢)] = lim

ℎ→0

𝑓 (𝑥 + ℎ𝑢) − 𝑓 (𝑥)
ℎ

,

where the notation 𝑑
𝑑𝑡

��
𝑡=0 represents the derivative evaluated at 𝑡 = 0. When 𝑢 = 𝑒 𝑗 is a

standard basis vector, we find 𝜕 𝑓
𝜕𝑥 𝑗

= 𝐷𝑒 𝑗 𝑓 . For this reason, sometimes the notation 𝜕 𝑓
𝜕𝑢 is

used instead of 𝐷𝑢 𝑓 .
Define 𝛾 by

𝛾(𝑡) B 𝑥 + 𝑡𝑢.
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Then 𝛾 ′(𝑡) = 𝑢 for all 𝑡. Let us see what happens to 𝑓 when we travel along 𝛾:

𝐷𝑢 𝑓 (𝑥) = 𝑑
𝑑𝑡

���
𝑡=0

[
𝑓 (𝑥 + 𝑡𝑢)] = (∇ 𝑓 )(𝛾(0)) · 𝛾 ′(0) = (∇ 𝑓 )(𝑥) · 𝑢.

In fact, this computation holds whenever 𝛾 is any curve such that 𝛾(0) = 𝑥 and 𝛾 ′(0) = 𝑢.
Suppose (∇ 𝑓 )(𝑥) ≠ 0. By the Cauchy–Schwarz inequality,

|𝐷𝑢 𝑓 (𝑥)| ≤ ∥(∇ 𝑓 )(𝑥)∥.

Equality is achieved when 𝑢 is a scalar multiple of (∇ 𝑓 )(𝑥). That is, when

𝑢 =
(∇ 𝑓 )(𝑥)
∥(∇ 𝑓 )(𝑥)∥ ,

we get 𝐷𝑢 𝑓 (𝑥) = ∥(∇ 𝑓 )(𝑥)∥. The gradient points in the direction in which the function
grows fastest, in other words, in the direction in which 𝐷𝑢 𝑓 (𝑥) is maximal.

8.3.4 The Jacobian
Definition 8.3.10. Let 𝑈 ⊂ ℝ𝑛 and 𝑓 : 𝑈 → ℝ𝑛 be a differentiable mapping. Define the
Jacobian determinant 

*
 , or simply the Jacobian 

†
 , of 𝑓 at 𝑥 as

𝐽 𝑓 (𝑥) B det
(
𝑓 ′(𝑥)) .

Sometimes 𝐽 𝑓 is written as
𝜕( 𝑓1, 𝑓2, . . . , 𝑓𝑛)
𝜕(𝑥1, 𝑥2, . . . , 𝑥𝑛) .

This last piece of notation may seem somewhat confusing, but it is quite useful when
we need to specify the exact variables and function components used, as we will do, for
example, in the implicit function theorem.

The Jacobian determinant 𝐽 𝑓 is a real-valued function, and when 𝑛 = 1 it is simply the
derivative. From the chain rule and the fact that det(𝐴𝐵) = det(𝐴)det(𝐵), it follows that:

𝐽 𝑓 ◦𝑔(𝑥) = 𝐽 𝑓
(
𝑔(𝑥)) 𝐽𝑔(𝑥).

The determinant of a linear mapping tells us what happens to area/volume under
the mapping. Similarly, the Jacobian determinant measures how much a differentiable
mapping stretches things locally, and if it flips orientation. In particular, if the Jacobian
determinant is non-zero than we would assume that locally the mapping is invertible (and
we would be correct as we will later see).

*Named after the Italian mathematician  Carl Gustav Jacob Jacobi (1804–1851).
†The matrix from  Proposition 8.3.9 representing 𝑓 ′(𝑥) is called the Jacobian matrix, or sometimes confusingly

also called just “the Jacobian.”

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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8.3.5 Exercises
Exercise 8.3.1: Suppose 𝛾 : (−1, 1) → ℝ𝑛 and 𝛼 : (−1, 1) → ℝ𝑛 are two differentiable curves such that
𝛾(0) = 𝛼(0) and 𝛾 ′(0) = 𝛼′(0). Suppose 𝐹 : ℝ𝑛 → ℝ is a differentiable function. Show that

𝑑
𝑑𝑡

���
𝑡=0
𝐹
(
𝛾(𝑡)) = 𝑑

𝑑𝑡

���
𝑡=0
𝐹
(
𝛼(𝑡)) .

Exercise 8.3.2: Let 𝑓 : ℝ2 → ℝ be given by 𝑓 (𝑥, 𝑦) B √
𝑥2 + 𝑦2, see  Figure 8.7 . Show that 𝑓 is not

differentiable at the origin.

G

H

I

Figure 8.7: Graph of
√
𝑥2 + 𝑦2.

Exercise 8.3.3: Using only the definition of the derivative, show that the following 𝑓 : ℝ2 → ℝ2 are
differentiable at the origin and find their derivative.

a) 𝑓 (𝑥, 𝑦) B (1 + 𝑥 + 𝑥𝑦, 𝑥),
b) 𝑓 (𝑥, 𝑦) B (

𝑦 − 𝑦10 , 𝑥
)
,

c) 𝑓 (𝑥, 𝑦) B ((𝑥 + 𝑦 + 1)2 , (𝑥 − 𝑦 + 2)2) .
Exercise 8.3.4: Suppose 𝑓 : ℝ → ℝ and 𝑔 : ℝ → ℝ are differentiable functions. Using only the definition
of the derivative, show that ℎ : ℝ2 → ℝ2 defined by ℎ(𝑥, 𝑦) B (

𝑓 (𝑥), 𝑔(𝑦)) is a differentiable function, and
find the derivative, at all points (𝑥, 𝑦).

Exercise 8.3.5: Define a function 𝑓 : ℝ2 → ℝ by (see  Figure 8.8 )

𝑓 (𝑥, 𝑦) B
{ 𝑥𝑦
𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

a) Show that the partial derivatives 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 exist at all points (including the origin).

b) Show that 𝑓 is not continuous at the origin (and hence not differentiable).
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Figure 8.8: Graph of 𝑥𝑦
𝑥2+𝑦2 .

Exercise 8.3.6: Define a function 𝑓 : ℝ2 → ℝ by (see  Figure 8.9 )

𝑓 (𝑥, 𝑦) B
{

𝑥2𝑦
𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

a) Show that the partial derivatives 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 exist at all points.

b) Show that for all 𝑢 ∈ ℝ2 with ∥𝑢∥ = 1, the directional derivative 𝐷𝑢 𝑓 exists at all points.

c) Show that 𝑓 is continuous at the origin.

d) Show that 𝑓 is not differentiable at the origin.
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I

Figure 8.9: Graph of 𝑥2𝑦
𝑥2+𝑦2 .
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Exercise 8.3.7: Suppose 𝑓 : ℝ𝑛 → ℝ𝑛 is one-to-one, onto, differentiable at all points, and such that 𝑓 −1 is
also differentiable at all points.

a) Show that 𝑓 ′(𝑝) is invertible at all points 𝑝 and compute ( 𝑓 −1)′ ( 𝑓 (𝑝)) . Hint: Consider 𝑥 = 𝑓 −1 ( 𝑓 (𝑥)) .
b) Let 𝑔 : ℝ𝑛 → ℝ𝑛 be a function differentiable at 𝑞 ∈ ℝ𝑛 and such that 𝑔(𝑞) = 𝑞. Suppose 𝑓 (𝑝) = 𝑞 for

some 𝑝 ∈ ℝ𝑛 . Show 𝐽𝑔(𝑞) = 𝐽 𝑓 −1◦𝑔◦ 𝑓 (𝑝) where 𝐽𝑔 is the Jacobian determinant.

Exercise 8.3.8: Suppose 𝑓 : ℝ2 → ℝ is differentiable and such that 𝑓 (𝑥, 𝑦) = 0 if and only if 𝑦 = 0 and
such that ∇ 𝑓 (0, 0) = (0, 1). Prove that 𝑓 (𝑥, 𝑦) > 0 whenever 𝑦 > 0, and 𝑓 (𝑥, 𝑦) < 0 whenever 𝑦 < 0.

As for functions of one variable, 𝑓 : 𝑈 → ℝ has a relative maximum at 𝑝 ∈ 𝑈 if there exists a
𝛿 > 0 such that 𝑓 (𝑞) ≤ 𝑓 (𝑝) for all 𝑞 ∈ 𝐵(𝑝, 𝛿) ∩𝑈 . Similarly for relative minimum.

Exercise 8.3.9: Suppose𝑈 ⊂ ℝ𝑛 is open and 𝑓 : 𝑈 → ℝ is differentiable. Suppose 𝑓 has a relative maximum
at 𝑝 ∈ 𝑈 . Show that 𝑓 ′(𝑝) = 0, that is, the zero mapping in 𝐿(ℝ𝑛 ,ℝ). Namely, 𝑝 is a critical point of 𝑓 .

Exercise 8.3.10: Suppose 𝑓 : ℝ2 → ℝ is differentiable and 𝑓 (𝑥, 𝑦) = 0 whenever 𝑥2 + 𝑦2 = 1. Prove that
there exists at least one point (𝑥0 , 𝑦0) such that 𝜕 𝑓

𝜕𝑥 (𝑥0 , 𝑦0) = 𝜕 𝑓
𝜕𝑦 (𝑥0 , 𝑦0) = 0.

Exercise 8.3.11: Define 𝑓 (𝑥, 𝑦) B (𝑥 − 𝑦2)(2𝑦2 − 𝑥). The graph of 𝑓 is called the Peano surface. 

*
 

a) Show that (0, 0) is a critical point, that is 𝑓 ′(0, 0) = 0, that is the zero linear map in 𝐿(ℝ2 ,ℝ).
b) Show that for every direction the restriction of 𝑓 to a line through the origin in that direction has a

relative maximum at the origin. In other words, for every (𝑥, 𝑦) such that 𝑥2 + 𝑦2 = 1, the function
𝑔(𝑡) B 𝑓 (𝑡𝑥, 𝑡𝑦), has a relative maximum at 𝑡 = 0.
Hint: While not necessary §4.3 of volume I makes this part easier.

c) Show that 𝑓 does not have a relative maximum at (0, 0).
Exercise 8.3.12: Suppose 𝑓 : ℝ → ℝ𝑛 is differentiable and ∥ 𝑓 (𝑡)∥ = 1 for all 𝑡 (that is, we have a curve in
the unit sphere). Show that 𝑓 ′(𝑡) · 𝑓 (𝑡) = 0 (treating 𝑓 ′(𝑡) as a vector) for all 𝑡.

Exercise 8.3.13: Define 𝑓 : ℝ2 → ℝ2 by 𝑓 (𝑥, 𝑦) B (
𝑥, 𝑦 + 𝜑(𝑥)) for some differentiable function 𝜑 of one

variable. Show 𝑓 is differentiable and find 𝑓 ′.

Exercise 8.3.14: Suppose𝑈 ⊂ ℝ𝑛 is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 → ℝ, 𝑔 : 𝑈 → ℝ, ℎ : 𝑈 → ℝ are functions
such that 𝑓 (𝑝) = 𝑔(𝑝) = ℎ(𝑝), 𝑓 and ℎ are differentiable at 𝑝, 𝑓 ′(𝑝) = ℎ′(𝑝), and

𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ 𝑈

Show that 𝑔 is differentiable at 𝑝 and 𝑔′(𝑝) = 𝑓 ′(𝑝) = ℎ′(𝑝).
Exercise 8.3.15: Prove a version of mean value theorem for functions of several variables. That is, suppose
𝑈 ⊂ ℝ𝑛 is open, 𝑓 : 𝑈 → ℝ differentiable, 𝑝, 𝑞 ∈ 𝑈 , and the segment [𝑝, 𝑞] ∈ 𝑈 . Prove that there exists an
𝑥 ∈ [𝑝, 𝑞] such that ∇ 𝑓 (𝑥) · (𝑞 − 𝑝) = 𝑓 (𝑞) − 𝑓 (𝑝).

*Named after the Italian mathematician  Giuseppe Peano (1858–1932).

https://en.wikipedia.org/wiki/Giuseppe_Peano
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8.4 Continuity and the derivative
Note: 1–2 lectures

8.4.1 Bounding the derivative
Let us prove a “mean value theorem” for vector-valued functions.

Lemma 8.4.1. If 𝜑 : [𝑎, 𝑏] → ℝ𝑛 is differentiable on (𝑎, 𝑏) and continuous on [𝑎, 𝑏], then there
exists a 𝑡0 ∈ (𝑎, 𝑏) such that

∥𝜑(𝑏) − 𝜑(𝑎)∥ ≤ (𝑏 − 𝑎)∥𝜑′(𝑡0)∥.
Proof. By the mean value theorem on the scalar-valued function 𝑡 ↦→ (

𝜑(𝑏) − 𝜑(𝑎)) · 𝜑(𝑡),
where the dot is the dot product, we obtain a 𝑡0 ∈ (𝑎, 𝑏) such that

∥𝜑(𝑏) − 𝜑(𝑎)∥2 =
(
𝜑(𝑏) − 𝜑(𝑎)) · (𝜑(𝑏) − 𝜑(𝑎))

=
(
𝜑(𝑏) − 𝜑(𝑎)) · 𝜑(𝑏) − (

𝜑(𝑏) − 𝜑(𝑎)) · 𝜑(𝑎)
= (𝑏 − 𝑎)(𝜑(𝑏) − 𝜑(𝑎)) · 𝜑′(𝑡0),

where we treat 𝜑′ as a vector in ℝ𝑛 by the abuse of notation we mentioned in the previous
section. If we think of 𝜑′(𝑡) as a vector, then by  Exercise 8.2.6 , ∥𝜑′(𝑡)∥𝐿(ℝ,ℝ𝑛) = ∥𝜑′(𝑡)∥ℝ𝑛 .
That is, the euclidean norm of the vector is the same as the operator norm of 𝜑′(𝑡).

By the Cauchy–Schwarz inequality

∥𝜑(𝑏) − 𝜑(𝑎)∥2 = (𝑏 − 𝑎)(𝜑(𝑏) − 𝜑(𝑎)) · 𝜑′(𝑡0) ≤ (𝑏 − 𝑎)∥𝜑(𝑏) − 𝜑(𝑎)∥ ∥𝜑′(𝑡0)∥. □

Recall that a set𝑈 is convex if whenever 𝑝, 𝑞 ∈ 𝑈 , the line segment from 𝑝 to 𝑞 lies in𝑈 .

Proposition 8.4.2. Let 𝑈 ⊂ ℝ𝑛 be a convex open set, 𝑓 : 𝑈 → ℝ𝑚 be a differentiable function,
and an 𝑀 be such that

∥ 𝑓 ′(𝑝)∥ ≤ 𝑀 for all 𝑝 ∈ 𝑈.
Then 𝑓 is Lipschitz with constant 𝑀, that is,

∥ 𝑓 (𝑝) − 𝑓 (𝑞)∥ ≤ 𝑀∥𝑝 − 𝑞∥ for all 𝑝, 𝑞 ∈ 𝑈.
Proof. Fix 𝑝 and 𝑞 in𝑈 and note that (1 − 𝑡)𝑝 + 𝑡𝑞 ∈ 𝑈 for all 𝑡 ∈ [0, 1] by convexity. Next

𝑑
𝑑𝑡

[
𝑓
((1 − 𝑡)𝑝 + 𝑡𝑞) ] = 𝑓 ′

((1 − 𝑡)𝑝 + 𝑡𝑞)(𝑞 − 𝑝).
By  Lemma 8.4.1 , there is some 𝑡0 ∈ (0, 1) such that

∥ 𝑓 (𝑝) − 𝑓 (𝑞)∥ ≤
 𝑑𝑑𝑡 ���𝑡=𝑡0 [ 𝑓 ((1 − 𝑡)𝑝 + 𝑡𝑞) ]

≤  𝑓 ′ ((1 − 𝑡0)𝑝 + 𝑡0𝑞
) ∥𝑞 − 𝑝∥ ≤ 𝑀∥𝑞 − 𝑝∥. □
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Example 8.4.3: If𝑈 is not convex the proposition is not true: Consider the set

𝑈 B
{(𝑥, 𝑦) : 0.5 < 𝑥2 + 𝑦2 < 2

} \ {(𝑥, 0) : 𝑥 < 0
}
.

For (𝑥, 𝑦) ∈ 𝑈 , let 𝑓 (𝑥, 𝑦) be the angle that the line from the origin to (𝑥, 𝑦) makes with the
positive 𝑥 axis. We even have a formula for 𝑓 :

𝑓 (𝑥, 𝑦) = 2 arctan

(
𝑦

𝑥 +√
𝑥2 + 𝑦2

)
.

Think a spiral staircase with room in the middle. See  Figure 8.10 .

(𝑥, 𝑦)

𝜃 = 𝑓 (𝑥, 𝑦)

G

H

I

Figure 8.10: A non-Lipschitz function with uniformly bounded derivative.

The function is differentiable, and the derivative is bounded on𝑈 , which is not hard
to see. Now think of what happens near where the negative 𝑥-axis cuts the annulus
in half. As we approach this cut from positive 𝑦, 𝑓 (𝑥, 𝑦) approaches 𝜋. From negative
𝑦, 𝑓 (𝑥, 𝑦) approaches −𝜋. So for small 𝜖 > 0, | 𝑓 (−1, 𝜖) − 𝑓 (−1,−𝜖)| approaches 2𝜋, but
∥(−1, 𝜖) − (−1,−𝜖)∥ = 2𝜖, which is arbitrarily small. The conclusion of the proposition
does not hold for this nonconvex𝑈 .

Let us solve the differential equation 𝑓 ′ = 0.
Corollary 8.4.4. If 𝑈 ⊂ ℝ𝑛 is open and connected, 𝑓 : 𝑈 → ℝ𝑚 is differentiable, and 𝑓 ′(𝑥) = 0
for all 𝑥 ∈ 𝑈 , then 𝑓 is constant.

Proof. For any given 𝑥 ∈ 𝑈 , there is a ball 𝐵(𝑥, 𝛿) ⊂ 𝑈 . The ball 𝐵(𝑥, 𝛿) is convex. Since
∥ 𝑓 ′(𝑦)∥ ≤ 0 for all 𝑦 ∈ 𝐵(𝑥, 𝛿), then by the proposition, ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ 0∥𝑥 − 𝑦∥ = 0. So
𝑓 (𝑥) = 𝑓 (𝑦) for all 𝑦 ∈ 𝐵(𝑥, 𝛿). Therefore, 𝑓 −1(𝑐) is open for all 𝑐 ∈ ℝ𝑚 .

Suppose 𝑐0 ∈ ℝ𝑚 is such that 𝑓 −1(𝑐0) ≠ ∅. As 𝑓 is also continuous, the two sets

𝑈′ = 𝑓 −1(𝑐0), 𝑈′′ = 𝑓 −1 (ℝ𝑚 \ {𝑐0}
)

are open and disjoint, and further𝑈 = 𝑈′ ∪𝑈′′. As𝑈′ is nonempty and𝑈 is connected,
then𝑈′′ = ∅. So 𝑓 (𝑥) = 𝑐0 for all 𝑥 ∈ 𝑈 . □
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8.4.2 Continuously differentiable functions
Definition 8.4.5. Let𝑈 ⊂ ℝ𝑛 be open. We say 𝑓 : 𝑈 → ℝ𝑚 is continuously differentiable, or
𝐶1(𝑈), if 𝑓 is differentiable and 𝑓 ′ : 𝑈 → 𝐿(ℝ𝑛 ,ℝ𝑚) is continuous.

Proposition 8.4.6. Let 𝑈 ⊂ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ𝑚 . The function 𝑓 is continuously
differentiable if and only if the partial derivatives 𝜕 𝑓𝑘

𝜕𝑥 𝑗
exist for all 𝑘 and 𝑗 and are continuous.

Without continuity the theorem does not hold. Just because partial derivatives exist
does not mean that 𝑓 is differentiable, in fact, 𝑓 may not even be continuous. See the
exercises for the last section and also for this section.

Proof. We proved that if 𝑓 is differentiable, then the partial derivatives exist. The par-
tial derivatives are the entries of the matrix representing 𝑓 ′(𝑥). If 𝑓 ′ : 𝑈 → 𝐿(ℝ𝑛 ,ℝ𝑚)
is continuous, then the entries are continuous, and hence the partial derivatives are
continuous.

To prove the opposite direction, suppose the partial derivatives exist and are continuous.
Fix 𝑥 ∈ 𝑈 . If we show that 𝑓 ′(𝑥) exists we are done, because the entries of the matrix
representing 𝑓 ′(𝑥) are the partial derivatives and if the entries are continuous functions,
the matrix-valued function 𝑓 ′ is continuous.

We do induction on dimension. First, the conclusion is true when 𝑛 = 1 (exercise, note
that 𝑓 is vector-valued). In this case, 𝑓 ′(𝑥) is essentially the derivative of chapter 4. Suppose
the conclusion is true for ℝ𝑛−1. That is, if we restrict to the first 𝑛 − 1 variables, the function
is differentiable. When taking the partial derivatives in 𝑥1 through 𝑥𝑛−1, it does not matter
if we consider 𝑓 or 𝑓 restricted to the set where 𝑥𝑛 is fixed. In the following, by a slight
abuse of notation, we think of ℝ𝑛−1 as a subset of ℝ𝑛 , that is, the set in ℝ𝑛 where 𝑥𝑛 = 0. In
other words, we identify the vectors (𝑥1, 𝑥2, . . . , 𝑥𝑛−1) and (𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 0).

Fix 𝑝 ∈ 𝑈 and let

𝐴 B


𝜕 𝑓1
𝜕𝑥1

(𝑝) . . . 𝜕 𝑓1
𝜕𝑥𝑛

(𝑝)
... . . . ...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑝) . . . 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑝)

 , 𝐴′ B


𝜕 𝑓1
𝜕𝑥1

(𝑝) . . . 𝜕 𝑓1
𝜕𝑥𝑛−1

(𝑝)
... . . . ...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑝) . . . 𝜕 𝑓𝑚
𝜕𝑥𝑛−1

(𝑝)

 , 𝑣 B


𝜕 𝑓1
𝜕𝑥𝑛

(𝑝)
...

𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑝)

 .
Let 𝜖 > 0 be given. By the induction hypothesis, there is a 𝛿 > 0 such that for every
ℎ′ ∈ ℝ𝑛−1 with ∥ℎ′∥ < 𝛿, we have

∥ 𝑓 (𝑝 + ℎ′) − 𝑓 (𝑝) − 𝐴′ℎ′∥
∥ℎ′∥ < 𝜖.

By continuity of the partial derivatives, suppose 𝛿 is small enough so that���� 𝜕 𝑓𝑘𝜕𝑥𝑛
(𝑝 + ℎ) − 𝜕 𝑓𝑘

𝜕𝑥𝑛
(𝑝)

���� < 𝜖

for all 𝑘 and all ℎ ∈ ℝ𝑛 with ∥ℎ∥ < 𝛿.
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Suppose ℎ = ℎ′ + 𝑡𝑒𝑛 is a vector in ℝ𝑛 , where ℎ′ ∈ ℝ𝑛−1, 𝑡 ∈ ℝ, such that ∥ℎ∥ < 𝛿. Then
∥ℎ′∥ ≤ ∥ℎ∥ < 𝛿. Note that 𝐴ℎ = 𝐴′ℎ′ + 𝑡𝑣.

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥ = ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣 + 𝑓 (𝑝 + ℎ′) − 𝑓 (𝑝) − 𝐴′ℎ′∥
≤ ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣∥ + ∥ 𝑓 (𝑝 + ℎ′) − 𝑓 (𝑝) − 𝐴′ℎ′∥
≤ ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣∥ + 𝜖∥ℎ′∥.

As all the partial derivatives exist, by the mean value theorem, for each 𝑘 there is some
𝜃𝑘 ∈ [0, 𝑡] (or [𝑡 , 0] if 𝑡 < 0), such that

𝑓𝑘(𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓𝑘(𝑝 + ℎ′) = 𝑡 𝜕 𝑓𝑘
𝜕𝑥𝑛

(𝑝 + ℎ′ + 𝜃𝑘𝑒𝑛).

We have ∥ℎ′ + 𝜃𝑘𝑒𝑛 ∥ ≤ ∥ℎ∥ < 𝛿, and so we can finish the estimate

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥ ≤ ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣∥ + 𝜖∥ℎ′∥

≤
√√

𝑚∑
𝑘=1

(
𝑡
𝜕 𝑓𝑘
𝜕𝑥𝑛

(𝑝 + ℎ′ + 𝜃𝑘𝑒𝑛) − 𝑡 𝜕 𝑓𝑘
𝜕𝑥𝑛

(𝑝)
)2

+ 𝜖∥ℎ′∥

≤ √
𝑚 𝜖 |𝑡 | + 𝜖∥ℎ′∥

≤ (√𝑚 + 1)𝜖∥ℎ∥. □

A common application is to prove that a certain function is differentiable. For example,
we can show that all polynomials are differentiable, and in fact continuously differentiable,
by computing the partial derivatives.
Corollary 8.4.7. A polynomial 𝑝 : ℝ𝑛 → ℝ in several variables

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑

0≤ 𝑗1+𝑗2+···+𝑗𝑛≤𝑑
𝑐 𝑗1 , 𝑗2 ,..., 𝑗𝑛 𝑥

𝑗1
1 𝑥

𝑗2
2 · · · 𝑥 𝑗𝑛𝑛

is continuously differentiable.

Proof. Consider the partial derivative of 𝑝 in the 𝑥𝑛 variable. Write 𝑝 as

𝑝(𝑥) =
𝑑∑
𝑗=0

𝑝 𝑗(𝑥1, . . . , 𝑥𝑛−1) 𝑥 𝑗𝑛 ,

where 𝑝 𝑗 are polynomials in one less variable. Then

𝜕𝑝
𝜕𝑥𝑛

(𝑥) =
𝑑∑
𝑗=1

𝑝 𝑗(𝑥1, . . . , 𝑥𝑛−1) 𝑗𝑥 𝑗−1
𝑛 ,

which is again a polynomial. So the partial derivatives of polynomials exist and are
again polynomials. By the continuity of algebraic operations, polynomials are continuous
functions. Therefore 𝑝 is continuously differentiable. □
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8.4.3 Exercises
Exercise 8.4.1: Define 𝑓 : ℝ2 → ℝ as

𝑓 (𝑥, 𝑦) B
{
(𝑥2 + 𝑦2) sin

((𝑥2 + 𝑦2)−1) if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

Show that 𝑓 is differentiable at the origin, but that it is not continuously differentiable.
Note: Feel free to use what you know about sine and cosine from calculus.

Exercise 8.4.2: Let 𝑓 : ℝ2 → ℝ be the function from  Exercise 8.3.5 , that is,

𝑓 (𝑥, 𝑦) B
{ 𝑥𝑦
𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

Compute the partial derivatives 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 at all points and show that these are not continuous functions.

Exercise 8.4.3: Let 𝐵(0, 1) ⊂ ℝ2 be the unit ball, that is, the set given by 𝑥2 + 𝑦2 < 1. Suppose
𝑓 : 𝐵(0, 1) → ℝ is a differentiable function such that | 𝑓 (0, 0)| ≤ 1, and

�� 𝜕 𝑓
𝜕𝑥

�� ≤ 1 and
�� 𝜕 𝑓
𝜕𝑦

�� ≤ 1 for all points
in 𝐵(0, 1).
a) Find an 𝑀 ∈ ℝ such that ∥ 𝑓 ′(𝑥, 𝑦)∥ ≤ 𝑀 for all (𝑥, 𝑦) ∈ 𝐵(0, 1).
b) Find a 𝐵 ∈ ℝ such that | 𝑓 (𝑥, 𝑦)| ≤ 𝐵 for all (𝑥, 𝑦) ∈ 𝐵(0, 1).

Exercise 8.4.4: Define 𝜑 : [0, 2𝜋] → ℝ2 by 𝜑(𝑡) = (
sin(𝑡), cos(𝑡)) . Compute 𝜑′(𝑡) for all 𝑡. Compute

∥𝜑′(𝑡)∥ for all 𝑡. Notice that 𝜑′(𝑡) is never zero, yet 𝜑(0) = 𝜑(2𝜋), therefore, Rolle’s theorem is not true in
more than one dimension.

Exercise 8.4.5: Let 𝑓 : ℝ2 → ℝ be a function such that 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 exist at all points and there exists an

𝑀 ∈ ℝ such that
�� 𝜕 𝑓
𝜕𝑥

�� ≤ 𝑀 and
�� 𝜕 𝑓
𝜕𝑦

�� ≤ 𝑀 at all points. Show that 𝑓 is continuous.

Exercise 8.4.6: Let 𝑓 : ℝ2 → ℝ be a function and 𝑀 ∈ ℝ, such that for every (𝑥, 𝑦) ∈ ℝ2, the function
𝑔(𝑡) B 𝑓 (𝑥𝑡, 𝑦𝑡) is differentiable and |𝑔′(𝑡)| ≤ 𝑀 for all 𝑡.

a) Show that 𝑓 is continuous at (0, 0).
b) Find an example of such an 𝑓 that is discontinuous at every other point of ℝ2.

Hint: Think back to how we constructed a nowhere continuous function on [0, 1].
Exercise 8.4.7: Suppose 𝑟 : ℝ𝑛 \ 𝑋 → ℝ is a rational function, that is, 𝑝 : ℝ𝑛 → ℝ and 𝑞 : ℝ𝑛 → ℝ are
polynomials, 𝑞 is not identically zero, 𝑋 = 𝑞−1(0), and 𝑟 = 𝑝

𝑞 . Show that 𝑟 is continuously differentiable.

Exercise 8.4.8: Suppose 𝑓 : ℝ𝑛 → ℝ and ℎ : ℝ𝑛 → ℝ are two differentiable functions such that 𝑓 ′(𝑥) =
ℎ′(𝑥) for all 𝑥 ∈ ℝ𝑛 . Prove that if 𝑓 (0) = ℎ(0), then 𝑓 (𝑥) = ℎ(𝑥) for all 𝑥 ∈ ℝ𝑛 .

Exercise 8.4.9: Prove the base case in  Proposition 8.4.6 . That is, prove that if 𝑛 = 1 and “the partials exist
and are continuous,” then the function is continuously differentiable. Note that 𝑓 is vector-valued.

Exercise 8.4.10: Suppose that 𝑈 ⊂ ℝ𝑛 is open, 𝑓 : 𝑈 → ℝ𝑚 is differentiable, there is an 𝑀 such that
∥ 𝑓 ′(𝑝)∥ ≤ 𝑀 for all 𝑝 ∈ 𝑈 , and 𝐾 ⊂ 𝑈 is a compact set. Prove that there exists an 𝑀′ (where 𝑀′ ≥ 𝑀),
such that for all 𝑝, 𝑞 ∈ 𝐾 we have ∥ 𝑓 (𝑝) − 𝑓 (𝑞)∥ ≤ 𝑀′∥𝑝 − 𝑞∥. Compare to  Proposition 8.4.2 .
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8.5 Inverse and implicit function theorems
Note: 2–3 lectures

Intuitively, if a function is continuously differentiable, then it locally “behaves like” the
derivative (which is a linear function). The idea of the inverse function theorem is that if
a function is continuously differentiable and the derivative is invertible, the function is
(locally) invertible.

Theorem 8.5.1 (Inverse function theorem). Let𝑈 ⊂ ℝ𝑛 be an open set and let 𝑓 : 𝑈 → ℝ𝑛 be
a continuously differentiable function. Suppose 𝑝 ∈ 𝑈 and 𝑓 ′(𝑝) is invertible (that is, 𝐽 𝑓 (𝑝) ≠ 0).
Then there exist open sets 𝑉,𝑊 ⊂ ℝ𝑛 such that 𝑝 ∈ 𝑉 ⊂ 𝑈 , 𝑓 (𝑉) = 𝑊 , and 𝑓 |𝑉 is one-to-one.
Hence a function 𝑔 : 𝑊 → 𝑉 exists such that 𝑔(𝑦) B ( 𝑓 |𝑉)−1(𝑦). Furthermore, 𝑔 is continuously
differentiable and

𝑔′(𝑦) = (
𝑓 ′(𝑥))−1, for all 𝑥 ∈ 𝑉, 𝑦 = 𝑓 (𝑥).

See  Figure 8.11 .

𝑈

𝑓

𝑔𝑝
𝑊 = 𝑓 (𝑉)

𝑦𝑥

𝑓 (𝑝)
𝑉

𝑓

𝑔

Figure 8.11: Setup of the inverse function theorem in ℝ𝑛 .

To prove the theorem, we use the contraction mapping principle from chapter 7, where
we used it to prove Picard’s theorem. Recall that a mapping 𝑓 : 𝑋 → 𝑌 between metric
spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) is a contraction if there exists a 𝑘 < 1 such that

𝑑𝑌
(
𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝑘 𝑑𝑋(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ 𝑋.

The contraction mapping principle says that if 𝑓 : 𝑋 → 𝑋 is a contraction and 𝑋 is a
complete metric space, then there exists a unique fixed point, that is, there exists a unique
𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑥.

Proof. Write 𝐴 = 𝑓 ′(𝑝). As 𝑓 ′ is continuous, there is an open ball 𝑉 centered at 𝑝 such that

∥𝐴 − 𝑓 ′(𝑥)∥ <
1

2∥𝐴−1∥ for all 𝑥 ∈ 𝑉.

Consequently, the derivative 𝑓 ′(𝑥) is invertible for all 𝑥 ∈ 𝑉 by  Proposition 8.2.6 .
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Given 𝑦 ∈ ℝ𝑛 , define 𝜑𝑦 : 𝑉 → ℝ𝑛 by

𝜑𝑦(𝑥) B 𝑥 + 𝐴−1 (𝑦 − 𝑓 (𝑥)) .
As 𝐴−1 is one-to-one, 𝜑𝑦(𝑥) = 𝑥 (𝑥 is a fixed point) if only if 𝑦 − 𝑓 (𝑥) = 0, or in other words
𝑓 (𝑥) = 𝑦. Using the chain rule we obtain

𝜑′
𝑦(𝑥) = 𝐼 − 𝐴−1 𝑓 ′(𝑥) = 𝐴−1 (𝐴 − 𝑓 ′(𝑥)) .

So for 𝑥 ∈ 𝑉 , we have
∥𝜑′

𝑦(𝑥)∥ ≤ ∥𝐴−1∥ ∥𝐴 − 𝑓 ′(𝑥)∥ < 1/2.

As 𝑉 is a ball, it is convex. Hence

∥𝜑𝑦(𝑥1) − 𝜑𝑦(𝑥2)∥ ≤ 1
2 ∥𝑥1 − 𝑥2∥ for all 𝑥1, 𝑥2 ∈ 𝑉.

In other words, 𝜑𝑦 is a contraction defined on 𝑉 , though we so far do not know what
is the range of 𝜑𝑦 . We cannot yet apply the fixed point theorem, but we can say that
𝜑𝑦 has at most one fixed point in 𝑉 : If 𝜑𝑦(𝑥1) = 𝑥1 and 𝜑𝑦(𝑥2) = 𝑥2, then ∥𝑥1 − 𝑥2∥ =
∥𝜑𝑦(𝑥1) − 𝜑𝑦(𝑥2)∥ ≤ 1

2 ∥𝑥1 − 𝑥2∥, so 𝑥1 = 𝑥2. That is, there exists at most one 𝑥 ∈ 𝑉 such
that 𝑓 (𝑥) = 𝑦, and so 𝑓 |𝑉 is one-to-one.

Let 𝑊 B 𝑓 (𝑉) and let 𝑔 : 𝑊 → 𝑉 be the inverse of 𝑓 |𝑉 . We need to show that 𝑊 is
open. Take a 𝑦0 ∈ 𝑊 . There is a unique 𝑥0 ∈ 𝑉 such that 𝑓 (𝑥0) = 𝑦0. Let 𝑟 > 0 be small
enough such that the closed ball 𝐶(𝑥0, 𝑟) ⊂ 𝑉 (such 𝑟 > 0 exists as 𝑉 is open).

Suppose 𝑦 is such that
∥𝑦 − 𝑦0∥ <

𝑟
2∥𝐴−1∥ .

If we show that 𝑦 ∈𝑊 , then we have shown that𝑊 is open. If 𝑥1 ∈ 𝐶(𝑥0, 𝑟), then

∥𝜑𝑦(𝑥1) − 𝑥0∥ ≤ ∥𝜑𝑦(𝑥1) − 𝜑𝑦(𝑥0)∥ + ∥𝜑𝑦(𝑥0) − 𝑥0∥
≤ 1

2 ∥𝑥1 − 𝑥0∥ + ∥𝐴−1(𝑦 − 𝑦0)∥

≤ 1
2 𝑟 + ∥𝐴−1∥ ∥𝑦 − 𝑦0∥

<
1
2 𝑟 + ∥𝐴−1∥ 𝑟

2∥𝐴−1∥ = 𝑟.

So 𝜑𝑦 takes 𝐶(𝑥0, 𝑟) into 𝐵(𝑥0, 𝑟) ⊂ 𝐶(𝑥0, 𝑟). It is a contraction on 𝐶(𝑥0, 𝑟) and 𝐶(𝑥0, 𝑟) is
complete (closed subset of ℝ𝑛 is complete). Apply the contraction mapping principle to
obtain a fixed point 𝑥, i.e. 𝜑𝑦(𝑥) = 𝑥. That is, 𝑓 (𝑥) = 𝑦, and 𝑦 ∈ 𝑓

(
𝐶(𝑥0, 𝑟)

) ⊂ 𝑓 (𝑉) = 𝑊 .
Therefore,𝑊 is open.

Next we need to show that 𝑔 is continuously differentiable and compute its derivative.
First, let us show that it is differentiable. Let 𝑦 ∈𝑊 and 𝑘 ∈ ℝ𝑛 , 𝑘 ≠ 0, such that 𝑦 + 𝑘 ∈𝑊 .
Because 𝑓 |𝑉 is a one-to-one and onto mapping of 𝑉 onto𝑊 , there are unique 𝑥 ∈ 𝑉 and
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𝑉 𝑊

𝑥

𝑥 + ℎ 𝑦 + 𝑘

𝑦
𝑔

𝑔

𝑓

𝑓

Figure 8.12: Proving that 𝑔 is differentiable.

ℎ ∈ ℝ𝑛 , ℎ ≠ 0 and 𝑥 + ℎ ∈ 𝑉 , such that 𝑓 (𝑥) = 𝑦 and 𝑓 (𝑥 + ℎ) = 𝑦 + 𝑘. In other words,
𝑔(𝑦) = 𝑥 and 𝑔(𝑦 + 𝑘) = 𝑥 + ℎ. See  Figure 8.12 .

We can still squeeze some information from the fact that 𝜑𝑦 is a contraction.

𝜑𝑦(𝑥 + ℎ) − 𝜑𝑦(𝑥) = ℎ + 𝐴−1 ( 𝑓 (𝑥) − 𝑓 (𝑥 + ℎ)) = ℎ − 𝐴−1𝑘.

So
∥ℎ − 𝐴−1𝑘∥ = ∥𝜑𝑦(𝑥 + ℎ) − 𝜑𝑦(𝑥)∥ ≤ 1

2 ∥𝑥 + ℎ − 𝑥∥ =
∥ℎ∥
2 .

By the inverse triangle inequality, ∥ℎ∥ − ∥𝐴−1𝑘∥ ≤ 1
2 ∥ℎ∥. So

∥ℎ∥ ≤ 2∥𝐴−1𝑘∥ ≤ 2∥𝐴−1∥ ∥𝑘∥.
In particular, as 𝑘 goes to 0, so does ℎ.

As 𝑥 ∈ 𝑉 , then 𝑓 ′(𝑥) is invertible. Let 𝐵 B
(
𝑓 ′(𝑥))−1, which is what we think the

derivative of 𝑔 at 𝑦 is. Then
∥𝑔(𝑦 + 𝑘) − 𝑔(𝑦) − 𝐵𝑘∥

∥𝑘∥ =
∥ℎ − 𝐵𝑘∥

∥𝑘∥
=

∥ℎ − 𝐵 (
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)) ∥

∥𝑘∥
=

∥𝐵 (
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝑓 ′(𝑥)ℎ) ∥

∥𝑘∥
≤ ∥𝐵∥ ∥ℎ∥∥𝑘∥

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝑓 ′(𝑥)ℎ∥
∥ℎ∥

≤ 2∥𝐵∥ ∥𝐴−1∥ ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝑓 ′(𝑥)ℎ∥
∥ℎ∥ .

As 𝑘 goes to 0, so does ℎ. So the right-hand side goes to 0 as 𝑓 is differentiable, and hence
the left-hand side also goes to 0. And 𝐵 is precisely what we wanted 𝑔′(𝑦) to be.

We have 𝑔 is differentiable, let us show it is 𝐶1(𝑊). The function 𝑔 : 𝑊 → 𝑉 is
continuous (it is differentiable), 𝑓 ′ is a continuous function from 𝑉 to 𝐿(ℝ𝑛), and 𝑋 ↦→ 𝑋−1

is a continuous function on the set of invertible operators. As 𝑔′(𝑦) = (
𝑓 ′

(
𝑔(𝑦)) )−1 is the

composition of these three continuous functions, it is continuous. □
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Corollary 8.5.2. Suppose 𝑈 ⊂ ℝ𝑛 is open and 𝑓 : 𝑈 → ℝ𝑛 is a continuously differentiable
mapping such that 𝑓 ′(𝑥) is invertible for all 𝑥 ∈ 𝑈 . Then for every open set 𝑉 ⊂ 𝑈 , the set 𝑓 (𝑉)
is open ( 𝑓 is said to be an open mapping).

Proof. Without loss of generality, suppose 𝑈 = 𝑉 . For each 𝑦 ∈ 𝑓 (𝑉), pick 𝑥 ∈ 𝑓 −1(𝑦)
(there could be more than one such point), then by the inverse function theorem there is a
neighborhood of 𝑥 in 𝑉 that maps onto a neighborhood of 𝑦. Hence 𝑓 (𝑉) is open. □

Example 8.5.3: The theorem, and the corollary, is not true if 𝑓 ′(𝑥) is not invertible for
some 𝑥. For example, the map 𝑓 (𝑥, 𝑦) B (𝑥, 𝑥𝑦), maps ℝ2 onto the set ℝ2 \ {(0, 𝑦) : 𝑦 ≠ 0

}
,

which is neither open nor closed. In fact, 𝑓 −1(0, 0) = {(0, 𝑦) : 𝑦 ∈ ℝ
}
. This bad behavior

only occurs on the 𝑦-axis, everywhere else the function is locally invertible. If we avoid the
𝑦-axis, 𝑓 is even one-to-one.

Example 8.5.4: Just because 𝑓 ′(𝑥) is invertible everywhere does not mean that 𝑓 is one-to-
one. It is “locally” one-to-one, but perhaps not “globally.” Consider 𝑓 : ℝ2 \ {(0, 0)} →
ℝ2\ {(0, 0)} defined by 𝑓 (𝑥, 𝑦) B (𝑥2−𝑦2, 2𝑥𝑦). It is left to the reader to verify the following
statements. The map 𝑓 is differentiable and the derivative is invertible. On the other hand,
𝑓 is 2-to-1 globally: For every (𝑎, 𝑏) that is not the origin, there are exactly two solutions to
𝑥2 − 𝑦2 = 𝑎 and 2𝑥𝑦 = 𝑏 ( 𝑓 is also onto). Notice that once you show that there is at least
one solution, replacing 𝑥 and 𝑦 with −𝑥 and −𝑦 we obtain another solution.

The invertibility of the derivative is not a necessary condition, just sufficient, for having
a continuous inverse and for being an open mapping. For example, the function 𝑓 (𝑥) B 𝑥3

is an open mapping from ℝ to ℝ and is globally one-to-one with a continuous inverse,
although the inverse is not differentiable at 𝑥 = 0.

As a side note, there is a related famous, and as yet unsolved, problem called the
Jacobian conjecture. If 𝐹 : ℝ𝑛 → ℝ𝑛 is polynomial (each component is a polynomial) and
𝐽𝐹 (the Jacobian determinant) is a nonzero constant, does 𝐹 have a polynomial inverse?
The inverse function theorem gives a local 𝐶1 inverse, but can one always find a global
polynomial inverse is the question.

8.5.1 Implicit function theorem
The inverse function theorem is a special case of the implicit function theorem, which we
prove next. Although somewhat ironically we prove the implicit function theorem using
the inverse function theorem. In the inverse function theorem we showed that the equation
𝑥 − 𝑓 (𝑦) = 0 is solvable for 𝑦 in terms of 𝑥 if the derivative with respect to 𝑦 is invertible,
that is, if 𝑓 ′(𝑦) is invertible. Then there is (locally) a function 𝑔 such that 𝑥 − 𝑓

(
𝑔(𝑥)) = 0.

In general, the equation 𝑓 (𝑥, 𝑦) = 0 is not solvable for 𝑦 in terms of 𝑥 in every case. For
instance, there is generally no solution when 𝑓 (𝑥, 𝑦) does not actually depend on 𝑦. For a
more interesting example, notice that 𝑥2 + 𝑦2 − 1 = 0 defines the unit circle, and we can
locally solve for 𝑦 in terms of 𝑥 when 1) we are near a point on the unit circle and 2) we are
not at a point where the circle has a vertical tangency, that is, where 𝜕 𝑓

𝜕𝑦 = 0.
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We fix some notation. Let (𝑥, 𝑦) ∈ ℝ𝑛+𝑚 denote the coordinates (𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑚).
We can then write a linear map𝐴 ∈ 𝐿(ℝ𝑛+𝑚 ,ℝ𝑚) as𝐴 = [𝐴𝑥 𝐴𝑦] so that𝐴(𝑥, 𝑦) = 𝐴𝑥𝑥+𝐴𝑦𝑦,
where 𝐴𝑥 ∈ 𝐿(ℝ𝑛 ,ℝ𝑚) and 𝐴𝑦 ∈ 𝐿(ℝ𝑚). First, the linear version of the theorem.

Proposition 8.5.5. Let 𝐴 = [𝐴𝑥 𝐴𝑦] ∈ 𝐿(ℝ𝑛+𝑚 ,ℝ𝑚) and suppose 𝐴𝑦 is invertible. If 𝐵 =
−(𝐴𝑦)−1𝐴𝑥 , then

0 = 𝐴(𝑥, 𝐵𝑥) = 𝐴𝑥𝑥 + 𝐴𝑦𝐵𝑥.
Furthermore, 𝑦 = 𝐵𝑥 is the unique 𝑦 ∈ ℝ𝑚 such that 𝐴(𝑥, 𝑦) = 0.

The proof is immediate: We solve and obtain 𝑦 = 𝐵𝑥. Another way to solve is to
“complete the basis,” that is, add rows to the matrix until we have an invertible matrix: The
operator in 𝐿(ℝ𝑛+𝑚) given by (𝑥, 𝑦) ↦→ (𝑥, 𝐴𝑥𝑥 + 𝐴𝑦𝑦) is invertible, and the map 𝐵 can be
read off from the inverse. Let us show that the same can be done for 𝐶1 functions.

Theorem 8.5.6 (Implicit function theorem). Let𝑈 ⊂ ℝ𝑛+𝑚 be an open set and let 𝑓 : 𝑈 → ℝ𝑚

be a 𝐶1(𝑈) mapping. Let (𝑝, 𝑞) ∈ 𝑈 be a point such that 𝑓 (𝑝, 𝑞) = 0 and such that

𝜕( 𝑓1, . . . , 𝑓𝑚)
𝜕(𝑦1, . . . , 𝑦𝑚)(𝑝, 𝑞) ≠ 0.

Then there exists an open set 𝑊 ⊂ ℝ𝑛 with 𝑝 ∈ 𝑊 , an open set 𝑊 ′ ⊂ ℝ𝑚 with 𝑞 ∈ 𝑊 ′, where
𝑊 ×𝑊 ′ ⊂ 𝑈 , and a 𝐶1(𝑊) map 𝑔 : 𝑊 →𝑊 ′, with 𝑔(𝑝) = 𝑞, and for all 𝑥 ∈ 𝑊 , the point 𝑔(𝑥)
is the unique point in𝑊 ′ such that

𝑓
(
𝑥, 𝑔(𝑥)) = 0.

Furthermore, if 𝐴 = [𝐴𝑥 𝐴𝑦] = 𝑓 ′(𝑝, 𝑞), then

𝑔′(𝑝) = −(𝐴𝑦)−1𝐴𝑥 .

The condition 𝜕( 𝑓1 ,..., 𝑓𝑚)
𝜕(𝑦1 ,...,𝑦𝑚)(𝑝, 𝑞) = det(𝐴𝑦) ≠ 0 simply means that 𝐴𝑦 is invertible. If

𝑛 = 𝑚 = 1, the condition is 𝜕 𝑓
𝜕𝑦 (𝑝, 𝑞) ≠ 0, and𝑊 and𝑊 ′ are open intervals. See  Figure 8.13 .

𝑓 (𝑥, 𝑦) = 0

𝑥

𝑦

𝑊

𝑊 ×𝑊 ′

(𝑝, 𝑞)
𝑊 ′

Figure 8.13: Implicit function theorem for 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 in𝑈 = ℝ2 and (𝑝, 𝑞) in the first
quadrant.
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Proof. Define 𝐹 : 𝑈 → ℝ𝑛+𝑚 by 𝐹(𝑥, 𝑦) B (
𝑥, 𝑓 (𝑥, 𝑦)) . It is clear that 𝐹 is 𝐶1, and we want

to show that its derivative at (𝑝, 𝑞) is invertible. Let us compute the derivative. The quotient

∥ 𝑓 (𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓 (𝑝, 𝑞) − 𝐴𝑥ℎ − 𝐴𝑦𝑘∥
∥(ℎ, 𝑘)∥

goes to zero as ∥(ℎ, 𝑘)∥ =
√
∥ℎ∥2 + ∥𝑘∥2 goes to zero. But then so does

∥𝐹(𝑝 + ℎ, 𝑞 + 𝑘) − 𝐹(𝑝, 𝑞) − (ℎ, 𝐴𝑥ℎ + 𝐴𝑦𝑘)∥
∥(ℎ, 𝑘)∥

=
∥ (ℎ, 𝑓 (𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓 (𝑝, 𝑞)) − (ℎ, 𝐴𝑥ℎ + 𝐴𝑦𝑘)∥

∥(ℎ, 𝑘)∥
=

∥ 𝑓 (𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓 (𝑝, 𝑞) − 𝐴𝑥ℎ − 𝐴𝑦𝑘∥
∥(ℎ, 𝑘)∥ .

So the derivative of 𝐹 at (𝑝, 𝑞) takes (ℎ, 𝑘) to (ℎ, 𝐴𝑥ℎ + 𝐴𝑦𝑘). In block matrix form, it is[
𝐼 0
𝐴𝑥 𝐴𝑦

]
. If (ℎ, 𝐴𝑥ℎ + 𝐴𝑦𝑘) = (0, 0), then ℎ = 0, and so 𝐴𝑦𝑘 = 0. As 𝐴𝑦 is one-to-one, 𝑘 = 0.

Thus 𝐹′(𝑝, 𝑞) is one-to-one, and hence invertible. We apply the inverse function theorem.
That is, there exists an open set 𝑉 ⊂ ℝ𝑛+𝑚 with 𝐹(𝑝, 𝑞) = (𝑝, 0) ∈ 𝑉 , and a 𝐶1 mapping

𝐺 : 𝑉 → ℝ𝑛+𝑚 , such that 𝐹
(
𝐺(𝑥, 𝑠)) = (𝑥, 𝑠) for all (𝑥, 𝑠) ∈ 𝑉 , 𝐺 is one-to-one, and 𝐺(𝑉) is

open. Write 𝐺 = (𝐺1, 𝐺2) (the first 𝑛 and the next 𝑚 components of 𝐺). Then

𝐹
(
𝐺1(𝑥, 𝑠), 𝐺2(𝑥, 𝑠)

)
=

(
𝐺1(𝑥, 𝑠), 𝑓

(
𝐺1(𝑥, 𝑠), 𝐺2(𝑥, 𝑠)

) )
= (𝑥, 𝑠).

So 𝑥 = 𝐺1(𝑥, 𝑠) and 𝑓
(
𝐺1(𝑥, 𝑠), 𝐺2(𝑥, 𝑠)

)
= 𝑓

(
𝑥, 𝐺2(𝑥, 𝑠)

)
= 𝑠. Plugging in 𝑠 = 0, we obtain

𝑓
(
𝑥, 𝐺2(𝑥, 0)

)
= 0.

As the set 𝐺(𝑉) is open and (𝑝, 𝑞) ∈ 𝐺(𝑉), there exist some open sets �̃� and𝑊 ′ such that
�̃� ×𝑊 ′ ⊂ 𝐺(𝑉) with 𝑝 ∈ �̃� and 𝑞 ∈𝑊 ′. Take𝑊 B

{
𝑥 ∈ �̃� : 𝐺2(𝑥, 0) ∈𝑊 ′}. The function

that takes 𝑥 to 𝐺2(𝑥, 0) is continuous and therefore 𝑊 is open. Define 𝑔 : 𝑊 → ℝ𝑚 by
𝑔(𝑥) B 𝐺2(𝑥, 0), which is the 𝑔 in the theorem. The fact that 𝑔(𝑥) is the unique point in𝑊 ′
follows because𝑊 ×𝑊 ′ ⊂ 𝐺(𝑉) and 𝐺 is one-to-one.

Next, differentiate
𝑥 ↦→ 𝑓

(
𝑥, 𝑔(𝑥))

at 𝑝, which is the zero map, so its derivative is zero. Using the chain rule,

0 = 𝐴
(
ℎ, 𝑔′(𝑝)ℎ) = 𝐴𝑥ℎ + 𝐴𝑦𝑔′(𝑝)ℎ

for all ℎ ∈ ℝ𝑛 , and we obtain the desired derivative for 𝑔. □
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In other words, in the context of the theorem, we have 𝑚 equations in 𝑛 +𝑚 unknowns:

𝑓1(𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑚) = 0,
𝑓2(𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑚) = 0,

...

𝑓𝑚(𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑚) = 0.

The theorem guarantees a solution if 𝑓 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑚) is a 𝐶1 map (the components are
𝐶1: partial derivatives in all variables exist and are continuous) and the matrix

𝜕 𝑓1
𝜕𝑦1

𝜕 𝑓1
𝜕𝑦2

. . . 𝜕 𝑓1
𝜕𝑦𝑚

𝜕 𝑓2
𝜕𝑦1

𝜕 𝑓2
𝜕𝑦2

. . . 𝜕 𝑓2
𝜕𝑦𝑚

...
... . . . ...

𝜕 𝑓𝑚
𝜕𝑦1

𝜕 𝑓𝑚
𝜕𝑦2

. . . 𝜕 𝑓𝑚
𝜕𝑦𝑚


is invertible at (𝑝, 𝑞).
Example 8.5.7: Consider the set given by 𝑥2 + 𝑦2 − (𝑧 + 1)3 = −1 and 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 = 3 near
the point (0, 0, 0). It is the zero set of the mapping

𝑓 (𝑥, 𝑦, 𝑧) = (
𝑥2 + 𝑦2 − (𝑧 + 1)3 + 1, 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 − 3

)
,

whose derivative is

𝑓 ′ =
[
2𝑥 2𝑦 −3(𝑧 + 1)2
𝑒𝑥 𝑒𝑦 𝑒𝑧

]
.

The matrix [
2(0) −3(0 + 1)2
𝑒0 𝑒0

]
=

[
0 −3
1 1

]
is invertible. Hence near (0, 0, 0), we can solve for 𝑦 and 𝑧 as 𝐶1 functions of 𝑥 such that for
𝑥 near 0,

𝑥2 + 𝑦(𝑥)2 − (
𝑧(𝑥) + 1

)3 = −1, 𝑒𝑥 + 𝑒𝑦(𝑥) + 𝑒𝑧(𝑥) = 3.

In other words, near the origin the set of solutions is a smooth curve in ℝ3 that goes
through the origin. The theorem does not tell us how to find 𝑦(𝑥) and 𝑧(𝑥) explicitly, it just
tells us they exist.

An interesting, and sometimes useful, observation from the proof is that we solved the
equation 𝑓

(
𝑥, 𝑔(𝑥)) = 𝑠 for all 𝑠 in some neighborhood of 0, not just 𝑠 = 0.

Remark 8.5.8. There are versions of the theorem for arbitrarily many derivatives: If 𝑓 has 𝑘
continuous derivatives (see the next section), then the solution has 𝑘 continuous derivatives
as well.
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8.5.2 Exercises
Exercise 8.5.1: Let 𝐶 B

{(𝑥, 𝑦) ∈ ℝ2 : 𝑥2 + 𝑦2 = 1
}
.

a) Solve for 𝑦 in terms of 𝑥 near (0, 1) (that is, find the function 𝑔 from the implicit function theorem for a
neighborhood of the point (𝑝, 𝑞) = (0, 1)).

b) Solve for 𝑦 in terms of 𝑥 near (0,−1).
c) Solve for 𝑥 in terms of 𝑦 near (−1, 0).

Exercise 8.5.2: Define 𝑓 : ℝ2 → ℝ2 by 𝑓 (𝑥, 𝑦) B (
𝑥, 𝑦 + ℎ(𝑥)) for some continuously differentiable

function ℎ of one variable.

a) Show that 𝑓 is one-to-one and onto.

b) Compute 𝑓 ′. (Make sure to argue why 𝑓 ′ exists.)

c) Show that 𝑓 ′ is invertible at all points, and compute its inverse.

Exercise 8.5.3: Define 𝑓 : ℝ2 → ℝ2 \ {(0, 0)} by 𝑓 (𝑥, 𝑦) B (
𝑒𝑥 cos(𝑦), 𝑒𝑥 sin(𝑦)) .

a) Show that 𝑓 is onto.

b) Show that 𝑓 ′ is invertible at all points.

c) Show that 𝑓 is not one-to-one, in fact for every (𝑎, 𝑏) ∈ ℝ2 \ {(0, 0)}, there exist infinitely many different
points (𝑥, 𝑦) ∈ ℝ2 such that 𝑓 (𝑥, 𝑦) = (𝑎, 𝑏).

Therefore, invertible derivative at every point does not mean that 𝑓 is invertible globally.
Note: Feel free to use what you know about sine and cosine from calculus.

Exercise 8.5.4: Find a map 𝑓 : ℝ𝑛 → ℝ𝑛 that is one-to-one, onto, continuously differentiable, but 𝑓 ′(0) = 0.
Hint: Generalize 𝑓 (𝑥) = 𝑥3 from one to 𝑛 dimensions.

Exercise 8.5.5: Consider 𝑧2 + 𝑥𝑧 + 𝑦 = 0 in ℝ3. Find an equation 𝐷(𝑥, 𝑦) = 0, such that if 𝐷(𝑥0 , 𝑦0) ≠ 0
and 𝑧2 + 𝑥0𝑧 + 𝑦0 = 0 for some 𝑧 ∈ ℝ, then for points near (𝑥0 , 𝑦0) there exist exactly two distinct
continuously differentiable functions 𝑟1(𝑥, 𝑦) and 𝑟2(𝑥, 𝑦) such that 𝑧 = 𝑟1(𝑥, 𝑦) and 𝑧 = 𝑟2(𝑥, 𝑦) solve
𝑧2 + 𝑥𝑧 + 𝑦 = 0. Do you recognize the expression 𝐷 from algebra?

Exercise 8.5.6: Suppose 𝑓 : (𝑎, 𝑏) → ℝ2 is continuously differentiable and the first component (the 𝑥
component) of ∇ 𝑓 (𝑡) is not equal to 0 for all 𝑡 ∈ (𝑎, 𝑏). Prove that there exists an open interval 𝐼 ⊂ ℝ and a
continuously differentiable function 𝑔 : 𝐼 → ℝ such that (𝑥, 𝑦) ∈ 𝑓

((𝑎, 𝑏)) if and only if 𝑥 ∈ 𝐼 and 𝑦 = 𝑔(𝑥).
In other words, the set 𝑓

((𝑎, 𝑏)) is a graph of 𝑔.

Exercise 8.5.7: Define 𝑓 : ℝ2 → ℝ2

𝑓 (𝑥, 𝑦) B
{(
𝑥2 sin(1/𝑥) + 𝑥/2, 𝑦

)
if 𝑥 ≠ 0,

(0, 𝑦) if 𝑥 = 0.

a) Show that 𝑓 is differentiable everywhere.

b) Show that 𝑓 ′(0, 0) is invertible.

c) Show that 𝑓 is not one-to-one in every neighborhood of the origin (it is not locally invertible, that is, the
inverse function theorem does not work).

d) Show that 𝑓 is not continuously differentiable.

Note: Feel free to use what you know about sine and cosine from calculus.
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Exercise 8.5.8 (Polar coordinates): Define a mapping 𝐹(𝑟, 𝜃) B (
𝑟 cos(𝜃), 𝑟 sin(𝜃)) .

a) Show that 𝐹 is continuously differentiable (for all (𝑟, 𝜃) ∈ ℝ2).

b) Compute 𝐹′(0, 𝜃) for all 𝜃.

c) Show that if 𝑟 ≠ 0, then 𝐹′(𝑟, 𝜃) is invertible, therefore an inverse of 𝐹 exists locally as long as 𝑟 ≠ 0.

d) Show that 𝐹 : ℝ2 → ℝ2 is onto, and for each point (𝑥, 𝑦) ∈ ℝ2, the set 𝐹−1(𝑥, 𝑦) is infinite.

e) Show that 𝐹 : ℝ2 → ℝ2 is not an open mapping. Note that 𝐹 |(0,∞)×ℝ is an open mapping via
 Corollary 8.5.2 . Hint: Where does a small open rectangle such as (−𝜖, 𝜖) × (−𝜖, 𝜖) go?

f) Show that 𝐹 |(0,∞)×[0,2𝜋) is one-to-one and onto ℝ2 \ {(0, 0)}.

Note: Feel free to use what you know about sine and cosine from calculus.

Exercise 8.5.9: Let 𝐻 B
{(𝑥, 𝑦) ∈ ℝ2 : 𝑦 > 0}, and for (𝑥, 𝑦) ∈ 𝐻 define

𝐹(𝑥, 𝑦) B
(

𝑥2 + 𝑦2 − 1
𝑥2 + 2𝑦 + 𝑦2 + 1

,
−2𝑥

𝑥2 + 2𝑦 + 𝑦2 + 1

)
.

Prove that 𝐹 is a bĳective mapping from 𝐻 to 𝐵(0, 1), it is continuously differentiable on 𝐻, and its inverse is
also continuously differentiable.

Exercise 8.5.10: Suppose𝑈 ⊂ ℝ2 is open and 𝑓 : 𝑈 → ℝ is a 𝐶1 function such that ∇ 𝑓 (𝑥, 𝑦) ≠ 0 for all
(𝑥, 𝑦) ∈ 𝑈 . Show that every level set is a 𝐶1 smooth curve. That is, for every (𝑥, 𝑦) ∈ 𝑈 , there exists a 𝐶1

function 𝛾 : (−𝛿, 𝛿) → ℝ2 with 𝛾 ′(0) ≠ 0 such that 𝑓
(
𝛾(𝑡)) is constant for all 𝑡 ∈ (−𝛿, 𝛿).

Exercise 8.5.11: Suppose𝑈 ⊂ ℝ2 is open and 𝑓 : 𝑈 → ℝ is a 𝐶1 function such that ∇ 𝑓 (𝑥, 𝑦) ≠ 0 for all
(𝑥, 𝑦) ∈ 𝑈 . Show that for every (𝑥, 𝑦) there exists a neighborhood𝑉 of (𝑥, 𝑦) an open set𝑊 ⊂ ℝ2, a bĳective
𝐶1 function with a 𝐶1 inverse 𝑔 : 𝑊 → 𝑉 such that the level sets of 𝑓 ◦ 𝑔 are horizontal lines in𝑊 , that is,
the set given by ( 𝑓 ◦ 𝑔)(𝑠, 𝑡) = 𝑐 for a constant 𝑐 is a set of the form

{(𝑠, 𝑡0) ∈ ℝ2 : 𝑠 ∈ ℝ, (𝑠, 𝑡0) ∈ 𝑊
}
,

where 𝑡0 is fixed. That is, the level curves can be locally “straightened.”
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8.6 Higher order derivatives
Note: less than 1 lecture, optional, see also the optional §4.3 of volume I

Let 𝑈 ⊂ ℝ𝑛 be an open set and 𝑓 : 𝑈 → ℝ a function. Denote our coordinates by
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 . Suppose 𝜕 𝑓

𝜕𝑥ℓ
exists everywhere in 𝑈 , then it is also a function

𝜕 𝑓
𝜕𝑥ℓ

: 𝑈 → ℝ. Therefore, it makes sense to talk about its partial derivatives. We denote the
partial derivative of 𝜕 𝑓

𝜕𝑥ℓ
with respect to 𝑥𝑚 by

𝜕2 𝑓
𝜕𝑥𝑚𝜕𝑥ℓ

B
𝜕
(
𝜕 𝑓
𝜕𝑥ℓ

)
𝜕𝑥𝑚

.

If 𝑚 = ℓ , then we write 𝜕2 𝑓
𝜕𝑥2

ℓ
for simplicity.

We define higher order derivatives inductively. Suppose ℓ1, ℓ2, . . . , ℓ𝑘 are integers
between 1 and 𝑛, and suppose

𝜕𝑘−1 𝑓
𝜕𝑥ℓ𝑘−1𝜕𝑥ℓ𝑘−2 · · · 𝜕𝑥ℓ1

exists and is differentiable in the variable 𝑥ℓ𝑘 , then the partial derivative with respect to
that variable is denoted by

𝜕𝑘 𝑓
𝜕𝑥ℓ𝑘𝜕𝑥ℓ𝑘−1 · · · 𝜕𝑥ℓ1

B
𝜕
(

𝜕𝑘−1 𝑓
𝜕𝑥ℓ𝑘−1𝜕𝑥ℓ𝑘−2 ···𝜕𝑥ℓ1

)
𝜕𝑥ℓ𝑘

.

Such a derivative is called a partial derivative of order 𝑘.
Sometimes the notation 𝑓𝑥ℓ 𝑥𝑚 is used for 𝜕2 𝑓

𝜕𝑥𝑚𝜕𝑥ℓ
. This notation swaps the order in which

we write the derivatives, which may be important.

Definition 8.6.1. Suppose𝑈 ⊂ ℝ𝑛 is an open set and 𝑓 : 𝑈 → ℝ is a function. We say 𝑓 is
𝑘-times continuously differentiable function, or a 𝐶𝑘 function, if all partial derivatives of all
orders up to and including order 𝑘 exist and are continuous.

So a continuously differentiable, or 𝐶1, function is one where all first order partial
derivatives exist and are continuous, which agrees with our previous definition due to

 Proposition 8.4.6 . We could have required only that the 𝑘th order partial derivatives exist
and are continuous, as the existence of lower order partial derivatives is clearly necessary
to even define 𝑘th order partial derivatives, and these lower order partial derivatives are
continuous as they are (continuously) differentiable functions.

When the partial derivatives are continuous, we can swap their order.

Proposition 8.6.2. Suppose 𝑈 ⊂ ℝ𝑛 is open and 𝑓 : 𝑈 → ℝ is a 𝐶2 function, and ℓ and 𝑚 are
two integers from 1 to 𝑛. Then

𝜕2 𝑓
𝜕𝑥𝑚𝜕𝑥ℓ

=
𝜕2 𝑓

𝜕𝑥ℓ𝜕𝑥𝑚
.
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Proof. Fix a 𝑝 ∈ 𝑈 , and let 𝑒ℓ and 𝑒𝑚 be the standard basis vectors. Pick two positive
numbers 𝑠 and 𝑡 small enough so that 𝑝 + 𝑠0𝑒ℓ + 𝑡0𝑒𝑚 ∈ 𝑈 whenever 0 < 𝑠0 ≤ 𝑠 and
0 < 𝑡0 ≤ 𝑡. This can be done as𝑈 is open and so contains a small open ball (or a box if you
wish) around 𝑝.

Use the mean value theorem on the function

𝜏 ↦→ 𝑓 (𝑝 + 𝑠𝑒ℓ + 𝜏𝑒𝑚) − 𝑓 (𝑥 + 𝜏𝑒𝑚),
on the interval [0, 𝑡] to find a 𝑡0 ∈ (0, 𝑡) such that

𝑓 (𝑝 + 𝑠𝑒ℓ + 𝑡𝑒𝑚) − 𝑓 (𝑝 + 𝑡𝑒𝑚) − 𝑓 (𝑝 + 𝑠𝑒ℓ ) + 𝑓 (𝑝)
𝑡

=
𝜕 𝑓
𝜕𝑥𝑚

(𝑝 + 𝑠𝑒ℓ + 𝑡0𝑒𝑚) − 𝜕 𝑓
𝜕𝑥𝑚

(𝑝 + 𝑡0𝑒𝑚).

Similarly, there exists a number 𝑠0 ∈ (0, 𝑠) such that
𝜕 𝑓
𝜕𝑥𝑚

(𝑝 + 𝑠𝑒ℓ + 𝑡0𝑒𝑚) − 𝜕 𝑓
𝜕𝑥𝑚

(𝑝 + 𝑡0𝑒𝑚)
𝑠

=
𝜕2 𝑓

𝜕𝑥ℓ𝜕𝑥𝑚
(𝑝 + 𝑠0𝑒ℓ + 𝑡0𝑒𝑚).

In other words,

𝑔(𝑠, 𝑡) B 𝑓 (𝑝 + 𝑠𝑒ℓ + 𝑡𝑒𝑚) − 𝑓 (𝑝 + 𝑡𝑒𝑚) − 𝑓 (𝑝 + 𝑠𝑒ℓ ) + 𝑓 (𝑝)
𝑠𝑡

=
𝜕2 𝑓

𝜕𝑥ℓ𝜕𝑥𝑚
(𝑝 + 𝑠0𝑒ℓ + 𝑡0𝑒𝑚).

𝑝

𝑝 + 𝑠𝑒ℓ + 𝑡𝑒𝑚𝑝 + 𝑡𝑒𝑚
𝑝 + 𝑡0𝑒𝑚

𝑝 + 𝑠0𝑒ℓ + 𝑡0𝑒𝑚𝑒𝑚

𝑝 + 𝑠𝑒ℓ + 𝑡0𝑒𝑚

𝑒ℓ
𝑝 + 𝑠𝑒ℓ

Figure 8.14: Using the mean value theorem to estimate a second order partial derivative by a
certain difference quotient.

See  Figure 8.14 . The 𝑠0 and 𝑡0 depend on 𝑠 and 𝑡, but 0 < 𝑠0 < 𝑠 and 0 < 𝑡0 < 𝑡. Let the
domain of the function 𝑔 be the set (0, 𝜖)×(0, 𝜖) for some small 𝜖 > 0. As (𝑠, 𝑡) ∈ (0, 𝜖)×(0, 𝜖)
goes to (0, 0), (𝑠0, 𝑡0) also goes to (0, 0). By continuity of the second partial derivatives,

lim
(𝑠,𝑡)→(0,0)

𝑔(𝑠, 𝑡) = 𝜕2 𝑓
𝜕𝑥ℓ𝜕𝑥𝑚

(𝑝).

Now reverse the roles of 𝑠 and 𝑡 (and ℓ and 𝑚). Start with the function 𝜎 ↦→ 𝑓 (𝑝 + 𝜎𝑒ℓ +
𝑡𝑒𝑚) − 𝑓 (𝑝 + 𝜎𝑒ℓ ) find an 𝑠1 ∈ (0, 𝑠) such that

𝑓 (𝑝 + 𝑠𝑒ℓ + 𝑡𝑒𝑚) − 𝑓 (𝑝 + 𝑠𝑒ℓ ) − 𝑓 (𝑝 + 𝑡𝑒𝑚) + 𝑓 (𝑝)
𝑠

=
𝜕 𝑓
𝜕𝑥ℓ

(𝑝 + 𝑠1𝑒ℓ + 𝑡𝑒𝑚) − 𝜕 𝑓
𝜕𝑥ℓ

(𝑝 + 𝑠1𝑒ℓ ).
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Find a 𝑡1 ∈ (0, 𝑡) such that
𝜕 𝑓
𝜕𝑥ℓ

(𝑝 + 𝑠1𝑒ℓ + 𝑡𝑒𝑚) − 𝜕 𝑓
𝜕𝑥ℓ

(𝑝 + 𝑠1𝑒ℓ )
𝑡

=
𝜕2 𝑓

𝜕𝑥𝑚𝜕𝑥ℓ
(𝑝 + 𝑠1𝑒ℓ + 𝑡1𝑒𝑚).

So 𝑔(𝑠, 𝑡) = 𝜕2 𝑓
𝜕𝑥𝑚𝜕𝑥ℓ

(𝑝 + 𝑠1𝑒ℓ + 𝑡1𝑒𝑚) for the same 𝑔 as above. As before,

lim
(𝑠,𝑡)→(0,0)

𝑔(𝑠, 𝑡) = 𝜕2 𝑓
𝜕𝑥𝑚𝜕𝑥ℓ

(𝑝).

Therefore, the two partial derivatives are equal. □

The proposition does not hold if the derivatives are not continuous. See  Exercise 8.6.2 .
Notice also that we did not really need a 𝐶2 function, we only needed the two second order
partial derivatives involved to be continuous functions.

8.6.1 Exercises
Exercise 8.6.1: Suppose 𝑓 : 𝑈 → ℝ is a 𝐶2 function for some open𝑈 ⊂ ℝ𝑛 and 𝑝 ∈ 𝑈 . Use the proof of

 Proposition 8.6.2 to find an expression in terms of just the values of 𝑓 (analogue of the difference quotient for
the first derivative), whose limit is 𝜕2 𝑓

𝜕𝑥ℓ 𝜕𝑥𝑚
(𝑝).

Exercise 8.6.2: Define

𝑓 (𝑥, 𝑦) B
{
𝑥𝑦(𝑥2−𝑦2)
𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),

0 if (𝑥, 𝑦) = (0, 0).
Show that

a) The first order partial derivatives exist and are continuous.

b) The partial derivatives 𝜕2 𝑓
𝜕𝑥𝜕𝑦 and 𝜕2 𝑓

𝜕𝑦𝜕𝑥 exist, but are not continuous at (0, 0), and 𝜕2 𝑓
𝜕𝑥𝜕𝑦 (0, 0) ≠

𝜕2 𝑓
𝜕𝑦𝜕𝑥 (0, 0).

Exercise 8.6.3: Let 𝑓 : 𝑈 → ℝ be a 𝐶𝑘 function for some open𝑈 ⊂ ℝ𝑛 and 𝑝 ∈ 𝑈 . Suppose ℓ1 , ℓ2 , . . . , ℓ𝑘
are integers between 1 and 𝑛, and 𝜎 = (𝜎1 , 𝜎2 , . . . , 𝜎𝑘) is a permutation of (1, 2, . . . , 𝑘). Prove

𝜕𝑘 𝑓
𝜕𝑥ℓ𝑘𝜕𝑥ℓ𝑘−1 · · · 𝜕𝑥ℓ1

(𝑝) = 𝜕𝑘 𝑓
𝜕𝑥ℓ𝜎𝑘 𝜕𝑥ℓ𝜎𝑘−1

· · · 𝜕𝑥ℓ𝜎1

(𝑝).

Exercise 8.6.4: Suppose 𝜑 : ℝ2 → ℝ is a 𝐶𝑘 function such that 𝜑(0, 𝜃) = 𝜑(0,𝜓) for all 𝜃,𝜓 ∈ ℝ and
𝜑(𝑟, 𝜃) = 𝜑(𝑟, 𝜃 + 2𝜋) for all 𝑟, 𝜃 ∈ ℝ. Let 𝐹(𝑟, 𝜃) B (

𝑟 cos(𝜃), 𝑟 sin(𝜃)) from  Exercise 8.5.8 . Show that
a function 𝑔 : ℝ2 → ℝ, given 𝑔(𝑥, 𝑦) B 𝜑

(
𝐹−1(𝑥, 𝑦)) is well-defined (notice that 𝐹−1(𝑥, 𝑦) can only be

defined locally), and when restricted to ℝ2 \ {0} it is a 𝐶𝑘 function.
Note: Feel free to use what you know about sine and cosine from calculus.

Exercise 8.6.5: Suppose 𝑓 : ℝ2 → ℝ is a 𝐶2 function. For all (𝑥, 𝑦) ∈ ℝ2, compute

lim
𝑡→0

𝑓 (𝑥 + 𝑡 , 𝑦) + 𝑓 (𝑥 − 𝑡 , 𝑦) + 𝑓 (𝑥, 𝑦 + 𝑡) + 𝑓 (𝑥, 𝑦 − 𝑡) − 4 𝑓 (𝑥, 𝑦)
𝑡2

in terms of the partial derivatives of 𝑓 .
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Exercise 8.6.6: Suppose 𝑓 : ℝ2 → ℝ is a function such that all first and second order partial derivatives
exist. Furthermore, suppose that all second order partial derivatives are bounded functions. Prove that 𝑓 is
continuously differentiable.

Exercise 8.6.7: Follow the strategy below to prove the following simple version of the second derivative test
for functions defined on ℝ2 (using (𝑥, 𝑦) as coordinates): Suppose 𝑓 : ℝ2 → ℝ is a twice continuously
differentiable function with a critical point at the origin, 𝑓 ′(0, 0) = 0. If

𝜕2 𝑓

𝜕𝑥2 (0, 0) > 0 and
𝜕2 𝑓

𝜕𝑥2 (0, 0)
𝜕2 𝑓

𝜕𝑦2 (0, 0) −
(
𝜕2 𝑓
𝜕𝑥𝜕𝑦

(0, 0)
)2

> 0,

then 𝑓 has a (strict) local minimum at (0, 0). Use the following technique: First suppose without loss of
generality that 𝑓 (0, 0) = 0. Then prove:

a) There exists an 𝐴 ∈ 𝐿(ℝ2) such that 𝑔 = 𝑓 ◦𝐴 is such that 𝜕2𝑔
𝜕𝑥𝜕𝑦 (0, 0) = 0, and 𝜕2𝑔

𝜕𝑥2 (0, 0) = 𝜕2𝑔
𝜕𝑦2 (0, 0) = 1.

b) For every 𝜖 > 0, there exists a 𝛿 > 0 such that
��𝑔(𝑥, 𝑦) − 𝑥2 − 𝑦2

�� < 𝜖(𝑥2 + 𝑦2) for all (𝑥, 𝑦) ∈
𝐵
((0, 0), 𝛿) .

Hint: You can use Taylor’s theorem in one variable.

c) This means that 𝑔, and therefore 𝑓 , has a strict local minimum at (0, 0).
Note: You must avoid the temptation to just apply the one variable second derivative test along lines through
the origin, see  Exercise 8.3.11 .
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Chapter 9

One-dimensional Integrals in Several
Variables

9.1 Differentiation under the integral
Note: less than 1 lecture

Let 𝑓 (𝑥, 𝑦) be a function of two variables and define

𝑔(𝑦) B
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥.

If 𝑓 is continuous on the compact rectangle [𝑎, 𝑏] × [𝑐, 𝑑], then Proposition 7.5.12 from
volume I says that 𝑔 is continuous on [𝑐, 𝑑].

Suppose 𝑓 is differentiable in 𝑦. When can we “differentiate under the integral”? That
is, when is it true that 𝑔 is differentiable and its derivative is

𝑔′(𝑦) ?
=

∫ 𝑏

𝑎

𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦) 𝑑𝑥.

Differentiation is a limit and therefore we are really asking when do the two limiting
operations of integration and differentiation commute. This is not always possible and
some extra hypothesis is necessary. The first question we would face is the integrability of
𝜕 𝑓
𝜕𝑦 , but the formula above can fail even if 𝜕 𝑓

𝜕𝑦 is integrable as a function of 𝑥 for every fixed 𝑦.
We prove a simple, but perhaps the most useful version of this kind of result.

Theorem 9.1.1 (Leibniz integral rule). Suppose 𝑓 : [𝑎, 𝑏]× [𝑐, 𝑑] → ℝ is a continuous function,
such that 𝜕 𝑓

𝜕𝑦 exists for all (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] and is continuous. Define 𝑔 : [𝑐, 𝑑] → ℝ by

𝑔(𝑦) B
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥.

Then 𝑔 is continuously differentiable and

𝑔′(𝑦) =
∫ 𝑏

𝑎

𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦) 𝑑𝑥.
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The hypotheses on 𝑓 and 𝜕 𝑓
𝜕𝑦 can be weakened, see e.g.  Exercise 9.1.8 , but not dropped

outright. The main point in the proof requires that 𝜕 𝑓
𝜕𝑦 exists and is continuous for all 𝑥 up

to the endpoints, but we only need a small interval in the 𝑦 direction. In applications, we
often make [𝑐, 𝑑] a small interval around the point where we need to differentiate.

Proof. Fix 𝑦 ∈ [𝑐, 𝑑] and let 𝜖 > 0 be given. As 𝜕 𝑓
𝜕𝑦 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑] it is

uniformly continuous. In particular, there exists 𝛿 > 0 such that whenever 𝑦1 ∈ [𝑐, 𝑑] with
|𝑦1 − 𝑦 | < 𝛿 and all 𝑥 ∈ [𝑎, 𝑏], we have����𝜕 𝑓𝜕𝑦 (𝑥, 𝑦1) − 𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦)

���� < 𝜖.

Suppose ℎ is such that 𝑦 + ℎ ∈ [𝑐, 𝑑] and |ℎ | < 𝛿. Fix 𝑥 for a moment and apply the
mean value theorem to find a 𝑦1 between 𝑦 and 𝑦 + ℎ such that

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

=
𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦1).

As |𝑦1 − 𝑦 | ≤ |ℎ | < 𝛿,���� 𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

− 𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦)
���� = ����𝜕 𝑓𝜕𝑦 (𝑥, 𝑦1) − 𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦)

���� < 𝜖.

The argument worked for every 𝑥 ∈ [𝑎, 𝑏] (different 𝑦1 may have been used). Thus, as a
function of 𝑥

𝑥 ↦→ 𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

converges uniformly to 𝑥 ↦→ 𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦) as ℎ → 0.

We defined uniform convergence for sequences although the idea is the same. You
may replace ℎ with a sequence of nonzero numbers {ℎ𝑛}∞𝑛=1 converging to 0 such that
𝑦 + ℎ𝑛 ∈ [𝑐, 𝑑] and let 𝑛 → ∞.

Consider the difference quotient of 𝑔,

𝑔(𝑦 + ℎ) − 𝑔(𝑦)
ℎ

=

∫ 𝑏
𝑎
𝑓 (𝑥, 𝑦 + ℎ) 𝑑𝑥 −

∫ 𝑏
𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥

ℎ
=

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

𝑑𝑥.

Uniform convergence implies the limit can be taken underneath the integral. So

lim
ℎ→0

𝑔(𝑦 + ℎ) − 𝑔(𝑦)
ℎ

=
∫ 𝑏

𝑎
lim
ℎ→0

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

𝑑𝑥 =
∫ 𝑏

𝑎

𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦) 𝑑𝑥.

Then 𝑔′ is continuous on [𝑐, 𝑑] by Proposition 7.5.12 from volume I mentioned above. □
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Example 9.1.2: Let

𝑓 (𝑦) =
∫ 1

0
sin(𝑥2 − 𝑦2) 𝑑𝑥.

Then

𝑓 ′(𝑦) =
∫ 1

0
−2𝑦 cos(𝑥2 − 𝑦2) 𝑑𝑥.

Example 9.1.3: Consider ∫ 1

0

𝑥 − 1
ln(𝑥) 𝑑𝑥.

The function under the integral extends to be continuous on [0, 1], and hence the integral
exists, see  Exercise 9.1.1 . Trouble is finding it. We introduce a parameter 𝑦 and define a
function:

𝑔(𝑦) B
∫ 1

0

𝑥𝑦 − 1
ln(𝑥) 𝑑𝑥.

The function 𝑥𝑦−1
ln(𝑥) also extends to a continuous function of 𝑥 and 𝑦 for (𝑥, 𝑦) ∈ [0, 1] × [0, 1]

(also part of the exercise). See  Figure 9.1 .

G

H

I

Figure 9.1: The graph 𝑧 = 𝑥𝑦−1
ln(𝑥) on [0, 1] × [0, 1].

Hence, 𝑔 is a continuous function on [0, 1] and 𝑔(0) = 0. For every 𝜖 > 0, the 𝑦
derivative of the integrand, 𝑥𝑦 , is continuous on [0, 1] × [𝜖, 1]. Therefore, for 𝑦 > 0, we may
differentiate under the integral sign,

𝑔′(𝑦) =
∫ 1

0

ln(𝑥)𝑥𝑦
ln(𝑥) 𝑑𝑥 =

∫ 1

0
𝑥𝑦 𝑑𝑥 =

1
𝑦 + 1 .

We need to figure out 𝑔(1) given that 𝑔′(𝑦) = 1
𝑦+1 and 𝑔(0) = 0. Elementary calculus says

that 𝑔(1) =
∫ 1

0 𝑔′(𝑦) 𝑑𝑦 = ln(2). Thus,∫ 1

0

𝑥 − 1
ln(𝑥) 𝑑𝑥 = ln(2).
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9.1.1 Exercises

Exercise 9.1.1: Prove the two statements that were asserted in  Example 9.1.3 :

a) Prove 𝑥−1
ln(𝑥) extends to a continuous function of [0, 1]. That is, there exists a continuous function on [0, 1]

that equals 𝑥−1
ln(𝑥) on (0, 1).

b) Prove 𝑥𝑦−1
ln(𝑥) extends to a continuous function on [0, 1] × [0, 1].

Exercise 9.1.2: Suppose ℎ : ℝ → ℝ is continuous and 𝑔 : ℝ → ℝ is continuously differentiable and
compactly supported. That is, there exists some 𝑀 > 0, such that 𝑔(𝑥) = 0 whenever |𝑥 | ≥ 𝑀. Define

𝑓 (𝑥) B
∫ ∞

−∞
ℎ(𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦.

Show that 𝑓 is differentiable.

Exercise 9.1.3: Suppose 𝑓 : ℝ → ℝ is infinitely differentiable (derivatives of all orders exist) and 𝑓 (0) = 0.
Show that there exists an infinitely differentiable function 𝑔 : ℝ → ℝ such that 𝑓 (𝑥) = 𝑥 𝑔(𝑥). Show also
that if 𝑓 ′(0) ≠ 0, then 𝑔(0) ≠ 0.
Hint: Write 𝑓 (𝑥) =

∫ 𝑥

0 𝑓 ′(𝑠) 𝑑𝑠 and then rewrite the integral to go from 0 to 1.

Exercise 9.1.4: Compute
∫ 1

0 𝑒 𝑡𝑥 𝑑𝑥. Derive the formula for
∫ 1

0 𝑥𝑛𝑒𝑥 𝑑𝑥 not using integration by parts, but
by differentiation underneath the integral.

Exercise 9.1.5: Let𝑈 ⊂ ℝ𝑛 be open and suppose 𝑓 (𝑥, 𝑦1 , 𝑦2 , . . . , 𝑦𝑛) is a continuous function defined on
[0, 1]×𝑈 ⊂ ℝ𝑛+1. Suppose 𝜕 𝑓

𝜕𝑦1
, 𝜕 𝑓
𝜕𝑦2
, . . . , 𝜕 𝑓

𝜕𝑦𝑛
exist and are continuous on [0, 1]×𝑈 . Prove that 𝐹 : 𝑈 → ℝ

defined by

𝐹(𝑦1 , 𝑦2 , . . . , 𝑦𝑛) B
∫ 1

0
𝑓 (𝑥, 𝑦1 , 𝑦2 , . . . , 𝑦𝑛) 𝑑𝑥

is continuously differentiable.

x

y

z

Figure 9.2: The graph 𝑧 = 𝑥𝑦3

(𝑥2+𝑦2)2 on [0, 1] × [0, 1].
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Exercise 9.1.6: Work out the following counterexample: Let

𝑓 (𝑥, 𝑦) B


𝑥𝑦3

(𝑥2+𝑦2)2 if 𝑥 ≠ 0 or 𝑦 ≠ 0,

0 if 𝑥 = 0 and 𝑦 = 0.

See  Figure 9.2 .

a) Prove that for every fixed 𝑦, the function 𝑥 ↦→ 𝑓 (𝑥, 𝑦) is Riemann integrable on [0, 1], and

𝑔(𝑦) B
∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥 =

𝑦

2𝑦2 + 2
.

Therefore, 𝑔′(𝑦) exists and its derivative is the continuous function

𝑔′(𝑦) = 𝑑
𝑑𝑦

∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥 =

1 − 𝑦2

2(𝑦2 + 1)2
.

b) Prove 𝜕 𝑓
𝜕𝑦 exists at all 𝑥 and 𝑦 and compute it.

c) Show that for all 𝑦 ∫ 1

0

𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦) 𝑑𝑥

exists, but

𝑔′(0) ≠
∫ 1

0

𝜕 𝑓
𝜕𝑦

(𝑥, 0) 𝑑𝑥.

Exercise 9.1.7: Work out the following counterexample: Let

𝑓 (𝑥, 𝑦) B
{
𝑥 sin

(
𝑦

𝑥2+𝑦2

)
if (𝑥, 𝑦) ≠ (0, 0),

0 if (𝑥, 𝑦) = (0, 0).

a) Prove 𝑓 is continuous on all of ℝ2. Therefore the following function is well-defined for every 𝑦 ∈ ℝ:

𝑔(𝑦) B
∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥.

b) Prove 𝜕 𝑓
𝜕𝑦 exists for all (𝑥, 𝑦), but is not continuous at (0, 0).

c) Show that
∫ 1

0
𝜕 𝑓
𝜕𝑦 (𝑥, 0) 𝑑𝑥 does not exist even if we take improper integrals, that is, that the limit

lim
ℎ→0+

∫ 1
ℎ

𝜕 𝑓
𝜕𝑦 (𝑥, 0) 𝑑𝑥 does not exist.

Note: Feel free to use what you know about sine and cosine from calculus.
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Exercise 9.1.8: Strengthen the Leibniz integral rule in the following way. Suppose 𝑓 : (𝑎, 𝑏) × (𝑐, 𝑑) → ℝ

is a bounded continuous function, such that 𝜕 𝑓
𝜕𝑦 exists for all (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑) and is continuous and

bounded. Define 𝑔 : (𝑐, 𝑑) → ℝ by

𝑔(𝑦) B
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥.

Then 𝑔 is continuously differentiable and

𝑔′(𝑦) =
∫ 𝑏

𝑎

𝜕 𝑓
𝜕𝑦

(𝑥, 𝑦) 𝑑𝑥.

Hint: See also Exercise 7.5.18 and Theorem 6.2.10 from volume I.

Exercise 9.1.9: Suppose 𝑔 : ℝ → ℝ is continuously differentiable, ℎ : ℝ2 → ℝ is continuous, 𝜕ℎ
𝜕𝑥 exists and

is continuous at all points. Show that

𝐹(𝑥, 𝑦) B 𝑔(𝑥) +
∫ 𝑦

0
ℎ(𝑥, 𝑠) 𝑑𝑠

is continuously differentiable, and that it is the solution of the partial differential equation 𝜕𝐹
𝜕𝑦 = ℎ, with the

initial condition 𝐹(𝑥, 0) = 𝑔(𝑥) for all 𝑥 ∈ ℝ.
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9.2 Path integrals
Note: 2–3 lectures

9.2.1 Piecewise smooth paths
Let 𝛾 : [𝑎, 𝑏] → ℝ𝑛 be a function and write 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛). Suppose 𝛾 is continuously
differentiable, meaning it is differentiable and the derivative is continuous. In other words,
there exists a continuous function 𝛾 ′ : [𝑎, 𝑏] → ℝ𝑛 such that for every 𝑡 ∈ [𝑎, 𝑏], we have
lim
ℎ→0

∥𝛾(𝑡+ℎ)−𝛾(𝑡)−𝛾 ′(𝑡) ℎ∥
|ℎ | = 0. We treat 𝛾 ′(𝑡) either as a linear operator (an 𝑛 × 1 matrix) or

a vector, 𝛾 ′(𝑡) = (
𝛾 ′

1 (𝑡), 𝛾 ′
2 (𝑡), . . . , 𝛾 ′

𝑛(𝑡)
)
. Equivalently, 𝛾𝑗 is a continuously differentiable

function on [𝑎, 𝑏] for every 𝑗 = 1, 2, . . . , 𝑛. By  Exercise 8.2.6 , the operator norm of the
operator 𝛾 ′(𝑡) equals the euclidean norm of the corresponding vector, which allows us to
write ∥𝛾 ′(𝑡)∥ without any confusion.

Definition 9.2.1. A continuously differentiable function 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is called a smooth
path or a continuously differentiable path  

*
 if 𝛾 is continuously differentiable and 𝛾 ′(𝑡) ≠ 0 for

all 𝑡 ∈ [𝑎, 𝑏].
The function 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is called a piecewise smooth path or a piecewise continuously

differentiable path if there exist finitely many points 𝑡0 = 𝑎 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑘 = 𝑏 such that
the restriction 𝛾 |[𝑡 𝑗−1 ,𝑡 𝑗] is smooth path for every 𝑗 = 1, 2, . . . , 𝑘.

A path 𝛾 is a closed path if 𝛾(𝑎) = 𝛾(𝑏), that is, the path starts and ends in the same point.
A path 𝛾 is a simple path if either 1) 𝛾 is a one-to-one function, or 2) 𝛾 |[𝑎,𝑏) is one-to-one and
𝛾(𝑎) = 𝛾(𝑏) (𝛾 is a simple closed path).

Example 9.2.2: Let 𝛾 : [0, 4] → ℝ2 be defined by

𝛾(𝑡) B


(𝑡 , 0) if 𝑡 ∈ [0, 1],
(1, 𝑡 − 1) if 𝑡 ∈ (1, 2],
(3 − 𝑡 , 1) if 𝑡 ∈ (2, 3],
(0, 4 − 𝑡) if 𝑡 ∈ (3, 4].

The path 𝛾 is the unit square traversed counterclockwise. See  Figure 9.3 . It is a piecewise
smooth path. For example, 𝛾 |[1,2](𝑡) = (1, 𝑡 − 1) and so (𝛾 |[1,2])′(𝑡) = (0, 1) ≠ 0. Similarly
for the other 3 sides. Notice that (𝛾 |[1,2])′(1) = (0, 1), (𝛾 |[0,1])′(1) = (1, 0), but 𝛾 ′(1) does not
exist. At the corners 𝛾 is not differentiable. The path 𝛾 is a simple closed path, as 𝛾 |[0,4) is
one-to-one and 𝛾(0) = 𝛾(4).

The definition of a piecewise smooth path as we have given it implies continuity
(exercise). For general functions, many authors also allow finitely many discontinuities,
when they use the term piecewise smooth, and so one may say that we defined a piecewise

*The word “smooth” can sometimes mean “infinitely differentiable” in the literature.
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C = 0 C = 1

C = 2C = 3

C = 4

Figure 9.3: The path 𝛾 traversing the unit square.

smooth path to be a continuous piecewise smooth function. While one may get by with smooth
paths, for computations, the simplest paths to write down are often piecewise smooth.

Generally, we are interested in the direct image 𝛾
([𝑎, 𝑏]) , rather than the specific

parametrization, although that is also important to some degree. When we informally talk
about a path or a curve, we often mean the set 𝛾

([𝑎, 𝑏]) , depending on context.

Example 9.2.3: The condition 𝛾 ′(𝑡) ≠ 0 means that the image 𝛾
([𝑎, 𝑏]) has no “corners”

where 𝛾 is smooth. Consider

𝛾(𝑡) B
{
(𝑡2, 0) if 𝑡 < 0,
(0, 𝑡2) if 𝑡 ≥ 0.

See  Figure 9.4  . It is left for the reader to check that 𝛾 is continuously differentiable, yet the
image 𝛾(ℝ) = {(𝑥, 𝑦) ∈ ℝ2 : (𝑥, 𝑦) = (𝑠, 0) or (𝑥, 𝑦) = (0, 𝑠) for some 𝑠 ≥ 0

}
has a “corner”

at the origin. And that is because 𝛾 ′(0) = (0, 0). More complicated examples with, say,
infinitely many corners exist, see the exercises.

C = −1

C = −1/2

C = 0 C = 1/2 C = 1

Figure 9.4: “Smooth” path with a corner if we allow zero derivative. The points corresponding
to several values of 𝑡 are marked with dots.

The condition 𝛾 ′(𝑡) ≠ 0 even at the endpoints guarantees not only no corners, but also
that the path ends nicely, that is, it can extend a little bit past the endpoints. Again, see the
exercises.
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Example 9.2.4: A graph of a continuously differentiable function 𝑓 : [𝑎, 𝑏] → ℝ is a smooth
path. Define 𝛾 : [𝑎, 𝑏] → ℝ2 by

𝛾(𝑡) B (
𝑡 , 𝑓 (𝑡)) .

Then 𝛾 ′(𝑡) = (
1, 𝑓 ′(𝑡)) , which is never zero, and 𝛾

([𝑎, 𝑏]) is the graph of 𝑓 .
There are other ways of parametrizing the path. That is, there are different paths with

the same image. The function 𝑡 ↦→ (1 − 𝑡)𝑎 + 𝑡𝑏, takes the interval [0, 1] to [𝑎, 𝑏]. Define
𝛼 : [0, 1] → ℝ2 by

𝛼(𝑡) B ((1 − 𝑡)𝑎 + 𝑡𝑏, 𝑓 ((1 − 𝑡)𝑎 + 𝑡𝑏)) .
Then 𝛼′(𝑡) = (

𝑏 − 𝑎, (𝑏 − 𝑎) 𝑓 ′((1 − 𝑡)𝑎 + 𝑡𝑏)) , which is never zero. As sets, 𝛼
([0, 1]) =

𝛾
([𝑎, 𝑏]) = {(𝑥, 𝑦) ∈ ℝ2 : 𝑥 ∈ [𝑎, 𝑏] and 𝑓 (𝑥) = 𝑦

}
, which is just the graph of 𝑓 .

The last example leads us to a definition.

Definition 9.2.5. Let 𝛾 : [𝑎, 𝑏] → ℝ𝑛 be a smooth path and ℎ : [𝑐, 𝑑] → [𝑎, 𝑏] a continuously
differentiable bĳective function such that ℎ′(𝑡) ≠ 0 for all 𝑡 ∈ [𝑐, 𝑑]. Then the composition
𝛾 ◦ ℎ is called a smooth reparametrization of 𝛾.

Let 𝛾 be a piecewise smooth path, and ℎ a piecewise smooth bĳective function
with nonzero one-sided limits of ℎ′. The composition 𝛾 ◦ ℎ is called a piecewise smooth
reparametrization of 𝛾.

If ℎ is strictly increasing, then ℎ is said to preserve orientation. If ℎ does not preserve
orientation, then ℎ is said to reverse orientation.

A reparametrization is another path for the same set. That is, (𝛾 ◦ ℎ)([𝑐, 𝑑]) = 𝛾
([𝑎, 𝑏]) .

The conditions on the piecewise smooth ℎ mean that there is some partition 𝑡0 = 𝑐 <
𝑡1 < 𝑡2 < · · · < 𝑡𝑘 = 𝑑, such that ℎ |[𝑡 𝑗−1 ,𝑡 𝑗] is continuously differentiable and (ℎ |[𝑡 𝑗−1 ,𝑡 𝑗])′(𝑡) ≠ 0
for all 𝑡 ∈ [𝑡 𝑗−1, 𝑡 𝑗]. Since ℎ is bĳective, it is either strictly increasing or strictly decreasing.
So either (ℎ |[𝑡 𝑗−1 ,𝑡 𝑗])′(𝑡) > 0 for all 𝑡 or (ℎ |[𝑡 𝑗−1 ,𝑡 𝑗])′(𝑡) < 0 for all 𝑡.

Proposition 9.2.6. If 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is a piecewise smooth path, and 𝛾 ◦ ℎ : [𝑐, 𝑑] → ℝ𝑛 is a
piecewise smooth reparametrization, then 𝛾 ◦ ℎ is a piecewise smooth path.

Proof. Assume that ℎ preserves orientation, that is, ℎ is strictly increasing. If ℎ : [𝑐, 𝑑] →
[𝑎, 𝑏] gives a piecewise smooth reparametrization, then for some partition 𝑟0 = 𝑐 < 𝑟1 <
𝑟2 < · · · < 𝑟ℓ = 𝑑, the restriction ℎ |[𝑟 𝑗−1 ,𝑟𝑗] is continuously differentiable with a positive
derivative.

Let 𝑡0 = 𝑎 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑘 = 𝑏 be the partition from the definition of piecewise
smooth for 𝛾 together with the points {ℎ(𝑟0), ℎ(𝑟1), ℎ(𝑟2), . . . , ℎ(𝑟ℓ )}. Let 𝑠 𝑗 B ℎ−1(𝑡 𝑗).
Then 𝑠0 = 𝑐 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑘 = 𝑑 is a partition that includes (is a refinement of) the
{𝑟0, 𝑟1, . . . , 𝑟ℓ }. If 𝜏 ∈ [𝑠 𝑗−1, 𝑠 𝑗], then ℎ(𝜏) ∈ [𝑡 𝑗−1, 𝑡 𝑗] since ℎ(𝑠 𝑗−1) = 𝑡 𝑗−1, ℎ(𝑠 𝑗) = 𝑡 𝑗 , and
ℎ is strictly increasing. Also ℎ |[𝑠 𝑗−1 ,𝑠 𝑗] is continuously differentiable, and 𝛾 |[𝑡 𝑗−1 ,𝑡 𝑗] is also
continuously differentiable. Then

(𝛾 ◦ ℎ)|[𝑠 𝑗−1 ,𝑠 𝑗](𝜏) = 𝛾 |[𝑡 𝑗−1 ,𝑡 𝑗]
(
ℎ |[𝑠 𝑗−1 ,𝑠 𝑗](𝜏)

)
.
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The function (𝛾 ◦ ℎ)|[𝑠 𝑗−1 ,𝑠 𝑗] is therefore continuously differentiable and by the chain rule((𝛾 ◦ ℎ)|[𝑠 𝑗−1 ,𝑠 𝑗]
)′(𝜏) = (

𝛾 |[𝑡 𝑗−1 ,𝑡 𝑗]
)′ (ℎ(𝜏))(ℎ |[𝑠 𝑗−1 ,𝑠 𝑗])′(𝜏) ≠ 0.

Consequently, 𝛾 ◦ ℎ is a piecewise smooth path. The proof for orientation reversing ℎ is
left as an exercise. □

If two paths are simple and their images are the same, it is left as an exercise that there
exists a reparametrization. Here is where our assumption that 𝛾′ is never zero is important.

9.2.2 Path integral of a one-form
Definition 9.2.7. Let (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 be our coordinates. Given 𝑛 real-valued
continuous functions 𝜔1, 𝜔2, . . . , 𝜔𝑛 defined on a set 𝑆 ⊂ ℝ𝑛 , we define a one-form to be an
object of the form

𝜔 = 𝜔1 𝑑𝑥1 + 𝜔2 𝑑𝑥2 + · · · + 𝜔𝑛 𝑑𝑥𝑛 .

We could represent 𝜔 as a continuous function from 𝑆 to ℝ𝑛 , although it is better to think
of it as a different object.

Example 9.2.8:
𝜔(𝑥, 𝑦) B −𝑦

𝑥2 + 𝑦2 𝑑𝑥 +
𝑥

𝑥2 + 𝑦2 𝑑𝑦

is a one-form defined on ℝ2 \ {(0, 0)}.
Definition 9.2.9. Let 𝛾 : [𝑎, 𝑏] → ℝ𝑛 be a smooth path and let

𝜔 = 𝜔1 𝑑𝑥1 + 𝜔2 𝑑𝑥2 + · · · + 𝜔𝑛 𝑑𝑥𝑛 ,

be a one-form defined on the direct image 𝛾
([𝑎, 𝑏]) . Write 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛). Define:∫

𝛾
𝜔 B

∫ 𝑏

𝑎

(
𝜔1

(
𝛾(𝑡))𝛾 ′

1 (𝑡) + 𝜔2
(
𝛾(𝑡))𝛾 ′

2 (𝑡) + · · · + 𝜔𝑛
(
𝛾(𝑡))𝛾 ′

𝑛(𝑡)
)
𝑑𝑡

=
∫ 𝑏

𝑎

©«
𝑛∑
𝑗=1

𝜔 𝑗
(
𝛾(𝑡))𝛾 ′

𝑗 (𝑡)ª®¬ 𝑑𝑡.
To remember the definition note that 𝑥 𝑗 is 𝛾𝑗(𝑡), so 𝑑𝑥 𝑗 becomes 𝛾 ′

𝑗 (𝑡) 𝑑𝑡.
If 𝛾 is piecewise smooth, take the corresponding partition 𝑡0 = 𝑎 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 = 𝑏,

and assume the partition is minimal in the sense that 𝛾 is not differentiable at 𝑡1, 𝑡2, . . . , 𝑡𝑘−1.
As each 𝛾 |[𝑡 𝑗−1 ,𝑡 𝑗] is a smooth path, define∫

𝛾
𝜔 B

∫
𝛾 |[𝑡0 ,𝑡1]

𝜔 +
∫
𝛾 |[𝑡1 ,𝑡2]

𝜔 + · · · +
∫
𝛾 |[𝑡𝑘−1 ,𝑡𝑘 ]

𝜔.
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The notation makes sense from the formula you remember from calculus, let us state it
somewhat informally: If 𝑥 𝑗(𝑡) = 𝛾𝑗(𝑡), then 𝑑𝑥 𝑗 = 𝛾 ′

𝑗 (𝑡) 𝑑𝑡.
Paths can be cut up or concatenated. The proof is a direct application of the additivity

of the Riemann integral, and is left as an exercise. The proposition justifies why we defined
the integral over a piecewise smooth path in the way we did, and it justifies that we may as
well have taken any partition not just the minimal one in the definition.
Proposition 9.2.10. Let 𝛾 : [𝑎, 𝑐] → ℝ𝑛 be a piecewise smooth path, and 𝑏 ∈ (𝑎, 𝑐). Define the
piecewise smooth paths 𝛼 B 𝛾 |[𝑎,𝑏] and 𝛽 B 𝛾 |[𝑏,𝑐]. Let 𝜔 be a one-form defined on 𝛾

([𝑎, 𝑐]) .
Then ∫

𝛾
𝜔 =

∫
𝛼
𝜔 +

∫
𝛽
𝜔.

Example 9.2.11: Let the one-form 𝜔 and the path 𝛾 : [0, 2𝜋] → ℝ2 be defined by

𝜔(𝑥, 𝑦) B −𝑦
𝑥2 + 𝑦2 𝑑𝑥 +

𝑥
𝑥2 + 𝑦2 𝑑𝑦, 𝛾(𝑡) B (

cos(𝑡), sin(𝑡)) .
Then ∫

𝛾
𝜔 =

∫ 2𝜋

0

(
− sin(𝑡)(

cos(𝑡))2 + (
sin(𝑡))2

(− sin(𝑡)) + cos(𝑡)(
cos(𝑡))2 + (

sin(𝑡))2
(
cos(𝑡))) 𝑑𝑡

=
∫ 2𝜋

0
1 𝑑𝑡 = 2𝜋.

Next, parametrize the same curve as 𝛼 : [0, 1] → ℝ2 defined by 𝛼(𝑡) B (
cos(2𝜋𝑡), sin(2𝜋𝑡)) ,

that is, 𝛼 is a smooth reparametrization of 𝛾. Then∫
𝛼
𝜔 =

∫ 1

0

(
− sin(2𝜋𝑡)(

cos(2𝜋𝑡))2 + (
sin(2𝜋𝑡))2

(−2𝜋 sin(2𝜋𝑡))
+ cos(2𝜋𝑡)(

cos(2𝜋𝑡))2 + (
sin(2𝜋𝑡))2

(
2𝜋 cos(2𝜋𝑡))) 𝑑𝑡

=
∫ 1

0
2𝜋 𝑑𝑡 = 2𝜋.

Finally, reparametrize with 𝛽 : [0, 2𝜋] → ℝ2 as 𝛽(𝑡) B (
cos(−𝑡), sin(−𝑡)) . Then∫

𝛽
𝜔 =

∫ 2𝜋

0

(
− sin(−𝑡)(

cos(−𝑡))2 + (
sin(−𝑡))2

(
sin(−𝑡)) + cos(−𝑡)(

cos(−𝑡))2 + (
sin(−𝑡))2

(− cos(−𝑡))) 𝑑𝑡
=

∫ 2𝜋

0
(−1) 𝑑𝑡 = −2𝜋.

The path 𝛼 is an orientation preserving reparametrization of 𝛾, and the integrals are the
same. The path 𝛽 is an orientation reversing reparametrization of 𝛾 and the integral is
minus the original. See  Figure 9.5 .
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�(0) = (0) = �(2�)
�(2�) = (1) = �(0)

�(�/4) = (1/8) = �(7�/4)
�(�/2) = (1/4) = �(3�/2)

�(�) = (1/2) = �(�)

�(3�/2) = (3/4) = �(�/2)

Figure 9.5: A circular path reparametrized in two different ways. The arrow indicates the
orientation of 𝛾 and 𝛼. The path 𝛽 traverses the circle in the opposite direction.

The previous example is not a fluke. The path integral does not depend on the
parametrization of the curve, the only thing that matters is the direction in which the curve
is traversed.

Proposition 9.2.12. Let 𝛾 : [𝑎, 𝑏] → ℝ𝑛 be a piecewise smooth path and 𝛾 ◦ ℎ : [𝑐, 𝑑] → ℝ𝑛 a
piecewise smooth reparametrization. Suppose 𝜔 is a one-form defined on the set 𝛾

([𝑎, 𝑏]) . Then∫
𝛾◦ℎ

𝜔 =

{∫
𝛾
𝜔 if ℎ preserves orientation,

−
∫
𝛾
𝜔 if ℎ reverses orientation.

Proof. Assume first that 𝛾 and ℎ are both smooth. Write 𝜔 = 𝜔1 𝑑𝑥1 +𝜔2 𝑑𝑥2 + · · · +𝜔𝑛 𝑑𝑥𝑛 .
Suppose that ℎ is orientation preserving. Use the change of variables formula for the
Riemann integral:∫

𝛾
𝜔 =

∫ 𝑏

𝑎

©«
𝑛∑
𝑗=1

𝜔 𝑗
(
𝛾(𝑡))𝛾 ′

𝑗 (𝑡)ª®¬ 𝑑𝑡
=

∫ 𝑑

𝑐

©«
𝑛∑
𝑗=1

𝜔 𝑗

(
𝛾
(
ℎ(𝜏)) )𝛾 ′

𝑗

(
ℎ(𝜏))ª®¬ ℎ′(𝜏) 𝑑𝜏

=
∫ 𝑑

𝑐

©«
𝑛∑
𝑗=1

𝜔 𝑗

(
𝛾
(
ℎ(𝜏)) )(𝛾𝑗 ◦ ℎ)′(𝜏)ª®¬ 𝑑𝜏 =

∫
𝛾◦ℎ

𝜔.

If ℎ is orientation reversing, it swaps the order of the limits on the integral and introduces
a minus sign. The details, along with finishing the proof for piecewise smooth paths, is left
as  Exercise 9.2.4 . □
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Due to this proposition (and the exercises), if Γ ⊂ ℝ𝑛 is the image of a simple piecewise
smooth path 𝛾

([𝑎, 𝑏]) , then as long as we somehow indicate the orientation, that is, the
direction in which we traverse the curve, we can write∫

Γ
𝜔,

without mentioning the specific 𝛾. Furthermore, for a simple closed path, it does not even
matter where we start the parametrization. See the exercises.

Recall that simple means that 𝛾 is one-to-one except perhaps at the endpoints, in
particular it is one-to-one when restricted to [𝑎, 𝑏). We may relax the condition that the
path is simple a little bit. For example, it is enough to suppose that 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is
one-to-one except at finitely many points. See  Exercise 9.2.14 . But we cannot remove the
condition completely as is illustrated by the following example.
Example 9.2.13: Take 𝛾 : [0, 2𝜋] → ℝ2 given by 𝛾(𝑡) B (

cos(𝑡), sin(𝑡)) , and 𝛽 : [0, 2𝜋] → ℝ2

by 𝛽(𝑡) B (
cos(2𝑡), sin(2𝑡)) . Notice that 𝛾

([0, 2𝜋]) = 𝛽
([0, 2𝜋]) ; we travel around the same

curve, the unit circle. But 𝛾 goes around the unit circle once in the counter clockwise
direction, and 𝛽 goes around the unit circle twice (in the same direction). See  Figure 9.6 .

�(0) = �(0) = �(�)
�(2�) = �(2�)

�(�/4) = �(�/8) = �(9�/8)
�(�/2) = �(�/4) = �(5�/4)

�(�) = �(�/2) = �(3�/2)

�(3�/2) = �(3�/4) = �(7�/4)

Figure 9.6: Circular path traversed once by 𝛾 : [0, 2𝜋] → ℝ2 and twice by 𝛽 : [0, 2𝜋] → ℝ2.

Compute∫
𝛾
−𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 =

∫ 2𝜋

0

( (− sin(𝑡)) (− sin(𝑡)) + cos(𝑡) cos(𝑡)
)
𝑑𝑡 = 2𝜋,∫

𝛽
−𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 =

∫ 2𝜋

0

( (− sin(2𝑡)) (−2 sin(2𝑡)) + cos(𝑡)(2 cos(𝑡)) )𝑑𝑡 = 4𝜋.

It is sometimes convenient to define a path integral over 𝛾 : [𝑎, 𝑏] → ℝ𝑛 that is not a
path. Define ∫

𝛾
𝜔 B

∫ 𝑏

𝑎

©«
𝑛∑
𝑗=1

𝜔 𝑗
(
𝛾(𝑡))𝛾 ′

𝑗 (𝑡)ª®¬ 𝑑𝑡



78 CHAPTER 9. ONE-DIMENSIONAL INTEGRALS IN SEVERAL VARIABLES

for every continuously differentiable 𝛾. A case that comes up naturally is when 𝛾 is
constant. Then 𝛾 ′(𝑡) = 0 for all 𝑡, and 𝛾

([𝑎, 𝑏]) is a single point, which we regard as a
“curve” of length zero. Then,

∫
𝛾
𝜔 = 0 for every 𝜔.

9.2.3 Path integral of a function
Next, we integrate a function against the so-called arc-length measure 𝑑𝑠. The geometric
picture we have in mind is the area under the graph of the function over a path. Imagine a
fence erected over 𝛾 with height given by the function and the integral is the area of the
fence. See  Figure 9.7 .

G

H

I

�

Figure 9.7: A path 𝛾 : [𝑎, 𝑏] → ℝ2 in the 𝑥𝑦-plane (bold curve), and a function 𝑧 = 𝑓 (𝑥, 𝑦)
graphed above it in the 𝑧 direction. The integral is the shaded area depicted.

Definition 9.2.14. Suppose 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is a smooth path, and 𝑓 is a continuous function
defined on the image 𝛾

([𝑎, 𝑏]) . Then define∫
𝛾
𝑓 𝑑𝑠 B

∫ 𝑏

𝑎
𝑓
(
𝛾(𝑡)) ∥𝛾 ′(𝑡)∥ 𝑑𝑡.

To emphasize the variables we may use∫
𝛾
𝑓 (𝑥) 𝑑𝑠(𝑥) B

∫
𝛾
𝑓 𝑑𝑠.

The definition for a piecewise smooth path is similar as before and is left to the reader.

The path integral of a function is also independent of the parametrization, and in this
case, the orientation does not matter.
Proposition 9.2.15. Let 𝛾 : [𝑎, 𝑏] → ℝ𝑛 be a piecewise smooth path and 𝛾 ◦ ℎ : [𝑐, 𝑑] → ℝ𝑛

a piecewise smooth reparametrization. Suppose 𝑓 is a continuous function defined on the set
𝛾
([𝑎, 𝑏]) . Then ∫

𝛾◦ℎ
𝑓 𝑑𝑠 =

∫
𝛾
𝑓 𝑑𝑠.
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Proof. Suppose ℎ is orientation preserving and that 𝛾 and ℎ are both smooth. Then∫
𝛾
𝑓 𝑑𝑠 =

∫ 𝑏

𝑎
𝑓
(
𝛾(𝑡)) ∥𝛾 ′(𝑡)∥ 𝑑𝑡

=
∫ 𝑑

𝑐
𝑓
(
𝛾
(
ℎ(𝜏)) ) ∥𝛾 ′ (ℎ(𝜏)) ∥ℎ′(𝜏) 𝑑𝜏

=
∫ 𝑑

𝑐
𝑓
(
𝛾
(
ℎ(𝜏)) ) ∥𝛾 ′ (ℎ(𝜏))ℎ′(𝜏)∥ 𝑑𝜏

=
∫ 𝑑

𝑐
𝑓
((𝛾 ◦ ℎ)(𝜏)) ∥(𝛾 ◦ ℎ)′(𝜏)∥ 𝑑𝜏

=
∫
𝛾◦ℎ

𝑓 𝑑𝑠.

If ℎ is orientation reversing it swaps the order of the limits on the integral, but you also
have to introduce a minus sign in order to take ℎ′ inside the norm. The details, along with
finishing the proof for piecewise smooth paths is left to the reader as  Exercise 9.2.5 . □

As before, due to this proposition (and the exercises), if 𝛾 is simple, it does not matter
which parametrization we use. Therefore, if Γ = 𝛾

([𝑎, 𝑏]) , we can simply write∫
Γ
𝑓 𝑑𝑠.

In this case we do not need to worry about orientation, either way we get the same integral.

Example 9.2.16: Let 𝑓 (𝑥, 𝑦) B 𝑥. Let 𝐶 ⊂ ℝ2 be half of the unit circle for 𝑥 ≥ 0. We wish
to compute ∫

𝐶
𝑓 𝑑𝑠.

Parametrize the curve 𝐶 via 𝛾 : [−𝜋/2, 𝜋/2] → ℝ2 defined as 𝛾(𝑡) B (
cos(𝑡), sin(𝑡)) . Then

𝛾 ′(𝑡) = (− sin(𝑡), cos(𝑡)) , and∫
𝐶
𝑓 𝑑𝑠 =

∫
𝛾
𝑓 𝑑𝑠 =

∫ 𝜋/2

−𝜋/2
cos(𝑡)

√(− sin(𝑡))2 + (
cos(𝑡))2 𝑑𝑡 =

∫ 𝜋/2

−𝜋/2
cos(𝑡) 𝑑𝑡 = 2.

Definition 9.2.17. Suppose Γ ⊂ ℝ𝑛 is parametrized by a simple piecewise smooth path
𝛾 : [𝑎, 𝑏] → ℝ𝑛 , that is 𝛾

([𝑎, 𝑏]) = Γ. We define the length by

ℓ (Γ) B
∫
Γ
𝑑𝑠 =

∫
𝛾
𝑑𝑠.

If 𝛾 is smooth,

ℓ (Γ) =
∫ 𝑏

𝑎
∥𝛾 ′(𝑡)∥ 𝑑𝑡.
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This may be a good time to mention that it is common to write
∫ 𝑏
𝑎
∥𝛾 ′(𝑡)∥ 𝑑𝑡 even if the

path is only piecewise smooth. That is because ∥𝛾 ′(𝑡)∥ is defined and continuous at all but
finitely many points and is bounded, and so the integral exists.

Example 9.2.18: Let 𝑥, 𝑦 ∈ ℝ𝑛 be two points and write [𝑥, 𝑦] as the straight line segment
between the two points 𝑥 and 𝑦. Parametrize [𝑥, 𝑦] by 𝛾(𝑡) B (1 − 𝑡)𝑥 + 𝑡𝑦 for 𝑡 running
between 0 and 1. See  Figure 9.8 . Then 𝛾 ′(𝑡) = 𝑦 − 𝑥, and therefore

ℓ
([𝑥, 𝑦]) = ∫

[𝑥,𝑦]
𝑑𝑠 =

∫ 1

0
∥𝑦 − 𝑥∥ 𝑑𝑡 = ∥𝑦 − 𝑥∥.

The length of [𝑥, 𝑦] is the standard euclidean distance between 𝑥 and 𝑦, justifying the name.

C = 0
G

C = 1
H[G, H]

Figure 9.8: Straight path between 𝑥 and 𝑦 parametrized by (1 − 𝑡)𝑥 + 𝑡𝑦.

A simple piecewise smooth path 𝛾 : [0, 𝑟] → ℝ𝑛 is said to be an arc-length parametrization
if for all 𝑡 ∈ [0, 𝑟], we have

ℓ
(
𝛾
([0, 𝑡]) ) = 𝑡.

If 𝛾 is smooth, then ∫ 𝑡

0
𝑑𝜏 = 𝑡 = ℓ

(
𝛾
([0, 𝑡]) ) = ∫ 𝑡

0
∥𝛾 ′(𝜏)∥ 𝑑𝜏

for all 𝑡, which means that ∥𝛾 ′(𝑡)∥ = 1 for all 𝑡. Similarly for piecewise smooth 𝛾, we get
∥𝛾 ′(𝑡)∥ = 1 for all 𝑡 where the derivative exists. So you can think of such a parametrization
as moving around your curve at speed 1. If 𝛾 : [0, 𝑟] → ℝ𝑛 is an arclength parametrization,
it is common to use 𝑠 as the variable as

∫
𝛾
𝑓 𝑑𝑠 =

∫ 𝑟
0 𝑓

(
𝛾(𝑠)) 𝑑𝑠.

9.2.4 Exercises
Exercise 9.2.1: Show that if 𝜑 : [𝑎, 𝑏] → ℝ𝑛 is a piecewise smooth path as we defined it, then 𝜑 is a
continuous function.

Exercise 9.2.2: Finish the proof of  Proposition 9.2.6 for orientation reversing reparametrizations.
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Exercise 9.2.3: Prove  Proposition 9.2.10 .

Exercise 9.2.4: Finish the proof of  Proposition 9.2.12 for

a) orientation reversing reparametrizations, and

b) piecewise smooth paths and reparametrizations.

Exercise 9.2.5: Finish the proof of  Proposition 9.2.15 for

a) orientation reversing reparametrizations, and

b) piecewise smooth paths and reparametrizations.

Exercise 9.2.6: Suppose 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is a piecewise smooth path, and 𝑓 is a continuous function defined
on the image 𝛾

([𝑎, 𝑏]) . Provide a definition of
∫
𝛾
𝑓 𝑑𝑠.

Exercise 9.2.7: Directly using the definitions compute:

a) The arc-length of the unit square from  Example 9.2.2 using the given parametrization.

b) The arc-length of the unit circle using the parametrization 𝛾 : [0, 1] → ℝ2, 𝛾(𝑡) B (
cos(2𝜋𝑡), sin(2𝜋𝑡)) .

c) The arc-length of the unit circle using the parametrization 𝛽 : [0, 2𝜋] → ℝ2, 𝛽(𝑡) B (
cos(𝑡), sin(𝑡)) .

Note: Feel free to use what you know about sine and cosine from calculus.

Exercise 9.2.8: Suppose 𝛾 : [0, 1] → ℝ𝑛 is a smooth path, and 𝜔 is a one-form defined on the image 𝛾
([𝑎, 𝑏]) .

For 𝑟 ∈ [0, 1], let 𝛾𝑟 : [0, 𝑟] → ℝ𝑛 be defined as simply the restriction of 𝛾 to [0, 𝑟]. Show that the function
ℎ(𝑟) B

∫
𝛾𝑟
𝜔 is a continuously differentiable function on [0, 1].

Exercise 9.2.9: Suppose 𝛾 : [𝑎, 𝑏] → ℝ𝑛 is a smooth path. Show that there exists an 𝜖 > 0 and a smooth
function �̃� : (𝑎 − 𝜖, 𝑏 + 𝜖) → ℝ𝑛 with �̃�(𝑡) = 𝛾(𝑡) for all 𝑡 ∈ [𝑎, 𝑏] and �̃� ′(𝑡) ≠ 0 for all 𝑡 ∈ (𝑎 − 𝜖, 𝑏 + 𝜖).
That is, prove that a smooth path extends some small distance past the end points.

Exercise 9.2.10: Suppose 𝛼 : [𝑎, 𝑏] → ℝ𝑛 and 𝛽 : [𝑐, 𝑑] → ℝ𝑛 are piecewise smooth paths such that
Γ B 𝛼

([𝑎, 𝑏]) = 𝛽
([𝑐, 𝑑]) . Show that there exist finitely many points {𝑝1 , 𝑝2 , . . . , 𝑝𝑘} ∈ Γ, such that the

sets 𝛼−1 ({𝑝1 , 𝑝2 , . . . , 𝑝𝑘}
)

and 𝛽−1 ({𝑝1 , 𝑝2 , . . . , 𝑝𝑘}
)

are partitions of [𝑎, 𝑏] and [𝑐, 𝑑] such that on every
subinterval the paths are smooth (that is, they are partitions as in the definition of piecewise smooth path).

Exercise 9.2.11:

a) Suppose 𝛾 : [𝑎, 𝑏] → ℝ𝑛 and 𝛼 : [𝑐, 𝑑] → ℝ𝑛 are two smooth paths that are one-to-one and 𝛾
([𝑎, 𝑏]) =

𝛼
([𝑐, 𝑑]) . Then there exists a smooth reparametrization ℎ : [𝑎, 𝑏] → [𝑐, 𝑑] such that 𝛾 = 𝛼 ◦ ℎ.

Hint 1: It is not hard to show ℎ exists. The trick is to prove it is continuously differentiable with a nonzero
derivative. Apply the implicit function theorem though it may at first seem the dimensions are wrong.
Hint 2: Worry about derivative of ℎ in (𝑎, 𝑏) first.

b) Prove the same thing as part a, but now for simple closed paths with the further assumption that
𝛾(𝑎) = 𝛾(𝑏) = 𝛼(𝑐) = 𝛼(𝑑).

c) Prove parts a) and b) but for piecewise smooth paths, obtaining piecewise smooth reparametrizations.
Hint: The trick is to find two partitions such that when restricted to a subinterval of the partition both
paths have the same image and are smooth, see the exercise above.
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Exercise 9.2.12: Suppose 𝛼 : [𝑎, 𝑏] → ℝ𝑛 and 𝛽 : [𝑏, 𝑐] → ℝ𝑛 are piecewise smooth paths with 𝛼(𝑏) = 𝛽(𝑏).
Let 𝛾 : [𝑎, 𝑐] → ℝ𝑛 be defined by

𝛾(𝑡) B
{
𝛼(𝑡) if 𝑡 ∈ [𝑎, 𝑏],
𝛽(𝑡) if 𝑡 ∈ (𝑏, 𝑐].

Show that 𝛾 is a piecewise smooth path, and that if 𝜔 is a one-form defined on the curve given by 𝛾, then∫
𝛾
𝜔 =

∫
𝛼
𝜔 +

∫
𝛽
𝜔.

Exercise 9.2.13: Suppose 𝛾 : [𝑎, 𝑏] → ℝ𝑛 and 𝛽 : [𝑐, 𝑑] → ℝ𝑛 are two simple closed piecewise smooth
paths. That is, 𝛾(𝑎) = 𝛾(𝑏) and 𝛽(𝑐) = 𝛽(𝑑) and the restrictions 𝛾 |[𝑎,𝑏) and 𝛽 |[𝑐,𝑑) are one-to-one. Suppose
Γ = 𝛾

([𝑎, 𝑏]) = 𝛽
([𝑐, 𝑑]) and 𝜔 is a one-form defined on Γ ⊂ ℝ𝑛 . Show that either∫

𝛾
𝜔 =

∫
𝛽
𝜔, or

∫
𝛾
𝜔 = −

∫
𝛽
𝜔.

In particular, the notation
∫
Γ
𝜔 makes sense if we indicate the direction in which the integral is evaluated.

Hint: See previous three exercises.

Exercise 9.2.14: Suppose 𝛾 : [𝑎, 𝑏] → ℝ𝑛 and 𝛽 : [𝑐, 𝑑] → ℝ𝑛 are two piecewise smooth paths which are
one-to-one except at finitely many points. That is, there exist finite sets 𝑆 ⊂ [𝑎, 𝑏] and 𝑇 ⊂ [𝑐, 𝑑] such that
𝛾 |[𝑎,𝑏]\𝑆 and 𝛽 |[𝑐,𝑑]\𝑇 are one-to-one. Suppose Γ = 𝛾

([𝑎, 𝑏]) = 𝛽
([𝑐, 𝑑]) and 𝜔 is a one-form defined on

Γ ⊂ ℝ𝑛 . Show that either ∫
𝛾
𝜔 =

∫
𝛽
𝜔, or

∫
𝛾
𝜔 = −

∫
𝛽
𝜔.

In particular, the notation
∫
Γ
𝜔 makes sense if we indicate the direction in which the integral is evaluated.

Hint: Same hint as the last exercise.

Exercise 9.2.15: Define 𝛾 : [0, 1] → ℝ2 by 𝛾(𝑡) B
(
𝑡3 sin(1/𝑡), 𝑡 (3𝑡2 sin(1/𝑡) − 𝑡 cos(1/𝑡))2

)
for 𝑡 ≠ 0 and

𝛾(0) = (0, 0). Show that

a) 𝛾 is continuously differentiable on [0, 1].
b) Show that there exists an infinite sequence {𝑡𝑛}∞𝑛=1 in [0, 1] converging to 0, such that 𝛾 ′(𝑡𝑛) = (0, 0).
c) Show that the points 𝛾(𝑡𝑛) lie on the line 𝑦 = 0 and such that the 𝑥-coordinate of 𝛾(𝑡𝑛) alternates between

positive and negative (if they do not alternate you only found a subsequence, you need to find them all).

d) Show that there is no piecewise smooth 𝛼 whose image equals 𝛾
([0, 1]) . Hint: Look at part c) and show

that 𝛼′ must be zero where it reaches the origin.

e) (Computer) If you know a plotting software that allows you to plot parametric curves, make a plot of
the curve, but only for 𝑡 in the range [0, 0.1] otherwise you will not see the behavior. In particular, you
should notice that 𝛾

([0, 1]) has infinitely many “corners” near the origin.

Note: Feel free to use what you know about sine and cosine from calculus.
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9.3 Path independence
Note: 2 lectures

9.3.1 Path independent integrals

Let 𝑈 ⊂ ℝ𝑛 be a set and 𝜔 a one-form defined on 𝑈 . The integral of 𝜔 is said to be path
independent if for every pair of points 𝑥, 𝑦 ∈ 𝑈 and every pair of piecewise smooth paths
𝛾 : [𝑎, 𝑏] → 𝑈 and 𝛽 : [𝑐, 𝑑] → 𝑈 such that 𝛾(𝑎) = 𝛽(𝑐) = 𝑥 and 𝛾(𝑏) = 𝛽(𝑑) = 𝑦, we have∫

𝛾
𝜔 =

∫
𝛽
𝜔.

In this case, we simply write ∫ 𝑦

𝑥
𝜔 B

∫
𝛾
𝜔 =

∫
𝛽
𝜔.

Not every one-form gives a path independent integral. Most do not.

Example 9.3.1: Let 𝛾 : [0, 1] → ℝ2 be the path 𝛾(𝑡) B (𝑡 , 0) going from (0, 0) to (1, 0). Let
𝛽 : [0, 1] → ℝ2 be the path 𝛽(𝑡) B (

𝑡 , (1 − 𝑡)𝑡) also going between the same points. Then∫
𝛾
𝑦 𝑑𝑥 =

∫ 1

0
𝛾2(𝑡)𝛾 ′

1 (𝑡) 𝑑𝑡 =
∫ 1

0
0(1) 𝑑𝑡 = 0,∫

𝛽
𝑦 𝑑𝑥 =

∫ 1

0
𝛽2(𝑡)𝛽′1(𝑡) 𝑑𝑡 =

∫ 1

0
(1 − 𝑡)𝑡(1) 𝑑𝑡 = 1

6 .

The integral of 𝑦 𝑑𝑥 is not path independent. In particular,
∫ (1,0)
(0,0) 𝑦 𝑑𝑥 does not make sense.

Definition 9.3.2. Let𝑈 ⊂ ℝ𝑛 be an open set and 𝑓 : 𝑈 → ℝ a continuously differentiable
function. The one-form

𝑑𝑓 B
𝜕 𝑓
𝜕𝑥1

𝑑𝑥1 + 𝜕 𝑓
𝜕𝑥2

𝑑𝑥2 + · · · + 𝜕 𝑓
𝜕𝑥𝑛

𝑑𝑥𝑛

is called the total derivative of 𝑓 .
An open set 𝑈 ⊂ ℝ𝑛 is said to be path connected 

*
 if for every two points 𝑥 and 𝑦 in 𝑈 ,

there exists a piecewise smooth path starting at 𝑥 and ending at 𝑦.

We leave as an exercise that every connected open set is path connected.

*Normally only a continuous path is used in this definition, but for open sets the two definitions are
equivalent. See the exercises.
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Proposition 9.3.3. Let𝑈 ⊂ ℝ𝑛 be a path connected open set and 𝜔 a one-form defined on𝑈 . Then∫ 𝑦
𝑥

𝜔 is path independent (for all 𝑥, 𝑦 ∈ 𝑈) if and only if there exists a continuously differentiable
𝑓 : 𝑈 → ℝ such that 𝜔 = 𝑑𝑓 .

In fact, if such an 𝑓 exists, then for every pair of points 𝑥, 𝑦 ∈ 𝑈∫ 𝑦

𝑥
𝜔 = 𝑓 (𝑦) − 𝑓 (𝑥).

In other words, if we fix 𝑝 ∈ 𝑈 , then 𝑓 (𝑥) = 𝐶 +
∫ 𝑥
𝑝
𝜔 for some constant 𝐶.

Proof. First suppose that the integral is path independent. Pick 𝑝 ∈ 𝑈 . Since 𝑈 is path
connected, there exists a path from 𝑝 to every 𝑥 ∈ 𝑈 . Define

𝑓 (𝑥) B
∫ 𝑥

𝑝
𝜔.

Write 𝜔 = 𝜔1 𝑑𝑥1 + 𝜔2 𝑑𝑥2 + · · · + 𝜔𝑛 𝑑𝑥𝑛 . We wish to show that for every 𝑗 = 1, 2, . . . , 𝑛,
the partial derivative 𝜕 𝑓

𝜕𝑥 𝑗
exists and is equal to 𝜔 𝑗 .

Let 𝑒 𝑗 be an arbitrary standard basis vector, and ℎ a nonzero real number. Compute

𝑓 (𝑥 + ℎ𝑒 𝑗) − 𝑓 (𝑥)
ℎ

=
1
ℎ

(∫ 𝑥+ℎ𝑒 𝑗

𝑝
𝜔 −

∫ 𝑥

𝑝
𝜔

)
=

1
ℎ

∫ 𝑥+ℎ𝑒 𝑗

𝑥
𝜔,

which follows by  Proposition 9.2.10 and path independence as
∫ 𝑥+ℎ𝑒 𝑗
𝑝

𝜔 =
∫ 𝑥
𝑝
𝜔 +

∫ 𝑥+ℎ𝑒 𝑗
𝑥

𝜔,
because we pick a path from 𝑝 to 𝑥 + ℎ𝑒 𝑗 that also happens to pass through 𝑥, and then we
cut this path in two, see  Figure 9.9 .

𝑒 𝑗

𝑝

𝑥 𝑥 + ℎ𝑒 𝑗

Figure 9.9: Using path independence in computing the partial derivative.

Since 𝑈 is open, suppose ℎ is so small so that all points of distance |ℎ | or less from 𝑥
are in 𝑈 . As the integral is path independent, pick the simplest path possible from 𝑥 to
𝑥 + ℎ𝑒 𝑗 , that is 𝛾(𝑡) B 𝑥 + 𝑡ℎ𝑒 𝑗 for 𝑡 ∈ [0, 1]. The path is in𝑈 . Notice 𝛾 ′(𝑡) = ℎ𝑒 𝑗 has only
one nonzero component and that is the 𝑗th component, which is ℎ. Therefore,

1
ℎ

∫ 𝑥+ℎ𝑒 𝑗

𝑥
𝜔 =

1
ℎ

∫
𝛾
𝜔 =

1
ℎ

∫ 1

0
𝜔 𝑗(𝑥 + 𝑡ℎ𝑒 𝑗)ℎ 𝑑𝑡 =

∫ 1

0
𝜔 𝑗(𝑥 + 𝑡ℎ𝑒 𝑗) 𝑑𝑡.
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We wish to take the limit as ℎ → 0. The function 𝜔 𝑗 is continuous at 𝑥. Given 𝜖 > 0,
suppose ℎ is small enough so that

��𝜔 𝑗(𝑥) − 𝜔 𝑗(𝑦)
�� < 𝜖 whenever ∥𝑥 − 𝑦∥ ≤ |ℎ |. Thus,��𝜔 𝑗(𝑥 + 𝑡ℎ𝑒 𝑗) − 𝜔 𝑗(𝑥)

�� < 𝜖 for all 𝑡 ∈ [0, 1], and we estimate����∫ 1

0
𝜔 𝑗(𝑥 + 𝑡ℎ𝑒 𝑗) 𝑑𝑡 − 𝜔 𝑗(𝑥)

���� = ����∫ 1

0

(
𝜔 𝑗(𝑥 + 𝑡ℎ𝑒 𝑗) − 𝜔 𝑗(𝑥)

)
𝑑𝑡

���� ≤ 𝜖.

That is,

lim
ℎ→0

𝑓 (𝑥 + ℎ𝑒 𝑗) − 𝑓 (𝑥)
ℎ

= 𝜔 𝑗(𝑥).
All partials of 𝑓 exist and are equal to 𝜔 𝑗 , which are continuous functions. Thus, 𝑓 is
continuously differentiable, and furthermore 𝑑𝑓 = 𝜔.

For the other direction, suppose a continuously differentiable 𝑓 exists such that 𝑑𝑓 = 𝜔.
Take a smooth path 𝛾 : [𝑎, 𝑏] → 𝑈 such that 𝛾(𝑎) = 𝑥 and 𝛾(𝑏) = 𝑦. Then∫

𝛾
𝑑𝑓 =

∫ 𝑏

𝑎

(
𝜕 𝑓
𝜕𝑥1

(
𝛾(𝑡))𝛾 ′

1 (𝑡) +
𝜕 𝑓
𝜕𝑥2

(
𝛾(𝑡))𝛾 ′

2 (𝑡) + · · · + 𝜕 𝑓
𝜕𝑥𝑛

(
𝛾(𝑡))𝛾 ′

𝑛(𝑡)
)
𝑑𝑡

=
∫ 𝑏

𝑎

𝑑
𝑑𝑡

[
𝑓
(
𝛾(𝑡)) ] 𝑑𝑡

= 𝑓 (𝑦) − 𝑓 (𝑥).
The value of the integral only depends on 𝑥 and 𝑦, not the path taken. Therefore the
integral is path independent. We leave checking this fact for a piecewise smooth path as
an exercise. □

Path independence can be stated more neatly in terms of integrals over closed paths.
Proposition 9.3.4. Let 𝑈 ⊂ ℝ𝑛 be a path connected open set and 𝜔 a one-form defined on 𝑈 .
Then 𝜔 = 𝑑𝑓 for some continuously differentiable 𝑓 : 𝑈 → ℝ if and only if∫

𝛾
𝜔 = 0 for every piecewise smooth closed path 𝛾 : [𝑎, 𝑏] → 𝑈.

Proof. Suppose 𝜔 = 𝑑𝑓 and let 𝛾 be a piecewise smooth closed path. Since 𝛾(𝑎) = 𝛾(𝑏) for
a closed path, the previous proposition says∫

𝛾
𝜔 = 𝑓

(
𝛾(𝑏)) − 𝑓

(
𝛾(𝑎)) = 0.

Now suppose that for every piecewise smooth closed path 𝛾,
∫
𝛾
𝜔 = 0. Let 𝑥, 𝑦 be two

points in𝑈 and let 𝛼 : [0, 1] → 𝑈 and 𝛽 : [0, 1] → 𝑈 be two piecewise smooth paths with
𝛼(0) = 𝛽(0) = 𝑥 and 𝛼(1) = 𝛽(1) = 𝑦. See  Figure 9.10 .

Define 𝛾 : [0, 2] → 𝑈 by

𝛾(𝑡) B
{
𝛼(𝑡) if 𝑡 ∈ [0, 1],
𝛽(2 − 𝑡) if 𝑡 ∈ (1, 2].
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𝑥

𝛼 𝑦

𝛽

Figure 9.10: Two paths from 𝑥 to 𝑦.

This path is piecewise smooth. This is due to the fact that 𝛾 |[0,1](𝑡) = 𝛼(𝑡) and 𝛾 |[1,2](𝑡) =
𝛽(2− 𝑡) (note especially 𝛾(1) = 𝛼(1) = 𝛽(2−1)). It is also closed as 𝛾(0) = 𝛼(0) = 𝛽(0) = 𝛾(2).
So

0 =
∫
𝛾
𝜔 =

∫
𝛼
𝜔 −

∫
𝛽
𝜔.

This follows first by  Proposition 9.2.10 , and then noticing that the second part is 𝛽 traveled
backwards so that we get minus the 𝛽 integral. Thus the integral of 𝜔 on 𝑈 is path
independent. □

However one states path independence, it is often a difficult criterion to check, you have
to check something “for all paths.” There is a local criterion, a differential equation, that
guarantees path independence, or in other words it guarantees an antiderivative 𝑓 whose
total derivative is the given one-form 𝜔. Since the criterion is local, we generally only find
the function 𝑓 locally. We can find the antiderivative in every so-called simply connected
domain, which informally is a connected open set where every path between two points
can be “continuously deformed” into any other path between those two points. But to
make matters simple, we prove the result for so-called star-shaped domains, which is often
good enough. As a bonus the proof in the star-shaped case constructs the antiderivative
explicitly. As balls are star-shaped we then have the result locally.

Definition 9.3.5. Let𝑈 ⊂ ℝ𝑛 be an open set and 𝑝 ∈ 𝑈 . We say𝑈 is a star-shaped domain
with respect to 𝑝 if for every other point 𝑥 ∈ 𝑈 , the line segment [𝑝, 𝑥] is in 𝑈 , that is, if
(1 − 𝑡)𝑝 + 𝑡𝑥 ∈ 𝑈 for all 𝑡 ∈ [0, 1]. If we say simply star-shaped, then𝑈 is star-shaped with
respect to some 𝑝 ∈ 𝑈 . See  Figure 9.11 .

𝑝
𝑥

Figure 9.11: A star-shaped domain with respect to 𝑝.
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Notice the difference between star-shaped and convex. Convex implies star-shaped, but
a star-shaped domain need not be convex.

Theorem 9.3.6 (Poincaré lemma). Let 𝑈 ⊂ ℝ𝑛 be a star-shaped domain and 𝜔 a continuously
differentiable one-form defined on𝑈 . That is, if

𝜔 = 𝜔1 𝑑𝑥1 + 𝜔2 𝑑𝑥2 + · · · + 𝜔𝑛 𝑑𝑥𝑛 ,

then 𝜔1, 𝜔2, . . . , 𝜔𝑛 are continuously differentiable functions. Suppose that for every 𝑗 and 𝑘

𝜕𝜔 𝑗

𝜕𝑥𝑘
=

𝜕𝜔𝑘

𝜕𝑥 𝑗
,

then there exists a twice continuously differentiable function 𝑓 : 𝑈 → ℝ such that 𝑑𝑓 = 𝜔.

The condition on the derivatives of 𝜔 is precisely the condition that the second partial
derivatives commute. That is, if 𝑑𝑓 = 𝜔, and 𝑓 is twice continuously differentiable, then

𝜕𝜔 𝑗

𝜕𝑥𝑘
=

𝜕2 𝑓
𝜕𝑥𝑘𝜕𝑥 𝑗

=
𝜕2 𝑓

𝜕𝑥 𝑗𝜕𝑥𝑘
=

𝜕𝜔𝑘

𝜕𝑥 𝑗
.

The condition is clearly necessary. The Poincaré lemma says that it is sufficient for a
star-shaped𝑈 .

Proof. Suppose𝑈 is a star-shaped domain with respect to 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) ∈ 𝑈 . Given
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑈 , define the path 𝛾 : [0, 1] → 𝑈 as 𝛾(𝑡) B (1−𝑡)𝑝+𝑡𝑥, so 𝛾 ′(𝑡) = 𝑥−𝑝.
Let

𝑓 (𝑥) B
∫
𝛾
𝜔 =

∫ 1

0

(
𝑛∑
𝑘=1

𝜔𝑘
((1 − 𝑡)𝑝 + 𝑡𝑥) (𝑥𝑘 − 𝑝𝑘)) 𝑑𝑡.

We differentiate in 𝑥 𝑗 under the integral, which is allowed as everything, including the
partials, is continuous:

𝜕 𝑓
𝜕𝑥 𝑗

(𝑥) =
∫ 1

0

((
𝑛∑
𝑘=1

𝜕𝜔𝑘

𝜕𝑥 𝑗

((1 − 𝑡)𝑝 + 𝑡𝑥) 𝑡(𝑥𝑘 − 𝑝𝑘)) + 𝜔 𝑗
((1 − 𝑡)𝑝 + 𝑡𝑥)) 𝑑𝑡

=
∫ 1

0

((
𝑛∑
𝑘=1

𝜕𝜔 𝑗

𝜕𝑥𝑘

((1 − 𝑡)𝑝 + 𝑡𝑥) 𝑡(𝑥𝑘 − 𝑝𝑘)) + 𝜔 𝑗
((1 − 𝑡)𝑝 + 𝑡𝑥)) 𝑑𝑡

=
∫ 1

0

𝑑
𝑑𝑡

[
𝑡𝜔 𝑗

((1 − 𝑡)𝑝 + 𝑡𝑥) ] 𝑑𝑡
= 𝜔 𝑗(𝑥).

And this is precisely what we wanted. □
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Example 9.3.7: Without some hypothesis on𝑈 the theorem is not true. Let

𝜔(𝑥, 𝑦) B −𝑦
𝑥2 + 𝑦2 𝑑𝑥 +

𝑥
𝑥2 + 𝑦2 𝑑𝑦

be defined on ℝ2 \ {0}. Then

𝜕

𝜕𝑦

[ −𝑦
𝑥2 + 𝑦2

]
=

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
=

𝜕

𝜕𝑥

[
𝑥

𝑥2 + 𝑦2

]
.

However, there is no 𝑓 : ℝ2 \ {0} → ℝ such that 𝑑𝑓 = 𝜔. In  Example 9.2.11 we integrated
from (1, 0) to (1, 0) along the unit circle counterclockwise, that is 𝛾(𝑡) = (

cos(𝑡), sin(𝑡)) for
𝑡 ∈ [0, 2𝜋], and we found the integral to be 2𝜋. We would have gotten 0 if the integral was
path independent, or in other words if there would exist an 𝑓 such that 𝑑𝑓 = 𝜔.

9.3.2 Vector fields
A common object to integrate is a so-called vector field.

Definition 9.3.8. Let𝑈 ⊂ ℝ𝑛 be a set. A continuous function 𝑣 : 𝑈 → ℝ𝑛 is called a vector
field. Write 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛).

Given a smooth path 𝛾 : [𝑎, 𝑏] → ℝ𝑛 with 𝛾
([𝑎, 𝑏]) ⊂ 𝑈 we define the path integral of

the vectorfield 𝑣 as ∫
𝛾
𝑣 · 𝑑𝛾 B

∫ 𝑏

𝑎
𝑣
(
𝛾(𝑡)) · 𝛾 ′(𝑡) 𝑑𝑡,

where the dot in the definition is the standard dot product. The definition for a piecewise
smooth path is, again, done by integrating over each smooth interval and adding the
results.

Unraveling the definition, we find that∫
𝛾
𝑣 · 𝑑𝛾 =

∫
𝛾
𝑣1 𝑑𝑥1 + 𝑣2 𝑑𝑥2 + · · · + 𝑣𝑛 𝑑𝑥𝑛 .

What we know about integration of one-forms carries over to the integration of vector
fields. For example, path independence for integration of vector fields is simply that∫ 𝑦

𝑥
𝑣 · 𝑑𝛾

is path independent if and only if 𝑣 = ∇ 𝑓 , that is, 𝑣 is the gradient of a function. The
function 𝑓 is then called a potential for 𝑣.

A vector field 𝑣 whose path integrals are path independent is called a conservative vector
field. The rationale for the naming is that such vector fields arise in physical systems where
a certain quantity, the energy, is conserved.
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9.3.3 Exercises

Exercise 9.3.1: Find an 𝑓 : ℝ2 → ℝ such that 𝑑𝑓 = 𝑥𝑒𝑥
2+𝑦2

𝑑𝑥 + 𝑦𝑒𝑥2+𝑦2
𝑑𝑦.

Exercise 9.3.2: Find an 𝜔2 : ℝ2 → ℝ such that there exists a continuously differentiable 𝑓 : ℝ2 → ℝ for
which 𝑑𝑓 = 𝑒𝑥𝑦 𝑑𝑥 + 𝜔2 𝑑𝑦.

Exercise 9.3.3: Finish the proof of  Proposition 9.3.3 , that is, we only proved the second direction for a smooth
path, not a piecewise smooth path.

Exercise 9.3.4: Show that a star-shaped domain𝑈 ⊂ ℝ𝑛 is path connected.

Exercise 9.3.5: Show that 𝑈 B ℝ2 \ {(𝑥, 𝑦) ∈ ℝ2 : 𝑥 ≤ 0, 𝑦 = 0} is star-shaped and find all points
(𝑥0 , 𝑦0) ∈ 𝑈 such that𝑈 is star-shaped with respect to (𝑥0 , 𝑦0).

Exercise 9.3.6: Suppose𝑈1 and𝑈2 are two open sets in ℝ𝑛 with𝑈1 ∩𝑈2 nonempty and path connected.
Suppose there exists an 𝑓1 : 𝑈1 → ℝ and 𝑓2 : 𝑈2 → ℝ, both twice continuously differentiable such that
𝑑𝑓1 = 𝑑𝑓2 on𝑈1 ∩𝑈2. Then there exists a twice differentiable function 𝐹 : 𝑈1 ∪𝑈2 → ℝ such that 𝑑𝐹 = 𝑑𝑓1
on𝑈1 and 𝑑𝐹 = 𝑑𝑓2 on𝑈2.

Exercise 9.3.7 (Hard): Let 𝛾 : [𝑎, 𝑏] → ℝ𝑛 be a simple nonclosed piecewise smooth path (so 𝛾 is one-to-one).
Suppose 𝜔 is a continuously differentiable one-form defined on some open set 𝑉 with 𝛾

([𝑎, 𝑏]) ⊂ 𝑉 and
𝜕𝜔𝑗

𝜕𝑥𝑘
= 𝜕𝜔𝑘

𝜕𝑥 𝑗
for all 𝑗 and 𝑘. Prove that there exists an open set 𝑈 with 𝛾

([𝑎, 𝑏]) ⊂ 𝑈 ⊂ 𝑉 and a twice
continuously differentiable function 𝑓 : 𝑈 → ℝ such that 𝑑𝑓 = 𝜔.
Hint 1: 𝛾

([𝑎, 𝑏]) is compact.
Hint 2: Show that you can cover the curve by finitely many balls in sequence so that the 𝑘th ball only
intersects the (𝑘 − 1)th ball.
Hint 3: See previous exercise.

Exercise 9.3.8:

a) Show that a connected open set 𝑈 ⊂ ℝ𝑛 is path connected. Hint: Start with a point 𝑥 ∈ 𝑈 , and let
𝑈𝑥 ⊂ 𝑈 is the set of points that are reachable by a path from 𝑥. Show that𝑈𝑥 and𝑈 \𝑈𝑥 are both open,
and since𝑈𝑥 is nonempty (𝑥 ∈ 𝑈𝑥) it must be that𝑈𝑥 = 𝑈 .

b) Prove the converse, that is, an open  

*
 path connected set𝑈 ⊂ ℝ𝑛 is connected. Hint: For contradiction

assume there exist two open and disjoint nonempty open sets and then assume there is a piecewise smooth
(and therefore continuous) path between a point in one to a point in the other.

Exercise 9.3.9: Usually path connectedness is defined using continuous paths rather than piecewise smooth
paths. Prove that for open subsets of ℝ𝑛 the definitions are equivalent, in other words prove:
Suppose𝑈 ⊂ ℝ𝑛 is open and for every 𝑥, 𝑦 ∈ 𝑈 , there exists a continuous function 𝛾 : [𝑎, 𝑏] → 𝑈 such that
𝛾(𝑎) = 𝑥 and 𝛾(𝑏) = 𝑦. Then𝑈 is path connected, that is, there is a piecewise smooth path in𝑈 from 𝑥 to 𝑦.

*If the definition of “path connected” is as in the next exercise, “open” would not be needed for this part.
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Exercise 9.3.10 (Hard): Take

𝜔(𝑥, 𝑦) = −𝑦
𝑥2 + 𝑦2 𝑑𝑥 +

𝑥
𝑥2 + 𝑦2 𝑑𝑦

defined on ℝ2 \ {(0, 0)}. Let 𝛾 : [𝑎, 𝑏] → ℝ2 \ {(0, 0)} be a closed piecewise smooth path. Let 𝑅 B {(𝑥, 𝑦) ∈
ℝ2 : 𝑥 ≤ 0 and 𝑦 = 0}. Suppose 𝑅 ∩ 𝛾

([𝑎, 𝑏]) is a finite set of 𝑘 points. Prove that∫
𝛾
𝜔 = 2𝜋ℓ

for some integer ℓ with |ℓ | ≤ 𝑘.
Hint 1: First prove that for a path 𝛽 that starts and end on 𝑅 but does not intersect it otherwise, you find that∫
𝛽
𝜔 is −2𝜋, 0, or 2𝜋.

Hint 2: You proved above that ℝ2 \ 𝑅 is star-shaped.
Note: The number ℓ is called the winding number it measures how many times does 𝛾 wind around the
origin in the clockwise direction.



Chapter 10

Multivariable Integral

10.1 Riemann integral over rectangles

Note: 2–3 lectures

As in  chapter 5 , we define the Riemann integral using the Darboux upper and lower
integrals. The ideas in this section are very similar to integration in one dimension. The
complication is mostly notational. The differences between one and several dimensions
will grow more pronounced in the sections following.

10.1.1 Rectangles and partitions

Definition 10.1.1. Let (𝑎1, 𝑎2, . . . , 𝑎𝑛) and (𝑏1, 𝑏2, . . . , 𝑏𝑛) be such that 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘. The
set [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × · · · × [𝑎𝑛 , 𝑏𝑛] is called a closed rectangle. In this setting it is sometimes
useful to allow 𝑎𝑘 = 𝑏𝑘 , in which case we think of [𝑎𝑘 , 𝑏𝑘] = {𝑎𝑘} as usual. If 𝑎𝑘 < 𝑏𝑘 for all
𝑘, then the set (𝑎1, 𝑏1) × (𝑎2, 𝑏2) × · · · × (𝑎𝑛 , 𝑏𝑛) is called an open rectangle.

For an open or closed rectangle 𝑅 B [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × · · · × [𝑎𝑛 , 𝑏𝑛] ⊂ ℝ𝑛 or 𝑅 B
(𝑎1, 𝑏1) × (𝑎2, 𝑏2) × · · · × (𝑎𝑛 , 𝑏𝑛) ⊂ ℝ𝑛 , we define the 𝑛-dimensional volume by

𝑉(𝑅) B (𝑏1 − 𝑎1)(𝑏2 − 𝑎2) · · · (𝑏𝑛 − 𝑎𝑛).

A partition 𝑃 of the closed rectangle 𝑅 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × · · · × [𝑎𝑛 , 𝑏𝑛] is given
by partitions 𝑃1, 𝑃2, . . . , 𝑃𝑛 of the intervals [𝑎1, 𝑏1], [𝑎2, 𝑏2], . . . , [𝑎𝑛 , 𝑏𝑛]. We write 𝑃 =
(𝑃1, 𝑃2, . . . , 𝑃𝑛). That is, for every 𝑘 = 1, 2, . . . , 𝑛 there is an integer ℓ𝑘 and a finite set of
numbers 𝑃𝑘 = {𝑥𝑘,0, 𝑥𝑘,1, 𝑥𝑘,2, . . . , 𝑥𝑘,ℓ𝑘 } such that

𝑎𝑘 = 𝑥𝑘,0 < 𝑥𝑘,1 < 𝑥𝑘,2 < · · · < 𝑥𝑘,ℓ𝑘−1 < 𝑥𝑘,ℓ𝑘 = 𝑏𝑘 .

Picking a set of 𝑛 integers 𝑗1, 𝑗2, . . . , 𝑗𝑛 where 𝑗𝑘 ∈ {1, 2, . . . , ℓ𝑘} we get the subrectangle

[𝑥1, 𝑗1−1 , 𝑥1, 𝑗1] × [𝑥2, 𝑗2−1 , 𝑥2, 𝑗2] × · · · × [𝑥𝑛,𝑗𝑛−1 , 𝑥𝑛,𝑗𝑛 ].
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𝑥1,0 𝑥1,1 𝑥1,2 𝑥1,3
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𝑅2 𝑅3

𝑅9𝑅8
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Figure 10.1: Example partition of a rectangle in ℝ2. The order of the subrectangles is not
important.

We order the subrectangles somehow and we say {𝑅1, 𝑅2, . . . , 𝑅𝑁 } are the subrectangles
corresponding to the partition 𝑃 of 𝑅, or more simply, subrectangles of 𝑃. In other words,
we subdivided the original rectangle into many smaller subrectangles. See  Figure 10.1 .

Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle and let 𝑓 : 𝑅 → ℝ be a bounded function. Let 𝑃 be a
partition of 𝑅 with 𝑁 subrectangles 𝑅1, 𝑅2, . . . , 𝑅𝑁 . Define

𝑚𝑖 B inf
{
𝑓 (𝑥) : 𝑥 ∈ 𝑅𝑖

}
, 𝑀𝑖 B sup

{
𝑓 (𝑥) : 𝑥 ∈ 𝑅𝑖

}
,

𝐿(𝑃, 𝑓 ) B
𝑁∑
𝑖=1

𝑚𝑖𝑉(𝑅𝑖), 𝑈(𝑃, 𝑓 ) B
𝑁∑
𝑖=1

𝑀𝑖𝑉(𝑅𝑖).

We call 𝐿(𝑃, 𝑓 ) the lower Darboux sum and𝑈(𝑃, 𝑓 ) the upper Darboux sum.

To see the relationship to the Δ notation from the one-variable definition, note that
when

𝑅𝑖 = [𝑥1, 𝑗1−1 , 𝑥1, 𝑗1] × [𝑥2, 𝑗2−1 , 𝑥2, 𝑗2] × · · · × [𝑥𝑛,𝑗𝑛−1 , 𝑥𝑛,𝑗𝑛 ],
then

𝑉(𝑅𝑖) = (𝑥1, 𝑗1 − 𝑥1, 𝑗1−1)(𝑥2, 𝑗2 − 𝑥2, 𝑗2−1) · · · (𝑥𝑛,𝑗𝑛 − 𝑥𝑛,𝑗𝑛−1) = Δ𝑥1, 𝑗1Δ𝑥2, 𝑗2 · · ·Δ𝑥𝑛,𝑗𝑛 .

It is not difficult to see (left to reader) that the subrectangles of 𝑃 cover our original 𝑅, and
their volumes sum to that of 𝑅. That is,

𝑅 =
𝑁⋃
𝑘=1

𝑅𝑘 , and 𝑉(𝑅) =
𝑁∑
𝑘=1

𝑉(𝑅𝑘).

The indexing in the definition may be complicated, but fortunately we do not need to
go back directly to the definition often.
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Proposition 10.1.2. Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle and 𝑓 : 𝑅 → ℝ is a bounded function.
Let 𝑚, 𝑀 ∈ ℝ be such that for all 𝑥 ∈ 𝑅, we have 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀. Then for every partition 𝑃 of 𝑅,

𝑚𝑉(𝑅) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) ≤ 𝑀𝑉(𝑅).

Proof. Let 𝑃 be a partition of 𝑅. For all 𝑖, we have 𝑚 ≤ 𝑚𝑖 ≤ 𝑀𝑖 ≤ 𝑀. Also
∑𝑁
𝑖=1𝑉(𝑅𝑖) =

𝑉(𝑅). Therefore,

𝑚𝑉(𝑅) = 𝑚

(
𝑁∑
𝑖=1

𝑉(𝑅𝑖)
)
=

𝑁∑
𝑖=1

𝑚𝑉(𝑅𝑖) ≤
𝑁∑
𝑖=1

𝑚𝑖 𝑉(𝑅𝑖) ≤

≤
𝑁∑
𝑖=1

𝑀𝑖 𝑉(𝑅𝑖) ≤
𝑁∑
𝑖=1

𝑀𝑉(𝑅𝑖) = 𝑀

(
𝑁∑
𝑖=1

𝑉(𝑅𝑖)
)
= 𝑀𝑉(𝑅). □

10.1.2 Upper and lower integrals
By  Proposition 10.1.2 , the set of upper and lower Darboux sums are bounded sets and we
can take their infima and suprema. As in one variable, we make the following definition.

Definition 10.1.3. Let 𝑓 : 𝑅 → ℝ be a bounded function on a closed rectangle 𝑅 ⊂ ℝ𝑛 .
Define∫

𝑅
𝑓 B sup

{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of 𝑅

}
,

∫
𝑅
𝑓 B inf

{
𝑈(𝑃, 𝑓 ) : 𝑃 a partition of 𝑅

}
.

We call
∫

the lower Darboux integral and
∫

the upper Darboux integral.

And as in one dimension, we define refinements of partitions.

Definition 10.1.4. Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle. Let 𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑛) and 𝑃 =
(𝑃1, 𝑃2, . . . , 𝑃𝑛) be partitions of 𝑅. We say 𝑃 a refinement of 𝑃 if, as sets, 𝑃𝑘 ⊂ 𝑃𝑘 for all
𝑘 = 1, 2, . . . , 𝑛.

If 𝑃 is a refinement of 𝑃, then subrectangles of 𝑃 are unions of subrectangles of 𝑃.
Simply put, in a refinement, we take the subrectangles of 𝑃, and we cut them into smaller
subrectangles and call that 𝑃. See  Figure 10.2 .

Proposition 10.1.5. Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle, 𝑃 is a partition of 𝑅, and 𝑃 is a
refinement of 𝑃. If 𝑓 : 𝑅 → ℝ is bounded, then

𝐿(𝑃, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ) and 𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ).

Proof. We prove the first inequality, and the second follows similarly. Let 𝑅1, 𝑅2, . . . , 𝑅𝑁
be the subrectangles of 𝑃 and 𝑅1, 𝑅2, . . . , 𝑅𝑁 be the subrectangles of 𝑅. Let 𝐼𝑘 be the set of
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Figure 10.2: Example refinement of the partition from  Figure 10.1 . New “cuts” are marked in
dashed lines. The exact order of the new subrectangles does not matter.

all indices 𝑗 such that 𝑅 𝑗 ⊂ 𝑅𝑘 . For example, in figures  10.1 and  10.2 , 𝐼4 = {6, 7, 8, 9} as
𝑅4 = 𝑅6 ∪ 𝑅7 ∪ 𝑅8 ∪ 𝑅9. Then,

𝑅𝑘 =
⋃
𝑗∈𝐼𝑘

𝑅 𝑗 , 𝑉(𝑅𝑘) =
∑
𝑗∈𝐼𝑘

𝑉(𝑅 𝑗).

Let 𝑚 𝑗 B inf
{
𝑓 (𝑥) : 𝑥 ∈ 𝑅 𝑗

}
, and 𝑚 𝑗 B inf

{
𝑓 (𝑥) :∈ 𝑅 𝑗

}
as usual. If 𝑗 ∈ 𝐼𝑘 , then 𝑚𝑘 ≤ 𝑚 𝑗 .

Then

𝐿(𝑃, 𝑓 ) =
𝑁∑
𝑘=1

𝑚𝑘𝑉(𝑅𝑘) =
𝑁∑
𝑘=1

∑
𝑗∈𝐼𝑘

𝑚𝑘𝑉(𝑅 𝑗) ≤
𝑁∑
𝑘=1

∑
𝑗∈𝐼𝑘

𝑚 𝑗𝑉(𝑅 𝑗) =
𝑁∑
𝑗=1

𝑚 𝑗𝑉(𝑅 𝑗) = 𝐿(𝑃, 𝑓 ). □

The key point of this next proposition is that the lower Darboux integral is less than or
equal to the upper Darboux integral.

Proposition 10.1.6. Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle and 𝑓 : 𝑅 → ℝ a bounded function. Let
𝑚, 𝑀 ∈ ℝ be such that for all 𝑥 ∈ 𝑅, we have 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀. Then

𝑚𝑉(𝑅) ≤
∫
𝑅
𝑓 ≤

∫
𝑅
𝑓 ≤ 𝑀𝑉(𝑅). (10.1)

Proof. For every partition 𝑃, via  Proposition 10.1.2 ,

𝑚𝑉(𝑅) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) ≤ 𝑀𝑉(𝑅).
Taking supremum of 𝐿(𝑃, 𝑓 ) and infimum of𝑈(𝑃, 𝑓 ) over all partitions 𝑃, we obtain the
first and the last inequality in ( 10.1 ).

The key inequality in ( 10.1 ) is the middle one. Let 𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑛) and 𝑄 =
(𝑄1, 𝑄2, . . . , 𝑄𝑛) be partitions of 𝑅. Define 𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑛) by letting 𝑃𝑘 B 𝑃𝑘 ∪𝑄𝑘 for
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every 𝑘. Then 𝑃 is a partition of 𝑅, and 𝑃 is a refinement of 𝑃 and also a refinement of 𝑄.
By  Proposition 10.1.5 , 𝐿(𝑃, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ) and𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑄, 𝑓 ). Therefore,

𝐿(𝑃, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑄, 𝑓 ).
In other words, for two arbitrary partitions 𝑃 and 𝑄, we have 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑄, 𝑓 ). Via
Proposition 1.2.7 from volume I, we obtain

sup
{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of 𝑅

}≤ inf
{
𝑈(𝑃, 𝑓 ) : 𝑃 a partition of 𝑅

}
.

In other words,
∫
𝑅
𝑓 ≤

∫
𝑅
𝑓 . □

10.1.3 The Riemann integral
We have all we need to define the Riemann integral in 𝑛-dimensions over rectangles. As in
one dimension, the Riemann integral is only defined on a certain class of functions, called
the Riemann integrable functions.

Definition 10.1.7. Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle and 𝑓 : 𝑅 → ℝ a bounded function
such that ∫

𝑅
𝑓 (𝑥) 𝑑𝑥 =

∫
𝑅
𝑓 (𝑥) 𝑑𝑥.

Then 𝑓 is said to be Riemann integrable, and we sometimes say simply integrable. We denote
the set of Riemann integrable functions on 𝑅 by R(𝑅). For 𝑓 ∈ R(𝑅) define the Riemann
integral ∫

𝑅
𝑓 B

∫
𝑅
𝑓 =

∫
𝑅
𝑓 .

When the variable 𝑥 ∈ ℝ𝑛 needs to be emphasized, we write∫
𝑅
𝑓 (𝑥) 𝑑𝑥,

∫
𝑅
𝑓 (𝑥1, . . . , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 , or

∫
𝑅
𝑓 (𝑥) 𝑑𝑉.

If 𝑅 ⊂ ℝ2, then we often say area instead of volume, and we write∫
𝑅
𝑓 (𝑥) 𝑑𝐴.

 Proposition 10.1.6 immediately implies the following proposition.

Proposition 10.1.8. Let 𝑓 : 𝑅 → ℝ be a Riemann integrable function on a closed rectangle
𝑅 ⊂ ℝ𝑛 . Let 𝑚, 𝑀 ∈ ℝ be such that 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀 for all 𝑥 ∈ 𝑅. Then

𝑚𝑉(𝑅) ≤
∫
𝑅
𝑓 ≤ 𝑀𝑉(𝑅).
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Example 10.1.9: A constant function is Riemann integrable. Proof: Suppose 𝑓 (𝑥) = 𝑐 for
all 𝑥 ∈ 𝑅. Then

𝑐 𝑉(𝑅) ≤
∫
𝑅
𝑓 ≤

∫
𝑅
𝑓 ≤ 𝑐 𝑉(𝑅).

So 𝑓 is integrable, and furthermore
∫
𝑅
𝑓 = 𝑐 𝑉(𝑅).

The proofs of linearity and monotonicity are almost completely identical as the proofs
from one variable. We leave the next two propositions as exercises.

Proposition 10.1.10 (Linearity). Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle and let 𝑓 and 𝑔 be in R(𝑅)
and 𝛼 ∈ ℝ.

(i) 𝛼 𝑓 is in R(𝑅) and ∫
𝑅
𝛼 𝑓 = 𝛼

∫
𝑅
𝑓 .

(ii) 𝑓 + 𝑔 is in R(𝑅) and ∫
𝑅
( 𝑓 + 𝑔) =

∫
𝑅
𝑓 +

∫
𝑅
𝑔.

Proposition 10.1.11 (Monotonicity). Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle, let 𝑓 and 𝑔 be in R(𝑅),
and suppose 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝑅. Then∫

𝑅
𝑓 ≤

∫
𝑅
𝑔.

Checking for integrability using the definition often involves the following technique,
as in the single variable case.

Proposition 10.1.12. Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle and 𝑓 : 𝑅 → ℝ a bounded function. Then
𝑓 ∈ R(𝑅) if and only if for every 𝜖 > 0, there exists a partition 𝑃 of 𝑅 such that

𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.

Proof. First, if 𝑓 is integrable, then the supremum of 𝐿(𝑃, 𝑓 ) and infimum of𝑈(𝑄, 𝑓 ) over
all partitions 𝑃 and 𝑄 are equal and hence the infimum of𝑈(𝑃, 𝑓 ) − 𝐿(𝑄, 𝑓 ) is zero. Taking
a common refinement 𝑃 of 𝑃 and 𝑄 we find𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) − 𝐿(𝑄, 𝑓 ). Hence
the infimum of𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) over all partitions 𝑃 is zero, and so for every 𝜖 > 0, there
must be some partition 𝑃 such that𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.

For the other direction, given an 𝜖 > 0 find 𝑃 such that𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.∫
𝑅
𝑓 −

∫
𝑅
𝑓 ≤ 𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.

As
∫
𝑅
𝑓 ≥

∫
𝑅
𝑓 and the above holds for every 𝜖 > 0, we conclude

∫
𝑅
𝑓 =

∫
𝑅
𝑓 and 𝑓 ∈ R(𝑅). □
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Suppose 𝑓 : 𝑆 → ℝ is a function and 𝑅 ⊂ 𝑆 is a closed rectangle. If the restriction 𝑓 |𝑅 is
integrable, then for simplicity we say 𝑓 is integrable on 𝑅, or 𝑓 ∈ R(𝑅), and we write∫

𝑅
𝑓 B

∫
𝑅
𝑓 |𝑅 .

Proposition 10.1.13. Let 𝑆 ⊂ ℝ𝑛 be a closed rectangle. If 𝑓 : 𝑆 → ℝ is integrable and 𝑅 ⊂ 𝑆 is a
closed rectangle, then 𝑓 is integrable on 𝑅.

Proof. Given 𝜖 > 0, find a partition 𝑃 = (𝑃1, . . . , 𝑃𝑛) of 𝑆 such that𝑈(𝑃, 𝑓 )−𝐿(𝑃, 𝑓 ) < 𝜖. By
making a refinement of 𝑃 if necessary, assume that the endpoints of 𝑅 are in 𝑃. That is, if
𝑅 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × · · · × [𝑎𝑛 , 𝑏𝑛], then 𝑎𝑖 , 𝑏𝑖 ∈ 𝑃𝑖 . Let 𝑃 = (𝑃1, . . . , 𝑃𝑛) be the partition of
𝑅 given by 𝑃𝑖 = 𝑃𝑖 ∩ [𝑎𝑖 , 𝑏𝑖]. Subrectangles of 𝑃 are subrectangles of 𝑃, that is, 𝑅 is a union
of subrectangles of 𝑃. Divide the subrectangles of 𝑃 into two collections: Let 𝑅1, 𝑅2 . . . , 𝑅𝐾
be the subrectangles of 𝑃 that are also subrectangles of 𝑃 and let 𝑅𝐾+1, . . . , 𝑅𝑁 be the rest.
See  Figure 10.3 . Let 𝑚𝑘 and 𝑀𝑘 be the infimum and supremum of 𝑓 on 𝑅𝑘 as usual. Then,

𝜖 > 𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) =
𝐾∑
𝑘=1

(𝑀𝑘 − 𝑚𝑘)𝑉(𝑅𝑘) +
𝑁∑

𝑘=𝐾+1
(𝑀𝑘 − 𝑚𝑘)𝑉(𝑅𝑘)

≥
𝐾∑
𝑘=1

(𝑀𝑘 − 𝑚𝑘)𝑉(𝑅𝑘) = 𝑈(𝑃, 𝑓 |𝑅) − 𝐿(𝑃, 𝑓 |𝑅).

Therefore, 𝑓 |𝑅 is integrable. □

𝑥1,0 𝑥1,1 𝑥1,3 𝑥1,4

𝑥2,1

𝑥2,2

𝑥2,0

𝑥2,3

𝑅5

𝑅11

𝑅12

𝑅6

𝑅10 𝑅9

𝑅3

𝑅1

𝑅4

𝑥1,2

𝑅2

𝑅7𝑅8

Figure 10.3: A partition of a large rectangle 𝑆, that also gives a partition of a smaller rectangle
(shaded and outlined) 𝑅 ⊂ 𝑆. The subrectangles 𝑅1 , 𝑅2 , 𝑅3 , 𝑅4 are the subrectangles of
𝑃 =

({𝑥1,1 , 𝑥1,2 , 𝑥1,3}, {𝑥2,1 , 𝑥2,2 , 𝑥2,3}
)
.
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10.1.4 Integrals of continuous functions
Although we will prove a more general result later, it is useful to start with integrability
of continuous functions. To do so, we wish to measure the fineness of partitions. In one
variable, we measure the length of a subinterval. In several variables, we measure the sides
of a subrectangle. We say a rectangle 𝑅 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × · · · × [𝑎𝑛 , 𝑏𝑛] has longest side at
most 𝛼 if 𝑏𝑘 − 𝑎𝑘 ≤ 𝛼 for all 𝑘 = 1, 2, . . . , 𝑛.
Proposition 10.1.14. If a rectangle 𝑅 ⊂ ℝ𝑛 has longest side at most 𝛼, then for all 𝑥, 𝑦 ∈ 𝑅,

∥𝑥 − 𝑦∥ ≤ √
𝑛 𝛼.

Proof.

∥𝑥 − 𝑦∥ =
√
(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + · · · + (𝑥𝑛 − 𝑦𝑛)2

≤
√
(𝑏1 − 𝑎1)2 + (𝑏2 − 𝑎2)2 + · · · + (𝑏𝑛 − 𝑎𝑛)2

≤
√
𝛼2 + 𝛼2 + · · · + 𝛼2 =

√
𝑛 𝛼. □

Theorem 10.1.15. Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle. If 𝑓 : 𝑅 → ℝ is continuous, then 𝑓 ∈ R(𝑅).
Proof. The proof is analogous to the one-variable proof with some complications. The set
𝑅 is a closed and bounded subset of ℝ𝑛 , and hence compact. So 𝑓 is uniformly continuous
by Theorem 7.5.11 from volume I. Let 𝜖 > 0 be given. Find a 𝛿 > 0 such that ∥𝑥 − 𝑦∥ < 𝛿
implies | 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖

𝑉(𝑅) .
Let 𝑃 be a partition of 𝑅, such that longest side of every subrectangle is strictly less than

𝛿√
𝑛
. If 𝑥, 𝑦 ∈ 𝑅𝑘 for a subrectangle 𝑅𝑘 of 𝑃, then, by the proposition, ∥𝑥 − 𝑦∥ <

√
𝑛 𝛿√

𝑛
= 𝛿.

Therefore,
𝑓 (𝑥) − 𝑓 (𝑦) ≤ | 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖

𝑉(𝑅) .
As 𝑓 is continuous on 𝑅𝑘 , which is compact, 𝑓 attains a maximum and a minimum on this
subrectangle. Let 𝑥 be a point where 𝑓 attains the maximum and 𝑦 be a point where 𝑓
attains the minimum. Then 𝑓 (𝑥) = 𝑀𝑘 and 𝑓 (𝑦) = 𝑚𝑘 in the notation from the definition
of the integral. Thus,

𝑀𝑘 − 𝑚𝑘 = 𝑓 (𝑥) − 𝑓 (𝑦) < 𝜖

𝑉(𝑅) .
And so

𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) =
(
𝑁∑
𝑘=1

𝑀𝑘𝑉(𝑅𝑘)
)
−

(
𝑁∑
𝑘=1

𝑚𝑘𝑉(𝑅𝑘)
)

=
𝑁∑
𝑘=1

(𝑀𝑘 − 𝑚𝑘)𝑉(𝑅𝑘)

<
𝜖

𝑉(𝑅)
𝑁∑
𝑘=1

𝑉(𝑅𝑘) = 𝜖.

Via application of  Proposition 10.1.12 , we find that 𝑓 ∈ R(𝑅). □
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10.1.5 Integration of functions with compact support
Let𝑈 ⊂ ℝ𝑛 be an open set and 𝑓 : 𝑈 → ℝ be a function. The support of 𝑓 is the set

supp( 𝑓 ) B {𝑥 ∈ 𝑈 : 𝑓 (𝑥) ≠ 0},
where the closure is with respect to the subspace topology on𝑈 . Taking the closure with
respect to the subspace topology is the same as {𝑥 ∈ 𝑈 : 𝑓 (𝑥) ≠ 0} ∩𝑈 , where the closure
is with respect to the ambient euclidean space ℝ𝑛 . In particular, supp( 𝑓 ) ⊂ 𝑈 . The support
is the closure (in𝑈) of the set of points where the function is nonzero. Its complement in
𝑈 is open. If 𝑥 ∈ 𝑈 and 𝑥 is not in the support of 𝑓 , then 𝑓 is constantly zero in a whole
neighborhood of 𝑥.

A function 𝑓 is said to have compact support if supp( 𝑓 ) is a compact set.

Example 10.1.16: The function 𝑓 : ℝ2 → ℝ defined by

𝑓 (𝑥, 𝑦) B
{
−𝑥(𝑥2 + 𝑦2 − 1)2 if

√
𝑥2 + 𝑦2 ≤ 1,

0 else,

is continuous and its support is the closed unit disc 𝐶(0, 1) = {(𝑥, 𝑦) :
√
𝑥2 + 𝑦2 ≤ 1

}
, which

is a compact set, so 𝑓 has compact support. Note that the function is zero on the entire
𝑦-axis and on the unit circle, but all points that lie in the closed unit disc are still within the
support as they are in the closure of points where 𝑓 is nonzero. See  Figure 10.4 .

G

H

I

G

H

Figure 10.4: Function with compact support (left), the support is the closed unit disc (right).

If 𝑈 ≠ ℝ𝑛 , then you must be careful to take the closure in 𝑈 . Consider the following
two examples.

Example 10.1.17: Let 𝐵(0, 1) ⊂ ℝ2 be the unit disc. The function 𝑓 : 𝐵(0, 1) → ℝ defined by

𝑓 (𝑥, 𝑦) B
{

0 if
√
𝑥2 + 𝑦2 > 1/2,

1/2 −√
𝑥2 + 𝑦2 if

√
𝑥2 + 𝑦2 ≤ 1/2,
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is continuous on 𝐵(0, 1) and its support is the smaller closed ball 𝐶(0, 1/2). As that is a
compact set, 𝑓 has compact support.

The function 𝑔 : 𝐵(0, 1) → ℝ defined by

𝑔(𝑥, 𝑦) B
{

0 if 𝑥 ≤ 0,
𝑥 if 𝑥 > 0,

is continuous on 𝐵(0, 1), but its support is the set
{(𝑥, 𝑦) ∈ 𝐵(0, 1) : 𝑥 ≥ 0

}
. In particular,

𝑔 is not compactly supported.

We really only need to consider the case when 𝑈 = ℝ𝑛 . In light of  Exercise 10.1.1 ,
which says every continuous function on an open𝑈 ⊂ ℝ𝑛 with compact support can be
extended to a continuous function with compact support on ℝ𝑛 , considering𝑈 = ℝ𝑛 is not
an oversimplification.

Example 10.1.18: The continuous function 𝑓 : 𝐵(0, 1) → ℝ given by 𝑓 (𝑥, 𝑦) B sin
( 1

1−𝑥2−𝑦2

)
does not have compact support; as 𝑓 is not constantly zero on any neighborhood of every
point in 𝐵(0, 1), the support is the entire disc 𝐵(0, 1). The function does not extend as
above to a continuous function on ℝ2. In fact, it is not difficult to show that 𝑓 cannot be
extended in any way whatsoever to be continuous on all of ℝ2 (the boundary of the disc is
the problem).

Proposition 10.1.19. Suppose 𝑓 : ℝ𝑛 → ℝ is a continuous function with compact support. If 𝑅
and 𝑆 are closed rectangles such that supp( 𝑓 ) ⊂ 𝑅 and supp( 𝑓 ) ⊂ 𝑆, then∫

𝑆
𝑓 =

∫
𝑅
𝑓 .

Proof. As 𝑓 is continuous, it is automatically integrable on the rectangles 𝑅, 𝑆, and 𝑅 ∩ 𝑆.
Then  Exercise 10.1.7 says

∫
𝑆
𝑓 =

∫
𝑆∩𝑅 𝑓 =

∫
𝑅
𝑓 . □

Because of this proposition, when 𝑓 : ℝ𝑛 → ℝ has compact support and is integrable
on a rectangle 𝑅 containing the support, we write∫

𝑓 B
∫
𝑅
𝑓 or

∫
ℝ𝑛
𝑓 B

∫
𝑅
𝑓 .

For example, if 𝑓 is continuous and of compact support, then
∫
ℝ𝑛 𝑓 exists.

10.1.6 Exercises
Exercise 10.1.1: Suppose𝑈 ⊂ ℝ𝑛 is open and 𝑓 : 𝑈 → ℝ is continuous and of compact support. Show that
the function �̃� : ℝ𝑛 → ℝ

�̃� (𝑥) B
{
𝑓 (𝑥) if 𝑥 ∈ 𝑈,
0 otherwise,

is continuous.
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Exercise 10.1.2: Prove  Proposition 10.1.10 .

Exercise 10.1.3: Suppose 𝑅 is a closed rectangle with the length of one of the sides equal to 0. For every
bounded function 𝑓 : 𝑅 → ℝ, show that 𝑓 ∈ R(𝑅) and

∫
𝑅
𝑓 = 0.

Exercise 10.1.4: Suppose 𝑅 is a closed rectangle with the length of one of the sides equal to 0, and suppose 𝑆
is a closed rectangle with 𝑅 ⊂ 𝑆. If 𝑓 : 𝑆 → ℝ is a bounded function such that 𝑓 (𝑥) = 0 for 𝑥 ∈ 𝑆 \ 𝑅, show
that 𝑓 ∈ R(𝑆) and

∫
𝑆
𝑓 = 0.

Exercise 10.1.5: Suppose 𝑓 : ℝ𝑛 → ℝ is such that 𝑓 (𝑥) B 0 if 𝑥 ≠ 0 and 𝑓 (0) B 1. Show that 𝑓 is
integrable on 𝑅 B [−1, 1] × [−1, 1] × · · · × [−1, 1] directly using the definition, and find

∫
𝑅
𝑓 .

Exercise 10.1.6: Suppose 𝑅 is a closed rectangle and ℎ : 𝑅 → ℝ is a bounded function such that ℎ(𝑥) = 0 if
𝑥 ∉ 𝜕𝑅 (the boundary of 𝑅). Let 𝑆 be a closed rectangle. Show that ℎ ∈ R(𝑆) and∫

𝑆
ℎ = 0.

Hint: Write ℎ as a sum of functions as in  Exercise 10.1.4 .

Exercise 10.1.7: Suppose 𝑅 and 𝑅′ are two closed rectangles with 𝑅′ ⊂ 𝑅. Suppose 𝑓 : 𝑅 → ℝ is in R(𝑅′)
and 𝑓 (𝑥) = 0 for 𝑥 ∈ 𝑅 \ 𝑅′. Show that 𝑓 ∈ R(𝑅) and∫

𝑅′
𝑓 =

∫
𝑅
𝑓 .

Do this in the following steps.

a) First do the proof assuming that furthermore 𝑓 (𝑥) = 0 whenever 𝑥 ∈ 𝑅 \ 𝑅′.

b) Write 𝑓 (𝑥) = 𝑔(𝑥) + ℎ(𝑥) where 𝑔(𝑥) = 0 whenever 𝑥 ∈ 𝑅 \ 𝑅′, and ℎ(𝑥) is zero except perhaps on 𝜕𝑅′.
Then show

∫
𝑅
ℎ =

∫
𝑅′ ℎ = 0 (see  Exercise 10.1.6 ).

c) Show
∫
𝑅′ 𝑓 =

∫
𝑅
𝑓 .

Exercise 10.1.8: Suppose 𝑅′ ⊂ ℝ𝑛 and 𝑅′′ ⊂ ℝ𝑛 are two rectangles such that 𝑅 = 𝑅′ ∪ 𝑅′′ is a rectangle,
and 𝑅′ ∩ 𝑅′′ is rectangle with one of the sides having length 0 (that is 𝑉(𝑅′ ∩ 𝑅′′) = 0). Let 𝑓 : 𝑅 → ℝ be a
function such that 𝑓 ∈ R(𝑅′) and 𝑓 ∈ R(𝑅′′). Show that 𝑓 ∈ R(𝑅) and∫

𝑅
𝑓 =

∫
𝑅′
𝑓 +

∫
𝑅′′
𝑓 .

Hint: See previous exercise.

Exercise 10.1.9: Prove a stronger version of  Proposition 10.1.19 . Suppose 𝑓 : ℝ𝑛 → ℝ is a function with
compact support but not necessarily continuous. Prove that if 𝑅 is a closed rectangle such that supp( 𝑓 ) ⊂ 𝑅
and 𝑓 is integrable on 𝑅, then for every other closed rectangle 𝑆 with supp( 𝑓 ) ⊂ 𝑆, the function 𝑓 is integrable
on 𝑆 and

∫
𝑆
𝑓 =

∫
𝑅
𝑓 . Hint: See  Exercise 10.1.7 .

Exercise 10.1.10: Suppose 𝑅 and 𝑆 are closed rectangles of ℝ𝑛 . Define 𝑓 : ℝ𝑛 → ℝ as 𝑓 (𝑥) B 1 if 𝑥 ∈ 𝑅,
and 𝑓 (𝑥) B 0 otherwise. Prove 𝑓 is integrable on 𝑆 and compute

∫
𝑆
𝑓 . Hint: Consider 𝑆 ∩ 𝑅.
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Exercise 10.1.11: Let 𝑅 B [0, 1] × [0, 1] ⊂ ℝ2.

a) Suppose 𝑓 : 𝑅 → ℝ is defined by

𝑓 (𝑥, 𝑦) B
{

1 if 𝑥 = 𝑦,

0 else.

Show that 𝑓 ∈ R(𝑅) and compute
∫
𝑅
𝑓 .

b) Suppose 𝑓 : 𝑅 → ℝ is defined by

𝑓 (𝑥, 𝑦) B
{

1 if 𝑥 ∈ ℚ or 𝑦 ∈ ℚ,

0 else.

Show that 𝑓 ∉ R(𝑅).
Exercise 10.1.12: Suppose 𝑅 is a closed rectangle, and suppose 𝑆 𝑗 are closed rectangles such that 𝑆 𝑗 ⊂ 𝑅 and
𝑆 𝑗 ⊂ 𝑆 𝑗+1 for all 𝑗. Suppose 𝑓 : 𝑅 → ℝ is bounded and 𝑓 ∈ R(𝑆 𝑗) for all 𝑗. Show that 𝑓 ∈ R(𝑅) and

lim
𝑗→∞

∫
𝑆𝑗
𝑓 =

∫
𝑅
𝑓 .

Exercise 10.1.13: Suppose 𝑓 : [−1, 1]× [−1, 1] → ℝ is a Riemann integrable function such 𝑓 (𝑥) = − 𝑓 (−𝑥).
Using the definition prove ∫

[−1,1]×[−1,1]
𝑓 = 0.
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10.2 Iterated integrals and Fubini theorem
Note: 1–2 lectures

The Riemann integral in several variables is hard to compute via the definition. For one-
dimensional Riemann integral, we have the fundamental theorem of calculus, which allows
computing many integrals without having to appeal to the definition of the integral. We
will rewrite a Riemann integral in several variables into several one-dimensional Riemann
integrals by iterating. However, if 𝑓 : [0, 1]2 → ℝ is a Riemann integrable function, it is not
immediately clear if the three expressions∫

[0,1]2
𝑓 ,

∫ 1

0

∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, and

∫ 1

0

∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

are equal, or if the last two are even well-defined.

Example 10.2.1: Define

𝑓 (𝑥, 𝑦) B
{

1 if 𝑥 = 1/2 and 𝑦 ∈ ℚ,

0 otherwise.

Then 𝑓 is Riemann integrable on𝑅 B [0, 1]2 and
∫
𝑅
𝑓 = 0. Moreover,

∫ 1
0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 0.

However, ∫ 1

0
𝑓 (1/2, 𝑦) 𝑑𝑦

does not exist, so strictly speaking,
∫ 1

0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 does not make sense. See  Figure 10.5 .

Figure 10.5: Left: [0, 1]2 with the line 𝑥 = 1/2 marked dotted and
∫ 1

0 𝑓 (𝑥, 𝑦) 𝑑𝑥 marked as gray
solid line for a generic 𝑦. Center: Similar picture but

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 marked for some 𝑥 ≠ 1/2.

Right: The three different rectangles in the partition used to integrate 𝑓 in different grays.

Proof: We start with integrability of 𝑓 . Consider the partition of [0, 1]2 where the
partition in the 𝑥 direction is {0, 1/2 − 𝜖, 1/2 + 𝜖, 1} and in the 𝑦 direction {0, 1}. The
corresponding subrectangles are

𝑅1 B [0, 1/2 − 𝜖] × [0, 1], 𝑅2 B [1/2 − 𝜖, 1/2 + 𝜖] × [0, 1], 𝑅3 B [1/2 + 𝜖, 1] × [0, 1].
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We have 𝑚1 = 𝑀1 = 0, 𝑚2 = 0, 𝑀2 = 1, and 𝑚3 = 𝑀3 = 0. Therefore,

𝐿(𝑃, 𝑓 ) = 𝑚1𝑉(𝑅1) + 𝑚2𝑉(𝑅2) + 𝑚3𝑉(𝑅3) = 0(1/2 − 𝜖) + 0(2𝜖) + 0(1/2 − 𝜖) = 0,

and

𝑈(𝑃, 𝑓 ) = 𝑀1𝑉(𝑅1) +𝑀2𝑉(𝑅2) +𝑀3𝑉(𝑅3) = 0(1/2 − 𝜖) + 1(2𝜖) + 0(1/2 − 𝜖) = 2𝜖.

The upper and lower sums are arbitrarily close and the lower sum is always zero, so the
function is integrable and

∫
𝑅
𝑓 = 0.

For every fixed 𝑦, the function that takes 𝑥 to 𝑓 (𝑥, 𝑦) is zero except perhaps at a
single point 𝑥 = 1/2. Such a function is integrable and

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 = 0. Therefore,∫ 1

0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 0. However, if 𝑥 = 1/2, the function that takes 𝑦 to 𝑓 (1/2, 𝑦) is the

nonintegrable function that is 1 on the rationals and 0 on the irrationals. See Example 5.1.4
from volume I.

We solve this problem of undefined inside integrals by using the upper and lower
integrals, which are always defined for any bounded function.

Split the coordinates of ℝ𝑛+𝑚 into two parts: Write the coordinates on ℝ𝑛+𝑚 = ℝ𝑛 ×ℝ𝑚

as (𝑥, 𝑦) where 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑚 . For a function 𝑓 (𝑥, 𝑦), write

𝑓𝑥(𝑦) B 𝑓 (𝑥, 𝑦)
when 𝑥 is fixed and we want a function of 𝑦. Write

𝑓 𝑦(𝑥) B 𝑓 (𝑥, 𝑦)
when 𝑦 is fixed and we want a function of 𝑥.
Theorem 10.2.2 (Fubini version A 

*
 ). Let𝑅×𝑆 ⊂ ℝ𝑛×ℝ𝑚 be a closed rectangle and 𝑓 : 𝑅×𝑆 → ℝ

be integrable. The functions 𝑔 : 𝑅 → ℝ and ℎ : 𝑅 → ℝ defined by

𝑔(𝑥) B
∫
𝑆
𝑓𝑥 and ℎ(𝑥) B

∫
𝑆
𝑓𝑥

are integrable on 𝑅 and ∫
𝑅
𝑔 =

∫
𝑅
ℎ =

∫
𝑅×𝑆

𝑓 .

In other words,∫
𝑅×𝑆

𝑓 =
∫
𝑅

(∫
𝑆
𝑓 (𝑥, 𝑦) 𝑑𝑦

)
𝑑𝑥 =

∫
𝑅

(∫
𝑆
𝑓 (𝑥, 𝑦) 𝑑𝑦

)
𝑑𝑥.

If 𝑓𝑥 is integrable for all 𝑥, for example when 𝑓 is continuous, we obtain the more familiar∫
𝑅×𝑆

𝑓 =
∫
𝑅

∫
𝑆
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

*Named after the Italian mathematician  Guido Fubini (1879–1943).

https://en.wikipedia.org/wiki/Guido_Fubini
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Proof. A partition of 𝑅 × 𝑆 is a concatenation of a partition of 𝑅 and a partition of 𝑆.
That is, write a partition of 𝑅 × 𝑆 as (𝑃, 𝑃′) = (𝑃1, 𝑃2, . . . , 𝑃𝑛 , 𝑃′

1, 𝑃
′
2, . . . , 𝑃

′
𝑚), where

𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑛) and 𝑃′ = (𝑃′
1, 𝑃

′
2, . . . , 𝑃

′
𝑚) are partitions of 𝑅 and 𝑆 respectively. Let

𝑅1, 𝑅2, . . . , 𝑅𝑁 be the subrectangles of 𝑃 and 𝑅′
1, 𝑅

′
2, . . . , 𝑅

′
𝐾 be the subrectangles of 𝑃′. The

subrectangles of (𝑃, 𝑃′) are 𝑅𝑖 × 𝑅′
𝑗 where 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝐾.

Let
𝑚𝑖 , 𝑗 B inf

(𝑥,𝑦)∈𝑅𝑖×𝑅′
𝑗

𝑓 (𝑥, 𝑦).

Notice that 𝑉(𝑅𝑖 × 𝑅′
𝑗) = 𝑉(𝑅𝑖)𝑉(𝑅′

𝑗) and hence

𝐿
((𝑃, 𝑃′), 𝑓 ) = 𝑁∑

𝑖=1

𝐾∑
𝑗=1

𝑚𝑖 , 𝑗 𝑉(𝑅𝑖 × 𝑅′
𝑗) =

𝑁∑
𝑖=1

©«
𝐾∑
𝑗=1

𝑚𝑖 , 𝑗 𝑉(𝑅′
𝑗)ª®¬𝑉(𝑅𝑖).

Define
𝑚 𝑗(𝑥) B inf

𝑦∈𝑅′
𝑗

𝑓 (𝑥, 𝑦) = inf
𝑦∈𝑅′

𝑗

𝑓𝑥(𝑦).

For 𝑥 ∈ 𝑅𝑖 , we have 𝑚𝑖 , 𝑗 ≤ 𝑚 𝑗(𝑥), and therefore,

𝐾∑
𝑗=1

𝑚𝑖 , 𝑗 𝑉(𝑅′
𝑗) ≤

𝐾∑
𝑗=1

𝑚 𝑗(𝑥)𝑉(𝑅′
𝑗) = 𝐿(𝑃′, 𝑓𝑥) ≤

∫
𝑆
𝑓𝑥 = 𝑔(𝑥).

The inequality holds for all 𝑥 ∈ 𝑅𝑖 , and so

𝐾∑
𝑗=1

𝑚𝑖 , 𝑗 𝑉(𝑅′
𝑗) ≤ inf

𝑥∈𝑅𝑖
𝑔(𝑥).

We obtain

𝐿
((𝑃, 𝑃′), 𝑓 ) ≤ 𝑁∑

𝑗=1

(
inf
𝑥∈𝑅 𝑗

𝑔(𝑥)
)
𝑉(𝑅 𝑗) = 𝐿(𝑃, 𝑔).

Similarly,𝑈
((𝑃, 𝑃′), 𝑓 ) ≥ 𝑈(𝑃, ℎ), and the proof of this inequality is left as an exercise.

Putting the two inequalities together with the fact that 𝑔(𝑥) ≤ ℎ(𝑥) for all 𝑥,

𝐿
((𝑃, 𝑃′), 𝑓 ) ≤ 𝐿(𝑃, 𝑔) ≤ 𝑈(𝑃, 𝑔) ≤ 𝑈(𝑃, ℎ) ≤ 𝑈 ((𝑃, 𝑃′), 𝑓 ) .

Since 𝑓 is integrable, it must be that 𝑔 is integrable as

𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔) ≤ 𝑈 ((𝑃, 𝑃′), 𝑓 ) − 𝐿 ((𝑃, 𝑃′), 𝑓 ) ,
and we can make the right-hand side arbitrarily small. As for any partition we have
𝐿
((𝑃, 𝑃′), 𝑓 ) ≤ 𝐿(𝑃, 𝑔) ≤ 𝑈 ((𝑃, 𝑃′), 𝑓 ) , we have

∫
𝑅
𝑔 =

∫
𝑅×𝑆 𝑓 .

Likewise,

𝐿
((𝑃, 𝑃′), 𝑓 ) ≤ 𝐿(𝑃, 𝑔) ≤ 𝐿(𝑃, ℎ) ≤ 𝑈(𝑃, ℎ) ≤ 𝑈 ((𝑃, 𝑃′), 𝑓 ) ,
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and hence
𝑈(𝑃, ℎ) − 𝐿(𝑃, ℎ) ≤ 𝑈 ((𝑃, 𝑃′), 𝑓 ) − 𝐿 ((𝑃, 𝑃′), 𝑓 ) .

As 𝑓 is integrable, so is ℎ. Moreover, 𝐿
((𝑃, 𝑃′), 𝑓 ) ≤ 𝐿(𝑃, ℎ) ≤ 𝑈

((𝑃, 𝑃′), 𝑓 ) implies∫
𝑅
ℎ =

∫
𝑅×𝑆 𝑓 . □

We can also do the iterated integration in the opposite order. The proof of this version is
almost identical to version A (or follows quickly from version A). We leave it as an exercise.

Theorem 10.2.3 (Fubini version B). Let 𝑅×𝑆 ⊂ ℝ𝑛×ℝ𝑚 be a closed rectangle and 𝑓 : 𝑅×𝑆 → ℝ

be integrable. The functions 𝑔 : 𝑆 → ℝ and ℎ : 𝑆 → ℝ defined by

𝑔(𝑦) B
∫
𝑅
𝑓 𝑦 and ℎ(𝑦) B

∫
𝑅
𝑓 𝑦

are integrable on 𝑆 and ∫
𝑆
𝑔 =

∫
𝑆
ℎ =

∫
𝑅×𝑆

𝑓 .

That is, ∫
𝑅×𝑆

𝑓 =
∫
𝑆

(∫
𝑅
𝑓 (𝑥, 𝑦) 𝑑𝑥

)
𝑑𝑦 =

∫
𝑆

(∫
𝑅
𝑓 (𝑥, 𝑦) 𝑑𝑥

)
𝑑𝑦.

Next suppose 𝑓𝑥 and 𝑓 𝑦 are integrable. For example, suppose 𝑓 is continuous. By
putting the two versions together we obtain the familiar∫

𝑅×𝑆
𝑓 =

∫
𝑅

∫
𝑆
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 =

∫
𝑆

∫
𝑅
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

Often the Fubini theorem is stated in two dimensions for a continuous function
𝑓 : 𝑅 → ℝ on a rectangle 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑]. Then the Fubini theorem states that∫

𝑅
𝑓 =

∫ 𝑏

𝑎

∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 =

∫ 𝑑

𝑐

∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

The Fubini theorem is commonly thought of as the theorem that allows us to swap the
order of iterated integrals, although there are many variations on Fubini, and we have seen
but two of them.

Repeatedly applying Fubini theorem gets us the following corollary: Let 𝑅 B [𝑎1, 𝑏1] ×
[𝑎2, 𝑏2] × · · · × [𝑎𝑛 , 𝑏𝑛] ⊂ ℝ𝑛 be a closed rectangle and let 𝑓 : 𝑅 → ℝ be continuous. Then∫

𝑅
𝑓 =

∫ 𝑏1

𝑎1

∫ 𝑏2

𝑎2

· · ·
∫ 𝑏𝑛

𝑎𝑛
𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) 𝑑𝑥𝑛 𝑑𝑥𝑛−1 · · · 𝑑𝑥1.

We may switch the order of integration to any order we please. We may relax the
continuity requirement by making sure that all the intermediate functions are integrable,
or by using upper or lower integrals appropriately.
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10.2.1 Exercises
Exercise 10.2.1: Compute

∫ 1
0

∫ 1
−1 𝑥𝑒

𝑥𝑦 𝑑𝑥 𝑑𝑦 in a simple way.

Exercise 10.2.2: Prove the assertion𝑈
((𝑃, 𝑃′), 𝑓 ) ≥ 𝑈(𝑃, ℎ) from the proof of  Theorem 10.2.2 .

Exercise 10.2.3 (Easy): Prove  Theorem 10.2.3 .

Exercise 10.2.4: Let 𝑅 B [𝑎, 𝑏] × [𝑐, 𝑑] and 𝑓 (𝑥, 𝑦) is an integrable function on 𝑅 such that for every
fixed 𝑦, the function that takes 𝑥 to 𝑓 (𝑥, 𝑦) is zero except at finitely many points. Show∫

𝑅
𝑓 = 0.

Exercise 10.2.5: Let 𝑅 B [𝑎, 𝑏] × [𝑐, 𝑑] and 𝑓 (𝑥, 𝑦) B 𝑔(𝑥)ℎ(𝑦) for continuous functions 𝑔 : [𝑎, 𝑏] → ℝ

and ℎ : [𝑐, 𝑑] → ℝ. Prove ∫
𝑅
𝑓 =

(∫ 𝑏

𝑎
𝑔
) (∫ 𝑑

𝑐
ℎ
)
.

Exercise 10.2.6: Compute (using calculus)∫ 1

0

∫ 1

0

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑥 𝑑𝑦 and

∫ 1

0

∫ 1

0

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑦 𝑑𝑥.

You will need to interpret the integrals as improper, that is, the limit of
∫ 1
𝜖

as 𝜖 → 0+.

Exercise 10.2.7: Suppose 𝑓 (𝑥, 𝑦) B 𝑔(𝑥) where 𝑔 : [𝑎, 𝑏] → ℝ is Riemann integrable. Show that 𝑓 is
Riemann integrable for every 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] and∫

𝑅
𝑓 = (𝑑 − 𝑐)

∫ 𝑏

𝑎
𝑔.

Exercise 10.2.8: Define 𝑓 : [−1, 1] × [0, 1] → ℝ by

𝑓 (𝑥, 𝑦) B
{
𝑥 if 𝑦 ∈ ℚ,

0 else.

a) Show
∫ 1

0

∫ 1
−1 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 exists, but

∫ 1
−1

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 does not.

b) Compute
∫ 1
−1

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 and

∫ 1
−1

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

c) Show 𝑓 is not Riemann integrable on [−1, 1] × [0, 1] (use Fubini).

Exercise 10.2.9: Define 𝑓 : [0, 1] × [0, 1] → ℝ by

𝑓 (𝑥, 𝑦) B
{

1/𝑞 if 𝑥 ∈ ℚ, 𝑦 ∈ ℚ, and 𝑦 = 𝑝/𝑞 in lowest terms,
0 else.

a) Show 𝑓 is Riemann integrable on [0, 1] × [0, 1].
b) Find

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 and

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 for all 𝑦 ∈ [0, 1], and show they are unequal for all 𝑦 ∈ ℚ.

c) Show
∫ 1

0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 exists, but

∫ 1
0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 does not.

Note: By Fubini,
∫ 1

0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 and

∫ 1
0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 do exist and equal the integral of 𝑓 on 𝑅.
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10.3 Outer measure and null sets
Note: 2 lectures

10.3.1 Outer measure and null sets

Before we characterize all Riemann integrable functions, we need to make a slight detour.
We introduce a way of measuring the size of sets in ℝ𝑛 .

Definition 10.3.1. Define the outer measure of a set 𝑆 ⊂ ℝ𝑛 as

𝑚∗(𝑆) B inf
∞∑
𝑗=1

𝑉(𝑅 𝑗),

where the infimum is taken over all sequences {𝑅 𝑗}∞𝑗=1 of open rectangles such that
𝑆 ⊂ ⋃∞

𝑗=1 𝑅 𝑗 , and we are allowing both the sum and the infimum to be ∞. See  Figure 10.6 .
In particular, 𝑆 is of measure zero or a null set if 𝑚∗(𝑆) = 0.

𝑅1

𝑅2

𝑆

𝑅3

Figure 10.6: Outer measure construction, in this case 𝑆 ⊂ 𝑅1 ∪ 𝑅2 ∪ 𝑅3 ∪ · · · , so 𝑚∗(𝑆) ≤
𝑉(𝑅1) +𝑉(𝑅2) +𝑉(𝑅3) + · · · .

An immediate consequence ( Exercise 10.3.2  ) of the definition is that if 𝐴 ⊂ 𝐵, then
𝑚∗(𝐴) ≤ 𝑚∗(𝐵). It is also not difficult to show ( Exercise 10.3.13 ) that we obtain the same
number 𝑚∗(𝑆) if we also allow both finite and infinite sequences of rectangles in the
definition. It is not enough, however, to allow only finite sequences.

The theory of measures on ℝ𝑛 is a very complicated subject. We will only require
measure-zero sets and so we focus on these. A set 𝑆 is of measure zero if for every 𝜖 > 0,
there exists a sequence of open rectangles {𝑅 𝑗}∞𝑗=1 such that

𝑆 ⊂
∞⋃
𝑗=1

𝑅 𝑗 and
∞∑
𝑗=1

𝑉(𝑅 𝑗) < 𝜖. (10.2)

If 𝑆 is of measure zero and 𝑆′ ⊂ 𝑆, then 𝑆′ is of measure zero. We can use the same exact
rectangles.
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It is sometimes more convenient to use balls instead of rectangles. Furthermore, we can
choose balls no bigger than a fixed radius.

Proposition 10.3.2. Let 𝛿 > 0 be given. A set 𝑆 ⊂ ℝ𝑛 is of measure zero if and only if for every
𝜖 > 0, there exists a sequence of open balls {𝐵𝑘}∞𝑘=1, where the radius of 𝐵𝑘 is 𝑟𝑘 < 𝛿, and such that

𝑆 ⊂
∞⋃
𝑘=1

𝐵𝑘 and
∞∑
𝑘=1

𝑟𝑛𝑘 < 𝜖.

Note that the “volume” of 𝐵𝑘 is proportional to 𝑟𝑛𝑘 .

Proof. If 𝐶 is a closed cube (rectangle with all sides equal) of side 𝑠, then 𝐶 is contained in a
closed ball of radius

√
𝑛 𝑠 by  Proposition 10.1.14 , and hence in an open ball of radius 2

√
𝑛 𝑠.

Suppose 𝑅 is a rectangle of positive volume. Let 𝑠 > 0 be a number less than the smallest
side of 𝑅 and such that 2

√
𝑛 𝑠 < 𝛿. If each side of 𝑅 is an integer multiple of 𝑠, then 𝑅 is

contained in a union of closed cubes 𝐶1, 𝐶2, . . . , 𝐶𝑚 of side 𝑠 such that
∑𝑚
𝑘=1𝑉(𝐶𝑘) = 𝑉(𝑅).

So suppose the sides of 𝑅 are not integer multiples of 𝑠. Consider a side of length (ℓ + 𝛼)𝑠,
for an integer ℓ and 0 ≤ 𝛼 < 1. As 𝑠 is less than the smallest side, ℓ ≥ 1, and so (ℓ +𝛼)𝑠 ≤ 2ℓ 𝑠.
Increasing this side to 2ℓ 𝑠, and similarly increasing every side of 𝑅, we obtain a new larger
rectangle of volume at most 2𝑛 times larger, whose sides are multiples of 𝑠. See  Figure 10.7 .
Thus 𝑅 is contained in a union of closed cubes 𝐶1, 𝐶2, . . . , 𝐶𝑚 of side 𝑠 such that

𝑚∑
𝑘=1

𝑉(𝐶𝑘) ≤ 2𝑛𝑉(𝑅).

𝑠

ℓ 𝑠 = 2𝑠

2ℓ 𝑠 = 4𝑠

Figure 10.7: Covering a rectangle by cubes of total size at most 2𝑛𝑉(𝑅).

So suppose that 𝑆 is a null set and there exist open rectangles {𝑅 𝑗}∞𝑗=1 whose union
contains 𝑆 and such that ( 10.2 ) is true. Choose closed cubes {𝐶𝑘}∞𝑘=1 with 𝐶𝑘 of side 𝑠𝑘 as
above that cover all the rectangles {𝑅 𝑗}∞𝑗=1 and so that

∞∑
𝑘=1

𝑠𝑛𝑘 =
∞∑
𝑘=1

𝑉(𝐶𝑘) ≤ 2𝑛
∞∑
𝑗=1

𝑉(𝑅 𝑗) < 2𝑛𝜖.
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Covering each 𝐶𝑘 with a ball 𝐵𝑘 of radius 𝑟𝑘 = 2
√
𝑛 𝑠𝑘 < 𝛿, we obtain

∞∑
𝑘=1

𝑟𝑛𝑘 =
∞∑
𝑘=1

(2√𝑛)𝑛𝑠𝑛𝑘 < (4√𝑛)𝑛𝜖.

As 𝑆 ⊂ ⋃
𝑗 𝑅 𝑗 ⊂

⋃
𝑘 𝐶𝑘 ⊂

⋃
𝑘 𝐵𝑘 and (4√𝑛)𝑛𝜖 can be arbitrarily small, the forward direction

follows.
For the other direction, suppose 𝑆 is covered by balls 𝐵 𝑗 of radii 𝑟 𝑗 , such that

∑∞
𝑗=1 𝑟

𝑛
𝑗 < 𝜖,

as in the statement of the proposition. Each 𝐵 𝑗 is contained in an open cube 𝑅 𝑗 of side 2𝑟 𝑗 .
So 𝑉(𝑅 𝑗) = (2𝑟 𝑗)𝑛 = 2𝑛𝑟𝑛𝑗 . Therefore,

𝑆 ⊂
∞⋃
𝑗=1

𝑅 𝑗 and
∞∑
𝑗=1

𝑉(𝑅 𝑗) ≤
∞∑
𝑗=1

2𝑛𝑟𝑛𝑗 < 2𝑛𝜖. □

The definition of outer measure (not just null sets) could have been done with open
balls as well. We leave this generalization to the reader.

10.3.2 Examples and basic properties
Example 10.3.3: The set ℚ𝑛 ⊂ ℝ𝑛 of points with rational coordinates is of measure zero.

Proof: The set ℚ𝑛 is countable, so write it as a sequence 𝑞1, 𝑞2, . . .. For each 𝑞 𝑗 , find an
open rectangle 𝑅 𝑗 with 𝑞 𝑗 ∈ 𝑅 𝑗 and 𝑉(𝑅 𝑗) < 𝜖2−𝑗 . Then

ℚ𝑛 ⊂
∞⋃
𝑗=1

𝑅 𝑗 and
∞∑
𝑗=1

𝑉(𝑅 𝑗) <
∞∑
𝑗=1

𝜖2−𝑗 = 𝜖.

The example points to a more general result.

Proposition 10.3.4. A countable union of measure zero sets is of measure zero.

Proof. Suppose

𝑆 =
∞⋃
𝑗=1

𝑆 𝑗 ,

where 𝑆 𝑗 are all measure zero sets. Let 𝜖 > 0 be given. For each 𝑗, there exists a sequence
of open rectangles {𝑅 𝑗 ,𝑘}∞𝑘=1 such that

𝑆 𝑗 ⊂
∞⋃
𝑘=1

𝑅 𝑗 ,𝑘 and
∞∑
𝑘=1

𝑉(𝑅 𝑗 ,𝑘) < 2−𝑗𝜖.

Then

𝑆 ⊂
∞⋃
𝑗=1

∞⋃
𝑘=1

𝑅 𝑗 ,𝑘 .
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All 𝑉(𝑅 𝑗 ,𝑘) are nonnegative, so the sum over all 𝑗 and 𝑘 can be done by summing first over
the 𝑘 and then over the 𝑗, see Exercise 2.6.15 in volume I. In particular, as

∞∑
𝑗=1

∞∑
𝑘=1

𝑉(𝑅 𝑗 ,𝑘) <
∞∑
𝑗=1

2−𝑗𝜖 = 𝜖. □

The next example is not just interesting, it will be useful later.

Example 10.3.5: Suppose 𝑛 ∈ ℕ, 𝑘 = 1, 2, . . . , 𝑛, and 𝑐 ∈ ℝ. Then 𝑃 B {𝑥 ∈ ℝ𝑛 : 𝑥𝑘 = 𝑐} is
of measure zero. Note that if 𝑛 ≥ 2, then 𝑃 is uncountable.

Proof: First fix 𝑠 ∈ ℕ and consider

𝑃𝑠 B
{
𝑥 ∈ ℝ𝑛 : 𝑥𝑘 = 𝑐 and |𝑥 𝑗 | ≤ 𝑠 for all 𝑗 ≠ 𝑘

}
.

Given any 𝜖 > 0 define the open rectangle

𝑅 B
{
𝑥 ∈ ℝ𝑛 : 𝑐 − 𝜖 < 𝑥𝑘 < 𝑐 + 𝜖 and |𝑥 𝑗 | < 𝑠 + 1 for all 𝑗 ≠ 𝑘

}
.

Clearly, 𝑃𝑠 ⊂ 𝑅. Furthermore,

𝑉(𝑅) = 2𝜖
(
2(𝑠 + 1))𝑛−1.

As 𝑠 is fixed, 𝑉(𝑅) can be arbitrarily small by picking 𝜖 small enough. So 𝑃𝑠 is of measure
zero.

Next

𝑃 =
∞⋃
𝑗=1

𝑃𝑗

and a countable union of measure zero sets is of measure zero.

Example 10.3.6: If 𝑎 < 𝑏, then 𝑚∗ ([𝑎, 𝑏]) = 𝑏 − 𝑎.
Proof: In ℝ, open rectangles are open intervals. Since [𝑎, 𝑏] ⊂ (𝑎 − 𝜖, 𝑏 + 𝜖) for all 𝜖 > 0,

we have 𝑚∗ ([𝑎, 𝑏]) ≤ 𝑏 − 𝑎.
The other inequality is harder. Suppose

{(𝑎 𝑗 , 𝑏 𝑗)}∞𝑗=1 are open intervals such that

[𝑎, 𝑏] ⊂
∞⋃
𝑗=1

(𝑎 𝑗 , 𝑏 𝑗).

We wish to bound
∑∞
𝑗=1(𝑏 𝑗 − 𝑎 𝑗) from below. Since [𝑎, 𝑏] is compact, finitely many of the

open intervals still cover [𝑎, 𝑏]. As throwing out some of the intervals only makes the
sum smaller, we only need to consider the finite number of intervals covering [𝑎, 𝑏]. If
(𝑎𝑖 , 𝑏𝑖) ⊂ (𝑎 𝑗 , 𝑏 𝑗), then we throw out (𝑎𝑖 , 𝑏𝑖) as well. The intervals that are left have distinct
left endpoints, and whenever 𝑎 𝑗 < 𝑎𝑖 < 𝑏 𝑗 , then 𝑏 𝑗 < 𝑏𝑖 . Therefore, [𝑎, 𝑏] ⊂ ⋃𝑘

𝑗=1(𝑎 𝑗 , 𝑏 𝑗)
for some 𝑘, and we assume that the intervals are sorted such that 𝑎1 < 𝑎2 < · · · < 𝑎𝑘 . As
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(𝑎2, 𝑏2) is not contained in (𝑎1, 𝑏1), since 𝑎 𝑗 > 𝑎2 for all 𝑗 > 2, and since the intervals must
contain every point in [𝑎, 𝑏], we find that 𝑎2 < 𝑏1, or in other words 𝑎1 < 𝑎2 < 𝑏1 < 𝑏2.
Similarly 𝑎 𝑗 < 𝑎 𝑗+1 < 𝑏 𝑗 < 𝑏 𝑗+1 for all 𝑗. Furthermore, 𝑎1 < 𝑎 and 𝑏𝑘 > 𝑏. See  Figure 10.8 for
a sample configuration. As 𝑏 𝑗 − 𝑎 𝑗 > 𝑎 𝑗+1 − 𝑎 𝑗 , we obtain

𝑘∑
𝑗=1

(𝑏 𝑗 − 𝑎 𝑗) ≥
𝑘−1∑
𝑗=1

(𝑎 𝑗+1 − 𝑎 𝑗) + (𝑏𝑘 − 𝑎𝑘) = 𝑏𝑘 − 𝑎1 > 𝑏 − 𝑎.

So 𝑚∗ ([𝑎, 𝑏]) ≥ 𝑏 − 𝑎.

𝑎1 𝑎 𝑎2 𝑏1 𝑎3 𝑏3 𝑏4𝑏𝑏2𝑎4

Figure 10.8: Open intervals covering [𝑎, 𝑏] which satisfy 𝑎 𝑗 < 𝑎 𝑗+1 < 𝑏 𝑗 < 𝑏 𝑗+1 for all 𝑗.

Proposition 10.3.7. Suppose 𝐸 ⊂ ℝ𝑛 is a compact set of measure zero. Then for every 𝜖 > 0,
there exist finitely many open rectangles 𝑅1, 𝑅2, . . . , 𝑅𝑘 such that

𝐸 ⊂ 𝑅1 ∪ 𝑅2 ∪ · · · ∪ 𝑅𝑘 and
𝑘∑
𝑗=1

𝑉(𝑅 𝑗) < 𝜖.

Moreover, for every 𝜖 > 0 and every 𝛿 > 0, there exist finitely many open balls 𝐵1, 𝐵2, . . . , 𝐵ℓ of
radii 𝑟1, 𝑟2, . . . , 𝑟ℓ < 𝛿 such that

𝐸 ⊂ 𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵ℓ and
ℓ∑
𝑗=1

𝑟𝑛𝑗 < 𝜖.

Proof. As 𝐸 is of measure zero, there exists a sequence of open rectangles {𝑅 𝑗}∞𝑗=1 such that

𝐸 ⊂
∞⋃
𝑗=1

𝑅 𝑗 and
∞∑
𝑗=1

𝑉(𝑅 𝑗) < 𝜖.

By compactness, there are finitely many of these rectangles that still contain 𝐸. That is,
there is some 𝑘 such that 𝐸 ⊂ 𝑅1 ∪ 𝑅2 ∪ · · · ∪ 𝑅𝑘 . Hence

𝑘∑
𝑗=1

𝑉(𝑅 𝑗) ≤
∞∑
𝑗=1

𝑉(𝑅 𝑗) < 𝜖.

The proof that we can choose balls instead of rectangles is left as an exercise. □
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Example 10.3.8: So that the reader is not under the impression that there are only few
measure zero sets and that these sets are uncomplicated, here is an uncountable, compact,
measure zero subset of [0, 1], which contains no intervals. Any 𝑥 ∈ [0, 1] can be expanded
in ternary:

𝑥 =
∞∑
𝑛=1

𝑑𝑛3−𝑛 , where 𝑑𝑛 = 0, 1, or 2.

See §1.5 in volume I, in particular Exercise 1.5.4. Define the Cantor set 𝐶 as

𝐶 B
{
𝑥 ∈ [0, 1] : 𝑥 =

∞∑
𝑛=1

𝑑𝑛3−𝑛 , where 𝑑𝑛 = 0 or 𝑑𝑛 = 2 for all 𝑛
}
.

That is, 𝑥 is in 𝐶 if it has a ternary expansion in only 0s and 2s. If 𝑥 has two expansions, as
long as one of them does not have any 1s, then 𝑥 is in 𝐶. Define 𝐶0 B [0, 1] and

𝐶𝑘 B
{
𝑥 ∈ [0, 1] : 𝑥 =

∞∑
𝑛=1

𝑑𝑛3−𝑛 , where 𝑑𝑛 = 0 or 𝑑𝑛 = 2 for all 𝑛 = 1, 2, . . . , 𝑘
}
.

Clearly,

𝐶 =
∞⋂
𝑘=1

𝐶𝑘 .

See  Figure 10.9 .
We leave as an exercise to prove:

(i) Each 𝐶𝑘 is a finite union of closed intervals. It is obtained by taking 𝐶𝑘−1, and from
each closed interval removing the “middle third.”

(ii) Each 𝐶𝑘 is closed, and so 𝐶 is closed.
(iii) 𝑚∗(𝐶𝑘) = 1 −∑𝑘

𝑛=1
2𝑛

3𝑛+1 .
(iv) Hence, 𝑚∗(𝐶) = 0.
(v) The set𝐶 is in one-to-one correspondence with [0, 1], in other words, 𝐶 is uncountable.

𝐶0

𝐶1

𝐶2

𝐶3

𝐶4

Figure 10.9: Cantor set construction.
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10.3.3 Images of null sets under differentiable functions

Before we look at images of measure zero sets, let us see what a continuously differentiable
function does to a ball.

Lemma 10.3.9. Suppose𝑈 ⊂ ℝ𝑛 is an open set, 𝐵 ⊂ 𝑈 is an open (resp. closed) ball of radius at
most 𝑟, 𝑓 : 𝑈 → ℝ𝑛 is continuously differentiable, and suppose ∥ 𝑓 ′(𝑥)∥ ≤ 𝑀 for all 𝑥 ∈ 𝐵. Then
𝑓 (𝐵) ⊂ 𝐵′, where 𝐵′ is an open (resp. closed) ball of radius at most 𝑀𝑟.

Proof. Suppose 𝐵 is open. As the ball 𝐵 is convex,  Proposition 8.4.2 says that ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤
𝑀∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ 𝐵. So if ∥𝑥 − 𝑦∥ < 𝑟, then ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ < 𝑀𝑟. In other words, if
𝐵 = 𝐵(𝑦, 𝑟), then 𝑓 (𝐵) ⊂ 𝐵

(
𝑓 (𝑦), 𝑀𝑟

)
. If 𝐵 is closed, then 𝐵(𝑦, 𝑟) = 𝐵. As 𝑓 is continuous,

𝑓 (𝐵) = 𝑓
(
𝐵(𝑦, 𝑟)) ⊂ 𝑓

(
𝐵(𝑦, 𝑟)) ⊂ 𝐵

(
𝑓 (𝑦), 𝑀𝑟

)
, as 𝑓 (𝐴) ⊂ 𝑓 (𝐴) for any set 𝐴. □

The image of a measure zero set using a continuous map is not necessarily a measure
zero set, although this takes some work to show (see the exercises). However, if the
mapping is continuously differentiable, then it cannot “stretch” the set that much.

Proposition 10.3.10. Suppose𝑈 ⊂ ℝ𝑛 is open and 𝑓 : 𝑈 → ℝ𝑛 is continuously differentiable. If
𝐸 ⊂ 𝑈 is a measure zero set, then 𝑓 (𝐸) is measure zero.

Proof. We prove the proposition for a compact 𝐸 and leave the general case as an exercise.
Suppose 𝐸 is compact and of measure zero. First, we will replace𝑈 by a smaller open set to
make ∥ 𝑓 ′(𝑥)∥ bounded. At each point 𝑥 ∈ 𝐸 pick an open ball 𝐵(𝑥, 𝑟𝑥) such that the closed
ball 𝐶(𝑥, 𝑟𝑥) ⊂ 𝑈 . By compactness, we only need to take finitely many points 𝑥1, 𝑥2, . . . , 𝑥𝑞
to cover 𝐸 with the balls 𝐵(𝑥 𝑗 , 𝑟𝑥 𝑗 ). Define

𝑈′ B
𝑞⋃
𝑗=1

𝐵(𝑥 𝑗 , 𝑟𝑥 𝑗 ), 𝐾 B
𝑞⋃
𝑗=1

𝐶(𝑥 𝑗 , 𝑟𝑥 𝑗 ).

We have 𝐸 ⊂ 𝑈′ ⊂ 𝐾 ⊂ 𝑈 . The set 𝐾, being a finite union of compact sets, is compact. The
function that takes 𝑥 to ∥ 𝑓 ′(𝑥)∥ is continuous, and therefore there exists an 𝑀 > 0 such
that ∥ 𝑓 ′(𝑥)∥ ≤ 𝑀 for all 𝑥 ∈ 𝐾. So without loss of generality, we may replace𝑈 by𝑈′ and
from now on suppose that ∥ 𝑓 ′(𝑥)∥ ≤ 𝑀 for all 𝑥 ∈ 𝑈 .

At each 𝑥 ∈ 𝐸, take the maximum radius 𝛿𝑥 such that 𝐵(𝑥, 𝛿𝑥) ⊂ 𝑈 (we may assume
𝑈 ≠ ℝ𝑛). Let 𝛿 B inf𝑥∈𝐸 𝛿𝑥 . We want to show that 𝛿 > 0. Take a sequence {𝑥 𝑗}∞𝑗=1 in 𝐸 so
that 𝛿𝑥 𝑗 → 𝛿. As 𝐸 is compact, we can pick the sequence to be convergent to some 𝑦 ∈ 𝐸.
Once ∥𝑥 𝑗 − 𝑦∥ <

𝛿𝑦
2 , then 𝛿𝑥 𝑗 >

𝛿𝑦
2 by the triangle inequality. Thus, 𝛿 > 0.

Given 𝜖 > 0, there exist balls 𝐵1, 𝐵2, . . . , 𝐵𝑘 of radii 𝑟1, 𝑟2, . . . , 𝑟𝑘 < 𝛿/2 such that

𝐸 ⊂ 𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵𝑘 and
𝑘∑
𝑗=1

𝑟𝑛𝑗 < 𝜖.
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We can assume that each ball contains a point of 𝐸 and so the balls are contained in 𝑈 .
Suppose 𝐵′1, 𝐵

′
2, . . . , 𝐵

′
𝑘 are the balls of radius 𝑀𝑟1, 𝑀𝑟2, . . . , 𝑀𝑟𝑘 from  Lemma 10.3.9  , such

that 𝑓 (𝐵 𝑗) ⊂ 𝐵′𝑗 for all 𝑗. Then,

𝑓 (𝐸) ⊂ 𝑓 (𝐵1) ∪ 𝑓 (𝐵2) ∪ · · · ∪ 𝑓 (𝐵𝑘) ⊂ 𝐵′1 ∪ 𝐵′2 ∪ · · · ∪ 𝐵′𝑘 and
𝑘∑
𝑗=1

(𝑀𝑟 𝑗)𝑛 < 𝑀𝑛𝜖. □

10.3.4 Exercises
Exercise 10.3.1: Finish the proof of  Proposition 10.3.7 : Show that you can use balls instead of rectangles.

Exercise 10.3.2: If 𝐴 ⊂ 𝐵, then 𝑚∗(𝐴) ≤ 𝑚∗(𝐵).
Exercise 10.3.3: Suppose 𝑋 ⊂ ℝ𝑛 is a set such that for every 𝜖 > 0, there exists a set 𝑌 such that 𝑋 ⊂ 𝑌
and 𝑚∗(𝑌) ≤ 𝜖. Prove that 𝑋 is a measure zero set.

Exercise 10.3.4: Show that if 𝑅 ⊂ ℝ𝑛 is a closed rectangle, then 𝑚∗(𝑅) = 𝑉(𝑅).
Exercise 10.3.5: The closure of a measure zero set can be quite large. Find an example set 𝑆 ⊂ ℝ𝑛 that is of
measure zero, but whose closure 𝑆 = ℝ𝑛 .

Exercise 10.3.6: Prove the general case of  Proposition 10.3.10 without using compactness:

a) Mimic the proof to prove that the proposition holds if 𝐸 is relatively compact; a set 𝐸 ⊂ 𝑈 is relatively
compact if the closure of 𝐸 in the subspace topology on𝑈 is compact, or in other words if there exists a
compact set 𝐾 with 𝐾 ⊂ 𝑈 and 𝐸 ⊂ 𝐾.
Hint: The bound on the size of the derivative still holds, but you need to use countably many balls in the
second part of the proof. Be careful as the closure of 𝐸 need no longer be measure zero.

b) Now prove it for every null set 𝐸.
Hint: First show that {𝑥 ∈ 𝑈 : ∥𝑥 − 𝑦∥ ≥ 1/𝑚 for all 𝑦 ∉ 𝑈 and ∥𝑥∥ ≤ 𝑚} is compact for every 𝑚 > 0.

Exercise 10.3.7: Let𝑈 ⊂ ℝ𝑛 be an open set and let 𝑓 : 𝑈 → ℝ be a continuously differentiable function.
Let 𝐺 B

{(𝑥, 𝑦) ∈ 𝑈 ×ℝ : 𝑦 = 𝑓 (𝑥)} be the graph of 𝑓 . Show that 𝐺 is of measure zero.

Exercise 10.3.8: Given a closed rectangle 𝑅 ⊂ ℝ𝑛 , show that for every 𝜖 > 0, there exists a number 𝑠 > 0
and finitely many open cubes 𝐶1 , 𝐶2 , . . . , 𝐶𝑘 of side 𝑠 such that 𝑅 ⊂ 𝐶1 ∪ 𝐶2 ∪ · · · ∪ 𝐶𝑘 and

𝑘∑
𝑗=1

𝑉(𝐶 𝑗) ≤ 𝑉(𝑅) + 𝜖.

Exercise 10.3.9: Show that there exists a number 𝑘 = 𝑘(𝑛, 𝑟, 𝛿) depending only on 𝑛, 𝑟 and 𝛿 such the
following holds: Given 𝐵(𝑥, 𝑟) ⊂ ℝ𝑛 and 𝛿 > 0, there exist 𝑘 open balls 𝐵1 , 𝐵2 , . . . , 𝐵𝑘 of radius at most 𝛿
such that 𝐵(𝑥, 𝑟) ⊂ 𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵𝑘 . Note that you can find 𝑘 that only depends on 𝑛 and the ratio 𝛿/𝑟.
Exercise 10.3.10 (Challenging): Prove the statements of  Example 10.3.8 . That is, prove:

a) Each 𝐶𝑘 is a finite union of closed intervals, and so 𝐶 is closed.

b) 𝑚∗(𝐶𝑘) = 1 −∑𝑘
𝑛=1

2𝑛
3𝑛+1 .

c) 𝑚∗(𝐶) = 0.

d) The set 𝐶 is in one-to-one correspondence with [0, 1].
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Exercise 10.3.11: Prove that the Cantor set of  Example 10.3.8 contains no interval. That is, whenever 𝑎 < 𝑏,
there exists a point 𝑥 ∉ 𝐶 such that 𝑎 < 𝑥 < 𝑏.
Note a consequence of this statement. While every open set in ℝ is a countable disjoint union of intervals, a
closed set (even though it is just the complement of an open set) need not be a union of intervals.

Exercise 10.3.12 (Challenging): Let us construct the so-called Cantor function or the Devil’s staircase.
Let 𝐶 be the Cantor set and let 𝐶𝑘 be as in  Example 10.3.8 . Write 𝑥 ∈ [0, 1] in ternary representation
𝑥 =

∑
𝑛=1 𝑑𝑛3−𝑛 . If 𝑑𝑛 ≠ 1 for all 𝑛, then let 𝑐𝑛 B 𝑑𝑛

2 for all 𝑛. Otherwise, let 𝑘 be the smallest integer such
that 𝑑𝑘 = 1. Let 𝑐𝑛 B 𝑑𝑛

2 if 𝑛 < 𝑘, 𝑐𝑘 B 1, and 𝑐𝑛 B 0 if 𝑛 > 𝑘. Define

𝜑(𝑥) B
∞∑
𝑛=1

𝑐𝑛 2−𝑛 .

a) Prove that 𝜑 is continuous and increasing (see  Figure 10.9 ).

b) Prove that for 𝑥 ∉ 𝐶, 𝜑 is differentiable at 𝑥 and 𝜑′(𝑥) = 0. (Notice that 𝜑′ exists and is zero except for a
set of measure zero, yet the function manages to climb from 0 to 1.)

c) Define 𝜓 : [0, 1] → [0, 2] by 𝜓(𝑥) B 𝜑(𝑥) + 𝑥. Show that 𝜓 is continuous, strictly increasing, and
bĳective.

d) Prove that while 𝑚∗(𝐶) = 0, 𝑚∗ (𝜓(𝐶)) ≠ 0. That is, continuous functions need not take measure zero
sets to measure zero sets. Hint: 𝑚∗ (𝜓([0, 1] \ 𝐶)) = 1, but 𝑚∗ ([0, 2]) = 2.

0 0.5 1
0

0.5

1

Figure 10.10: Cantor function or Devil’s staircase (the function 𝜑 from the exercise).

Exercise 10.3.13: Prove that we obtain the same outer measure if we allow both finite and infinite sequences
in the definition. That is, define 𝜇∗(𝑆) B inf

∑
𝑗∈𝐼 𝑉(𝑅 𝑗) where the infimum is taken over all countable

(finite or infinite) sets of open rectangles {𝑅 𝑗} 𝑗∈𝐼 such that 𝑆 ⊂ ⋃
𝑗∈𝐼 𝑅 𝑗 . Prove that for every 𝑆 ⊂ ℝ𝑛 ,

𝜇∗(𝑆) = 𝑚∗(𝑆).
Exercise 10.3.14: Prove that for any two subsets 𝐴, 𝐵 ⊂ ℝ𝑛 , we have 𝑚∗(𝐴 ∪ 𝐵) ≤ 𝑚∗(𝐴) + 𝑚∗(𝐵).
Exercise 10.3.15: Suppose 𝐴, 𝐵 ⊂ ℝ𝑛 are such that 𝑚∗(𝐵) = 0. Prove that 𝑚∗(𝐴 ∪ 𝐵) = 𝑚∗(𝐴).
Exercise 10.3.16 (Challenging): Suppose 𝑅1 , 𝑅2 , . . . , 𝑅𝑛 are pairwise disjoint open rectangles. Prove that
𝑚∗(𝑅1 ∪ 𝑅2 ∪ · · · ∪ 𝑅𝑛) = 𝑚∗(𝑅1) + 𝑚∗(𝑅2) + · · · + 𝑚∗(𝑅𝑛). Hint: Some of the exercises above may prove
very useful.
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10.4 The set of Riemann integrable functions
Note: 1 lecture

10.4.1 Oscillation and continuity
Consider 𝐷 ⊂ ℝ𝑛 and 𝑓 : 𝐷 → ℝ. Instead of just saying that 𝑓 is or is not continuous at a
point 𝑥 ∈ 𝐷, we want to quantify how discontinuous is 𝑓 at 𝑥. For every 𝛿 > 0, define the
oscillation of 𝑓 on the 𝛿-ball in subspace topology, 𝐵𝐷(𝑥, 𝛿) = 𝐵ℝ𝑛 (𝑥, 𝛿) ∩ 𝐷, as

𝑜( 𝑓 , 𝑥, 𝛿) B sup
𝑦∈𝐵𝐷(𝑥,𝛿)

𝑓 (𝑦) − inf
𝑦∈𝐵𝐷(𝑥,𝛿)

𝑓 (𝑦) = sup
𝑦1 ,𝑦2∈𝐵𝐷(𝑥,𝛿)

(
𝑓 (𝑦1) − 𝑓 (𝑦2)

)
.

That is, 𝑜( 𝑓 , 𝑥, 𝛿) is the length of the smallest interval that contains the image 𝑓
(
𝐵𝐷(𝑥, 𝛿)

)
.

The definition makes sense for unbounded functions, where the oscillation can be ∞,
although we will mainly consider bounded functions. Clearly 𝑜( 𝑓 , 𝑥, 𝛿) ≥ 0 and 𝑜( 𝑓 , 𝑥, 𝛿) ≤
𝑜( 𝑓 , 𝑥, 𝛿′) whenever 𝛿 < 𝛿′. Therefore, the limit as 𝛿 → 0 from the right exists, and we
define the oscillation of 𝑓 at 𝑥 as

𝑜( 𝑓 , 𝑥) B lim
𝛿→0+

𝑜( 𝑓 , 𝑥, 𝛿) = inf
𝛿>0

𝑜( 𝑓 , 𝑥, 𝛿).

We will prove that function is continuous at 𝑥 if and only if 𝑜( 𝑓 , 𝑥) = 0. Fox example,
if 𝑓 : ℝ → ℝ is the Dirichlet function where 𝑓 (𝑥) = 1 if 𝑥 ∈ ℚ and 𝑓 (𝑥) = 0 otherwise,
then 𝑜( 𝑓 , 𝑥) = 1 for every 𝑥, as any interval contains both rational and irrational numbers.
Accordingly, 𝑓 is not continuous at any 𝑥. For another example, which is perhaps the origin
of the terminology, let 𝑔 : ℝ → ℝ be given by 𝑔(𝑥) = sin(1/𝑥) for 𝑥 ≠ 0 and 𝑔(0) = 0, see

 Figure 10.11 . Then at the discontinuity at 𝑥 = 0, we find 𝑜(𝑔, 0) = 2, as in any neighborhood
of 0, the function takes both values 1 and −1. For all 𝑥 ≠ 0, the function is continuous and
so, as we will see, 𝑜(𝑔, 𝑥) = 0.

Figure 10.11: Graph of sin(1/𝑥).
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Proposition 10.4.1. A function 𝑓 : 𝐷 → ℝ is continuous at 𝑥 ∈ 𝐷 if and only if 𝑜( 𝑓 , 𝑥) = 0.

Proof. First suppose that 𝑓 is continuous at 𝑥 ∈ 𝐷. Given 𝜖 > 0, there exists a 𝛿 > 0 such
that for 𝑦 ∈ 𝐵𝐷(𝑥, 𝛿), we have | 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖. Therefore, if 𝑦1, 𝑦2 ∈ 𝐵𝐷(𝑥, 𝛿), then

𝑓 (𝑦1) − 𝑓 (𝑦2) =
(
𝑓 (𝑦1) − 𝑓 (𝑥)) − (

𝑓 (𝑦2) − 𝑓 (𝑥)) < 𝜖 + 𝜖 = 2𝜖.

Take the supremum over 𝑦1 and 𝑦2 to find

𝑜( 𝑓 , 𝑥, 𝛿) = sup
𝑦1 ,𝑦2∈𝐵𝐷(𝑥,𝛿)

(
𝑓 (𝑦1) − 𝑓 (𝑦2)

) ≤ 2𝜖.

As 𝑜(𝑥, 𝑓 ) ≤ 𝑜( 𝑓 , 𝑥, 𝛿) ≤ 2𝜖, and 𝜖 > 0 was arbitrary, 𝑜(𝑥, 𝑓 ) = 0.
On the other hand, suppose 𝑜(𝑥, 𝑓 ) = 0. Given 𝜖 > 0, find a 𝛿 > 0 such that 𝑜( 𝑓 , 𝑥, 𝛿) < 𝜖.

If 𝑦 ∈ 𝐵𝐷(𝑥, 𝛿), then

| 𝑓 (𝑥) − 𝑓 (𝑦)| ≤ sup
𝑦1 ,𝑦2∈𝐵𝐷(𝑥,𝛿)

(
𝑓 (𝑦1) − 𝑓 (𝑦2)

)
= 𝑜( 𝑓 , 𝑥, 𝛿) < 𝜖. □

Proposition 10.4.2. Let𝐷 ⊂ ℝ𝑛 be closed, 𝑓 : 𝐷 → ℝ, and 𝜖 > 0. The set
{
𝑥 ∈ 𝐷 : 𝑜( 𝑓 , 𝑥) ≥ 𝜖

}
is closed.

Proof. Equivalently, we want to show that 𝐺 B
{
𝑥 ∈ 𝐷 : 𝑜( 𝑓 , 𝑥) < 𝜖

}
is open in the

subspace topology. Consider 𝑥 ∈ 𝐺. As inf𝛿>0 𝑜( 𝑓 , 𝑥, 𝛿) < 𝜖, find a 𝛿 > 0 such that

𝑜( 𝑓 , 𝑥, 𝛿) < 𝜖.

Take any 𝜉 ∈ 𝐵𝐷(𝑥, 𝛿/2). Notice that 𝐵𝐷(𝜉, 𝛿/2) ⊂ 𝐵𝐷(𝑥, 𝛿). Therefore,

𝑜( 𝑓 , 𝜉, 𝛿/2) = sup
𝑦1 ,𝑦2∈𝐵𝐷(𝜉,𝛿/2)

(
𝑓 (𝑦1) − 𝑓 (𝑦2)

) ≤ sup
𝑦1 ,𝑦2∈𝐵𝐷(𝑥,𝛿)

(
𝑓 (𝑦1) − 𝑓 (𝑦2)

)
= 𝑜( 𝑓 , 𝑥, 𝛿) < 𝜖.

So 𝑜( 𝑓 , 𝜉) < 𝜖 as well. As this is true for all 𝜉 ∈ 𝐵𝐷(𝑥, 𝛿/2), we get that 𝐺 is open in the
subspace topology, and 𝐷 \ 𝐺 is closed as claimed. □

10.4.2 The set of Riemann integrable functions
We have seen that continuous functions are Riemann integrable, but we also know that
certain kinds of discontinuities are allowed. It turns out that as long as the discontinuities
happen on a set of measure zero, the function is integrable, and vice versa.

Theorem 10.4.3 (Riemann–Lebesgue or Lebesgue–Vitali 

*
 ). Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle

and 𝑓 : 𝑅 → ℝ bounded. Then 𝑓 is Riemann integrable if and only if the set of discontinuities of
𝑓 is of measure zero.

*
 Giuseppe Vitali  (1875–1932) was an Italian mathematician. Note also that the name Riemann–Lebesgue

often refers to a result like Exercise 5.2.18 from volume I.

https://en.wikipedia.org/wiki/Giuseppe_Vitali
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Proof. Let 𝑆 ⊂ 𝑅 be the set of discontinuities of 𝑓 , that is, 𝑆 =
{
𝑥 ∈ 𝑅 : 𝑜( 𝑓 , 𝑥) > 0

}
.

Suppose 𝑆 is a measure zero set: 𝑚∗(𝑆) = 0. The trick to proving that 𝑓 is integrable is to
isolate the bad set into a small set of subrectangles of a partition. A partition has finitely
many subrectangles, so we need compactness. If 𝑆 were closed, then it would be compact
and we could cover it by finitely many small rectangles. Unfortunately, 𝑆 itself is not closed
in general, but the following set is. Given 𝜖 > 0, define

𝑆𝜖 B
{
𝑥 ∈ 𝑅 : 𝑜( 𝑓 , 𝑥) ≥ 𝜖

}
.

By  Proposition 10.4.2 , 𝑆𝜖 is closed, and as it is also a subset of the bounded 𝑅, 𝑆𝜖 is compact.
Moreover, 𝑆𝜖 ⊂ 𝑆 and 𝑆 is of measure zero, so 𝑆𝜖 is of measure zero. Via  Proposition 10.3.7 ,
finitely many open rectangles 𝑂1, 𝑂2, . . . , 𝑂𝑘 cover 𝑆𝜖 and

∑∞
𝑗=1𝑉(𝑂 𝑗) < 𝜖.

The set 𝑇 B 𝑅 \ (𝑂1 ∪ · · · ∪ 𝑂𝑘) is closed, bounded, and so compact. As 𝑜( 𝑓 , 𝑥) < 𝜖 for
all 𝑥 ∈ 𝑇, for each 𝑥 ∈ 𝑇, there is a 𝛿 > 0 such that 𝑜( 𝑓 , 𝑥, 𝛿) < 𝜖, so there exists a small
closed rectangle 𝑇𝑥 ⊂ 𝐵(𝑥, 𝛿) with 𝑥 in the interior of 𝑇𝑥 , such that

sup
𝑦∈𝑇𝑥

𝑓 (𝑦) − inf
𝑦∈𝑇𝑥

𝑓 (𝑦) < 𝜖.

The interiors of the rectangles 𝑇𝑥 cover 𝑇. As 𝑇 is compact, finitely many such rectangles
𝑇1, 𝑇2, . . . , 𝑇𝑚 cover 𝑇. Construct a partition 𝑃 out of the endpoints of the rectangles
𝑇1, 𝑇2, . . . , 𝑇𝑚 and 𝑂1, 𝑂2, . . . , 𝑂𝑘 (ignoring those that are outside the endpoints of 𝑅). The
subrectangles 𝑅1, 𝑅2, . . . , 𝑅𝑝 of 𝑃 are such that every 𝑅 𝑗 is contained in 𝑇ℓ for some ℓ or
the closure of 𝑂ℓ for some ℓ . Order the rectangles so that 𝑅1, 𝑅2, . . . , 𝑅𝑞 are those that are
contained in some 𝑇ℓ , and 𝑅𝑞+1, 𝑅𝑞+2, . . . , 𝑅𝑝 are the rest. See  Figure 10.12 . So

𝑞∑
𝑗=1

𝑉(𝑅 𝑗) ≤ 𝑉(𝑅) and
𝑝∑

𝑗=𝑞+1
𝑉(𝑅 𝑗) ≤

𝑘∑
ℓ=1

𝑉(𝑂ℓ ) < 𝜖.

The second estimate holds because the 𝑅 𝑗 that are subsets of 𝑂ℓ give a partition of 𝑂ℓ and
hence their volumes sum to 𝑉(𝑂ℓ ). Let 𝑚 𝑗 and 𝑀 𝑗 be the inf and sup of 𝑓 over 𝑅 𝑗 as usual.
If 𝑅 𝑗 ⊂ 𝑇ℓ for some ℓ , then 𝑀 𝑗 − 𝑚 𝑗 < 𝜖. Let 𝐵 ∈ ℝ be such that | 𝑓 (𝑥)| ≤ 𝐵 for all 𝑥 ∈ 𝑅, so
𝑀 𝑗 − 𝑚 𝑗 ≤ 2𝐵 over all rectangles. Then

𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) =
𝑝∑
𝑗=1

(𝑀 𝑗 − 𝑚 𝑗)𝑉(𝑅 𝑗)

= ©«
𝑞∑
𝑗=1

(𝑀 𝑗 − 𝑚 𝑗)𝑉(𝑅 𝑗)ª®¬ + ©«
𝑝∑

𝑗=𝑞+1
(𝑀 𝑗 − 𝑚 𝑗)𝑉(𝑅 𝑗)ª®¬

<
©«

𝑞∑
𝑗=1

𝜖𝑉(𝑅 𝑗)ª®¬ + ©«
𝑝∑

𝑗=𝑞+1
2𝐵𝑉(𝑅 𝑗)ª®¬

< 𝜖𝑉(𝑅) + 2𝐵𝜖 = 𝜖
(
𝑉(𝑅) + 2𝐵

)
.

We can make the right-hand side as small as we want, and hence 𝑓 is integrable.
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Figure 10.12: A rectangle 𝑅 with 𝑆𝜖 marked as thick black line, and the 𝑂ℓ as shaded rectangles.
The partition is given by the dotted lines. Note how the 𝑅 𝑗 partition the 𝑂ℓ .

For the other direction, suppose 𝑓 is Riemann integrable on 𝑅. Let 𝑆 be the set of
discontinuities of 𝑓 again. Consider the sequence of sets

𝑆1/𝑘 =
{
𝑥 ∈ 𝑅 : 𝑜( 𝑓 , 𝑥) ≥ 1/𝑘}.

Fix a 𝑘 ∈ ℕ. Given an 𝜖 > 0, find a partition 𝑃 with subrectangles 𝑅1, 𝑅2, . . . , 𝑅𝑝 such that

𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) =
𝑝∑
𝑗=1

(𝑀 𝑗 − 𝑚 𝑗)𝑉(𝑅 𝑗) < 𝜖.

Suppose 𝑅1, 𝑅2, . . . , 𝑅𝑝 are ordered so that the interiors of 𝑅1, 𝑅2, . . . , 𝑅𝑞 intersect 𝑆1/𝑘 ,
while the interiors of 𝑅𝑞+1, 𝑅𝑞+2, . . . , 𝑅𝑝 are disjoint from 𝑆1/𝑘 . Let 𝑅◦

𝑗 denote the interior
of 𝑅 𝑗 . Suppose 𝑗 ≤ 𝑞 and consider 𝑥 ∈ 𝑅◦

𝑗 ∩ 𝑆1/𝑘 . Let 𝛿 > 0 be small enough so that
𝐵(𝑥, 𝛿) ⊂ 𝑅 𝑗 . As 𝑥 ∈ 𝑆1/𝑘 , we get 𝑜( 𝑓 , 𝑥, 𝛿) ≥ 𝑜( 𝑓 , 𝑥) ≥ 1/𝑘, which, along with 𝐵(𝑥, 𝛿) ⊂ 𝑅 𝑗 ,
implies 𝑀 𝑗 − 𝑚 𝑗 ≥ 1/𝑘. Then

𝜖 >

𝑝∑
𝑗=1

(𝑀 𝑗 − 𝑚 𝑗)𝑉(𝑅 𝑗) ≥
𝑞∑
𝑗=1

(𝑀 𝑗 − 𝑚 𝑗)𝑉(𝑅 𝑗) ≥ 1
𝑘

𝑞∑
𝑗=1

𝑉(𝑅 𝑗).

In other words,
∑𝑞
𝑗=1𝑉(𝑅 𝑗) < 𝑘𝜖. Let𝐺 be the set of all boundaries of all the subrectangles of

𝑃. The set 𝐺 is of measure zero (it can be covered by finitely many sets from  Example 10.3.5 ).
We find

𝑆1/𝑘 ⊂ 𝑅◦
1 ∪ 𝑅◦

2 ∪ · · · ∪ 𝑅◦
𝑞 ∪ 𝐺.

As 𝐺 can also be covered by open rectangles arbitrarily small volume, 𝑆1/𝑘 must be of
measure zero. As

𝑆 =
∞⋃
𝑘=1

𝑆1/𝑘

and a countable union of measure zero sets is of measure zero, 𝑆 is of measure zero. □
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Corollary 10.4.4. Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle. Let R(𝑅) be the set of Riemann integrable
functions on 𝑅. Then

(i) R(𝑅) is a real algebra: If 𝑓 , 𝑔 ∈ R(𝑅) and 𝑎 ∈ ℝ, then 𝑎 𝑓 ∈ R(𝑅), 𝑓 + 𝑔 ∈ R(𝑅) and
𝑓 𝑔 ∈ R(𝑅).

(ii) If 𝑓 , 𝑔 ∈ R(𝑅) and

𝜑(𝑥) B max
{
𝑓 (𝑥), 𝑔(𝑥)} , 𝜓(𝑥) B min

{
𝑓 (𝑥), 𝑔(𝑥)} ,

then 𝜑,𝜓 ∈ R(𝑅).
(iii) If 𝑓 ∈ R(𝑅), then | 𝑓 | ∈ R(𝑅), where | 𝑓 |(𝑥) B | 𝑓 (𝑥)|.
(iv) If 𝑅′ ⊂ ℝ𝑛 is another closed rectangle,𝑈 ⊂ ℝ𝑛 and𝑈′ ⊂ ℝ𝑛 are open sets such that 𝑅 ⊂ 𝑈

and 𝑅′ ⊂ 𝑈′, 𝑔 : 𝑈 → 𝑈′ is continuously differentiable, bĳective, 𝑔−1 is continuously
differentiable, 𝑔(𝑅) ⊂ 𝑅′, and 𝑓 ∈ R(𝑅′), then the composition 𝑓 ◦ 𝑔 is Riemann integrable
on 𝑅.

The proof is contained in the exercises.

10.4.3 Exercises
Exercise 10.4.1: Suppose 𝑓 : (𝑎, 𝑏) × (𝑐, 𝑑) → ℝ is a bounded continuous function. Show that the integral
of 𝑓 over 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] makes sense and is uniquely defined. That is, set 𝑓 to be anything (bounded) on
the boundary of 𝑅 and compute the integral, showing that the values on the boundary are irrelevant.

Exercise 10.4.2: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle. Show that R(𝑅), the set of Riemann integrable
functions, is an algebra. That is, show that if 𝑓 , 𝑔 ∈ R(𝑅) and 𝑎 ∈ ℝ, then 𝑎 𝑓 ∈ R(𝑅), 𝑓 + 𝑔 ∈ R(𝑅), and
𝑓 𝑔 ∈ R(𝑅).

Exercise 10.4.3: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle and 𝑓 : 𝑅 → ℝ is a bounded function which is zero
except on a closed set 𝐸 ⊂ 𝑅 of measure zero. Show that

∫
𝑅
𝑓 exists and compute it.

Exercise 10.4.4: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle and 𝑓 : 𝑅 → ℝ and 𝑔 : 𝑅 → ℝ are two Riemann
integrable functions. Suppose 𝑓 = 𝑔 except for a closed set 𝐸 ⊂ 𝑅 of measure zero. Show that

∫
𝑅
𝑓 =

∫
𝑅
𝑔.

Exercise 10.4.5: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle and 𝑓 : 𝑅 → ℝ is a bounded function.

a) Suppose there exists a closed set 𝐸 ⊂ 𝑅 of measure zero such that 𝑓 |𝑅\𝐸 is continuous. Then 𝑓 ∈ R(𝑅).
b) Find an example where 𝐸 ⊂ 𝑅 is a set of measure zero (not closed) such that 𝑓 |𝑅\𝐸 is continuous and

𝑓 ∉ R(𝑅).

Exercise 10.4.6: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle and 𝑓 : 𝑅 → ℝ and 𝑔 : 𝑅 → ℝ are Riemann
integrable. Show that

𝜑(𝑥) B max
{
𝑓 (𝑥), 𝑔(𝑥)} , 𝜓(𝑥) B min

{
𝑓 (𝑥), 𝑔(𝑥)} ,

are Riemann integrable.



122 CHAPTER 10. MULTIVARIABLE INTEGRAL

Exercise 10.4.7: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle and 𝑓 : 𝑅 → ℝ is Riemann integrable. Show that
| 𝑓 | is Riemann integrable. Hint: Define 𝑓+(𝑥) B max

{
𝑓 (𝑥), 0} and 𝑓−(𝑥) B max

{− 𝑓 (𝑥), 0}, and then
write | 𝑓 | in terms of 𝑓+ and 𝑓−.

Exercise 10.4.8:

a) Suppose 𝑅 ⊂ ℝ𝑛 and 𝑅′ ⊂ ℝ𝑛 are closed rectangles, 𝑈 ⊂ ℝ𝑛 and 𝑈′ ⊂ ℝ𝑛 are open sets such
that 𝑅 ⊂ 𝑈 and 𝑅′ ⊂ 𝑈′, 𝑔 : 𝑈 → 𝑈′ is continuously differentiable, bĳective, 𝑔−1 is continuously
differentiable, 𝑔(𝑅) ⊂ 𝑅′, and 𝑓 ∈ R(𝑅′), then the composition 𝑓 ◦ 𝑔 is Riemann integrable on 𝑅.

b) Find a counterexample when 𝑔 is not one-to-one. Hint: Try 𝑔(𝑥, 𝑦) B (𝑥, 0) and 𝑅 = 𝑅′ = [0, 1]×[0, 1].
Exercise 10.4.9: Suppose 𝑓 : [0, 1]2 → ℝ is defined by

𝑓 (𝑥, 𝑦) B
{

1
𝑘𝑞 if 𝑥, 𝑦 ∈ ℚ and 𝑥 = ℓ

𝑘 and 𝑦 = 𝑝
𝑞 in lowest terms,

0 else.

Show that 𝑓 ∈ R
([0, 1]2) .

Exercise 10.4.10: Compute the oscillation 𝑜
(
𝑓 , (𝑥, 𝑦)) for all (𝑥, 𝑦) ∈ ℝ2 for the function

𝑓 (𝑥, 𝑦) B
{ 𝑥𝑦
𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

Exercise 10.4.11: Consider the popcorn function 𝑓 : [0, 1] → ℝ,

𝑓 (𝑥) B
{

1
𝑞 if 𝑥 ∈ ℚ and 𝑥 = 𝑝

𝑞 in lowest terms,
0 else.

Compute 𝑜( 𝑓 , 𝑥) for all 𝑥 ∈ [0, 1].
Exercise 10.4.12: Suppose 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑐, 𝑑] → ℝ are Riemann integrable. Show that
ℎ : [𝑎, 𝑏] × [𝑐, 𝑑] → ℝ defined by ℎ(𝑥, 𝑦) B 𝑓 (𝑥)𝑔(𝑦) is Riemann integrable and∫

[𝑎,𝑏]×[𝑐,𝑑]
ℎ =

(∫ 𝑏

𝑎
𝑓
) (∫ 𝑑

𝑐
𝑔
)
.

Exercise 10.4.13: Let 𝑅 ⊂ ℝ𝑛 be a closed rectangle and 𝑓 : 𝑅 → ℝ a Riemann integrable function such that
𝑓 (𝑥) ≥ 0 for all 𝑥 ∈ 𝑅. Show that if

∫
𝑅
𝑓 = 0, then there is a measure zero set 𝐸 ⊂ 𝑅 such that 𝑓 (𝑥) = 0 for

all 𝑥 ∈ 𝑅 \ 𝐸 (one says “ 𝑓 = 0 almost everywhere”). Note: This exercise in particular implies the rather
subtle statement: If 𝑓 (𝑥) > 0 for all 𝑥 ∈ 𝑅, then

∫
𝑅
𝑓 > 0.
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10.5 Jordan measurable sets
Note: 1–1.5 lecture

10.5.1 Volume and Jordan measurable sets
Given a set 𝑆 ⊂ ℝ𝑛 , its characteristic function or indicator function 𝜒𝑆 : ℝ𝑛 → ℝ is defined by

𝜒𝑆(𝑥) B
{

1 if 𝑥 ∈ 𝑆,
0 if 𝑥 ∉ 𝑆.

A bounded set 𝑆 is Jordan measurable 

*
 if for some closed rectangle 𝑅 such that 𝑆 ⊂ 𝑅,

the function 𝜒𝑆 is Riemann integrable, that is, 𝜒𝑆 ∈ R(𝑅). Take two closed rectangles 𝑅
and 𝑅′ with 𝑆 ⊂ 𝑅 and 𝑆 ⊂ 𝑅′, then 𝑅 ∩ 𝑅′ is a closed rectangle also containing 𝑆. By

 Proposition 10.1.13 and  Exercise 10.1.7 , 𝜒𝑆 ∈ R(𝑅 ∩ 𝑅′) and so 𝜒𝑆 ∈ R(𝑅′). Thus∫
𝑅
𝜒𝑆 =

∫
𝑅′
𝜒𝑆 =

∫
𝑅∩𝑅′

𝜒𝑆 .

We define the 𝑛-dimensional volume of the bounded Jordan measurable set 𝑆 as

𝑉(𝑆) B
∫
𝑅
𝜒𝑆 ,

where 𝑅 is any closed rectangle containing 𝑆.

Proposition 10.5.1. A bounded set 𝑆 ⊂ ℝ𝑛 is Jordan measurable if and only if the boundary 𝜕𝑆
is a measure zero set.

Proof. Suppose 𝑅 is a closed rectangle such that 𝑆 is contained in the interior of 𝑅. If 𝑥 ∈ 𝜕𝑆,
then for every 𝛿 > 0, the sets 𝑆∩𝐵(𝑥, 𝛿) (where 𝜒𝑆 is 1) and the sets (𝑅 \ 𝑆) ∩𝐵(𝑥, 𝛿) (where
𝜒𝑆 is 0) are both nonempty. So 𝜒𝑆 is not continuous at 𝑥. If 𝑥 is either in the interior of 𝑆 or
in the complement of the closure 𝑆, then 𝜒𝑆 is either identically 1 or identically 0 in a whole
neighborhood of 𝑥 and hence 𝜒𝑆 is continuous at 𝑥. Therefore, the set of discontinuities of
𝜒𝑆 is precisely the boundary 𝜕𝑆. The proposition follows. □

Proposition 10.5.2. Suppose 𝑆 and 𝑇 are bounded Jordan measurable sets. Then

(i) The closure 𝑆 is Jordan measurable.
(ii) The interior 𝑆◦ is Jordan measurable.
(iii) 𝑆 ∪ 𝑇 is Jordan measurable.
(iv) 𝑆 ∩ 𝑇 is Jordan measurable.
(v) 𝑆 \ 𝑇 is Jordan measurable.
*Named after the French mathematician  Marie Ennemond Camille Jordan (1838–1922).

https://en.wikipedia.org/wiki/Camille_Jordan
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The proof of the proposition is left as an exercise. Next, we find that the volume that
we defined above coincides with the outer measure we defined above.
Proposition 10.5.3. If 𝑆 ⊂ ℝ𝑛 is Jordan measurable, then 𝑉(𝑆) = 𝑚∗(𝑆).
Proof. Given 𝜖 > 0, let 𝑅 be a closed rectangle that contains 𝑆. Let 𝑃 be a partition of 𝑅
such that

𝑈(𝑃, 𝜒𝑆) ≤
(∫

𝑅
𝜒𝑆

)
+ 𝜖 = 𝑉(𝑆) + 𝜖 and 𝐿(𝑃, 𝜒𝑆) ≥

(∫
𝑅
𝜒𝑆

)
− 𝜖 = 𝑉(𝑆) − 𝜖.

Let 𝑅1, 𝑅2, . . . , 𝑅𝑘 be all the subrectangles of 𝑃 such that 𝜒𝑆 is not identically zero on each
𝑅 𝑗 . That is, there is some point 𝑥 ∈ 𝑅 𝑗 such that 𝑥 ∈ 𝑆 (i.e. 𝜒𝑆(𝑥) = 1). Let 𝑂 𝑗 be an open
rectangle such that 𝑅 𝑗 ⊂ 𝑂 𝑗 and 𝑉(𝑂 𝑗) < 𝑉(𝑅 𝑗) + 𝜖/𝑘. Notice that 𝑆 ⊂ ⋃

𝑗 𝑂 𝑗 . Then

𝑈(𝑃, 𝜒𝑆) =
𝑘∑
𝑗=1

𝑉(𝑅 𝑗) > ©«
𝑘∑
𝑗=1

𝑉(𝑂 𝑗)ª®¬ − 𝜖 ≥ 𝑚∗(𝑆) − 𝜖.

As𝑈(𝑃, 𝜒𝑆) ≤ 𝑉(𝑆) + 𝜖, then 𝑚∗(𝑆) − 𝜖 ≤ 𝑉(𝑆) + 𝜖, or in other words 𝑚∗(𝑆) ≤ 𝑉(𝑆).
Let 𝑅′

1, 𝑅
′
2, . . . , 𝑅

′
ℓ be all the subrectangles of 𝑃 such that 𝜒𝑆 is identically one on each

𝑅′
𝑗 . In other words, these are the subrectangles contained in 𝑆. The interiors of the

subrectangles 𝑅′◦
𝑗 are disjoint and 𝑉(𝑅′◦

𝑗 ) = 𝑉(𝑅′
𝑗). Via  Exercise 10.3.16 ,

𝑚∗
( ℓ⋃
𝑗=1

𝑅′◦
𝑗

)
=

ℓ∑
𝑗=1

𝑉(𝑅′◦
𝑗 ).

Hence

𝑚∗(𝑆) ≥ 𝑚∗
( ℓ⋃
𝑗=1

𝑅′
𝑗

)
≥ 𝑚∗

( ℓ⋃
𝑗=1

𝑅′◦
𝑗

)
=

ℓ∑
𝑗=1

𝑉(𝑅′◦
𝑗 ) =

ℓ∑
𝑗=1

𝑉(𝑅′
𝑗) = 𝐿(𝑃, 𝑓 ) ≥ 𝑉(𝑆) − 𝜖.

Therefore 𝑚∗(𝑆) ≥ 𝑉(𝑆) as well. □

10.5.2 Integration over Jordan measurable sets
In ℝ there is only one reasonable type of set to integrate over: an interval. In ℝ𝑛 there
are many kinds of sets. The ones that work with the Riemann integral are the Jordan
measurable sets.

Definition 10.5.4. Let 𝑆 ⊂ ℝ𝑛 be a bounded Jordan measurable set. A bounded function
𝑓 : 𝑆 → ℝ is said to be Riemann integrable on 𝑆, or 𝑓 ∈ R(𝑆), if for a closed rectangle 𝑅 such
that 𝑆 ⊂ 𝑅, the function �̃� : 𝑅 → ℝ defined by

�̃� (𝑥) B
{
𝑓 (𝑥) if 𝑥 ∈ 𝑆,
0 otherwise,
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is in R(𝑅). In this case we write ∫
𝑆
𝑓 B

∫
𝑅
�̃� .

When 𝑓 is defined on a larger set and we wish to integrate over 𝑆, then we apply the
definition to the restriction 𝑓 |𝑆. As the restriction can be defined by the product 𝑓 𝜉𝑆, and
the product of Riemann integrable functions is Riemann integrable, 𝑓 |𝑆 is automatically
Riemann integrable. In particular, if 𝑓 : 𝑅 → ℝ for a closed rectangle 𝑅, and 𝑆 ⊂ 𝑅 is a
Jordan measurable subset, then ∫

𝑆
𝑓 =

∫
𝑅
𝑓 𝜒𝑆 .

Proposition 10.5.5. If 𝑆 ⊂ ℝ𝑛 is a bounded Jordan measurable set and 𝑓 : 𝑆 → ℝ is a bounded
continuous function, then 𝑓 is integrable on 𝑆.

Proof. Define the function �̃� as above for some closed rectangle 𝑅 with 𝑆 ⊂ 𝑅. If 𝑥 ∈ 𝑅 \ 𝑆,
then �̃� is identically zero in a neighborhood of 𝑥. Similarly if 𝑥 is in the interior of 𝑆, then
�̃� = 𝑓 on a neighborhood of 𝑥 and 𝑓 is continuous at 𝑥. Therefore, �̃� is only ever possibly
discontinuous at 𝜕𝑆, which is a set of measure zero, and we are finished. □

We say some property for almost every 𝑥 if it holds for all 𝑥 except on a set of measure
zero. We can also just say that it happens almost everywhere. For example, we say 𝑓 : 𝑆 → ℝ

and 𝑔 : 𝑆 → ℝ are equal almost everywhere if there exists a measure zero set 𝐸 ⊂ 𝑆 such
that 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑆 \ 𝐸.

Many of the standard properties of the integral just carry over easily since we are really
integrating over a rectangle. Furthermore, we can make some of the statements to be almost
everywhere. Proofs of the following three propositions left as exercises.

Proposition 10.5.6. Suppose 𝑆 ⊂ ℝ𝑛 is a bounded Jordan measurable set and 𝑓 : 𝑆 → ℝ and
𝑔 : 𝑆 → ℝ are Riemann integrable on 𝑆, and 𝛼 ∈ ℝ. Then

(i) If 𝑓 = 0 almost everywhere, then
∫
𝑆
𝑓 = 0.

(ii) If 𝑓 = 𝑔 almost everywhere, then
∫
𝑆
𝑓 =

∫
𝑆
𝑔.

(iii) 𝑓 + 𝑔 is Riemann integrable on 𝑆 and
∫
𝑆
( 𝑓 + 𝑔) =

∫
𝑆
𝑓 +

∫
𝑆
𝑔.

(iv) 𝛼 𝑓 is Riemann integrable on 𝑆 and
∫
𝑆
𝛼 𝑓 = 𝛼

∫
𝑆
𝑓 .

(v) If 𝑓 (𝑥) ≤ 𝑔(𝑥) for almost every 𝑥, then
∫
𝑆
𝑓 ≤

∫
𝑆
𝑔.

We also have additivity.

Proposition 10.5.7. Suppose 𝐴 ⊂ ℝ𝑛 and 𝐵 ⊂ ℝ𝑛 are disjoint bounded Jordan measurable sets
and 𝑓 : 𝐴 ∪ 𝐵 → ℝ is such that the restrictions 𝑓 |𝐴 and 𝑓 |𝐵 are Riemann integrable on 𝐴 and 𝐵
respectively. Then 𝑓 is Riemann integrable on 𝐴 ∪ 𝐵 and∫

𝐴∪𝐵
𝑓 =

∫
𝐴
𝑓 +

∫
𝐵
𝑓 .
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Finally, to integrate over non-rectangular regions using Fubini’s theorem, the typical
way is to cut the region into simpler pieces that can be described by two graphs. We state
the theorem in the plane, but similar statements can be made in more variables. The proof
is again left as an exercise.

Proposition 10.5.8. Let 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑎, 𝑏] → ℝ be continuous functions and such
that for all 𝑥 ∈ (𝑎, 𝑏), 𝑓 (𝑥) < 𝑔(𝑥). Let

𝑈 B
{(𝑥, 𝑦) ∈ ℝ2 : 𝑎 < 𝑥 < 𝑏 and 𝑓 (𝑥) < 𝑦 < 𝑔(𝑥)}.

See  Figure 10.13 . Then 𝑈 is Jordan measurable, and if 𝜑 : 𝑈 → ℝ is Riemann integrable on 𝑈 ,
then ∫

𝑈
𝜑 =

∫ 𝑏

𝑎

∫ 𝑔(𝑥)

𝑓 (𝑥)
𝜑(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

0 1

H = 5 (G)

H = 6(G)

Figure 10.13: Region between two graphs.

10.5.3 Images of Jordan measurable subsets
Finally, images of Jordan measurable sets are Jordan measurable under nice enough
mappings. For simplicity, we assume that the Jacobian determinant never vanishes.

Proposition 10.5.9. Suppose 𝑈 ⊂ ℝ𝑛 is open and 𝑆 ⊂ 𝑈 is a compact Jordan measurable set.
Suppose 𝑔 : 𝑈 → ℝ𝑛 is a one-to-one continuously differentiable mapping such that the Jacobian
determinant 𝐽𝑔 is never zero on 𝑆. Then 𝑔(𝑆) is bounded and Jordan measurable.

Proof. Let 𝑇 B 𝑔(𝑆). By Lemma 7.5.5 from volume I, the set 𝑇 is also compact and so
closed and bounded. We claim 𝜕𝑇 ⊂ 𝑔(𝜕𝑆). Suppose the claim is proved. As 𝑆 is Jordan
measurable, then 𝜕𝑆 is measure zero. Then 𝑔(𝜕𝑆) is measure zero by  Proposition 10.3.10  .
As 𝜕𝑇 ⊂ 𝑔(𝜕𝑆), then 𝑇 is Jordan measurable.

It is therefore left to prove the claim. As 𝑇 is closed, 𝜕𝑇 ⊂ 𝑇. Suppose 𝑦 ∈ 𝜕𝑇, then
there must exist an 𝑥 ∈ 𝑆 such that 𝑔(𝑥) = 𝑦, and by hypothesis 𝐽𝑔(𝑥) ≠ 0. We use the
inverse function theorem ( Theorem 8.5.1 ). We find a neighborhood 𝑉 ⊂ 𝑈 of 𝑥 and an
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open set 𝑊 such that the restriction 𝑓 |𝑉 is a one-to-one and onto function from 𝑉 to 𝑊
with a continuously differentiable inverse. In particular, 𝑔(𝑥) = 𝑦 ∈𝑊 . As 𝑦 ∈ 𝜕𝑇, there
exists a sequence {𝑦𝑘}∞𝑘=1 in 𝑊 with lim𝑘→∞ 𝑦𝑘 = 𝑦 and 𝑦𝑘 ∉ 𝑇. As 𝑔 |𝑉 is invertible and
in particular has a continuous inverse, there exists a sequence {𝑥𝑘}∞𝑘=1 in 𝑉 such that
𝑔(𝑥𝑘) = 𝑦𝑘 and lim𝑘→∞ 𝑥𝑘 = 𝑥. Since 𝑦𝑘 ∉ 𝑇 = 𝑔(𝑆), clearly 𝑥𝑘 ∉ 𝑆. Since 𝑥 ∈ 𝑆, we
conclude that 𝑥 ∈ 𝜕𝑆. The claim is proved, 𝜕𝑇 ⊂ 𝑔(𝜕𝑆). □

10.5.4 Exercises
Exercise 10.5.1: Prove  Proposition 10.5.2 .

Exercise 10.5.2: Prove that a bounded convex set is Jordan measurable. Hint: Induction on dimension.

Exercise 10.5.3: Prove  Proposition 10.5.8 . That is,

a) Show that𝑈 is Jordan measurable.

b) Prove that
∫
𝑈
𝜑 =

∫ 𝑏

𝑎

∫ 𝑔(𝑥)
𝑓 (𝑥) 𝜑(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

Exercise 10.5.4: Let us construct an example of a non-Jordan measurable open set. Start in one dimension.
Let {𝑟 𝑗}∞𝑗=1 be an enumeration of all rational numbers in (0, 1). Let (𝑎 𝑗 , 𝑏 𝑗) be open intervals such that
(𝑎 𝑗 , 𝑏 𝑗) ⊂ (0, 1) for all 𝑗, 𝑟 𝑗 ∈ (𝑎 𝑗 , 𝑏 𝑗), and

∑∞
𝑗=1(𝑏 𝑗 − 𝑎 𝑗) < 1/2. Now let𝑈 B

⋃∞
𝑗=1(𝑎 𝑗 , 𝑏 𝑗).

a) Show the open intervals (𝑎 𝑗 , 𝑏 𝑗) as above actually exist.

b) Prove 𝜕𝑈 = [0, 1] \𝑈 .

c) Prove 𝜕𝑈 is not of measure zero, and therefore𝑈 is not Jordan measurable.

d) Show that𝑊 B
(
𝑈 × (0, 2)) ∪ ((0, 1) × (1, 2)) is a connected bounded open set in ℝ2 that is not Jordan

measurable.

Exercise 10.5.5: Suppose 𝐾 ⊂ ℝ𝑛 is a closed measure zero set.

a) If 𝐾 is bounded, prove that 𝐾 is Jordan measurable.

b) If 𝑆 ⊂ ℝ𝑛 is bounded and Jordan measurable, prove that 𝑆 \ 𝐾 is Jordan measurable.

c) Construct a bounded Jordan measurable 𝑆 ⊂ ℝ𝑛 and a bounded 𝑇 ⊂ ℝ𝑛 of measure zero, such that
neither 𝑇 nor 𝑆 \ 𝑇 is Jordan measurable.

Exercise 10.5.6: Suppose𝑈 ⊂ ℝ𝑛 is open and 𝐾 ⊂ 𝑈 is compact. Find a compact Jordan measurable set 𝑆
such that 𝑆 ⊂ 𝑈 and 𝐾 ⊂ 𝑆◦ (𝐾 is in the interior of 𝑆).

Exercise 10.5.7: Prove a version of  Corollary 10.4.4 , replacing all closed rectangles with closed and bounded
Jordan measurable sets.

Exercise 10.5.8: Prove  Proposition 10.5.6 .

Exercise 10.5.9: Prove  Proposition 10.5.7 .
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10.6 Green’s theorem
Note: 1 lecture, requires  chapter 9 

One of the most important theorems in the calculus of several variables is the so-called
generalized Stokes’ theorem, a generalization of the fundamental theorem of calculus. The
two-dimensional version is called Green’s theorem 

*
 . We will state the theorem in general,

but we will only prove a special, but important, case.

Definition 10.6.1. Let𝑈 ⊂ ℝ2 be a bounded connected open set. Suppose the boundary
𝜕𝑈 is a disjoint union of (the images of) finitely many simple closed piecewise smooth
paths such that every 𝑝 ∈ 𝜕𝑈 is in the closure of ℝ2 \𝑈 . Then𝑈 is called a bounded domain
with piecewise smooth boundary in ℝ2.

The condition about points outside the closure says that locally 𝜕𝑈 separates ℝ2 into
an “inside” and an “outside.” The condition prevents 𝜕𝑈 from being just a “cut” inside
𝑈 . As we travel along the path in a certain orientation, there is a well-defined left and a
right, and either 𝑈 is on the left and the complement of 𝑈 is on the right, or vice versa.
The orientation on𝑈 is the direction in which we travel along the paths. We can switch
orientation if needed by reparametrizing the path.

Definition 10.6.2. Let𝑈 ⊂ ℝ2 be a bounded domain with piecewise smooth boundary, let
𝜕𝑈 be oriented , and let 𝛾 : [𝑎, 𝑏] → ℝ2 be a parametrization of 𝜕𝑈 giving the orientation.
Write 𝛾(𝑡) = (

𝑥(𝑡), 𝑦(𝑡)) . If the vector 𝑛(𝑡) B (−𝑦′(𝑡), 𝑥′(𝑡)) points into the domain, that is,
𝜖𝑛(𝑡)+𝛾(𝑡) is in𝑈 for all small enough 𝜖 > 0, then 𝜕𝑈 is positively oriented. See  Figure 10.14 .
Otherwise it is negatively oriented.

𝜕𝑈

𝛾 ′(𝑡) = (
𝑥′(𝑡), 𝑦′(𝑡))𝑈

𝑛(𝑡) = (−𝑦′(𝑡), 𝑥′(𝑡))

Figure 10.14: Positively oriented domain (left), and a positively oriented domain with a hole
(right).

The vector 𝑛(𝑡) turns 𝛾 ′(𝑡) counterclockwise by 90◦, that is to the left. When we travel
along a positively oriented boundary in the direction of its orientation, the domain is “on
our left.” For example, if𝑈 is a bounded domain with “no holes,” that is 𝜕𝑈 is connected,
then the positive orientation means we are traveling counterclockwise around 𝜕𝑈 . If we
do have “holes,” then we travel around them clockwise.

*Named after the British mathematical physicist  George Green (1793–1841).

https://en.wikipedia.org/wiki/George_Green_(mathematician)
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Proposition 10.6.3. Let𝑈 ⊂ ℝ2 be a bounded domain with piecewise smooth boundary. Then𝑈
is Jordan measurable.

Proof. We must show that 𝜕𝑈 is a null set. As 𝜕𝑈 is a finite union of piecewise smooth
paths, which are finite unions of smooth paths, we need only show that a smooth path in
ℝ2 is a null set. Let 𝛾 : [𝑎, 𝑏] → ℝ2 be a smooth path. It is enough to show that 𝛾

((𝑎, 𝑏)) is
a null set, as adding the points 𝛾(𝑎) and 𝛾(𝑏), to a null set still results in a null set. Define

𝑓 : (𝑎, 𝑏) × (−1, 1) → ℝ2, as 𝑓 (𝑥, 𝑦) B 𝛾(𝑥).
The set (𝑎, 𝑏) × {0} is a null set in ℝ2 and 𝛾

((𝑎, 𝑏)) = 𝑓
((𝑎, 𝑏) × {0}) . By  Proposition 10.3.10 ,

𝛾
((𝑎, 𝑏)) is a null set in ℝ2 and so 𝛾

([𝑎, 𝑏]) is a null set, and so finally 𝜕𝑈 is a null set. □

Theorem 10.6.4 (Green). Suppose𝑈 ⊂ ℝ2 is a bounded domain with piecewise smooth boundary
with the boundary positively oriented. Suppose 𝑃 and 𝑄 are continuously differentiable functions
defined on some open set that contains the closure𝑈 . Then∫

𝜕𝑈
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =

∫
𝑈

(
𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

)
.

We stated Green’s theorem in general, although we will only prove a special version of
it. That is, we will only prove it for a special kind of domain. The general version follows
from the special case by application of further geometry, and cutting up the general domain
into smaller domains on which to apply the special case.

Let𝑈 ⊂ ℝ2 be a bounded domain with piecewise smooth boundary. We say𝑈 is of type
I if there exist numbers 𝑎 < 𝑏, and continuous functions 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑎, 𝑏] → ℝ,
such that

𝑈 B
{(𝑥, 𝑦) ∈ ℝ2 : 𝑎 < 𝑥 < 𝑏 and 𝑓 (𝑥) < 𝑦 < 𝑔(𝑥)}.

Similarly,𝑈 is of type II if there exist numbers 𝑐 < 𝑑, and continuous functions ℎ : [𝑐, 𝑑] → ℝ

and 𝑘 : [𝑐, 𝑑] → ℝ, such that

𝑈 B
{(𝑥, 𝑦) ∈ ℝ2 : 𝑐 < 𝑦 < 𝑑 and ℎ(𝑦) < 𝑥 < 𝑘(𝑦)}.

Finally,𝑈 ⊂ ℝ2 is of type III if it is both of type I and type II. See  Figure 10.15 .
Common domains to apply Green’s theorem to are rectangles and discs, and these are

type III domains. We will only prove Green’s theorem for type III domains.

Proof of Green’s theorem for𝑈 of type III. Let 𝑓 , 𝑔, ℎ, 𝑘 be the functions defined above. Using
 Proposition 10.5.8 ,𝑈 is Jordan measurable and as𝑈 is of type I, then∫

𝑈

(
−𝜕𝑃
𝜕𝑦

)
=

∫ 𝑏

𝑎

∫ 𝑓 (𝑥)

𝑔(𝑥)

(
−𝜕𝑃
𝜕𝑦

(𝑥, 𝑦)
)
𝑑𝑦 𝑑𝑥

=
∫ 𝑏

𝑎

(
−𝑃 (

𝑥, 𝑓 (𝑥)) + 𝑃 (
𝑥, 𝑔(𝑥)) ) 𝑑𝑥

=
∫ 𝑏

𝑎
𝑃
(
𝑥, 𝑔(𝑥)) 𝑑𝑥 − ∫ 𝑏

𝑎
𝑃
(
𝑥, 𝑓 (𝑥)) 𝑑𝑥.
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type I type II type III

Figure 10.15: Domain types for Green’s theorem.

We integrate 𝑃 𝑑𝑥 along the boundary. The one-form 𝑃 𝑑𝑥 integrates to zero along the
straight vertical lines in the boundary. Therefore it is only integrated along the top and
along the bottom. As a parameter, 𝑥 runs from left to right. If we use the parametrizations
that take 𝑥 to

(
𝑥, 𝑓 (𝑥)) and to

(
𝑥, 𝑔(𝑥)) we recognize path integrals above. However the

second path integral is in the wrong direction; the top should be going right to left, and so
we must switch orientation.∫

𝜕𝑈
𝑃 𝑑𝑥 =

∫ 𝑏

𝑎
𝑃
(
𝑥, 𝑔(𝑥)) 𝑑𝑥 + ∫ 𝑎

𝑏
𝑃
(
𝑥, 𝑓 (𝑥)) 𝑑𝑥 =

∫
𝑈

(
−𝜕𝑃
𝜕𝑦

)
.

Similarly,𝑈 is also of type II. The form 𝑄 𝑑𝑦 integrates to zero along horizontal lines.
So ∫

𝑈

𝜕𝑄
𝜕𝑥

=
∫ 𝑑

𝑐

∫ ℎ(𝑦)

𝑘(𝑦)
𝜕𝑄
𝜕𝑥

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =
∫ 𝑏

𝑎

(
𝑄

(
𝑦, ℎ(𝑦)) −𝑄 (

𝑦, 𝑘(𝑦)) ) 𝑑𝑥 =
∫
𝜕𝑈
𝑄 𝑑𝑦.

Putting the two computations together we obtain∫
𝜕𝑈
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =

∫
𝜕𝑈
𝑃 𝑑𝑥 +

∫
𝜕𝑈
𝑄 𝑑𝑦 =

∫
𝑈

(
−𝜕𝑃
𝜕𝑦

)
+

∫
𝑈

𝜕𝑄
𝜕𝑥

=
∫
𝑈

(𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

)
. □

Let us see how one can use the simple version of Green’s (type III domains only) for a
more complex path.

Example 10.6.5: Suppose 𝑃(𝑥, 𝑦) = −𝑦
𝑥2+𝑦2 , 𝑄(𝑥, 𝑦) = 𝑥

𝑥2+𝑦2 . If we think of (𝑃, 𝑄) as a vector,
so that we have a so-called vector field, (𝑃, 𝑄) is called the vortex vector field, as it gives the
velocity of particles traveling in a vortex around the origin. Variations on this vector field
come up often in applications. Suppose that 𝛾 is a path that goes counterclockwise around
a rectangle whose interior contains the origin. We claim∫

𝛾

−𝑦
𝑥2 + 𝑦2 𝑑𝑥 +

𝑥
𝑥2 + 𝑦2 𝑑𝑦 = 2𝜋.

First we draw a circle 𝐶 of radius 𝑟 > 0 centered at the origin such that the entire circle
is within 𝛾 and oriented clockwise. Consider𝑈 to be the domain between 𝛾 and 𝐶. See
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 Figure 10.16 . The integral around 𝜕𝑈 is the integral around 𝛾 plus the integral around 𝐶.
Now𝑈 is not a domain of type III, so we cannot just apply the version of Green’s theorem
we actually proved. However, if we cut the box along the axis as shown in the figure with
dashed lines, the four resulting domains, let us call them 𝑈1, 𝑈2, 𝑈3, 𝑈4, are of type III.
The dashed lines are oriented in opposite directions for the two𝑈 𝑗 that share them, and so
when we integrate along both, the integrals cancel. That is,∫

𝜕𝑈
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =∫

𝜕𝑈1

𝑃 𝑑𝑥 +𝑄 𝑑𝑦 +
∫
𝜕𝑈2

𝑃 𝑑𝑥 +𝑄 𝑑𝑦 +
∫
𝜕𝑈3

𝑃 𝑑𝑥 +𝑄 𝑑𝑦 +
∫
𝜕𝑈4

𝑃 𝑑𝑥 +𝑄 𝑑𝑦.

Now we can apply Green’s theorem to every 𝑈 𝑗 . We leave it to the reader to verify that
outside of the origin, 𝜕𝑄

𝜕𝑥 − 𝜕𝑃
𝜕𝑦 = 0. So∫

𝜕𝑈𝑗

𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =
∫
𝑈𝑗

(
𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

)
=

∫
𝑈𝑗

0 = 0.

Next we notice that∫
𝐶
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 +

∫
𝛾
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =

∫
𝜕𝑈
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 = 0.

So the integral around 𝐶 is minus the integral around 𝛾. The integral around 𝐶 is easy to
compute as on 𝐶 we have 𝑥2 + 𝑦2 = 𝑟2, so 𝑃(𝑥, 𝑦) = −𝑦

𝑟2 and 𝑄(𝑥, 𝑦) = 𝑥
𝑟2 . We leave it to the

reader to compute ∫
𝐶
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =

∫
𝐶

−𝑦
𝑟2 𝑑𝑥 + 𝑥

𝑟2 𝑑𝑦 = −2𝜋.

The claim follows.

0
𝐶

𝛾
𝑈 𝑈1

𝑈2 𝑈3

𝑈4

Figure 10.16: Changing the box integral to an integral around a small circle around the origin.
The domain𝑈 is the entire shaded area between the circle and the box.

We remark that if 𝛾 would not contain the origin,
∫
𝛾
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 = 0, as we could just

apply Green’s to 𝛾. So this integral can detect whether the origin is inside 𝛾 or not.
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As a second example, we illustrate the usefulness of Green’s theorem on a fundamental
result about harmonic functions.

Example 10.6.6: Suppose 𝑈 ⊂ ℝ2 is open and 𝑓 : 𝑈 → ℝ is harmonic, that is, 𝑓 is twice
continuously differentiable and satisfies the Laplace equation, 𝜕2 𝑓

𝜕𝑥2 + 𝜕2 𝑓
𝜕𝑦2 = 0. Harmonic

functions are, for instance, the steady state heat distribution, or the electric potential
between charges. We will prove one of the most fundamental properties of these functions.

Let 𝐷𝑟 B 𝐵(𝑝, 𝑟) be a disc such that its closure 𝐷𝑟 = 𝐶(𝑝, 𝑟) ⊂ 𝑈 . Write 𝑝 = (𝑥0, 𝑦0). We
orient 𝜕𝐷𝑟 positively. See  Exercise 10.6.1 . Then via Green’s and differentiation under the
integral,

0 =
1

2𝜋𝑟

∫
𝐷𝑟

(
𝜕2 𝑓

𝜕𝑥2 + 𝜕2 𝑓

𝜕𝑦2

)
=

1
2𝜋𝑟

∫
𝜕𝐷𝑟

−𝜕 𝑓
𝜕𝑦

𝑑𝑥 + 𝜕 𝑓
𝜕𝑥

𝑑𝑦

=
1

2𝜋𝑟

∫ 2𝜋

0

(
−𝜕 𝑓
𝜕𝑦

(
𝑥0 + 𝑟 cos(𝑡), 𝑦0 + 𝑟 sin(𝑡)) (−𝑟 sin(𝑡))

+ 𝜕 𝑓
𝜕𝑥

(
𝑥0 + 𝑟 cos(𝑡), 𝑦0 + 𝑟 sin(𝑡))𝑟 cos(𝑡)

)
𝑑𝑡

=
𝑑
𝑑𝑟

[
1

2𝜋

∫ 2𝜋

0
𝑓
(
𝑥0 + 𝑟 cos(𝑡), 𝑦0 + 𝑟 sin(𝑡)) 𝑑𝑡] .

Let 𝑔(𝑟) B 1
2𝜋

∫ 2𝜋
0 𝑓

(
𝑥0 + 𝑟 cos(𝑡), 𝑦0 + 𝑟 sin(𝑡)) 𝑑𝑡 for 𝑟 ≥ 0 (small enough). The function

is continuous at 𝑟 = 0 (exercise), and we have just proved that 𝑔′(𝑟) = 0 for all 𝑟 > 0.
Therefore, 𝑔(0) = 𝑔(𝑟) for all 𝑟 > 0, and

𝑔(𝑟) = 𝑔(0) = 1
2𝜋

∫ 2𝜋

0
𝑓
(
𝑥0 + 0 cos(𝑡), 𝑦0 + 0 sin(𝑡)) 𝑑𝑡 = 𝑓 (𝑥0, 𝑦0).

We proved the mean value property of harmonic functions:

𝑓 (𝑥0, 𝑦0) = 1
2𝜋

∫ 2𝜋

0
𝑓
(
𝑥0 + 𝑟 cos(𝑡), 𝑦0 + 𝑟 sin(𝑡)) 𝑑𝑡 = 1

2𝜋𝑟

∫
𝜕𝐷𝑟

𝑓 𝑑𝑠.

That is, for a harmonic function, the value at 𝑝 = (𝑥0, 𝑦0) equals the average of its values
over a circle of any radius 𝑟 centered at (𝑥0, 𝑦0).

10.6.1 Exercises
Exercise 10.6.1: Prove that a disc 𝐵(𝑝, 𝑟) ⊂ ℝ2 is a type III domain, and prove that the orientation given by
the parametrization 𝛾(𝑡) = (

𝑥0 + 𝑟 cos(𝑡), 𝑦0 + 𝑟 sin(𝑡)) where 𝑝 = (𝑥0 , 𝑦0) is the positive orientation of the
boundary 𝜕𝐵(𝑝, 𝑟).
Note: Feel free to use what you know about sine and cosine from calculus.
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Exercise 10.6.2: Prove that a convex bounded domain with piecewise smooth boundary is a type III domain.

Exercise 10.6.3: Suppose 𝑉 ⊂ ℝ2 is a bounded domain with piecewise smooth boundary of type III and
suppose that 𝑈 ⊂ ℝ2 is an open set such that 𝑉 ⊂ 𝑈 . Suppose 𝑓 : 𝑈 → ℝ is a twice continuously
differentiable function. Prove that

∫
𝜕𝑉

𝜕 𝑓
𝜕𝑥 𝑑𝑥 +

𝜕 𝑓
𝜕𝑦 𝑑𝑦 = 0.

Exercise 10.6.4: For a disc 𝐵(𝑝, 𝑟) ⊂ ℝ2, orient the boundary 𝜕𝐵(𝑝, 𝑟) positively.

a) Compute
∫
𝜕𝐵(𝑝,𝑟)

−𝑦 𝑑𝑥.

b) Compute
∫
𝜕𝐵(𝑝,𝑟)

𝑥 𝑑𝑦.

c) Compute
∫
𝜕𝐵(𝑝,𝑟)

−𝑦
2 𝑑𝑥 + 𝑥

2 𝑑𝑦.

Exercise 10.6.5: Using Green’s theorem show that the area of a triangle with vertices (𝑥1 , 𝑦1), (𝑥2 , 𝑦2),
(𝑥3 , 𝑦3) is 1

2 |𝑥1𝑦2 + 𝑥2𝑦3 + 𝑥3𝑦1 − 𝑦1𝑥2 − 𝑦2𝑥3 − 𝑦3𝑥1 |. Hint: See previous exercise.

Exercise 10.6.6: Using the mean value property prove the maximum principle for harmonic functions:
Suppose𝑈 ⊂ ℝ2 is a connected open set and 𝑓 : 𝑈 → ℝ is harmonic. Prove that if 𝑓 attains a maximum at
𝑝 ∈ 𝑈 , then 𝑓 is constant.

Exercise 10.6.7: Let 𝑓 (𝑥, 𝑦) B ln
√
𝑥2 + 𝑦2.

a) Show 𝑓 is harmonic where defined.

b) Show lim
(𝑥,𝑦)→0

𝑓 (𝑥, 𝑦) = −∞.

c) Using a circle 𝐶𝑟 of radius 𝑟 around the origin, compute 1
2𝜋𝑟

∫
𝜕𝐶𝑟

𝑓 𝑑𝑠. What happens as 𝑟 → 0?

d) Why can’t you use Green’s theorem?
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10.7 Change of variables

Note: 1 lecture

In one variable, we have the familiar change of variables∫ 𝑏

𝑎
𝑓
(
𝑔(𝑥)) 𝑔′(𝑥) 𝑑𝑥 =

∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 (𝑥) 𝑑𝑥.

The analogue in higher dimensions is quite a bit more complicated. The first complication
is orientation. If we use the definition of integral from this chapter, then we do not have
the notion of

∫ 𝑏
𝑎

versus
∫ 𝑎
𝑏

. We are simply integrating over an interval [𝑎, 𝑏]. With this
notation, the change of variables becomes∫

[𝑎,𝑏]
𝑓
(
𝑔(𝑥)) |𝑔′(𝑥)| 𝑑𝑥 =

∫
𝑔([𝑎,𝑏])

𝑓 (𝑥) 𝑑𝑥.

In this section we will obtain the several-variable analogue of this form.
Let us remark the role of |𝑔′(𝑥)| in the formula. The integral measures volumes in

general, so in one dimension it measures length. Notice that |𝑔′(𝑥)| scales the 𝑑𝑥 and so it
scales the lengths. If our 𝑔 is linear, that is, 𝑔(𝑥) = 𝐿𝑥, then 𝑔′(𝑥) = 𝐿 and the length of the
interval 𝑔([𝑎, 𝑏]) is simply |𝐿|(𝑏 − 𝑎). That is because 𝑔([𝑎, 𝑏]) is either [𝐿𝑎, 𝐿𝑏] or [𝐿𝑏, 𝐿𝑎].
This property holds in higher dimension with |𝐿| replaced by the absolute value of the
determinant.

Proposition 10.7.1. Suppose 𝑅 ⊂ ℝ𝑛 is a rectangle and 𝐴 : ℝ𝑛 → ℝ𝑛 is linear. Then 𝐴(𝑅) is
Jordan measurable and 𝑉

(
𝐴(𝑅)) = |det(𝐴)|𝑉(𝑅).

Proof. It is enough to prove for elementary matrices. The proof is left as an exercise. □

Let us prove that absolute value of the Jacobian determinant |𝐽𝑔(𝑥)| =
��det

(
𝑔′(𝑥)) �� is the

replacement of |𝑔′(𝑥)| for multiple dimensions in the change of variables formula. The
following theorem holds in more generality, but this statement is sufficient for many uses.

Theorem 10.7.2. Suppose 𝑈 ⊂ ℝ𝑛 is open, 𝑆 ⊂ 𝑈 is a compact Jordan measurable set, and
𝑔 : 𝑈 → ℝ𝑛 is a one-to-one continuously differentiable mapping, such that 𝐽𝑔 is never zero on 𝑆.
Suppose 𝑓 : 𝑔(𝑆) → ℝ is Riemann integrable. Then 𝑓 ◦ 𝑔 is Riemann integrable on 𝑆 and∫

𝑔(𝑆)
𝑓 (𝑥) 𝑑𝑥 =

∫
𝑆
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥.

The set 𝑔(𝑆) is Jordan measurable by  Proposition 10.5.9 , so the left-hand side does
make sense. That the right-hand side makes sense follows by  Corollary 10.4.4 (actually

 Exercise 10.5.7 ).
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Proof. The set 𝑆 can be covered by finitely many closed rectangles 𝑃1, 𝑃2, . . . , 𝑃𝑘 , whose
interiors do not overlap such that each 𝑃𝑗 ⊂ 𝑈 ( Exercise 10.7.2  ). Proving the theorem for
𝑃𝑗 ∩ 𝑆 instead of 𝑆 is enough. Define 𝑓 (𝑦) B 0 for all 𝑦 ∉ 𝑔(𝑆). The new 𝑓 is still Riemann
integrable since 𝑔(𝑆) is Jordan measurable. We can now replace the integrals over 𝑆 with
integrals over the whole rectangle. We therefore assume that 𝑆 is equal to a rectangle 𝑅.

Let 𝜖 > 0 be given. For every 𝑥 ∈ 𝑅, let

𝑊𝑥 B
{
𝑦 ∈ 𝑈 : ∥𝑔′(𝑥) − 𝑔′(𝑦)∥ < 𝜖/2

}
.

By  Exercise 10.7.3 ,𝑊𝑥 is open. As 𝑥 ∈𝑊𝑥 for every 𝑥, it is an open cover. By the Lebesgue
covering lemma (Lemma 7.4.10 from volume I), there exists a 𝛿 > 0 such that for every
𝑦 ∈ 𝑅, there is an 𝑥 such that 𝐵(𝑦, 𝛿) ⊂ 𝑊𝑥 . In other words, if 𝑃 is a rectangle of maximum
side length less than 𝛿√

𝑛
and 𝑦 ∈ 𝑃, then 𝑃 ⊂ 𝐵(𝑦, 𝛿) ⊂ 𝑊𝑥 . By triangle inequality,

∥𝑔′(𝜉) − 𝑔′(𝜂)∥ < 𝜖 for all 𝜉, 𝜂 ∈ 𝑃.
Let 𝑅1, 𝑅2, . . . , 𝑅𝑁 be subrectangles partitioning 𝑅 such that the maximum side of every

𝑅 𝑗 is less than 𝛿√
𝑛
. We also make sure that the minimum side length is at least 𝛿

2
√
𝑛
, which

we can do if 𝛿 is sufficiently small relative to the sides of 𝑅 ( Exercise 10.7.4 ).
Consider some 𝑅 𝑗 and some fixed 𝑥 𝑗 ∈ 𝑅 𝑗 . First suppose 𝑥 𝑗 = 0, 𝑔(0) = 0, and 𝑔′(0) = 𝐼.

For any given 𝑦 ∈ 𝑅 𝑗 , apply the fundamental theorem of calculus to the function 𝑡 ↦→ 𝑔(𝑡𝑦)
to find 𝑔(𝑦) =

∫ 1
0 𝑔′(𝑡𝑦)𝑦 𝑑𝑡. As the side of 𝑅 𝑗 is at most 𝛿√

𝑛
, then ∥𝑦∥ ≤ 𝛿. So

∥𝑔(𝑦) − 𝑦∥ =
∫ 1

0

(
𝑔′(𝑡𝑦)𝑦 − 𝑦) 𝑑𝑡 ≤

∫ 1

0
∥𝑔′(𝑡𝑦)𝑦 − 𝑦∥ 𝑑𝑡 ≤ ∥𝑦∥

∫ 1

0
∥𝑔′(𝑡𝑦) − 𝐼∥ 𝑑𝑡 ≤ 𝛿𝜖.

Therefore, 𝑔(𝑅 𝑗) ⊂ 𝑅 𝑗 , where 𝑅 𝑗 is a rectangle obtained from 𝑅 𝑗 by extending by 𝛿𝜖 on all
sides. See  Figure 10.17 .

𝛿𝜖

𝛿𝜖

𝛿𝜖𝛿𝜖

𝑠2

𝑠1

𝑅 𝑗

𝑅 𝑗

𝑔(𝑅 𝑗)

𝑥 𝑗 = 0 = 𝑔(𝑥 𝑗)

𝑦
𝑔(𝑦)

Figure 10.17: Image of 𝑅 𝑗 under 𝑔 lies inside 𝑅 𝑗 . A sample point 𝑦 ∈ 𝑅 𝑗 (on the boundary of 𝑅 𝑗
in fact) is marked and 𝑔(𝑦) must lie within with a radius of 𝛿𝜖 (also marked).
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If the sides of 𝑅 𝑗 are 𝑠1, 𝑠2, . . . , 𝑠𝑛 , then 𝑉(𝑅 𝑗) = 𝑠1𝑠2 · · · 𝑠𝑛 . Recall 𝛿 ≤ 2
√
𝑛 𝑠 𝑗 . Thus,

𝑉(𝑅 𝑗) = (𝑠1 + 2𝛿𝜖)(𝑠2 + 2𝛿𝜖) · · · (𝑠𝑛 + 2𝛿𝜖)
≤ (𝑠1 + 4

√
𝑛 𝑠1𝜖)(𝑠2 + 4

√
𝑛 𝑠2𝜖) · · · (𝑠𝑛 + 4

√
𝑛 𝑠𝑛𝜖)

= 𝑠1(1 + 4
√
𝑛 𝜖) 𝑠2(1 + 4

√
𝑛 𝜖) · · · 𝑠𝑛(1 + 4

√
𝑛 𝜖) = 𝑉(𝑅 𝑗) (1 + 4

√
𝑛 𝜖)𝑛 .

In other words,
𝑉

(
𝑔(𝑅 𝑗)

) ≤ 𝑉(𝑅 𝑗) ≤ 𝑉(𝑅 𝑗) (1 + 4
√
𝑛 𝜖)𝑛 .

Next, suppose 𝐴 B 𝑔′(0) is not necessarily the identity. Write 𝑔 = 𝐴 ◦ �̃� where �̃�′(0) = 𝐼.
By  Proposition 10.7.1 , 𝑉

(
𝐴(𝑅 𝑗)

)
= |det(𝐴)|𝑉(𝑅 𝑗), and hence

𝑉
(
𝑔(𝑅 𝑗)

) ≤ |det(𝐴)|𝑉(𝑅 𝑗) (1 + 4
√
𝑛 𝜖)𝑛

= |𝐽𝑔(0)|𝑉(𝑅 𝑗) (1 + 4
√
𝑛 𝜖)𝑛 .

Translation does not change volume, and therefore for every 𝑅 𝑗 , and 𝑥 𝑗 ∈ 𝑅 𝑗 , including
when 𝑥 𝑗 ≠ 0 and 𝑔(𝑥 𝑗) ≠ 0, we find

𝑉
(
𝑔(𝑅 𝑗)

) ≤ |𝐽𝑔(𝑥 𝑗)|𝑉(𝑅 𝑗) (1 + 4
√
𝑛 𝜖)𝑛 .

Write 𝑓 as 𝑓 = 𝑓+ − 𝑓− for two nonnegative Riemann integrable functions 𝑓+ and 𝑓−:

𝑓+(𝑥) B max
{
𝑓 (𝑥), 0} , 𝑓−(𝑥) B max

{− 𝑓 (𝑥), 0}.
So, if we prove the theorem for a nonnegative 𝑓 , we obtain the theorem for arbitrary 𝑓 .
Therefore, suppose that 𝑓 (𝑦) ≥ 0 for all 𝑦 ∈ 𝑅.

For a small enough 𝛿 > 0, we have

𝜖 +
∫
𝑅
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥 ≥

𝑁∑
𝑗=1

(
sup
𝑥∈𝑅 𝑗

𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)|) 𝑉(𝑅 𝑗)

≥
𝑁∑
𝑗=1

(
sup
𝑥∈𝑅 𝑗

𝑓
(
𝑔(𝑥)) ) |𝐽𝑔(𝑥 𝑗)|𝑉(𝑅 𝑗)

≥
𝑁∑
𝑗=1

(
sup
𝑦∈𝑔(𝑅 𝑗)

𝑓 (𝑦)
)
𝑉

(
𝑔(𝑅 𝑗)

) 1
(1 + 4

√
𝑛 𝜖)𝑛

≥
𝑁∑
𝑗=1

(∫
𝑔(𝑅 𝑗)

𝑓 (𝑦) 𝑑𝑦
)

1
(1 + 4

√
𝑛 𝜖)𝑛

=
1

(1 + 4
√
𝑛 𝜖)𝑛

∫
𝑔(𝑅)

𝑓 (𝑦) 𝑑𝑦.

The last equality follows because the overlaps of the rectangles are their boundaries, which
are of measure zero, and hence the image of their boundaries is also measure zero. Let 𝜖
go to zero to find ∫

𝑅
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥 ≥

∫
𝑔(𝑅)

𝑓 (𝑦) 𝑑𝑦.
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By adding this result for several rectangles covering an 𝑆 we obtain the result for an
arbitrary bounded Jordan measurable 𝑆 ⊂ 𝑈 , and nonnegative integrable function 𝑓 :∫

𝑆
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥 ≥

∫
𝑔(𝑆)

𝑓 (𝑦) 𝑑𝑦.

Recall that 𝑔−1 exists and 𝑔−1 (𝑔(𝑆)) = 𝑆. Also, 1 = 𝐽𝑔◦𝑔−1 = 𝐽𝑔
(
𝑔−1(𝑦)) 𝐽𝑔−1(𝑦) for

𝑦 ∈ 𝑔(𝑆). So∫
𝑔(𝑆)

𝑓 (𝑦) 𝑑𝑦 =
∫
𝑔(𝑆)

𝑓
(
𝑔
(
𝑔−1(𝑦)) ) |𝐽𝑔 (𝑔−1(𝑦)) | |𝐽𝑔−1(𝑦)| 𝑑𝑦

≥
∫
𝑔−1(𝑔(𝑆))

𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥 =

∫
𝑆
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥.

The conclusion of the theorem holds for all nonnegative 𝑓 and as we mentioned above,
it thus holds for all Riemann integrable 𝑓 . □

10.7.1 Exercises
Exercise 10.7.1: Prove  Proposition 10.7.1 .

Exercise 10.7.2: Suppose𝑈 ⊂ ℝ𝑛 is open and 𝑆 ⊂ 𝑈 is a compact Jordan measurable set. Show that there
exist finitely many closed rectangles 𝑃1 , 𝑃2 , . . . , 𝑃𝑘 such that 𝑃𝑗 ⊂ 𝑈 , 𝑆 ⊂ 𝑃1 ∪ 𝑃2 ∪ · · · ∪ 𝑃𝑘 , and the
interiors are mutually disjoint, that is 𝑃◦

𝑗 ∩ 𝑃◦
ℓ = ∅ whenever 𝑗 ≠ ℓ .

Exercise 10.7.3: Suppose𝑈 ⊂ ℝ𝑛 is open, 𝑥 ∈ 𝑈 , and 𝑔 : 𝑈 → ℝ𝑛 is a continuously differentiable mapping.
For every 𝜖 > 0, show that

𝑊𝑥 B
{
𝑦 ∈ 𝑈 : ∥𝑔′(𝑥) − 𝑔′(𝑦)∥ < 𝜖/2

}
is an open set.

Exercise 10.7.4: Suppose 𝑅 ⊂ ℝ𝑛 is a closed rectangle. Show that if 𝛿′ > 0 is sufficiently small relative to
the sides of 𝑅, then 𝑅 can be partitioned into subrectangles where each side of every subrectangle is between
𝛿′
2 and 𝛿′.

Exercise 10.7.5: Prove the following version of the theorem: Suppose 𝑓 : ℝ𝑛 → ℝ is a Riemann integrable
compactly supported function. Suppose 𝐾 ⊂ ℝ𝑛 is the support of 𝑓 , 𝑆 is a compact set, and
𝑔 : ℝ𝑛 → ℝ𝑛 is a function that when restricted to a neighborhood 𝑈 of 𝑆 is one-to-one and
continuously differentiable, 𝑔(𝑆) = 𝐾 and 𝐽𝑔 is never zero on 𝑆 (in the formula assume 𝐽𝑔(𝑥) = 0 if 𝑔
not differentiable at 𝑥, that is when 𝑥 ∉ 𝑈). Then∫

ℝ𝑛
𝑓 (𝑥) 𝑑𝑥 =

∫
ℝ𝑛
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥.
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Exercise 10.7.6: Prove the following version of the theorem: Suppose 𝑆 ⊂ ℝ𝑛 is an open bounded Jordan
measurable set, 𝑔 : 𝑆 → ℝ𝑛 is a one-to-one continuously differentiable mapping such that 𝐽𝑔 is
never zero on 𝑆, and such that 𝑔(𝑆) is bounded and Jordan measurable (it is also open). Suppose
𝑓 : 𝑔(𝑆) → ℝ is Riemann integrable. Then 𝑓 ◦ 𝑔 is Riemann integrable on 𝑆 and∫

𝑔(𝑆)
𝑓 (𝑥) 𝑑𝑥 =

∫
𝑆
𝑓
(
𝑔(𝑥)) |𝐽𝑔(𝑥)| 𝑑𝑥.

Hint: Write 𝑆 as an increasing union of compact Jordan measurable sets, then apply the theorem of the section
to those. Then prove that you can take the limit.



Chapter 11

Functions as Limits

11.1 Complex numbers
Note: half a lecture

11.1.1 The complex plane
In this chapter we consider approximation of functions, or in other words functions as
limits of sequences and series. We will extend some results we already saw to a somewhat
more general setting, and we will look at some completely new results. In particular, we
consider complex-valued functions. We gave complex numbers as examples before, but let
us start from scratch and properly define the complex number field.

A complex number is just a pair (𝑥, 𝑦) ∈ ℝ2 on which we define multiplication (see
below). We call the set the complex numbers and denote it by ℂ. We identify 𝑥 ∈ ℝ with
(𝑥, 0) ∈ ℂ. The 𝑥-axis is then called the real axis and the 𝑦-axis is called the imaginary axis.
As ℂ is just the plane, we also call the set ℂ the complex plane.

Define:

(𝑥, 𝑦) + (𝑠, 𝑡) B (𝑥 + 𝑠, 𝑦 + 𝑡), (𝑥, 𝑦)(𝑠, 𝑡) B (𝑥𝑠 − 𝑦𝑡, 𝑥𝑡 + 𝑦𝑠).

Under the identification above, we have 0 = (0, 0) and 1 = (1, 0). These two operations
make the plane into a field (exercise). We write a complex number (𝑥, 𝑦) as 𝑥 + 𝑖𝑦, where
we define 

†
 

𝑖 B (0, 1).
Notice that 𝑖2 = (0, 1)(0, 1) = (0 − 1, 0 + 0) = −1. That is, 𝑖 is a solution to the polynomial
equation

𝑧2 + 1 = 0.

From now on, we will not use the notation (𝑥, 𝑦) and use only 𝑥 + 𝑖𝑦. See  Figure 11.1 .
†Note that engineers use 𝑗 instead of 𝑖.
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G + 8H or (G, H)

G

8H

1

8

Figure 11.1: The points 1, 𝑖, 𝑥, 𝑖𝑦, and 𝑥 + 𝑖𝑦 in the complex plane.

We generally use 𝑥, 𝑦, 𝑟, 𝑠 , 𝑡 for real values and 𝑧, 𝑤, 𝜉, 𝜁 for complex values, although
that is not a hard and fast rule. In particular, 𝑧 is often used as a third real variable in ℝ3.
Definition 11.1.1. Suppose 𝑧 = 𝑥+ 𝑖𝑦. We call 𝑥 the real part of 𝑧, and we call 𝑦 the imaginary
part of 𝑧. We write

Re 𝑧 B 𝑥, Im 𝑧 B 𝑦.

Define complex conjugate as
�̄� B 𝑥 − 𝑖𝑦,

and define modulus as
|𝑧 | B

√
𝑥2 + 𝑦2.

Modulus is the complex analogue of the absolute value and has similar properties. For
example, |𝑧𝑤 | = |𝑧 | |𝑤 | (exercise). The complex conjugate is a reflection of the plane across
the real axis. The real numbers are precisely those numbers for which the imaginary part
𝑦 = 0. In particular, they are precisely those numbers which satisfy the equation

𝑧 = �̄�.

As ℂ is really ℝ2, we let the metric on ℂ be the standard euclidean metric on ℝ2. In
particular,

|𝑧 | = 𝑑(𝑧, 0), and also |𝑧 − 𝑤 | = 𝑑(𝑧, 𝑤).
So the topology on ℂ is the same exact topology as the standard topology on ℝ2 with the
euclidean metric, and |𝑧 | is equal to the euclidean norm on ℝ2. Importantly, since ℝ2 is
a complete metric space, then so is ℂ. As |𝑧 | is the euclidean norm on ℝ2, we have the
triangle inequality of both flavors:

|𝑧 + 𝑤 | ≤ |𝑧 | + |𝑤 | and
��|𝑧 | − |𝑤 |�� ≤ |𝑧 − 𝑤 |.

The complex conjugate and the modulus are even more intimately related:

|𝑧 |2 = 𝑥2 + 𝑦2 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑧�̄�.

Remark 11.1.2. There is no natural ordering on the complex numbers. In particular, no
ordering that makes the complex numbers into an ordered field. Ordering is one of the
things we lose when we go from real to complex numbers.
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11.1.2 Complex numbers and limits
Algebraic operations with complex numbers are continuous because convergence in ℝ2 is
the same as convergence for each component, and we already know that the real algebraic
operations are continuous. For example, write 𝑧𝑛 = 𝑥𝑛 + 𝑖 𝑦𝑛 and 𝑤𝑛 = 𝑠𝑛 + 𝑖 𝑡𝑛 , and
suppose that lim𝑛→∞ 𝑧𝑛 = 𝑧 = 𝑥 + 𝑖 𝑦 and lim𝑛→∞ 𝑤𝑛 = 𝑤 = 𝑠 + 𝑖 𝑡. Let us show

lim
𝑛→∞ 𝑧𝑛𝑤𝑛 = 𝑧𝑤.

First,
𝑧𝑛𝑤𝑛 = (𝑥𝑛𝑠𝑛 − 𝑦𝑛𝑡𝑛) + 𝑖(𝑥𝑛𝑡𝑛 + 𝑦𝑛𝑠𝑛).

The topology on ℂ is the same as on ℝ2, and so 𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦, 𝑠𝑛 → 𝑠, and 𝑡𝑛 → 𝑡.
Hence,

lim
𝑛→∞(𝑥𝑛𝑠𝑛 − 𝑦𝑛𝑡𝑛) = 𝑥𝑠 − 𝑦𝑡 and lim

𝑛→∞(𝑥𝑛𝑡𝑛 + 𝑦𝑛𝑠𝑛) = 𝑥𝑡 + 𝑦𝑠.
As (𝑥𝑠 − 𝑦𝑡) + 𝑖(𝑥𝑡 + 𝑦𝑠) = 𝑧𝑤,

lim
𝑛→∞ 𝑧𝑛𝑤𝑛 = 𝑧𝑤.

Similarly the modulus and the complex conjugate are continuous functions. We leave
the remainder of the proof of the following proposition as an exercise.
Proposition 11.1.3. Suppose {𝑧𝑛}∞𝑛=1, {𝑤𝑛}∞𝑛=1 are sequences of complex numbers converging to
𝑧 and 𝑤 respectively. Then

(i) lim
𝑛→∞ 𝑧𝑛 + 𝑤𝑛 = 𝑧 + 𝑤.

(ii) lim
𝑛→∞ 𝑧𝑛𝑤𝑛 = 𝑧𝑤.

(iii) Assuming 𝑤𝑛 ≠ 0 for all 𝑛 and 𝑤 ≠ 0, lim
𝑛→∞

𝑧𝑛
𝑤𝑛

=
𝑧
𝑤

.

(iv) lim
𝑛→∞|𝑧𝑛 | = |𝑧 |.

(v) lim
𝑛→∞ �̄�𝑛 = �̄�.

As we have seen above, convergence in ℂ is the same as convergence in ℝ2. In particular,
a sequence in ℂ converges if and only if the real and imaginary parts converge. Therefore,
feel free to apply everything you have learned about convergence in ℝ2, as well as applying
results about real numbers to the real and imaginary parts.

We also need convergence of complex series. Let {𝑧𝑛}∞𝑛=1 be a sequence of complex
numbers. The series ∞∑

𝑛=1
𝑧𝑛

converges if the limit of partial sums converges, that is, if

lim
𝑘→∞

𝑘∑
𝑛=1

𝑧𝑛 exists.

A series converges absolutely if
∑∞
𝑛=1 |𝑧𝑛 | converges.
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We say a series is Cauchy if the sequence of partial sums is Cauchy. The following
two propositions have essentially the same proofs as for real series and we leave them as
exercises.

Proposition 11.1.4. The complex series
∑∞
𝑛=1 𝑧𝑛 is Cauchy if for every 𝜖 > 0, there exists an

𝑀 ∈ ℕ such that for every 𝑛 ≥ 𝑀 and every 𝑘 > 𝑛, we have������ 𝑘∑
𝑗=𝑛+1

𝑧 𝑗

������ < 𝜖.

Proposition 11.1.5. If a complex series
∑∞
𝑛=1 𝑧𝑛 converges absolutely, then it converges.

The series
∑∞
𝑛=1 |𝑧𝑛 | is a real series. All the convergence tests (ratio test, root test, etc.)

that talk about absolute convergence work with the numbers |𝑧𝑛 |, that is, they are really
talking about convergence of series of nonnegative real numbers. You can directly apply
these tests them without needing to reprove anything for complex series.

11.1.3 Complex-valued functions
When we deal with complex-valued functions 𝑓 : 𝑋 → ℂ, what we often do is to write
𝑓 = 𝑢 + 𝑖 𝑣 for real-valued functions 𝑢 : 𝑋 → ℝ and 𝑣 : 𝑋 → ℝ.

Suppose we wish to integrate 𝑓 : [𝑎, 𝑏] → ℂ. We write 𝑓 = 𝑢 + 𝑖 𝑣 for real-valued 𝑢
and 𝑣. We say that 𝑓 is Riemann integrable if 𝑢 and 𝑣 are Riemann integrable, and in this
case we define ∫ 𝑏

𝑎
𝑓 B

∫ 𝑏

𝑎
𝑢 + 𝑖

∫ 𝑏

𝑎
𝑣.

We make the same definition for every other type of integral (improper, multivariable, etc.).
Similarly when we differentiate, write 𝑓 : [𝑎, 𝑏] → ℂ as 𝑓 = 𝑢 + 𝑖 𝑣. Thinking of ℂ as

ℝ2, we say that 𝑓 is differentiable if 𝑢 and 𝑣 are differentiable. For a function valued in ℝ2,
the derivative is represented by a vector in ℝ2. Now a vector in ℝ2 is a complex number.
In other words, we write the derivative as

𝑓 ′(𝑡) B 𝑢′(𝑡) + 𝑖 𝑣′(𝑡).

The linear operator representing the derivative is the multiplication by the complex number
𝑓 ′(𝑡), so nothing is lost in this identification.

11.1.4 Exercises
Exercise 11.1.1: Check that ℂ is a field.

Exercise 11.1.2: Prove that for 𝑧, 𝑤 ∈ ℂ, we have |𝑧𝑤 | = |𝑧 | |𝑤 |.
Exercise 11.1.3: Finish the proof of  Proposition 11.1.3 .
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Exercise 11.1.4: Prove  Proposition 11.1.4 .

Exercise 11.1.5: Prove  Proposition 11.1.5 .

Exercise 11.1.6: Given 𝑥 + 𝑖𝑦 define the matrix
[ 𝑥 −𝑦
𝑦 𝑥

]
. Prove:

a) The action of this matrix on a vector (𝑠, 𝑡) is the same as the action of multiplying (𝑥 + 𝑖𝑦)(𝑠 + 𝑖𝑡).
b) Multiplying two such matrices is the same multiplying the underlying complex numbers and then finding

the corresponding matrix for the product. In other words, the field ℂ can be identified with a subset of the
2-by-2 matrices.

c) The matrix
[ 𝑥 −𝑦
𝑦 𝑥

]
has eigenvalues 𝑥 + 𝑖𝑦 and 𝑥 − 𝑖𝑦. Recall that 𝜆 is an eigenvalue of a matrix 𝐴 if

𝐴 − 𝜆𝐼 (a complex matrix in our case) is not invertible, that is, if it has linearly dependent rows: one row
is a (complex) multiple of the other.

Exercise 11.1.7: Prove the Bolzano–Weierstrass theorem for complex sequences. Suppose {𝑧𝑛}∞𝑛=1 is a
bounded sequence of complex numbers, that is, there exists an 𝑀 such that |𝑧𝑛 | ≤ 𝑀 for all 𝑛. Prove that
there exists a subsequence {𝑧𝑛𝑘 }∞𝑘=1 that converges to some 𝑧 ∈ ℂ.

Exercise 11.1.8:

a) Prove that there is no simple mean value theorem for complex-valued functions: Find a differentiable
function 𝑓 : [0, 1] → ℂ such that 𝑓 (0) = 𝑓 (1) = 0, but 𝑓 ′(𝑡) ≠ 0 for all 𝑡 ∈ [0, 1].

b) However, there is a weaker form of the mean value theorem as there is for vector-valued functions. Prove: If
𝑓 : [𝑎, 𝑏] → ℂ is continuous and differentiable in (𝑎, 𝑏), and for some 𝑀, | 𝑓 ′(𝑥)| ≤ 𝑀 for all 𝑥 ∈ (𝑎, 𝑏),
then | 𝑓 (𝑏) − 𝑓 (𝑎)| ≤ 𝑀 |𝑏 − 𝑎 |.

Exercise 11.1.9: Prove that there is no simple mean value theorem for integrals for complex-valued functions:
Find a continuous function 𝑓 : [0, 1] → ℂ such that

∫ 1
0 𝑓 = 0 but 𝑓 (𝑡) ≠ 0 for all 𝑡 ∈ [0, 1].
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11.2 Swapping limits
Note: 2 lectures

11.2.1 Continuity

Let us get back to swapping limits and expand on chapter 6 of volume I. Let { 𝑓𝑛}∞𝑛=1 be
a sequence of functions 𝑓𝑛 : 𝑋 → 𝑌 for a set 𝑋 and a metric space 𝑌. Let 𝑓 : 𝑋 → 𝑌 be a
function and for every 𝑥 ∈ 𝑋, suppose

𝑓 (𝑥) = lim
𝑛→∞ 𝑓𝑛(𝑥).

We say the sequence { 𝑓𝑛}∞𝑛=1 converges pointwise to 𝑓 .
For 𝑌 = ℂ, a series of functions converges pointwise to 𝑓 if for every 𝑥 ∈ 𝑋, we have

𝑓 (𝑥) = lim
𝑛→∞

𝑛∑
𝑘=1

𝑓𝑘(𝑥) =
∞∑
𝑘=1

𝑓𝑘(𝑥).

The question is: If 𝑓𝑛 are all continuous, is 𝑓 continuous? Differentiable? Integrable?
What are the derivatives or integrals of 𝑓 ? For example, for continuity of the pointwise
limit of a sequence of functions { 𝑓𝑛}∞𝑛=1, we are asking if

lim
𝑥→𝑥0

lim
𝑛→∞ 𝑓𝑛(𝑥) ?

= lim
𝑛→∞ lim

𝑥→𝑥0
𝑓𝑛(𝑥).

A priori, we do not even know if both sides exist, let alone if they equal each other.

Example 11.2.1: The functions 𝑓𝑛 : ℝ → ℝ,

𝑓𝑛(𝑥) B 1
1 + 𝑛𝑥2 ,

are continuous and converge pointwise to the discontinuous function

𝑓 (𝑥) B
{

1 if 𝑥 = 0,
0 else.

So pointwise convergence is not enough to preserve continuity (nor even boundedness).
For that, we need uniform convergence. Let 𝑓𝑛 : 𝑋 → 𝑌 be functions. Then { 𝑓𝑛}∞𝑛=1
converges uniformly to 𝑓 if for every 𝜖 > 0, there exists an 𝑀 such that for all 𝑛 ≥ 𝑀 and all
𝑥 ∈ 𝑋, we have

𝑑
(
𝑓𝑛(𝑥), 𝑓 (𝑥)

)
< 𝜖.
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A series
∑∞
𝑛=1 𝑓𝑛 of complex-valued functions converges uniformly if the sequence of

partial sums converges uniformly, that is, if for every 𝜖 > 0, there exists an 𝑀 such that for
all 𝑛 ≥ 𝑀 and all 𝑥 ∈ 𝑋, �����

(
𝑛∑
𝑘=1

𝑓𝑘(𝑥)
)
− 𝑓 (𝑥)

����� < 𝜖.

The simplest property preserved by uniform convergence is boundedness. We leave
the proof of the following proposition as an exercise. It is almost identical to the proof for
real-valued functions.
Proposition 11.2.2. Let 𝑋 be a set and (𝑌, 𝑑) a metric space. If 𝑓𝑛 : 𝑋 → 𝑌 are bounded functions
and converge uniformly to 𝑓 : 𝑋 → 𝑌, then 𝑓 is bounded.

If 𝑋 is a set and (𝑌, 𝑑) is a metric space, then a sequence 𝑓𝑛 : 𝑋 → 𝑌 is uniformly Cauchy
if for every 𝜖 > 0, there is an 𝑀 such that for all 𝑛, 𝑚 ≥ 𝑀 and all 𝑥 ∈ 𝑋, we have

𝑑
(
𝑓𝑛(𝑥), 𝑓𝑚(𝑥)

)
< 𝜖.

The notion is the same as for real-valued functions. The proof of the following proposition
is again essentially the same as in that setting and is left as an exercise.
Proposition 11.2.3. Let 𝑋 be a set, (𝑌, 𝑑) be a metric space, and 𝑓𝑛 : 𝑋 → 𝑌 be functions.
If { 𝑓𝑛}∞𝑛=1 converges uniformly, then { 𝑓𝑛}∞𝑛=1 is uniformly Cauchy. Conversely, if { 𝑓𝑛}∞𝑛=1 is
uniformly Cauchy and (𝑌, 𝑑) is Cauchy-complete, then { 𝑓𝑛}∞𝑛=1 converges uniformly.

For 𝑓 : 𝑋 → ℂ, we write
∥ 𝑓 ∥𝑋 B sup

𝑥∈𝑋
| 𝑓 (𝑥)|.

We call ∥·∥𝑋 the supremum norm or uniform norm, and the subscript denotes the set over
which the supremum is taken. Then a sequence of functions 𝑓𝑛 : 𝑋 → ℂ converges
uniformly to 𝑓 : 𝑋 → ℂ if and only if

lim
𝑛→∞∥ 𝑓𝑛 − 𝑓 ∥𝑋 = 0.

The supremum norm satisfies the triangle inequality: For every 𝑥 ∈ 𝑋,

| 𝑓 (𝑥) + 𝑔(𝑥)| ≤ | 𝑓 (𝑥)| + |𝑔(𝑥)| ≤ ∥ 𝑓 ∥𝑋 + ∥𝑔∥𝑋 .
Take a supremum on the left to get

∥ 𝑓 + 𝑔∥𝑋 ≤ ∥ 𝑓 ∥𝑋 + ∥𝑔∥𝑋 .
For a compact metric space 𝑋, the uniform norm is a norm on the vector space 𝐶(𝑋,ℂ).

We leave it as an exercise. While we will not need it, 𝐶(𝑋,ℂ) is in fact a complex vector
space, that is, in the definition of a vector space we can replace ℝ with ℂ. Convergence in
the metric space 𝐶(𝑋,ℂ) is uniform convergence.

We will study a couple of types of series of functions, and a useful test for uniform
convergence of a series is the so-called Weierstrass 𝑀-test.
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Theorem 11.2.4 (Weierstrass 𝑀-test). Let 𝑋 be a set. Suppose 𝑓𝑛 : 𝑋 → ℂ are functions and
𝑀𝑛 > 0 numbers such that

| 𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝑋, and
∞∑
𝑛=1

𝑀𝑛 converges.

Then
∞∑
𝑛=1

𝑓𝑛(𝑥) converges uniformly.

Another way to state the theorem is to say that if
∑∞
𝑛=1∥ 𝑓𝑛 ∥𝑋 converges, then

∑∞
𝑛=1 𝑓𝑛

converges uniformly. Note that the converse of this theorem is not true. Applying the
theorem to

∑∞
𝑛=1 | 𝑓𝑛(𝑥)|, we see that this series also converges uniformly. So the series

converges both absolutely and uniformly.

Proof. Suppose
∑∞
𝑛=1 𝑀𝑛 converges. Given 𝜖 > 0, we have that the partial sums of

∑∞
𝑛=1 𝑀𝑛

are Cauchy so there is an 𝑁 such that for all 𝑚, 𝑛 ≥ 𝑁 with 𝑚 ≥ 𝑛, we have

𝑚∑
𝑘=𝑛+1

𝑀𝑘 < 𝜖.

We estimate a Cauchy difference of the partial sums of the functions����� 𝑚∑
𝑘=𝑛+1

𝑓𝑘(𝑥)
����� ≤ 𝑚∑

𝑘=𝑛+1
| 𝑓𝑘(𝑥)| ≤

𝑚∑
𝑘=𝑛+1

𝑀𝑘 < 𝜖.

The series converges by  Proposition 11.1.4  . The convergence is uniform, as 𝑁 does not
depend on 𝑥. Indeed, for all 𝑛 ≥ 𝑁 ,����� ∞∑

𝑘=1
𝑓𝑘(𝑥) −

𝑛∑
𝑘=1

𝑓𝑘(𝑥)
����� ≤

����� ∞∑
𝑘=𝑛+1

𝑓𝑘(𝑥)
����� ≤ 𝜖. □

Example 11.2.5: The series
∞∑
𝑛=1

sin(𝑛𝑥)
𝑛2

converges uniformly on ℝ. See  Figure 11.2 . This series is a Fourier series, and we will see
more of these in a later section. Proof: The series converges uniformly because

∑∞
𝑛=1

1
𝑛2

converges and ����sin(𝑛𝑥)
𝑛2

���� ≤ 1
𝑛2 .
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Figure 11.2: Plot of
∑∞
𝑛=1

sin(𝑛𝑥)
𝑛2 including the first 8 partial sums in various shades of gray.

Example 11.2.6: The series
∞∑
𝑛=0

𝑥𝑛

𝑛!

converges uniformly on every bounded interval. This series is a power series that we will
study shortly. Proof: Take the interval [−𝑟, 𝑟] ⊂ ℝ (every bounded interval is contained in
some [−𝑟, 𝑟]). The series

∑∞
𝑛=0

𝑟𝑛
𝑛! converges by the ratio test, so

∑∞
𝑛=0

𝑥𝑛
𝑛! converges uniformly

on [−𝑟, 𝑟] as ����𝑥𝑛𝑛!

���� ≤ 𝑟𝑛

𝑛! .

Now we would love to say something about the limit. For example, is it continuous?
Proposition 11.2.7. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, and suppose (𝑌, 𝑑𝑌) is Cauchy-
complete. Suppose 𝑓𝑛 : 𝑋 → 𝑌 converge uniformly to 𝑓 : 𝑋 → 𝑌. Let {𝑥𝑘}∞𝑘=1 be a sequence in 𝑋
and 𝑥 B lim𝑘→∞ 𝑥𝑘 . Suppose

𝑎𝑛 B lim
𝑘→∞

𝑓𝑛(𝑥𝑘)
exists for all 𝑛. Then {𝑎𝑛}∞𝑛=1 converges and

lim
𝑘→∞

𝑓 (𝑥𝑘) = lim
𝑛→∞ 𝑎𝑛 .

In other words,
lim
𝑘→∞

lim
𝑛→∞ 𝑓𝑛(𝑥𝑘) = lim

𝑛→∞ lim
𝑘→∞

𝑓𝑛(𝑥𝑘).

Proof. First we show that {𝑎𝑛}∞𝑛=1 converges. As { 𝑓𝑛}∞𝑛=1 converges uniformly it is uniformly
Cauchy. Let 𝜖 > 0 be given. There is an 𝑀 such that for all 𝑚, 𝑛 ≥ 𝑀, we have

𝑑𝑌
(
𝑓𝑛(𝑥𝑘), 𝑓𝑚(𝑥𝑘)

)
< 𝜖 for all 𝑘.

Note that 𝑑𝑌(𝑎𝑛 , 𝑎𝑚) ≤ 𝑑𝑌
(
𝑎𝑛 , 𝑓𝑛(𝑥𝑘)

) + 𝑑𝑌
(
𝑓𝑛(𝑥𝑘), 𝑓𝑚(𝑥𝑘)

) + 𝑑𝑌
(
𝑓𝑚(𝑥𝑘), 𝑎𝑚

)
and take the

limit as 𝑘 → ∞ to find
𝑑𝑌(𝑎𝑛 , 𝑎𝑚) ≤ 𝜖.
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Hence {𝑎𝑛}∞𝑛=1 is Cauchy and converges since 𝑌 is complete. Write 𝑎 B lim𝑘→∞ 𝑎𝑛 .
Find a 𝑘 ∈ ℕ such that

𝑑𝑌
(
𝑓𝑘(𝑝), 𝑓 (𝑝)

)
< 𝜖/3

for all 𝑝 ∈ 𝑋. Assume 𝑘 is large enough so that

𝑑𝑌(𝑎𝑘 , 𝑎) < 𝜖/3.

Find an 𝑁 ∈ ℕ such that for 𝑚 ≥ 𝑁 ,

𝑑𝑌
(
𝑓𝑘(𝑥𝑚), 𝑎𝑘

)
< 𝜖/3.

Then for 𝑚 ≥ 𝑁 ,

𝑑𝑌
(
𝑓 (𝑥𝑚), 𝑎

) ≤ 𝑑𝑌
(
𝑓 (𝑥𝑚), 𝑓𝑘(𝑥𝑚)

) + 𝑑𝑌 (
𝑓𝑘(𝑥𝑚), 𝑎𝑘

) + 𝑑𝑌 (
𝑎𝑘 , 𝑎

)
< 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖. □

We obtain an immediate corollary about continuity. If 𝑓𝑛 are all continuous then
𝑎𝑛 = 𝑓𝑛(𝑥) and so {𝑎𝑛}∞𝑛=1 converges automatically to 𝑓 (𝑥) and so we do not require
completeness of 𝑌.
Corollary 11.2.8. Let 𝑋 and 𝑌 be metric spaces. If 𝑓𝑛 : 𝑋 → 𝑌 are continuous functions such
that { 𝑓𝑛}∞𝑛=1 converges uniformly to 𝑓 : 𝑋 → 𝑌, then 𝑓 is continuous.

The converse is not true. Just because the limit is continuous does not mean that the
convergence is uniform. For example: 𝑓𝑛 : (0, 1) → ℝ defined by 𝑓𝑛(𝑥) B 𝑥𝑛 converge to
the zero function, but not uniformly. However, if we add extra conditions on the sequence,
we can obtain a partial converse such as Dini’s theorem, see Exercise 6.2.10 from volume I.

In  Exercise 11.2.3  the reader is asked to prove that for a compact 𝑋, 𝐶(𝑋,ℂ) is a
normed vector space with the uniform norm, and hence a metric space. We have just
shown that 𝐶(𝑋,ℂ) is Cauchy-complete:  Proposition 11.2.3 says that a Cauchy sequence in
𝐶(𝑋,ℂ) converges uniformly to some function, and  Corollary 11.2.8 shows that the limit is
continuous and hence in 𝐶(𝑋,ℂ).
Corollary 11.2.9. Let (𝑋, 𝑑) be a compact metric space. Then 𝐶(𝑋,ℂ) is a Cauchy-complete
metric space.

Example 11.2.10: By  Example 11.2.5 the Fourier series
∞∑
𝑛=1

sin(𝑛𝑥)
𝑛2

converges uniformly and hence is continuous by  Corollary 11.2.8 (as is visible in  Figure 11.2 ).

11.2.2 Integration
Proposition 11.2.11. Suppose 𝑓𝑛 : [𝑎, 𝑏] → ℂ are Riemann integrable and suppose that { 𝑓𝑛}∞𝑛=1
converges uniformly to 𝑓 : [𝑎, 𝑏] → ℂ. Then 𝑓 is Riemann integrable and∫ 𝑏

𝑎
𝑓 = lim

𝑛→∞

∫ 𝑏

𝑎
𝑓𝑛 .
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Since the integral of a complex-valued function is just the integral of the real and
imaginary parts separately, the proof follows directly by the results of chapter 6 of volume I.
We leave the details as an exercise.

Corollary 11.2.12. Suppose 𝑓𝑛 : [𝑎, 𝑏] → ℂ are Riemann integrable and suppose that

∞∑
𝑛=1

𝑓𝑛(𝑥)

converges uniformly. Then the series is Riemann integrable on [𝑎, 𝑏] and∫ 𝑏

𝑎

∞∑
𝑛=1

𝑓𝑛(𝑥) 𝑑𝑥 =
∞∑
𝑛=1

∫ 𝑏

𝑎
𝑓𝑛(𝑥) 𝑑𝑥

Example 11.2.13: Let us show how to integrate a Fourier series.∫ 𝑥

0

∞∑
𝑛=1

cos(𝑛𝑡)
𝑛2 𝑑𝑡 =

∞∑
𝑛=1

∫ 𝑥

0

cos(𝑛𝑡)
𝑛2 𝑑𝑡 =

∞∑
𝑛=1

sin(𝑛𝑥)
𝑛3

The swapping of integral and sum is possible because of uniform convergence, which we
have proved before using the Weierstrass 𝑀-test ( Theorem 11.2.4 ).

We remark that we can swap integrals and limits under far less stringent hypotheses,
but for that we would need a stronger integral than the Riemann integral. E.g. the Lebesgue
integral.

11.2.3 Differentiation
Recall that a complex-valued function 𝑓 : [𝑎, 𝑏] → ℂ, where 𝑓 (𝑥) = 𝑢(𝑥) + 𝑖 𝑣(𝑥), is
differentiable, if 𝑢 and 𝑣 are differentiable and the derivative is

𝑓 ′(𝑥) = 𝑢′(𝑥) + 𝑖 𝑣′(𝑥).

The proof of the following theorem is to apply the corresponding theorem for real
functions to 𝑢 and 𝑣, and is left as an exercise.

Theorem 11.2.14. Let 𝐼 ⊂ ℝ be a bounded interval and let 𝑓𝑛 : 𝐼 → ℂ be continuously differ-
entiable functions. Suppose { 𝑓 ′𝑛}∞𝑛=1 converges uniformly to 𝑔 : 𝐼 → ℂ, and suppose { 𝑓𝑛(𝑐)}∞𝑛=1
is a convergent sequence for some 𝑐 ∈ 𝐼. Then { 𝑓𝑛}∞𝑛=1 converges uniformly to a continuously
differentiable function 𝑓 : 𝐼 → ℂ, and 𝑓 ′ = 𝑔.

Uniform limits of the functions themselves are not enough, and can make matters even
worse. In  §11.7 we will prove that continuous functions are uniform limits of polynomials,
yet as the following example demonstrates, a continuous function need not be differentiable
anywhere.
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Example 11.2.15: There exist continuous nowhere differentiable functions. Such functions
are often called Weierstrass functions, although this particular one, essentially due to Takagi 

*
 ,

is a different example than what Weierstrass gave. Define

𝜑(𝑥) B |𝑥 | for 𝑥 ∈ [−1, 1].
Extend 𝜑 to all of ℝ by making it 2-periodic: Decree that 𝜑(𝑥) = 𝜑(𝑥 + 2). The function
𝜑 : ℝ → ℝ is continuous, in fact, |𝜑(𝑥) − 𝜑(𝑦)| ≤ |𝑥 − 𝑦 | (why?). See  Figure 11.3 .

−8 −6 −4 −2 0 2 4 6 8
0

1

Figure 11.3: The 2-periodic function 𝜑.

As
∑∞
𝑛=0

( 3
4
)𝑛 converges and |𝜑(𝑥)| ≤ 1 for all 𝑥, by the 𝑀-test ( Theorem 11.2.4 ),

𝑓 (𝑥) B
∞∑
𝑛=0

(
3
4

)𝑛
𝜑(4𝑛𝑥)

converges uniformly and hence is continuous. See  Figure 11.4 .

0 1 2
0

1

2

3

Figure 11.4: Plot of the nowhere differentiable function 𝑓 .

We claim 𝑓 : ℝ → ℝ is nowhere differentiable. Fix 𝑥, and we will show 𝑓 is not
differentiable at 𝑥. Define

𝛿𝑚 B ±1
24−𝑚 ,

where the sign is chosen so that there is no integer between 4𝑚𝑥 and 4𝑚(𝑥 + 𝛿𝑚) = 4𝑚𝑥 ± 1
2 .

*
 Teĳi Takagi (1875–1960) was a Japanese mathematician.

https://en.wikipedia.org/wiki/Teiji_Takagi
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We want to look at the difference quotient

𝑓 (𝑥 + 𝛿𝑚) − 𝑓 (𝑥)
𝛿𝑚

=
∞∑
𝑛=0

(
3
4

)𝑛 𝜑 (
4𝑛(𝑥 + 𝛿𝑚)

) − 𝜑(4𝑛𝑥)
𝛿𝑚

.

Fix 𝑚 for a moment. Consider the expression inside the series:

𝛾𝑛 B
𝜑
(
4𝑛(𝑥 + 𝛿𝑚)

) − 𝜑(4𝑛𝑥)
𝛿𝑚

.

If 𝑛 > 𝑚, then 4𝑛𝛿𝑚 is an even integer. As 𝜑 is 2-periodic we get that 𝛾𝑛 = 0.
As there is no integer between 4𝑚(𝑥+𝛿𝑚) = 4𝑚𝑥±1/2 and 4𝑚𝑥, then on this interval 𝜑(𝑡) =

±𝑡 + ℓ for some integer ℓ . In particular,
��𝜑 (

4𝑚(𝑥 + 𝛿𝑚)
) − 𝜑(4𝑚𝑥)�� = |4𝑚𝑥 ± 1/2 − 4𝑚𝑥 | = 1/2.

Therefore,

|𝛾𝑚 | =
����𝜑 (

4𝑚(𝑥 + 𝛿𝑚)
) − 𝜑(4𝑚𝑥)

±(1/2)4−𝑚
���� = 4𝑚 .

Similarly, suppose 𝑛 < 𝑚. Since |𝜑(𝑠) − 𝜑(𝑡)| ≤ |𝑠 − 𝑡 |,

|𝛾𝑛 | =
����𝜑 (

4𝑛𝑥 ± (1/2)4𝑛−𝑚 ) − 𝜑(4𝑛𝑥)
±(1/2)4−𝑚

���� ≤ ����±(1/2)4𝑛−𝑚
±(1/2)4−𝑚

���� = 4𝑛 .

And so���� 𝑓 (𝑥 + 𝛿𝑚) − 𝑓 (𝑥)
𝛿𝑚

���� = ����� ∞∑
𝑛=0

(
3
4

)𝑛
𝛾𝑛

����� =
����� 𝑚∑
𝑛=0

(
3
4

)𝑛
𝛾𝑛

�����
≥

����(3
4

)𝑚
𝛾𝑚

���� − �����𝑚−1∑
𝑛=0

(
3
4

)𝑛
𝛾𝑛

�����
≥ 3𝑚 −

𝑚−1∑
𝑛=0

3𝑛 = 3𝑚 − 3𝑚 − 1
3 − 1 =

3𝑚 + 1
2 .

As 𝑚 → ∞, we have 𝛿𝑚 → 0, but 3𝑚+1
2 goes to infinity. So 𝑓 cannot be differentiable at 𝑥.

11.2.4 Exercises
Exercise 11.2.1: Prove  Proposition 11.2.2 .

Exercise 11.2.2: Prove  Proposition 11.2.3 .

Exercise 11.2.3: Suppose (𝑋, 𝑑) is a compact metric space. Prove that the uniform norm ∥·∥𝑋 is a norm on
the vector space of continuous complex-valued functions 𝐶(𝑋,ℂ).
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Exercise 11.2.4:

a) Prove that 𝑓𝑛(𝑥) B 2−𝑛 sin(2𝑛𝑥) converge uniformly to zero, but there exists a dense set 𝐷 ⊂ ℝ such
that lim𝑛→∞ 𝑓 ′𝑛(𝑥) = 1 for all 𝑥 ∈ 𝐷.

b) Prove that
∑∞
𝑛=1 2−𝑛 sin(2𝑛𝑥) converges uniformly to a continuous function, and there exists a dense set

𝐷 ⊂ ℝ where the derivatives of the partial sums do not converge.

Exercise 11.2.5: Prove that ∥ 𝑓 ∥𝐶1 B ∥ 𝑓 ∥[𝑎,𝑏] + ∥ 𝑓 ′∥[𝑎,𝑏] is a norm on the vector space of continuously
differentiable complex-valued functions 𝐶1 ([𝑎, 𝑏],ℂ)

.

Exercise 11.2.6: Prove  Theorem 11.2.14 .

Exercise 11.2.7: Prove  Proposition 11.2.11 by reducing to the real result.

Exercise 11.2.8: Work through the following counterexample to the converse of the Weierstrass 𝑀-test
( Theorem 11.2.4 ). Define 𝑓𝑛 : [0, 1] → ℝ by

𝑓𝑛(𝑥) B
{

1
𝑛 if 1

𝑛+1 < 𝑥 < 1
𝑛 ,

0 else.

Prove that
∑∞
𝑛=1 𝑓𝑛 converges uniformly, but

∑∞
𝑛=1∥ 𝑓𝑛 ∥[0,1] does not converge.

Exercise 11.2.9: Suppose 𝑓𝑛 : [0, 1] → ℝ are monotone increasing functions and suppose that
∑∞
𝑛=1 𝑓𝑛

converges pointwise. Prove that
∑∞
𝑛=1 𝑓𝑛 converges uniformly.

Exercise 11.2.10: Prove that ∞∑
𝑛=1

𝑒−𝑛𝑥

converges for all 𝑥 > 0 to a differentiable function.
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11.3 Power series and analytic functions

Note: 2–3 lectures

11.3.1 Analytic functions

A (complex) power series is a series of the form

∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

for 𝑐𝑛 , 𝑧, 𝑎 ∈ ℂ. We say the series converges if the series converges for some 𝑧 ≠ 𝑎.
Let𝑈 ⊂ ℂ be an open set and 𝑓 : 𝑈 → ℂ a function. Suppose that for every 𝑎 ∈ 𝑈 there

exists a 𝜌 > 0 and a power series convergent to the function

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

for all 𝑧 ∈ 𝐵(𝑎, 𝜌). Then we say 𝑓 is an analytic function. Similarly, given an interval
(𝑎, 𝑏) ⊂ ℝ, we say that 𝑓 : (𝑎, 𝑏) → ℂ is analytic or perhaps real-analytic if for each point
𝑐 ∈ (𝑎, 𝑏) there is a power series around 𝑐 that converges in some (𝑐 − 𝜌, 𝑐 + 𝜌) for some
𝜌 > 0. As we will sometimes talk about real and sometimes about complex power series,
we will use 𝑧 to denote a complex number and 𝑥 a real number. We will always mention
which case we are working with.

An analytic function has different expansions around different points. Moreover,
convergence does not automatically happen on the entire domain of the function. For
example, if |𝑧 | < 1, then

1
1 − 𝑧 =

∞∑
𝑛=0

𝑧𝑛 .

While the left-hand side exists on all of 𝑧 ≠ 1, the right-hand side happens to converge only
if |𝑧 | < 1. See a graph of a small piece of 1

1−𝑧 in  Figure 11.5 . We cannot graph the function
itself, we can only graph its real or imaginary parts for lack of dimensions in our universe.

11.3.2 Convergence of power series

We proved several results for power series of a real variable in §2.6 of volume I. For the
most part the convergence properties of power series deal with the series

∑∞
𝑘=0 |𝑐𝑘 | |𝑧 − 𝑎 |𝑘

and so we have already proved many results about complex power series. In particular, we
computed the so-called radius of convergence of a power series.
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G

H

G

H

Figure 11.5: Graphs of the real and imaginary parts of 𝑧 = 𝑥+ 𝑖𝑦 ↦→ 1
1−𝑧 in the square [−0.8, 0.8]2.

The singularity at 𝑧 = 1 is marked with a vertical dashed line.

Proposition 11.3.1. Let
∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 be a power series. There exists a 𝜌 ∈ [0,∞] such that

(i) If 𝜌 = 0, then the series diverges.
(ii) If 𝜌 = ∞, then the series converges absolutely for all 𝑧 ∈ ℂ.
(iii) If 0 < 𝜌 < ∞, then the series converges absolutely on 𝐵(𝑎, 𝜌), and diverges when |𝑧 − 𝑎 | > 𝜌.

Furthermore, if 0 < 𝑟 < 𝜌, then the series converges uniformly on the closed ball 𝐶(𝑎, 𝑟).
The number 𝜌 is the radius of convergence. See  Figure 11.6 . The radius of convergence

gives a disc around 𝑎 where the series converges. A power series is convergent if 𝜌 > 0.

𝜌

𝑎

converges
series

does not converge
series

Figure 11.6: Radius of convergence.

Proof. We use the real version of this proposition, Proposition 2.6.10 in volume I. Let

𝑅 B lim sup
𝑛→∞

𝑛
√
|𝑐𝑛 |.
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If 𝑅 = 0, then
∑∞
𝑛=0 |𝑐𝑛 | |𝑧 − 𝑎 |𝑛 converges for all 𝑧. If 𝑅 = ∞, then

∑∞
𝑛=0 |𝑐𝑛 | |𝑧 − 𝑎 |𝑛

converges only at 𝑧 = 𝑎. Otherwise, let 𝜌 B 1/𝑅 and
∑∞
𝑛=0 |𝑐𝑛 | |𝑧 − 𝑎 |𝑛 converges when

|𝑧 − 𝑎 | < 𝜌, and diverges (in fact the terms of the series do not go to zero) when |𝑧 − 𝑎 | > 𝜌.
To prove the “Furthermore,” suppose 0 < 𝑟 < 𝜌 and 𝑧 ∈ 𝐶(𝑎, 𝑟). Then consider the

partial sums ����� 𝑘∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛
����� ≤ 𝑘∑

𝑛=0
|𝑐𝑛 | |𝑧 − 𝑎 |𝑛 ≤

𝑘∑
𝑛=0

|𝑐𝑛 |𝑟𝑛 . □

If
∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 converges for some 𝑧, then

∞∑
𝑛=0

𝑐𝑛(𝑤 − 𝑎)𝑛

converges absolutely whenever |𝑤 − 𝑎 | < |𝑧 − 𝑎 |. Conversely, if the series diverges at 𝑧,
then it must diverge at 𝑤 whenever |𝑤 − 𝑎 | > |𝑧 − 𝑎 |. Hence, to show that the radius of
convergence is at least some number, we simply need to show convergence at some point
by any method we know.
Example 11.3.2: We list some series we already know:

∞∑
𝑛=0

𝑧𝑛 has radius of convergence 1.

∞∑
𝑛=0

1
𝑛!𝑧

𝑛 has radius of convergence ∞.
∞∑
𝑛=0

𝑛𝑛𝑧𝑛 has radius of convergence 0.

Example 11.3.3: Note the difference between 1
1−𝑧 and its power series. Let us expand 1

1−𝑧
as power series around a point 𝑎 ≠ 1. Let 𝑐 B 1

1−𝑎 , then

1
1 − 𝑧 =

𝑐
1 − 𝑐(𝑧 − 𝑎) = 𝑐

∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛 =
∞∑
𝑛=0

(
1

(1 − 𝑎)𝑛+1

)
(𝑧 − 𝑎)𝑛 .

The series
∑∞
𝑛=0 𝑐

𝑛(𝑧 − 𝑎)𝑛 converges if and only if the series on the right-hand side converges
and

lim sup
𝑛→∞

𝑛
√
|𝑐𝑛 | = |𝑐 | = 1

|1 − 𝑎 | .
The radius of convergence of the power series is |1 − 𝑎 |, that is the distance from 1 to 𝑎. The
function 1

1−𝑧 has a power series representation around every 𝑎 ≠ 1 and so is analytic in
ℂ \ {1}. The domain of the function is bigger than the region of convergence of the power
series representing the function at any point.

It turns out that if a function has a power series representation converging to the
function on some ball, then it has a power series representation at every point in the ball.
We will prove this result later.
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11.3.3 Properties of analytic functions
Proposition 11.3.4. If

𝑓 (𝑧) B
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

is convergent in 𝐵(𝑎, 𝜌) for some 𝜌 > 0, then 𝑓 : 𝐵(𝑎, 𝜌) → ℂ is continuous. In particular, analytic
functions are continuous.

Proof. For 𝑧0 ∈ 𝐵(𝑎, 𝜌), pick 𝑟 < 𝜌 such that 𝑧0 ∈ 𝐵(𝑎, 𝑟). On 𝐵(𝑎, 𝑟) the partial sums
(which are continuous) converge uniformly, and so the limit 𝑓 |𝐵(𝑎,𝑟) is continuous. Any
sequence converging to 𝑧0 has some tail that is completely in the open ball 𝐵(𝑎, 𝑟), hence 𝑓
is continuous at 𝑧0. □

In Corollary 6.2.13 of volume I, we proved that we can differentiate real power series
term by term. That is, we proved that if

𝑓 (𝑥) B
∞∑
𝑛=0

𝑐𝑛(𝑥 − 𝑎)𝑛

converges for real 𝑥 in an interval around 𝑎 ∈ ℝ, then we can differentiate term by term
and obtain a series

𝑓 ′(𝑥) =
∞∑
𝑛=1

𝑛𝑐𝑛(𝑥 − 𝑎)𝑛−1 =
∞∑
𝑛=0

(𝑛 + 1)𝑐𝑛+1(𝑥 − 𝑎)𝑛

with the same radius of convergence. We only proved this theorem when 𝑐𝑛 is real, however,
for complex 𝑐𝑛 , we write 𝑐𝑛 = 𝑠𝑛 + 𝑖𝑡𝑛 , and as 𝑥 and 𝑎 are real

∞∑
𝑛=0

𝑐𝑛(𝑥 − 𝑎)𝑛 =
∞∑
𝑛=0

𝑠𝑛(𝑥 − 𝑎)𝑛 + 𝑖
∞∑
𝑛=0

𝑡𝑛(𝑥 − 𝑎)𝑛 .

We apply the theorem to the real and imaginary part.
By iterating this theorem, we find that an analytic function is infinitely differentiable:

𝑓 (ℓ )(𝑥) =
∞∑
𝑛=ℓ

𝑛(𝑛 − 1) · · · (𝑛 − ℓ + 1)𝑐𝑘(𝑥 − 𝑎)𝑛−ℓ =
∞∑
𝑛=0

(𝑛 + ℓ )(𝑛 + ℓ − 1) · · · (𝑛 + 1)𝑐𝑛+ℓ (𝑥 − 𝑎)𝑛 .

In particular,
𝑓 (ℓ )(𝑎) = ℓ ! 𝑐ℓ . (11.1)

The coefficients are uniquely determined by the derivatives of the function, and vice versa.
On the other hand, just because we have an infinitely differentiable function doesn’t

mean that the numbers 𝑐𝑛 obtained by 𝑐𝑛 = 𝑓 (𝑛)(0)
𝑛! give a convergent power series. There is

a theorem, which we will not prove, that given an arbitrary sequence {𝑐𝑛}∞𝑛=1, there exists
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an infinitely differentiable function 𝑓 such that 𝑐𝑛 = 𝑓 (𝑛)(0)
𝑛! . Moreover, even if the obtained

series converges, it may not converge to the function we started with. For an example, see
Exercise 5.4.11 in volume I: The function

𝑓 (𝑥) B
{
𝑒−1/𝑥 if 𝑥 > 0,
0 if 𝑥 ≤ 0,

is infinitely differentiable, and all derivatives at the origin are zero. So its series at the
origin would be just the zero series, and while that series converges, it does not converge
to 𝑓 for 𝑥 > 0.

We can apply an affine transformation 𝑧 ↦→ 𝑧 + 𝑎 that converts a power series at 𝑎 to a
series at the origin. That is, if

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛 , we consider 𝑓 (𝑧 + 𝑎) =
∞∑
𝑛=0

𝑐𝑛𝑧𝑛 .

Therefore, it is usually sufficient to prove results about power series at the origin. From
now on, we often assume 𝑎 = 0 for simplicity.

11.3.4 Power series as analytic functions
We need a theorem on swapping limits of series, that is, Fubini’s theorem for sums. For
real series this was Exercise 2.6.15 in volume I, but we have a slicker argument now.
Theorem 11.3.5 (Fubini for sums). Let {𝑎𝑘,𝑚}∞𝑘=1,𝑚=1 be a double sequence of complex numbers
and suppose that for every 𝑘 the series

∞∑
𝑚=1

|𝑎𝑘,𝑚 | converges

and furthermore that
∞∑
𝑘=1

( ∞∑
𝑚=1

|𝑎𝑘,𝑚 |
)

converges.

Then ∞∑
𝑘=1

( ∞∑
𝑚=1

𝑎𝑘,𝑚

)
=

∞∑
𝑚=1

( ∞∑
𝑘=1

𝑎𝑘,𝑚

)
,

where all the series involved converge.

Proof. Let 𝐸 be the set {1/𝑛 : 𝑛 ∈ ℕ} ∪ {0}, and treat it as a metric space with the metric
inherited from ℝ. Define the sequence of functions 𝑓𝑘 : 𝐸 → ℂ by

𝑓𝑘(1/𝑛) B
𝑛∑

𝑚=1
𝑎𝑘,𝑚 and 𝑓𝑘(0) B

∞∑
𝑚=1

𝑎𝑘,𝑚 .
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As the series converges, each 𝑓𝑘 is continuous at 0 (since 0 is the only cluster point, they are
continuous at every point of 𝐸, but we don’t need that). For all 𝑥 ∈ 𝐸, we have

| 𝑓𝑘(𝑥)| ≤
∞∑
𝑚=1

|𝑎𝑘,𝑚 |.

As
∑
𝑘
∑
𝑚 |𝑎𝑘,𝑚 | converges (and does not depend on 𝑥), we know that

𝑛∑
𝑘=1

𝑓𝑘(𝑥)

converges uniformly on 𝐸. Define

𝑔(𝑥) B
∞∑
𝑘=1

𝑓𝑘(𝑥),

which is, therefore, a continuous function at 0. So

∞∑
𝑘=1

( ∞∑
𝑚=1

𝑎𝑘,𝑚

)
=

∞∑
𝑘=1

𝑓𝑘(0) = 𝑔(0) = lim
𝑛→∞ 𝑔(1/𝑛)

= lim
𝑛→∞

∞∑
𝑘=1

𝑓𝑘(1/𝑛) = lim
𝑛→∞

∞∑
𝑘=1

𝑛∑
𝑚=1

𝑎𝑘,𝑚

= lim
𝑛→∞

𝑛∑
𝑚=1

∞∑
𝑘=1

𝑎𝑘,𝑚 =
∞∑
𝑚=1

( ∞∑
𝑘=1

𝑎𝑘,𝑚

)
. □

Now we prove that once we have a series converging to a function in some interval, we
can expand the function around every point.

Theorem 11.3.6 (Taylor’s theorem for real-analytic functions). Let

𝑓 (𝑥) B
∞∑
𝑘=0

𝑎𝑘𝑥𝑘

be a power series converging in (−𝜌, 𝜌) for some 𝜌 > 0. Given any 𝑎 ∈ (−𝜌, 𝜌), and 𝑥 such that
|𝑥 − 𝑎 | < 𝜌 − |𝑎 |, we have

𝑓 (𝑥) =
∞∑
𝑘=0

𝑓 (𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘 .

The power series at 𝑎 could of course converge in a larger interval, but the one above is
guaranteed. It is the largest symmetric interval about 𝑎 that fits in (−𝜌, 𝜌).
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Proof. Given 𝑎 and 𝑥 as in the theorem, write

𝑓 (𝑥) =
∞∑
𝑘=0

𝑎𝑘
((𝑥 − 𝑎) + 𝑎) 𝑘

=
∞∑
𝑘=0

𝑎𝑘
𝑘∑

𝑚=0

(
𝑘
𝑚

)
𝑎𝑘−𝑚(𝑥 − 𝑎)𝑚 .

Define 𝑐𝑘,𝑚 B 𝑎𝑘
( 𝑘
𝑚

)
𝑎𝑘−𝑚 if 𝑚 ≤ 𝑘 and 0 if 𝑚 > 𝑘. Then

𝑓 (𝑥) =
∞∑
𝑘=0

∞∑
𝑚=0

𝑐𝑘,𝑚(𝑥 − 𝑎)𝑚 . (11.2)

Let us show that the double sum converges absolutely.

∞∑
𝑘=0

∞∑
𝑚=0

��𝑐𝑘,𝑚(𝑥 − 𝑎)𝑚 �� = ∞∑
𝑘=0

𝑘∑
𝑚=0

����𝑎𝑘 ( 𝑘𝑚)
𝑎𝑘−𝑚(𝑥 − 𝑎)𝑚

����
=

∞∑
𝑘=0

|𝑎𝑘 |
𝑘∑

𝑚=0

(
𝑘
𝑚

)
|𝑎 |𝑘−𝑚 |𝑥 − 𝑎 |𝑚

=
∞∑
𝑘=0

|𝑎𝑘 |
(|𝑥 − 𝑎 | + |𝑎 |) 𝑘 ,

and this series converges as long as (|𝑥 − 𝑎 | + |𝑎 |) < 𝜌 or in other words if |𝑥 − 𝑎 | < 𝜌 − |𝑎 |.
Using  Theorem 11.3.5 , swap the order of summation in ( 11.2 ), and the following series

converges when |𝑥 − 𝑎 | < 𝜌 − |𝑎 |:

𝑓 (𝑥) =
∞∑
𝑘=0

∞∑
𝑚=0

𝑐𝑘,𝑚(𝑥 − 𝑎)𝑚 =
∞∑
𝑚=0

( ∞∑
𝑘=0

𝑐𝑘,𝑚

)
(𝑥 − 𝑎)𝑚 .

The formula in terms of derivatives at 𝑎 follows by differentiating the series to obtain
( 11.1 ). □

Note that if a series converges for real 𝑥 ∈ (𝑎 − 𝜌, 𝑎 + 𝜌) it also converges for all complex
numbers in 𝐵(𝑎, 𝜌). We have the following corollary, which says that functions defined by
power series are analytic.

Corollary 11.3.7. For every 𝑎 ∈ ℂ, if
∑∞
𝑘=0 𝑐𝑘(𝑧 − 𝑎)𝑘 converges to 𝑓 (𝑧) in 𝐵(𝑎, 𝜌) and 𝑏 ∈ 𝐵(𝑎, 𝜌),

then there exists a power series
∑∞
𝑘=0 𝑑𝑘(𝑧 − 𝑏)𝑘 that converges to 𝑓 (𝑧) in 𝐵(𝑏, 𝜌 − |𝑏 − 𝑎 |).

Proof. Without loss of generality assume that 𝑎 = 0. We can rotate to assume that 𝑏 is real,
but since that is harder to picture, let us do it explicitly. Let 𝛼 B 𝑏

|𝑏 | . Notice that

|1/𝛼| = |𝛼 | = 1.
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Therefore the series
∑∞
𝑘=0 𝑐𝑘(𝑧/𝛼)𝑘 =

∑∞
𝑘=0 𝑐𝑘𝛼

−𝑘𝑧𝑘 converges to 𝑓 (𝑧/𝛼) in 𝐵(0, 𝜌). When
𝑧 = 𝑥 is real we apply  Theorem 11.3.6  at |𝑏 | and get a series that converges to 𝑓 (𝑧/𝛼) on
𝐵(|𝑏 |, 𝜌 − |𝑏 |). That is, there is a convergent series

𝑓 (𝑧/𝛼) =
∞∑
𝑘=0

𝑎𝑘
(
𝑧 − |𝑏 |) 𝑘 .

Using 𝛼𝑏 = |𝑏 |, we find

𝑓 (𝑧) = 𝑓 (𝛼𝑧/𝛼) =
∞∑
𝑘=0

𝑎𝑘(𝛼𝑧 − |𝑏 |)𝑘 =
∞∑
𝑘=0

𝑎𝑘𝛼𝑘
(
𝑧 − |𝑏 |/𝛼) 𝑘 = ∞∑

𝑘=0
𝑎𝑘𝛼𝑘(𝑧 − 𝑏)𝑘 ,

and this series converges for all 𝑧 such that
��𝛼𝑧 − |𝑏 |�� < 𝜌 − |𝑏 | or |𝑧 − 𝑏 | < 𝜌 − |𝑏 |. □

We proved above that a convergent power series is an analytic function where it
converges. We have also shown before that 1

1−𝑧 is analytic outside of 𝑧 = 1.
Note that just because a real analytic function is analytic on the entire real line it does

not necessarily mean that it has a power series representation that converges everywhere.
For example, the function

𝑓 (𝑥) = 1
1 + 𝑥2

happens to be real analytic function on ℝ (exercise). A power series around the origin
converging to 𝑓 has a radius of convergence of exactly 1. Can you see why? (exercise)

11.3.5 Identity theorem for analytic functions
Lemma 11.3.8. Suppose 𝑓 (𝑧) = ∑∞

𝑘=0 𝑎𝑘𝑧
𝑘 is a convergent power series and {𝑧𝑛}∞𝑛=1 is a sequence

of nonzero complex numbers converging to 0, such that 𝑓 (𝑧𝑛) = 0 for all 𝑛. Then 𝑎𝑘 = 0 for
every 𝑘.

Proof. By continuity we know 𝑓 (0) = 0 so 𝑎0 = 0. Suppose there exists some nonzero 𝑎𝑘 .
Let 𝑚 be the smallest 𝑚 such that 𝑎𝑚 ≠ 0. Then

𝑓 (𝑧) =
∞∑
𝑘=𝑚

𝑎𝑘𝑧𝑘 = 𝑧𝑚
∞∑
𝑘=𝑚

𝑎𝑘𝑧𝑘−𝑚 = 𝑧𝑚
∞∑
𝑘=0

𝑎𝑘+𝑚𝑧𝑘 .

Write 𝑔(𝑧) = ∑∞
𝑘=0 𝑎𝑘+𝑚𝑧

𝑘 (this series converges in on the same set as 𝑓 ). 𝑔 is continuous
and 𝑔(0) = 𝑎𝑚 ≠ 0. Thus there exists some 𝛿 > 0 such that 𝑔(𝑧) ≠ 0 for all 𝑧 ∈ 𝐵(0, 𝛿). As
𝑓 (𝑧) = 𝑧𝑚𝑔(𝑧), the only point in 𝐵(0, 𝛿) where 𝑓 (𝑧) = 0 is when 𝑧 = 0, but this contradicts
the assumption that 𝑓 (𝑧𝑛) = 0 for all 𝑛. □

Recall that in a metric space 𝑋, a cluster point (or sometimes limit point) of a set 𝐸 is a
point 𝑝 ∈ 𝑋 such that 𝐵(𝑝, 𝜖) \ {𝑝} contains points of 𝐸 for all 𝜖 > 0.
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Theorem 11.3.9 (Identity theorem). Let 𝑈 ⊂ ℂ be open and connected. If 𝑓 : 𝑈 → ℂ and
𝑔 : 𝑈 → ℂ are analytic functions that are equal on a set 𝐸 ⊂ 𝑈 , and 𝐸 has a cluster point in 𝑈 ,
then 𝑓 (𝑧) = 𝑔(𝑧) for all 𝑧 ∈ 𝑈 .

In most common applications of this theorem 𝐸 is an open set or perhaps a curve.

Proof. Without loss of generality suppose𝐸 is the set of all points 𝑧 ∈ 𝑈 such that 𝑔(𝑧) = 𝑓 (𝑧).
Note that 𝐸 must be closed as 𝑓 and 𝑔 are continuous.

Suppose 𝐸 has a cluster point. Without loss of generality assume that 0 is this cluster
point. Near 0, we have the expansions

𝑓 (𝑧) =
∞∑
𝑘=0

𝑎𝑘𝑧𝑘 and 𝑔(𝑧) =
∞∑
𝑘=0

𝑏𝑘𝑧𝑘 ,

which converge in some ball 𝐵(0, 𝜌). Therefore the series

0 = 𝑓 (𝑧) − 𝑔(𝑧) =
∞∑
𝑘=0

(𝑎𝑘 − 𝑏𝑘)𝑧𝑘

converges in 𝐵(0, 𝜌). As 0 is a cluster point of 𝐸, there is a sequence of nonzero points
{𝑧𝑛}∞𝑛=1 such that 𝑓 (𝑧𝑛)− 𝑔(𝑧𝑛) = 0. Hence, by the lemma above 𝑎𝑘 = 𝑏𝑘 for all 𝑘. Therefore,
𝐵(0, 𝜌) ⊂ 𝐸.

Thus the set of cluster points of 𝐸 is open. The set of cluster points of 𝐸 is also closed: A
limit of cluster points of 𝐸 is in 𝐸 as it is closed, and it is clearly a cluster point of 𝐸. As𝑈 is
connected, the set of cluster points of 𝐸 is equal to𝑈 , or in other words 𝐸 = 𝑈 . □

By restricting our attention to real 𝑥, we obtain the same theorem for connected open
subsets of ℝ, which are just open intervals.

11.3.6 Exercises
Exercise 11.3.1: Let

𝑎𝑘,𝑚 B


1 if 𝑘 = 𝑚,

−2𝑘−𝑚 if 𝑘 < 𝑚,

0 if 𝑘 > 𝑚.

Compute (or show the limit doesn’t exist):

a)
∞∑
𝑚=1

|𝑎𝑘,𝑚 | for all 𝑘, b)
∞∑
𝑘=1

|𝑎𝑘,𝑚 | for all 𝑚, c)
∞∑
𝑘=1

∞∑
𝑚=1

|𝑎𝑘,𝑚 |, d)
∞∑
𝑘=1

∞∑
𝑚=1

𝑎𝑘,𝑚 , e)
∞∑
𝑚=1

∞∑
𝑘=1

𝑎𝑘,𝑚 .

Hint: Fubini for sums does not apply, in fact, answers to d) and e) are different.

Exercise 11.3.2: Let 𝑓 (𝑥) B 1
1+𝑥2 . Prove that

a) 𝑓 is analytic function on all of ℝ by finding a power series for 𝑓 at every 𝑎 ∈ ℝ,

b) the radius of convergence of the power series for 𝑓 at the origin is 1.
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Exercise 11.3.3: Suppose 𝑓 : ℂ → ℂ is analytic. Show that for each 𝑛, there are at most finitely many zeros
of 𝑓 in 𝐵(0, 𝑛), that is, 𝑓 −1(0) ∩ 𝐵(0, 𝑛) is finite for each 𝑛.

Exercise 11.3.4: Suppose𝑈 ⊂ ℂ is open and connected, 0 ∈ 𝑈 , and 𝑓 : 𝑈 → ℂ is analytic. Treating 𝑓 as a
function of a real 𝑥 at the origin, suppose 𝑓 (𝑛)(0) = 0 for all 𝑛. Show that 𝑓 (𝑧) = 0 for all 𝑧 ∈ 𝑈 .

Exercise 11.3.5: Suppose𝑈 ⊂ ℂ is open and connected, 0 ∈ 𝑈 , and 𝑓 : 𝑈 → ℂ is analytic. For real 𝑥 and
𝑦, let ℎ(𝑥) B 𝑓 (𝑥) and 𝑔(𝑦) B −𝑖 𝑓 (𝑖𝑦). Show that ℎ and 𝑔 are infinitely differentiable at the origin and
ℎ′(0) = 𝑔′(0).
Exercise 11.3.6: Suppose a function 𝑓 is analytic in some neighborhood of the origin, and that there exists an
𝑀 such that | 𝑓 (𝑛)(0)| ≤ 𝑀 for all 𝑛. Prove that the series of 𝑓 at the origin converges for all 𝑧 ∈ ℂ.

Exercise 11.3.7: Suppose 𝑓 (𝑧) B ∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 with a radius of convergence 1. Suppose 𝑓 (0) = 0, but 𝑓 is not
the zero function. Show that there exists a 𝑘 ∈ ℕ and a convergent power series 𝑔(𝑧) B ∑∞

𝑛=0 𝑑𝑛𝑧
𝑛 with

radius of convergence 1 such that 𝑓 (𝑧) = 𝑧𝑘 𝑔(𝑧) for all 𝑧 ∈ 𝐵(0, 1), and 𝑔(0) ≠ 0.

Exercise 11.3.8: Suppose𝑈 ⊂ ℂ is open and connected. Suppose that 𝑓 : 𝑈 → ℂ is analytic,𝑈 ∩ℝ ≠ ∅
and 𝑓 (𝑥) = 0 for all 𝑥 ∈ 𝑈 ∩ℝ. Show that 𝑓 (𝑧) = 0 for all 𝑧 ∈ 𝑈 .

Exercise 11.3.9: For 𝛼 ∈ ℂ and 𝑘 = 0, 1, 2, 3 . . ., define(
𝛼
𝑘

)
B

𝛼(𝛼 − 1) · · · (𝛼 − 𝑘)
𝑘! .

a) Show that the series

𝑓 (𝑧) B
∞∑
𝑘=0

(
𝛼
𝑘

)
𝑧𝑘

converges whenever |𝑧 | < 1. In fact, prove that for 𝛼 = 0, 1, 2, 3, . . . the radius of convergence is ∞, and
for all other 𝛼 the radius of convergence is 1.

b) Show that for 𝑥 ∈ ℝ, |𝑥 | < 1, we have

(1 + 𝑥) 𝑓 ′(𝑥) = 𝛼 𝑓 (𝑥),

meaning that 𝑓 (𝑥) = (1 + 𝑥)𝛼.

Exercise 11.3.10: Suppose 𝑓 : ℂ → ℂ is analytic and suppose that for some open interval (𝑎, 𝑏) ⊂ ℝ, 𝑓 is
real valued on (𝑎, 𝑏). Show that 𝑓 is real-valued on ℝ.

Exercise 11.3.11: Let 𝔻 B 𝐵(0, 1) be the unit disc. Suppose 𝑓 : 𝔻 → ℂ is analytic with power series∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 . Suppose |𝑐𝑛 | ≤ 1 for all 𝑛. Prove that for all 𝑧 ∈ 𝔻, we have | 𝑓 (𝑧)| ≤ 1
1−|𝑧 | .
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11.4 Complex exponential and trigonometric functions
Note: 1 lecture

11.4.1 The complex exponential
Let

𝐸(𝑧) B
∞∑
𝑘=0

1
𝑘!𝑧

𝑘 .

This series converges for all 𝑧 ∈ ℂ, and so by  Corollary 11.3.7  , 𝐸 is analytic on ℂ. We notice
that 𝐸(0) = 1, and that for 𝑧 = 𝑥 ∈ ℝ, 𝐸(𝑥) ∈ ℝ. Keeping 𝑥 real, direct computation shows

𝑑
𝑑𝑥

(
𝐸(𝑥)) = 𝐸(𝑥).

In §5.4 of volume I (or by Picard’s theorem), we proved that the unique function satisfying
𝐸′ = 𝐸 and 𝐸(0) = 1 is the exponential. In other words, for 𝑥 ∈ ℝ, 𝑒𝑥 = 𝐸(𝑥).

For complex numbers 𝑧, we define

𝑒𝑧 B 𝐸(𝑧) =
∞∑
𝑘=0

1
𝑘!𝑧

𝑘 .

On the real line this new definition agrees with our previous one. See  Figure 11.7 . Notice
that in the 𝑥 direction (the real direction) the graph behaves like the real exponential, and
in the 𝑦 direction (the imaginary direction) the graph oscillates.

G

H

G

H

Figure 11.7: Graphs of the real part (left) and imaginary part (right) of the complex exponential
𝑒𝑧 = 𝑒𝑥+𝑖𝑦 . The 𝑥-axis goes from −4 to 4, the 𝑦-axis goes from −6 to 6, and the vertical axis goes
from −𝑒4 ≈ −54.6 to 𝑒4 ≈ 54.6. The plot of the real exponential (𝑦 = 0) is marked in a bold line.
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Proposition 11.4.1 (Law of exponents). Let 𝑧, 𝑤 ∈ ℂ be complex numbers. Then

𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 .

Proof. We already know that the equality 𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦 holds for all real numbers 𝑥 and 𝑦.
For every fixed 𝑦 ∈ ℝ, consider the expressions as functions of 𝑥 and apply the identity
theorem ( Theorem 11.3.9 ) to get that 𝑒𝑧+𝑦 = 𝑒𝑧𝑒𝑦 for all 𝑧 ∈ ℂ. Fixing an arbitrary 𝑧 ∈ ℂ, we
get 𝑒𝑧+𝑦 = 𝑒𝑧𝑒𝑦 for all 𝑦 ∈ ℝ. Again by the identity theorem 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 for all 𝑤 ∈ ℂ. □

A simple consequence of the proposition is that 𝑒𝑧 ≠ 0 for all 𝑧 ∈ ℂ, as 𝑒𝑧𝑒−𝑧 = 𝑒𝑧−𝑧 = 1.
This computation means that (𝑒𝑧)−1 = 𝑒−𝑧 . Combining that fact with the law of exponents
gives

(𝑒𝑧)𝑛 = 𝑒𝑛𝑧 for all 𝑛 ∈ ℤ.

A yet more complicated consequence is that we can compute the power series for the
exponential at any point 𝑎 ∈ ℂ:

𝑒𝑧 = 𝑒 𝑎𝑒𝑧−𝑎 =
∞∑
𝑘=0

𝑒 𝑎

𝑘! (𝑧 − 𝑎)
𝑘 .

11.4.2 Trigonometric functions and 𝜋

We can now finally define sine and cosine by the equation

𝑒𝑥+𝑖𝑦 = 𝑒𝑥
(
cos(𝑦) + 𝑖 sin(𝑦)) .

In fact, we define sine and cosine for all complex 𝑧:

cos(𝑧) B 𝑒 𝑖𝑧 + 𝑒−𝑖𝑧
2 and sin(𝑧) B 𝑒 𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖 .

Let us use our definition to prove common properties of sine and cosine. In the process,
we also define the number 𝜋.

Proposition 11.4.2. The sine and cosine functions have the following properties:
(i) For all 𝑧 ∈ ℂ,

𝑒 𝑖𝑧 = cos(𝑧) + 𝑖 sin(𝑧) (Euler’s formula).

(ii) cos(0) = 1, sin(0) = 0.
(iii) For all 𝑧 ∈ ℂ,

cos(−𝑧) = cos(𝑧), sin(−𝑧) = − sin(𝑧).
(iv) For all 𝑧 ∈ ℂ,

cos(𝑧) =
∞∑
𝑘=0

(−1)𝑘
(2𝑘)! 𝑧

2𝑘 , sin(𝑧) =
∞∑
𝑘=0

(−1)𝑘
(2𝑘 + 1)!𝑧

2𝑘+1.
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(v) For all 𝑥 ∈ ℝ

cos(𝑥) = Re(𝑒 𝑖𝑥) and sin(𝑥) = Im(𝑒 𝑖𝑥).
(vi) For all 𝑧 ∈ ℂ, (

cos(𝑧))2 + (
sin(𝑧))2 = 1.

(vii) For all 𝑥 ∈ ℝ,
|sin(𝑥)| ≤ 1, |cos(𝑥)| ≤ 1.

(viii) For all 𝑥 ∈ ℝ,

𝑑
𝑑𝑥

[
cos(𝑥)] = − sin(𝑥) and 𝑑

𝑑𝑥

[
sin(𝑥)] = cos(𝑥).

(ix) For all 𝑥 ≥ 0,
sin(𝑥) ≤ 𝑥.

(x) There exists an 𝑥 > 0 such that cos(𝑥) = 0. We define

𝜋 B 2 inf{𝑥 > 0 : cos(𝑥) = 0}.

(xi) For all 𝑧 ∈ ℂ,
𝑒2𝜋𝑖 = 1 and 𝑒𝑧+𝑖2𝜋 = 𝑒𝑧 .

(xii) Sine and cosine are 2𝜋-periodic and not periodic with any smaller period. That is, 2𝜋 is the
smallest number such that for all 𝑧 ∈ ℂ,

sin(𝑧 + 2𝜋) = sin(𝑧) and cos(𝑧 + 2𝜋) = cos(𝑧).

(xiii) The function 𝑥 ↦→ 𝑒 𝑖𝑥 is a bĳective map from [0, 2𝜋) onto the set of 𝑧 ∈ ℂ such that |𝑧 | = 1.

The proposition immediately implies that sin(𝑥) and cos(𝑥) are real whenever 𝑥 is real.

Proof. The first three items follow directly from the definition. The computation of the
power series for both is left as an exercise. As complex conjugate is a continuous function,
the definition of 𝑒𝑧 implies 𝑒𝑧 = 𝑒 �̄� . If 𝑥 is real,

𝑒 𝑖𝑥 = 𝑒−𝑖𝑥 .

Thus for real 𝑥, cos(𝑥) = 𝑒 𝑖𝑥−𝑒−𝑖𝑥
2 = 𝑒 𝑖𝑥−𝑒 𝑖𝑥

2 = Re(𝑒 𝑖𝑥) and similarly sin(𝑥) = Im(𝑒 𝑖𝑥).
For real 𝑥, we compute

1 = 𝑒 𝑖𝑥𝑒−𝑖𝑥 = 𝑒 𝑖𝑥 𝑒 𝑖𝑥 = |𝑒 𝑖𝑥 |2 =
��cos(𝑥) + 𝑖 sin(𝑥)��2 =

(
cos(𝑥))2 + (

sin(𝑥))2.

A slightly more complicated computation shows this fact for complex numbers, see
 Exercise 11.4.6  . In particular, is 𝑒 𝑖𝑥 is unimodular for real 𝑥; the values lie on the unit circle.
A square of a real number is always nonnegative:(

sin(𝑥))2 = 1 − (
cos(𝑥))2 ≤ 1.
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So |sin(𝑥)| ≤ 1 and similarly |cos(𝑥)| ≤ 1.
We leave the computation of the derivatives to the reader as exercises. Let us prove that

sin(𝑥) ≤ 𝑥 for 𝑥 ≥ 0. Consider 𝑓 (𝑥) B 𝑥 − sin(𝑥) and differentiate:

𝑓 ′(𝑥) = 𝑑
𝑑𝑥

[
𝑥 − sin(𝑥)] = 1 − cos(𝑥) ≥ 0,

for all 𝑥 ∈ ℝ as |cos(𝑥)| ≤ 1. In other words, 𝑓 is increasing and 𝑓 (0) = 0. So 𝑓 must be
nonnegative when 𝑥 ≥ 0 and hence, sin(𝑥) ≥ 𝑥.

Next, we claim there exists a positive 𝑥 such that cos(𝑥) = 0. As cos(0) = 1 > 0,
cos(𝑥) > 0 for 𝑥 near 0. Namely, there is some 𝑦 > 0, such that cos(𝑥) > 0 on [0, 𝑦). Then
sin(𝑥) is strictly increasing on [0, 𝑦). As sin(0) = 0, then sin(𝑥) > 0 for 𝑥 ∈ (0, 𝑦). Take
𝑎 ∈ (0, 𝑦). By the mean value theorem, there is a 𝑐 ∈ (𝑎, 𝑦) such that

2 ≥ cos(𝑎) − cos(𝑦) = sin(𝑐)(𝑦 − 𝑎) ≥ sin(𝑎)(𝑦 − 𝑎).
As 𝑎 ∈ (0, 𝑦), then sin(𝑎) > 0 and so

𝑦 ≤ 2
sin(𝑎) + 𝑎.

Hence there is some largest 𝑦 such that cos(𝑥) > 0 in [0, 𝑦), and let 𝑦 be the largest such
number. By continuity, cos(𝑦) = 0. In fact, 𝑦 is the smallest positive 𝑦 such that cos(𝑦) = 0.
As mentioned, 𝜋 is defined to be 2𝑦.

As cos(𝜋/2) = 0, then
(
sin(𝜋/2))2 = 1. As sin is positive on (0, 𝜋/2), we have sin(𝜋/2) = 1.

Hence,
𝑒 𝑖𝜋/2 = 𝑖 ,

and by the law of exponents,

𝑒 𝑖𝜋 = −1, 𝑒 𝑖2𝜋 = 1.

So 𝑒 𝑖2𝜋 = 1 = 𝑒0. The law of exponents also says

𝑒𝑧+𝑖2𝜋 = 𝑒𝑧𝑒 𝑖2𝜋 = 𝑒𝑧

for all 𝑧 ∈ ℂ. Immediately, we also obtain cos(𝑧 + 2𝜋) = cos(𝑧) and sin(𝑧 + 2𝜋) = sin(𝑧). So
sin and cos are 2𝜋-periodic.

We claim that sin and cos are not periodic with a smaller period. It would suffice to
show that if 𝑒 𝑖𝑥 = 1 for the smallest positive 𝑥, then 𝑥 = 2𝜋. Let 𝑥 be the smallest positive 𝑥
such that 𝑒 𝑖𝑥 = 1. Of course, 𝑥 ≤ 2𝜋. By the law of exponents,(

𝑒 𝑖𝑥/4)4
= 1.

If 𝑒 𝑖𝑥/4 = 𝑎 + 𝑖𝑏, then

(𝑎 + 𝑖𝑏)4 = 𝑎4 − 6𝑎2𝑏2 + 𝑏4 + 𝑖 (4𝑎𝑏(𝑎2 − 𝑏2)) = 1.
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Then either 𝑎 = 0 or 𝑎2 = 𝑏2. As 𝑥/4 ≤ 𝜋/2, then 𝑎 = cos(𝑥/4) ≥ 0 and 𝑏 = sin(𝑥/4) > 0. If
𝑎2 = 𝑏2, then 𝑎4 − 6𝑎2𝑏2 + 𝑏4 = −4𝑎4 < 0 and in particular not equal to 1. Therefore 𝑎 = 0,
in which case 𝑥/4 = 𝜋/2. Hence 2𝜋 is the smallest period we could choose for 𝑒 𝑖𝑥 and so also
for cos and sin.

Finally, we wish to show that 𝑒 𝑖𝑥 is one-to-one and onto from the set [0, 2𝜋) to the set of
𝑧 ∈ ℂ such that |𝑧 | = 1. Suppose 𝑒 𝑖𝑥 = 𝑒 𝑖𝑦 and 𝑥 > 𝑦. Then 𝑒 𝑖(𝑥−𝑦) = 1, meaning 𝑥 − 𝑦 is a
multiple of 2𝜋 and hence only one of them can live in [0, 2𝜋). To show onto, pick (𝑎, 𝑏) ∈ ℝ2

such that 𝑎2 + 𝑏2 = 1. Suppose first that 𝑎, 𝑏 ≥ 0. By the intermediate value theorem, there
must exist an 𝑥 ∈ [0, 𝜋/2] such that cos(𝑥) = 𝑎, and hence 𝑏2 =

(
sin(𝑥))2. As 𝑏 and sin(𝑥)

are nonnegative, 𝑏 = sin(𝑥). Since − sin(𝑥) is the derivative of cos(𝑥) and cos(−𝑥) = cos(𝑥),
then sin(𝑥) < 0 for 𝑥 ∈ [−𝜋/2, 0). Using the same reasoning, we obtain that if 𝑎 > 0 and
𝑏 ≤ 0, we can find an 𝑥 in [−𝜋/2, 0), and by periodicity, 𝑥 ∈ [3𝜋/2, 2𝜋) such that cos(𝑥) = 𝑎
and sin(𝑥) = 𝑏. Multiplying by −1 is the same as multiplying by 𝑒 𝑖𝜋 or 𝑒−𝑖𝜋. So we can
always assume that 𝑎 ≥ 0 (details are left as exercise). □

11.4.3 The unit circle and polar coordinates

The arclength of a curve parametrized by 𝛾 : [𝑎, 𝑏] → ℂ is given by∫ 𝑏

𝑎
|𝛾 ′(𝑡)| 𝑑𝑡.

We have that 𝑒 𝑖𝑡 parametrizes the circle for 𝑡 in [0, 2𝜋). As 𝑑
𝑑𝑡

(
𝑒 𝑖𝑡

)
= 𝑖𝑒 𝑖𝑡 , the circumference

of the circle (the arclength) is ∫ 2𝜋

0
|𝑖𝑒 𝑖𝑡 | 𝑑𝑡 =

∫ 2𝜋

0
1 𝑑𝑡 = 2𝜋.

More generally, 𝑒 𝑖𝑡 parametrizes the circle by arclength. That is, 𝑡 measures the arclength
on a circle of radius 1 by the angle in radians. So the definitions of sin and cos given above
agree with the standard geometric definitions.

All the points on the unit circle can be achieved by 𝑒 𝑖𝑡 for some 𝑡. Therefore, we can
write a complex number 𝑧 ∈ ℂ (in so-called polar coordinates) as

𝑧 = 𝑟𝑒 𝑖𝜃

for some 𝑟 ≥ 0 and 𝜃 ∈ ℝ. The 𝜃 is, of course, not unique as 𝜃 or 𝜃 + 2𝜋 gives the same
number. The law of exponents 𝑒 𝑎+𝑏 = 𝑒 𝑎𝑒𝑏 leads to a useful formula for powers and
products of complex numbers in polar coordinates:

(𝑟𝑒 𝑖𝜃)𝑛 = 𝑟𝑛𝑒 𝑖𝑛𝜃 , (𝑟𝑒 𝑖𝜃)(𝑠𝑒 𝑖𝛾) = 𝑟𝑠𝑒 𝑖(𝜃+𝛾).
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11.4.4 Exercises
Exercise 11.4.1: Derive the power series for sin(𝑧) and cos(𝑧) at the origin.
Exercise 11.4.2: Using the power series, show that for real 𝑥, we have 𝑑

𝑑𝑥

[
sin(𝑥)] = cos(𝑥) and 𝑑

𝑑𝑥

[
cos(𝑥)] =

− sin(𝑥).
Exercise 11.4.3: Finish the proof of the argument that 𝑥 ↦→ 𝑒 𝑖𝑥 from [0, 2𝜋) is onto the unit circle. In
particular, assume that we get all points of the form (𝑎, 𝑏) where 𝑎2 + 𝑏2 = 1 and 𝑎 ≥ 0. By multiplying by
𝑒 𝑖𝜋 or 𝑒−𝑖𝜋, show that we get everything, that is, even points where 𝑎 < 0.
Exercise 11.4.4: Show that the exponential is onto ℂ \ {0}, and in fact, that for every nonzero 𝑤, there are
infinitely many 𝑧 ∈ ℂ such that 𝑒𝑧 = 𝑤.
Exercise 11.4.5: Prove that for every 𝑤 ≠ 0 and every 𝜖 > 0, there exists a 𝑧 ∈ ℂ with |𝑧 | < 𝜖 such that
𝑒1/𝑧 = 𝑤.
Exercise 11.4.6: We showed

(
cos(𝑥))2 + (

sin(𝑥))2 = 1 for all 𝑥 ∈ ℝ. Prove that
(
cos(𝑧))2 + (

sin(𝑧))2 = 1
for all 𝑧 ∈ ℂ.
Exercise 11.4.7: Prove the trigonometric identities sin(𝑧 + 𝑤) = sin(𝑧) cos(𝑤) + cos(𝑧) sin(𝑤) and
cos(𝑧 + 𝑤) = cos(𝑧) cos(𝑤) − sin(𝑧) sin(𝑤) for all 𝑧, 𝑤 ∈ ℂ.

Exercise 11.4.8: Define sinc(𝑧) B sin(𝑧)
𝑧 for 𝑧 ≠ 0 and sinc(0) B 1. Show that sinc is analytic and compute

its power series at zero.
Define the hyperbolic sine and hyperbolic cosine by

sinh(𝑧) B 𝑒𝑧 − 𝑒−𝑧
2 , cosh(𝑧) B 𝑒𝑧 + 𝑒−𝑧

2 .

Exercise 11.4.9: Derive the power series at the origin for the hyperbolic sine and cosine.
Exercise 11.4.10: Show

a) sinh(0) = 0, cosh(0) = 1.

b) For 𝑥 ∈ ℝ, 𝑑
𝑑𝑥

[
sinh(𝑥)] = cosh(𝑥) and 𝑑

𝑑𝑥

[
cosh(𝑥)] = sinh(𝑥).

c) cosh(𝑥) > 0 for all 𝑥 ∈ ℝ and show that sinh(𝑥) is strictly increasing and bĳective from ℝ to ℝ.

d)
(
cosh(𝑥))2 = 1 + (

sinh(𝑥))2 for all 𝑥.

Exercise 11.4.11: Define tan(𝑥) B sin(𝑥)
cos(𝑥) as usual.

a) Show that for 𝑥 ∈ (−𝜋/2, 𝜋/2) both sin and tan are strictly increasing, and hence sin−1 and tan−1 exist
when we restrict to that interval.

b) Show that sin−1 and tan−1 are differentiable and that 𝑑
𝑑𝑥 sin−1(𝑥) = 1√

1−𝑥2
and 𝑑

𝑑𝑥 tan−1(𝑥) = 1
1+𝑥2 .

c) Using the finite geometric sum formula show

tan−1(𝑥) =
∫ 𝑥

0

1
1 + 𝑡𝑠 𝑑𝑡 =

∞∑
𝑘=0

(−1)𝑘
2𝑘 + 1𝑥

2𝑘+1

converges for all −1 ≤ 𝑥 ≤ 1 (including the end points). Hint: Integrate the finite sum, not the series.

d) Use this to show that

1 − 1
3 + 1

5 − · · · =
∞∑
𝑘=0

(−1)𝑘
2𝑘 + 1 =

𝜋
4 .
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11.5 Maximum principle and the fundamental theorem of
algebra

Note: half a lecture, optional

In this section we study the local behavior of polynomials, and analytic functions in
general, and the growth of polynomials as 𝑧 goes to infinity. As an application we prove
the fundamental theorem of algebra: Any nonconstant polynomial has a complex root.

Lemma 11.5.1. Let 𝜖 > 0, let 𝑝(𝑧) be a nonconstant complex polynomial, or more generally a
nonconstant power series converging in 𝐵(𝑧0, 𝜖), and suppose 𝑝(𝑧0) ≠ 0. Then there exists a
𝑤 ∈ 𝐵(𝑧0, 𝜖) such that |𝑝(𝑤)| < |𝑝(𝑧0)|.

Proof. We prove this lemma for a polynomial and leave the general case as  Exercise 11.5.1 .
Without loss of generality assume that 𝑧0 = 0 and 𝑝(0) = 1. Write

𝑝(𝑧) = 1 + 𝑎𝑘𝑧𝑘 + 𝑎𝑘+1𝑧𝑘+1 + · · · + 𝑎𝑑𝑧𝑑 ,

where 𝑎𝑘 ≠ 0. Pick 𝑡 such that 𝑎𝑘𝑒 𝑖𝑘𝑡 = −|𝑎𝑘 |, which we can do by the discussion on
trigonometric functions. Suppose 𝑟 > 0 is small enough such that 1 − 𝑟𝑘 |𝑎𝑘 | > 0. We have

𝑝(𝑟𝑒 𝑖𝑡) = 1 − 𝑟𝑘 |𝑎𝑘 | + 𝑟𝑘+1𝑎𝑘+1𝑒 𝑖(𝑘+1)𝑡 + · · · + 𝑟𝑑𝑎𝑑𝑒 𝑖𝑑𝑡 .

So��𝑝(𝑟𝑒 𝑖𝑡)�� − ���𝑟𝑘+1𝑎𝑘+1𝑒 𝑖(𝑘+1)𝑡 + · · · + 𝑟𝑑𝑎𝑑𝑒 𝑖𝑑𝑡
��� ≤ ���𝑝(𝑟𝑒 𝑖𝑡) − 𝑟𝑘+1𝑎𝑘+1𝑒 𝑖(𝑘+1)𝑡 − · · · − 𝑟𝑑𝑎𝑑𝑒 𝑖𝑑𝑡

���
=

��1 − 𝑟𝑘 |𝑎𝑘 |
�� = 1 − 𝑟𝑘 |𝑎𝑘 |.

In other words,��𝑝(𝑟𝑒 𝑖𝑡)�� ≤ 1 − 𝑟𝑘
(
|𝑎𝑘 | − 𝑟

���𝑎𝑘+1𝑒 𝑖(𝑘+1)𝑡 + · · · + 𝑟𝑑−𝑘−1𝑎𝑑𝑒 𝑖𝑑𝑡
���) .

For small enough 𝑟, the expression in the parentheses is positive as |𝑎𝑘 | > 0. Hence,��𝑝(𝑟𝑒 𝑖𝑡)�� < 1 = 𝑝(0). □

What the lemma says is that the only minima the modulus of analytic functions has
are precisely at the zeros. It is sometimes called the minimum modulus principle. If 𝑓 is
analytic and nonzero at a point, then 1/𝑓 is analytic near that point. Applying the lemma
and the identity theorem, one obtains the maximum modulus principle, or sometimes just the
maximum principle.

Theorem 11.5.2 (Maximum modulus principle). If𝑈 ⊂ ℂ is open and connected, 𝑓 : 𝑈 → ℂ

is analytic, and | 𝑓 (𝑧)| attains a relative maximum at 𝑧0 ∈ 𝑈 , then 𝑓 is constant.

The details of the proof is left as  Exercise 11.5.2 .
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Remark 11.5.3. The lemma (and the maximum principle) does not hold if we restrict to the
real numbers. For example, 𝑥2 + 1 has a minimum at 𝑥 = 0, but no zero there. There is a 𝑤
arbitrarily close to 0 such that |𝑤2 + 1| < 1, but this 𝑤 is necessarily not real. Letting 𝑤 = 𝑖𝜖
for small 𝜖 > 0 works.

The moral of the story is that if 𝑝(0) = 1, then very close to 0, the series (or polynomial)
looks like 1 + 𝑎𝑧𝑘 , and 1 + 𝑎𝑧𝑘 has no minimum at the origin. All the higher powers of 𝑧
are too small to make a difference. For polynomials, we find similar behavior at infinity.

Lemma 11.5.4. Let 𝑝(𝑧) be a nonconstant complex polynomial. Then for an 𝑀 > 0, there exists
an 𝑅 > 0 such that |𝑝(𝑧)| ≥ 𝑀 whenever |𝑧 | ≥ 𝑅.

Proof. Write 𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑑𝑧𝑑 and suppose that 𝑑 ≥ 1 and 𝑎𝑑 ≠ 0. Suppose
|𝑧 | ≥ 𝑅 (so also |𝑧 |−1 ≤ 𝑅−1). We estimate:

|𝑝(𝑧)| ≥ |𝑎𝑑𝑧𝑑 | − |𝑎0 | − |𝑎1𝑧 | − · · · − |𝑎𝑑−1𝑧𝑑−1 |
= |𝑧 |𝑑 (|𝑎𝑑 | − |𝑎0 | |𝑧 |−𝑑 − |𝑎1 | |𝑧 |−𝑑+1 − · · · − |𝑎𝑑−1 | |𝑧 |−1)
≥ 𝑅𝑑

(|𝑎𝑑 | − |𝑎0 |𝑅−𝑑 − |𝑎1 |𝑅1−𝑑 − · · · − |𝑎𝑑−1 |𝑅−1) .
Then the expression in parentheses is eventually positive for large enough 𝑅. In particular,
for large enough 𝑅 we get that this expression is greater than |𝑎𝑑 |

2 , and so

|𝑝(𝑧)| ≥ 𝑅𝑑
|𝑎𝑑 |
2 .

Therefore, we can pick 𝑅 large enough to be bigger than a given 𝑀. □

This second lemma does not generalize to analytic functions, even those defined on the
entire plane ℂ. The function cos(𝑧) is a counterexample. We had to look at the term with
the largest degree, and we only have such a term for a polynomial. In fact, something that
we will not prove is that an analytic function defined on all of ℂ satisfying the conclusion
of the lemma must be a polynomial.

The moral of the story here is that for very large |𝑧 | (far away from the origin) a
polynomial of degree 𝑑 really looks like a constant multiple of 𝑧𝑑.

Theorem 11.5.5 (Fundamental theorem of algebra). Let 𝑝(𝑧) be a nonconstant complex
polynomial, then there exists a 𝑧0 ∈ ℂ such that 𝑝(𝑧0) = 0.

Proof. Let 𝜇 B inf
{|𝑝(𝑧)| : 𝑧 ∈ ℂ

}
. Find an 𝑅 such that for all 𝑧 with |𝑧 | ≥ 𝑅, we

have |𝑝(𝑧)| ≥ 𝜇 + 1. Therefore, every 𝑧 with |𝑝(𝑧)| close to 𝜇 must be in the closed ball
𝐶(0, 𝑅) = {

𝑧 ∈ ℂ : |𝑧 | ≤ 𝑅
}
. As |𝑝(𝑧)| is a continuous real-valued function, it achieves its

minimum on the compact set 𝐶(0, 𝑅) (closed and bounded) and this minimum must be 𝜇.
So there is a 𝑧0 ∈ 𝐶(0, 𝑅) such that |𝑝(𝑧0)| = 𝜇. As that is a minimum of |𝑝(𝑧)| on ℂ, then
by the first lemma above, we have |𝑝(𝑧0)| = 0. □

The fundamental theorem also does not generalize to analytic functions. The exponential
𝑒𝑧 is an analytic function on ℂ with no zeros.
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11.5.1 Exercises
Exercise 11.5.1: Prove  Lemma 11.5.1  for an analytic function. That is, suppose that 𝑝(𝑧) is a nonconstant
power series converging in 𝐵(𝑧0 , 𝜖).
Exercise 11.5.2: Use  Lemma 11.5.1 for analytic functions to prove  Theorem 11.5.2 .

Exercise 11.5.3: Let𝑈 ⊂ ℂ be open and 𝑧0 ∈ 𝑈 . Suppose 𝑓 : 𝑈 → ℂ is analytic and 𝑓 (𝑧0) = 0. Show that
there exists an 𝜖 > 0 such that either 𝑓 (𝑧) ≠ 0 for all 𝑧 with 0 < |𝑧 | < 𝜖 or 𝑓 (𝑧) = 0 for all 𝑧 ∈ 𝐵(𝑧0 , 𝜖). In
other words, zeros of analytic functions are isolated. Of course, same holds for polynomials.

A rational function is a function 𝑓 (𝑧) B 𝑝(𝑧)
𝑞(𝑧) where 𝑝 and 𝑞 are polynomials and 𝑞 is not identically

zero. A point 𝑧0 ∈ ℂ where 𝑓 (𝑧0) = 0 (and therefore 𝑝(𝑧0) = 0) is called a zero. A point 𝑧0 ∈ ℂ is
called an singularity of 𝑓 if 𝑞(𝑧0) = 0. As all zeros are isolated and so all singularities of rational
functions are isolated and so are called an isolated singularity. An isolated singularity is called
removable if lim𝑧 ↦→𝑧0 𝑓 (𝑧) exists. An isolated singularity is called a pole if lim𝑧 ↦→𝑧0 | 𝑓 (𝑧)| = ∞. We say
𝑓 has pole at ∞ if

lim
𝑧→∞| 𝑓 (𝑧)| = ∞,

that is, if for every 𝑀 > 0 there exists an 𝑅 > 0 such that | 𝑓 (𝑧)| > 𝑀 for all 𝑧 with |𝑧 | > 𝑅.

Exercise 11.5.4: Show that a rational function which is not identically zero has at most finitely many zeros
and singularities. In fact, show that if 𝑝 is a polynomial of degree 𝑛 > 0 it has at most 𝑛 zeros.
Hint: If 𝑧0 is a zero of 𝑝, then without loss of generality assume 𝑧0 = 0. Then use induction.

Exercise 11.5.5: Prove that if 𝑧0 is a removable singularity of a rational function 𝑓 (𝑧) B 𝑝(𝑧)
𝑞(𝑧) , then there

exist polynomials �̃� and �̃� such that �̃�(𝑧0) ≠ 0 and 𝑓 (𝑧) = �̃�(𝑧)
�̃�(𝑧) .

Hint: Without loss of generality assume 𝑧0 = 0.

Exercise 11.5.6: Given a rational function 𝑓 with an isolated singularity at 𝑧0, show that 𝑧0 is either
removable or a pole.
Hint: See the previous exercise.

Exercise 11.5.7: Let 𝑓 be a rational function and 𝑆 ⊂ ℂ is the set of the singularities of 𝑓 . Prove that 𝑓 is
equal to a polynomial on ℂ \ 𝑆 if and only if 𝑓 has a pole at infinity and all the singularities are removable.
Hint: See previous exercises.
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11.6 Equicontinuity and the Arzelà–Ascoli theorem
Note: 2 lectures

We would like an analogue of Bolzano–Weierstrass. Something to the tune of “every
bounded sequence of functions (with some property) has a convergent subsequence.”
Matters are not as simple even for continuous functions. Not every bounded sequence in
the metric space 𝐶

([0, 1],ℝ)
has a convergent subsequence.

Definition 11.6.1. Let 𝑋 be a set. Let 𝑓𝑛 : 𝑋 → ℂ be functions in a sequence. We say that
{ 𝑓𝑛}∞𝑛=1 is pointwise bounded if for every 𝑥 ∈ 𝑋, there is an 𝑀𝑥 ∈ ℝ such that

| 𝑓𝑛(𝑥)| ≤ 𝑀𝑥 for all 𝑛 ∈ ℕ.

We say that { 𝑓𝑛}∞𝑛=1 is uniformly bounded if there is an 𝑀 ∈ ℝ such that

| 𝑓𝑛(𝑥)| ≤ 𝑀 for all 𝑛 ∈ ℕ and all 𝑥 ∈ 𝑋.

If 𝑋 is a compact metric space, then a sequence in 𝐶(𝑋,ℂ) is uniformly bounded if it is
bounded as a set in the metric space 𝐶(𝑋,ℂ) using the uniform norm.

Example 11.6.2: There exist sequences of continuous functions on [0, 1] that are uniformly
bounded but contain no subsequence converging even pointwise. Let us state without
proof that 𝑓𝑛(𝑥) B sin(2𝜋𝑛𝑥) is one such sequence. Below we will show that there must
always exist a subsequence converging at countably many points, but [0, 1] is uncountable.

Example 11.6.3: The sequence 𝑓𝑛(𝑥) B 𝑥𝑛 of continuous functions on [0, 1] is uniformly
bounded, but contains no subsequence that converges uniformly, although the sequence
converges pointwise (to a discontinuous function).

Example 11.6.4: The sequence { 𝑓𝑛}∞𝑛=1 of functions in 𝐶
([0, 1],ℝ)

given by 𝑓𝑛(𝑥) B 𝑛3𝑥
1+𝑛4𝑥2

converges pointwise to the zero function (obvious at 𝑥 = 0, and for 𝑥 > 0, we have
𝑛3𝑥

1+𝑛4𝑥2 ≤ 1
𝑛𝑥 ). As for each 𝑥, { 𝑓𝑛(𝑥)}∞𝑛=1 converges to 0, it is bounded so { 𝑓𝑛}∞𝑛=1 is pointwise

bounded.
Via calculus, we find that the maximum of 𝑓𝑛 on [0, 1] occurs at the critical point 𝑥 = 1/𝑛2:

∥ 𝑓𝑛 ∥[0,1] = 𝑓𝑛 (1/𝑛2) = 𝑛/2.

So lim𝑛→∞∥ 𝑓𝑛 ∥[0,1] = ∞, and this sequence is not uniformly bounded.

When the domain is countable, we can locate a subsequence converging at least
pointwise. The proof uses a very common and useful diagonal argument.

Proposition 11.6.5. Let 𝑋 be a countable set and 𝑓𝑛 : 𝑋 → ℂ give a pointwise bounded sequence
of functions. Then { 𝑓𝑛}∞𝑛=1 has a subsequence that converges pointwise.



11.6. EQUICONTINUITY AND THE ARZELÀ–ASCOLI THEOREM 173

Proof. Let 𝑥1, 𝑥2, 𝑥3, . . . be an enumeration of the elements of 𝑋. The sequence { 𝑓𝑛(𝑥1)}∞𝑛=1
is bounded and hence we have a subsequence of { 𝑓𝑛}∞𝑛=1, which we denote by { 𝑓1,𝑘}∞𝑘=1,
such that { 𝑓1,𝑘(𝑥1)}∞𝑘=1 converges. Next { 𝑓1,𝑘(𝑥2)}∞𝑘=1 is bounded and so { 𝑓1,𝑘}∞𝑘=1 has a
subsequence { 𝑓2,𝑘}∞𝑘=1 such that { 𝑓2,𝑘(𝑥2)}∞𝑘=1 converges. Note that { 𝑓2,𝑘(𝑥1)}∞𝑘=1 is still
convergent.

In general, we have a sequence { 𝑓𝑚,𝑘}∞𝑘=1, which is a subsequence of { 𝑓𝑚−1,𝑘}∞𝑘=1, such
that { 𝑓𝑚,𝑘(𝑥 𝑗)}∞𝑘=1 converges for 𝑗 = 1, 2, . . . , 𝑚. We let { 𝑓𝑚+1,𝑘}∞𝑘=1 be a subsequence
of { 𝑓𝑚,𝑘}∞𝑘=1 such that { 𝑓𝑚+1,𝑘(𝑥𝑚+1)}∞𝑘=1 converges (and hence it converges for all 𝑥 𝑗 for
𝑗 = 1, 2, . . . , 𝑚 + 1). Rinse and repeat.

If 𝑋 is finite, we are done as the process stops at some point. If 𝑋 is countably infinite,
we pick the sequence { 𝑓𝑘,𝑘}∞𝑘=1. This is a subsequence of the original sequence { 𝑓𝑛}∞𝑛=1. For
every 𝑚, the tail { 𝑓𝑘,𝑘}∞𝑘=𝑚 is a subsequence of { 𝑓𝑚,𝑘}∞𝑘=1 and hence for any 𝑚 the sequence
{ 𝑓𝑘,𝑘(𝑥𝑚)}∞𝑘=1 converges. □

For larger than countable sets, we need the functions of the sequence to be related.
When we look at continuous functions, the concept we need is equicontinuity.

Definition 11.6.6. Let (𝑋, 𝑑) be a metric space. A set 𝑆 of functions 𝑓 : 𝑋 → ℂ is uniformly
equicontinuous if for every 𝜖 > 0, there is a 𝛿 > 0 such that if 𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑥, 𝑦) < 𝛿, we
have

| 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖 for all 𝑓 ∈ 𝑆.
Notice that functions in a uniformly equicontinuous sequence are all uniformly contin-

uous. It is not hard to show that a finite set of uniformly continuous functions is uniformly
equicontinuous. The definition is really interesting if 𝑆 is infinite.

Just as for continuity, one can define equicontinuity at a point. That is, 𝑆 is equicontinuous
at 𝑥 ∈ 𝑋 if for every 𝜖 > 0, there is a 𝛿 > 0 such that for 𝑦 ∈ 𝑋 with 𝑑(𝑥, 𝑦) < 𝛿, we have
| 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖 for all 𝑓 ∈ 𝑆. We will only deal with compact 𝑋 here, and one can prove
(exercise) that for a compact metric space 𝑋, if 𝑆 is equicontinuous at every 𝑥 ∈ 𝑋, then it
is uniformly equicontinuous. For simplicity we stick to uniform equicontinuity.
Proposition 11.6.7. Suppose (𝑋, 𝑑) is a compact metric space, 𝑓𝑛 ∈ 𝐶(𝑋,ℂ), and { 𝑓𝑛}∞𝑛=1
converges uniformly, then { 𝑓𝑛}∞𝑛=1 is uniformly equicontinuous.

Proof. Let 𝜖 > 0 be given. As { 𝑓𝑛}∞𝑛=1 converges uniformly, there is an 𝑁 ∈ ℕ such that for
all 𝑛 ≥ 𝑁

| 𝑓𝑛(𝑥) − 𝑓𝑁 (𝑥)| < 𝜖/3 for all 𝑥 ∈ 𝑋.
As 𝑋 is compact, every continuous function is uniformly continuous. So { 𝑓1, 𝑓2, . . . , 𝑓𝑁 } is
a finite set of uniformly continuous functions. And so, as we mentioned above, the set is
uniformly equicontinuous. Hence there is a 𝛿 > 0 such that

| 𝑓𝑗(𝑥) − 𝑓𝑗(𝑦)| < 𝜖/3 < 𝜖

whenever 𝑑(𝑥, 𝑦) < 𝛿 and 1 ≤ 𝑗 ≤ 𝑁 .
Take 𝑛 > 𝑁 . For 𝑑(𝑥, 𝑦) < 𝛿, we have

| 𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| ≤ | 𝑓𝑛(𝑥) − 𝑓𝑁 (𝑥)| + | 𝑓𝑁 (𝑥) − 𝑓𝑁 (𝑦)| + | 𝑓𝑁 (𝑦) − 𝑓𝑛(𝑦)| < 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖. □
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Proposition 11.6.8. A compact metric space (𝑋, 𝑑) contains a countable dense subset, that is,
there exists a countable 𝐷 ⊂ 𝑋 such that 𝐷 = 𝑋.

Proof. For each 𝑛 ∈ ℕ there are finitely many balls of radius 1/𝑛 that cover 𝑋 (as 𝑋 is
compact). That is, for every 𝑛, there exists a finite set of points 𝑥𝑛,1, 𝑥𝑛,2, . . . , 𝑥𝑛,𝑘𝑛 such that

𝑋 =
𝑘𝑛⋃
𝑗=1

𝐵(𝑥𝑛,𝑗 , 1/𝑛).

Let 𝐷 B
⋃∞
𝑛=1{𝑥𝑛,1, 𝑥𝑛,2, . . . , 𝑥𝑛,𝑘𝑛 }. The set 𝐷 is countable as it is a countable union of

finite sets. For every 𝑥 ∈ 𝑋 and every 𝜖 > 0, there exists an 𝑛 such that 1/𝑛 < 𝜖 and an
𝑥𝑛,𝑗 ∈ 𝐷 such that

𝑥 ∈ 𝐵(𝑥𝑛,𝑗 , 1/𝑛) ⊂ 𝐵(𝑥𝑛,𝑗 , 𝜖).
Hence 𝑥 ∈ 𝐷, so 𝐷 = 𝑋, and 𝐷 is dense. □

We are now ready for the main result of this section, the Arzelà–Ascoli theorem 

*
 about

existence of convergent subsequences.

Theorem 11.6.9 (Arzelà–Ascoli). Let (𝑋, 𝑑) be a compact metric space, and let { 𝑓𝑛}∞𝑛=1 be
pointwise bounded and uniformly equicontinuous sequence of functions 𝑓𝑛 ∈ 𝐶(𝑋,ℂ). Then
{ 𝑓𝑛}∞𝑛=1 is uniformly bounded and { 𝑓𝑛}∞𝑛=1 contains a uniformly convergent subsequence.

Basically, a uniformly equicontinuous sequence in the metric space 𝐶(𝑋,ℂ) that is
pointwise bounded is bounded (in 𝐶(𝑋,ℂ)) and furthermore contains a convergent
subsequence in 𝐶(𝑋,ℂ).

As we mentioned before, as 𝑋 is compact, it is enough to just assume that { 𝑓𝑛}∞𝑛=1 is
equicontinuous as uniform equicontinuity is automatic via an exercise.

Proof. We first show that the sequence is uniformly bounded. By uniform equicontinuity,
there is a 𝛿 > 0 such that for all 𝑥 ∈ 𝑋 and all 𝑛 ∈ ℕ,

𝐵(𝑥, 𝛿) ⊂ 𝑓 −1
𝑛

(
𝐵( 𝑓𝑛(𝑥), 1)

)
.

The space 𝑋 is compact, so there exist 𝑥1, 𝑥2, . . . , 𝑥𝑘 such that

𝑋 =
𝑘⋃
𝑗=1

𝐵(𝑥 𝑗 , 𝛿).

As { 𝑓𝑛}∞𝑛=1 is pointwise bounded there exist 𝑀1, 𝑀2, . . . , 𝑀𝑘 such that for 𝑗 = 1, 2, . . . , 𝑘,

| 𝑓𝑛(𝑥 𝑗)| ≤ 𝑀 𝑗 for all 𝑛.

*Named after the Italian mathematicians  Cesare Arzelà (1847–1912), and  Giulio Ascoli (1843–1896).

https://en.wikipedia.org/wiki/Cesare_Arzel%C3%A0
https://en.wikipedia.org/wiki/Giulio_Ascoli


11.6. EQUICONTINUITY AND THE ARZELÀ–ASCOLI THEOREM 175

Let 𝑀 B 1 + max{𝑀1, 𝑀2, . . . , 𝑀𝑘}. Given any 𝑥 ∈ 𝑋, there is a 𝑗 such that 𝑥 ∈ 𝐵(𝑥 𝑗 , 𝛿).
Therefore, for all 𝑛, we have 𝑥 ∈ 𝑓 −1

𝑛
(
𝐵( 𝑓𝑛(𝑥 𝑗), 1)

)
, or in other words

| 𝑓𝑛(𝑥) − 𝑓𝑛(𝑥 𝑗)| < 1.

By the reverse triangle inequality,

| 𝑓𝑛(𝑥)| < 1 + | 𝑓𝑛(𝑥 𝑗)| ≤ 1 +𝑀 𝑗 ≤ 𝑀.

As 𝑥 was arbitrary, { 𝑓𝑛}∞𝑛=1 is uniformly bounded.
Next, pick a countable dense subset𝐷 ⊂ 𝑋. By  Proposition 11.6.5  , we find a subsequence

{ 𝑓𝑛 𝑗 }∞𝑗=1 that converges pointwise on𝐷. Write 𝑔𝑗 B 𝑓𝑛 𝑗 for simplicity. The sequence {𝑔𝑛}∞𝑛=1
is uniformly equicontinuous. Let 𝜖 > 0 be given, then there exists a 𝛿 > 0 such that for all
𝑥 ∈ 𝑋 and all 𝑛 ∈ ℕ,

𝐵(𝑥, 𝛿) ⊂ 𝑔−1
𝑛

(
𝐵(𝑔𝑛(𝑥), 𝜖/3)) .

By density of 𝐷 and because 𝛿 is fixed, every 𝑥 ∈ 𝑋 is in 𝐵(𝑦, 𝛿) for some 𝑦 ∈ 𝐷. By
compactness of 𝑋, there is a finite subset {𝑥1, 𝑥2, . . . , 𝑥𝑘} ⊂ 𝐷 such that

𝑋 =
𝑘⋃
𝑗=1

𝐵(𝑥 𝑗 , 𝛿).

As {𝑥1, 𝑥2, . . . , 𝑥𝑘} is a finite set and {𝑔𝑛}∞𝑛=1 converges pointwise on 𝐷, there exists a single
𝑁 such that for all 𝑛, 𝑚 ≥ 𝑁 ,

|𝑔𝑛(𝑥 𝑗) − 𝑔𝑚(𝑥 𝑗)| < 𝜖/3 for all 𝑗 = 1, 2, . . . , 𝑘.

Let 𝑥 ∈ 𝑋 be arbitrary. There is some 𝑗 such that 𝑥 ∈ 𝐵(𝑥 𝑗 , 𝛿) and so for all ℓ ∈ ℕ,

|𝑔ℓ (𝑥) − 𝑔ℓ (𝑥 𝑗)| < 𝜖/3.

So for 𝑛, 𝑚 ≥ 𝑁 ,

|𝑔𝑛(𝑥) − 𝑔𝑚(𝑥)| ≤ |𝑔𝑛(𝑥) − 𝑔𝑛(𝑥 𝑗)| + |𝑔𝑛(𝑥 𝑗) − 𝑔𝑚(𝑥 𝑗)| + |𝑔𝑚(𝑥 𝑗) − 𝑔𝑚(𝑥)|
< 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖.

Hence, {𝑔𝑛}∞𝑛=1 is uniformly Cauchy. By completeness of ℂ, it is uniformly convergent. □

Corollary 11.6.10. Let (𝑋, 𝑑) be a compact metric space. Let 𝑆 ⊂ 𝐶(𝑋,ℂ) be a closed, bounded
and uniformly equicontinuous set. Then 𝑆 is compact.

The theorem says that 𝑆 is sequentially compact and that means compact in a metric
space. Recall that the closed unit ball in 𝐶

([0, 1],ℝ)
, and therefore also in 𝐶

([0, 1],ℂ)
, is

not compact. Hence it cannot be a uniformly equicontinuous set.

Corollary 11.6.11. Suppose { 𝑓𝑛}∞𝑛=1 is a sequence of differentiable functions on [𝑎, 𝑏], { 𝑓 ′𝑛}∞𝑛=1
is uniformly bounded, and there is an 𝑥0 ∈ [𝑎, 𝑏] such that { 𝑓𝑛(𝑥0)}∞𝑛=1 is bounded. Then there
exists a uniformly convergent subsequence { 𝑓𝑛 𝑗 }∞𝑗=1.
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Proof. The trick is to use the mean value theorem. If 𝑀 is the uniform bound on { 𝑓 ′𝑛}∞𝑛=1,
then by the mean value theorem for every 𝑛

| 𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| ≤ 𝑀 |𝑥 − 𝑦 | for all 𝑥, 𝑦 ∈ 𝑋.

All the 𝑓𝑛 are Lipschitz with the same constant and hence the sequence is uniformly
equicontinuous.

Suppose | 𝑓𝑛(𝑥0)| ≤ 𝑀0 for all 𝑛. For all 𝑥 ∈ [𝑎, 𝑏],

| 𝑓𝑛(𝑥)| ≤ | 𝑓𝑛(𝑥0)| + | 𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0)| ≤ 𝑀0 +𝑀 |𝑥 − 𝑥0 | ≤ 𝑀0 +𝑀(𝑏 − 𝑎).

So { 𝑓𝑛}∞𝑛=1 is uniformly bounded. We apply  Arzelà–Ascoli to find the subsequence. □

A classic application of the corollary above to Arzelà–Ascoli in the theory of differential
equations is to prove the Peano existence theorem, that is, the existence of solutions to
ordinary differential equations. See  Exercise 11.6.11 below.

Another application of Arzelà–Ascoli using the same idea as the corollary above is the
following. Take a continuous 𝑘 : [0, 1] × [0, 1] → ℂ. For every 𝑓 ∈ 𝐶 ([0, 1],ℂ)

define

𝑇
(
𝑓
)(𝑥) B ∫ 1

0
𝑓 (𝑡) 𝑘(𝑥, 𝑡) 𝑑𝑡.

In exercises to earlier sections you have shown that 𝑇 is a linear operator on 𝐶
([0, 1],ℂ)

.
Via Arzelà–Ascoli, we also find (exercise) that the image of the unit ball of functions

𝑇
(
𝐵(0, 1)) = {

𝑇 𝑓 ∈ 𝐶 ([0, 1],ℂ)
: ∥ 𝑓 ∥[0,1] < 1

}
has compact closure, usually called relatively compact. Such an operator is called a compact
operator. And they are very useful. Generally operators defined by integration tend to be
compact.

11.6.1 Exercises
Exercise 11.6.1: Let 𝑓𝑛 : [−1, 1] → ℝ be given by 𝑓𝑛(𝑥) B 𝑛𝑥

1+(𝑛𝑥)2 . Prove that the sequence is uniformly
bounded, converges pointwise to 0, yet there is no subsequence that converges uniformly. Which hypothesis of
Arzelà–Ascoli is not satisfied? Prove your assertion.

Exercise 11.6.2: Define 𝑓𝑛 : ℝ → ℝ by 𝑓𝑛(𝑥) B 1
(𝑥−𝑛)2+1

. Prove that this sequence is uniformly bounded,
uniformly equicontinuous, the sequence converges pointwise to zero, yet there is no subsequence that converges
uniformly. Which hypothesis of Arzelà–Ascoli is not satisfied? Prove your assertion.

Exercise 11.6.3: Let (𝑋, 𝑑) be a compact metric space, 𝐶 > 0, 0 < 𝛼 ≤ 1, and suppose 𝑓𝑛 : 𝑋 → ℂ are
functions such as | 𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| ≤ 𝐶𝑑(𝑥, 𝑦)𝛼 for all 𝑥, 𝑦 ∈ 𝑋 and 𝑛 ∈ ℕ. Suppose also that there is a point
𝑝 ∈ 𝑋 such that 𝑓𝑛(𝑝) = 0 for all 𝑛. Show that there exists a uniformly convergent subsequence converging
to an 𝑓 : 𝑋 → ℂ that also satisfies 𝑓 (𝑝) = 0 and | 𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝐶𝑑(𝑥, 𝑦)𝛼.



11.6. EQUICONTINUITY AND THE ARZELÀ–ASCOLI THEOREM 177

Exercise 11.6.4: Let 𝑇 : 𝐶
([0, 1],ℂ) → 𝐶

([0, 1],ℂ)
be the operator given by

𝑇
(
𝑓
)(𝑥) B ∫ 𝑥

0
𝑓 (𝑡) 𝑑𝑡.

(That 𝑇 is linear and that 𝑇 𝑓 is continuous follows from linearity of the integral and the fundamental theorem
of calculus.)

a) Show that 𝑇 takes the unit ball centered at 0 in 𝐶
([0, 1],ℂ)

into a relatively compact set (a set with
compact closure). That is, 𝑇 is a compact operator.
Hint: See Exercise 7.4.20 in volume I.

b) Let 𝐶 ⊂ 𝐶
([0, 1],ℂ)

the closed unit ball, prove that the image 𝑇(𝐶) is not closed (though it is relatively
compact).

Exercise 11.6.5: Given 𝑘 ∈ 𝐶 ([0, 1] × [0, 1],ℂ)
, define the operator 𝑇 : 𝐶

([0, 1],ℂ) → 𝐶
([0, 1],ℂ)

by

𝑇
(
𝑓
)(𝑥) B ∫ 1

0
𝑓 (𝑡) 𝑘(𝑥, 𝑡) 𝑑𝑡.

Show that 𝑇 takes the unit ball centered at 0 in 𝐶
([0, 1],ℂ)

into a relatively compact set (a set with compact
closure). That is, 𝑇 is a compact operator.
Hint: See Exercise 7.4.20 in volume I.
Note: That 𝑇 is a well-defined linear operator was proved in  Exercise 8.1.6 .

Exercise 11.6.6: Suppose 𝑆1 ⊂ ℂ is the unit circle, that is the set where |𝑧 | = 1. Suppose the continuous
functions 𝑓𝑛 : 𝑆1 → ℂ are uniformly bounded. Let 𝛾 : [0, 1] → 𝑆1 be a parametrization of 𝑆1, and 𝑔(𝑧, 𝑤)
a continuous function on 𝐶(0, 1) × 𝑆1 (here 𝐶(0, 1) ⊂ ℂ is the closed unit ball). Define the functions
𝐹𝑛 : 𝐶(0, 1) → ℂ by the path integral (see  §9.2 )

𝐹𝑛(𝑧) :=
∫
𝛾
𝑓𝑛(𝑤) 𝑔(𝑧, 𝑤) 𝑑𝑠(𝑤).

Show that {𝐹𝑛}∞𝑛=1 has a uniformly convergent subsequence.

Exercise 11.6.7: Suppose (𝑋, 𝑑) is a compact metric space, { 𝑓𝑛}∞𝑛=1 a uniformly equicontinuous sequence of
functions in 𝐶(𝑋,ℂ). Suppose { 𝑓𝑛}∞𝑛=1 converges pointwise. Show that it converges uniformly.

Exercise 11.6.8: Suppose that { 𝑓𝑛}∞𝑛=1 is a uniformly equicontinuous uniformly bounded sequence of
2𝜋-periodic functions 𝑓𝑛 : ℝ → ℝ. Show that there is a uniformly convergent subsequence.

Exercise 11.6.9: Show that for a compact metric space 𝑋, a sequence { 𝑓𝑛}∞𝑛=1 that is equicontinuous at every
𝑥 ∈ 𝑋 is uniformly equicontinuous.

Exercise 11.6.10: Define 𝑓𝑛 : [0, 1] → ℂ by 𝑓𝑛(𝑡) B 𝑒 𝑖(2𝜋𝑡+𝑛), which gives a uniformly equicontinuous
uniformly bounded sequence. Prove a stronger conclusion than that of Arzelà–Ascoli for this sequence. Let
𝛾 ∈ ℝ be given, and define 𝑔(𝑡) B 𝑒 𝑖(2𝜋𝑡+𝛾). Show that there exists a subsequence of { 𝑓𝑛}∞𝑛=1 converging
uniformly to 𝑔.
Hint: Feel free to use the Kronecker density theorem 

*
 : The sequence {𝑒 𝑖𝑛}∞𝑛=1 is dense in the unit circle.

*Named after the German mathematician  Leopold Kronecker (1823–1891).

https://en.wikipedia.org/wiki/Leopold_Kronecker
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Exercise 11.6.11: Prove the Peano existence theorem (note the weaker hypotheses than Picard, but also the
lack of uniqueness in this theorem):

Theorem: Suppose 𝐹 : 𝐼 × 𝐽 → ℝ is a continuous function where 𝐼 , 𝐽 ⊂ ℝ are closed bounded
intervals, let 𝐼◦ and 𝐽◦ be their interiors, and let (𝑥0 , 𝑦0) ∈ 𝐼◦ × 𝐽◦. Then there exists an ℎ > 0 and a
differentiable function 𝑓 : [𝑥0 − ℎ, 𝑥0 + ℎ] → 𝐽 ⊂ ℝ, such that

𝑓 ′(𝑥) = 𝐹
(
𝑥, 𝑓 (𝑥)) and 𝑓 (𝑥0) = 𝑦0.

Use the following outline:

a) We wish to define the Picard iterates, that is, set 𝑓0(𝑥) B 𝑦0, and

𝑓𝑛+1(𝑥) B 𝑦0 +
∫ 𝑥

𝑥0

𝐹
(
𝑡 , 𝑓𝑛(𝑡)

)
𝑑𝑡.

Prove that there exists an ℎ > 0 such that 𝑓𝑛 : [𝑥0 − ℎ, 𝑥0 + ℎ] → ℂ is well-defined for all 𝑛. Hint: 𝐹 is
bounded (why?).

b) Show that { 𝑓𝑛}∞𝑛=1 is equicontinuous and bounded, in fact it is Lipschitz with a uniform Lipschitz
constant. Arzelà–Ascoli then says that there exists a uniformly convergent subsequence { 𝑓𝑛𝑘 }∞𝑘=1.

c) Prove
{
𝐹
(
𝑥, 𝑓𝑛𝑘 (𝑥)

)}∞
𝑘=1 converges uniformly on [𝑥0 − ℎ, 𝑥0 + ℎ]. Hint: 𝐹 is uniformly continuous

(why?).

d) Finish the proof of the theorem by taking the limit under the integral and applying the fundamental
theorem of calculus.
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11.7 The Stone–Weierstrass theorem
Note: 3 lectures

11.7.1 Weierstrass approximation
Perhaps surprisingly, even a very badly behaved continuous function is a uniform limit
of polynomials. We cannot really get any “nicer” functions than polynomials. The idea
of the proof is a very common approximation or “smoothing” idea (convolution with an
approximate delta function) that has applications far beyond pure mathematics.

Theorem 11.7.1 (Weierstrass approximation theorem). If 𝑓 : [𝑎, 𝑏] → ℂ is continuous, then
there exists a sequence {𝑝𝑛}∞𝑛=1 of polynomials converging to 𝑓 uniformly on [𝑎, 𝑏]. Furthermore,
if 𝑓 is real-valued, we can find 𝑝𝑛 with real coefficients.

Proof. For 𝑥 ∈ [0, 1], define

𝑔(𝑥) B 𝑓
((𝑏 − 𝑎)𝑥 + 𝑎) − 𝑓 (𝑎) − 𝑥 ( 𝑓 (𝑏) − 𝑓 (𝑎)) .

If we prove the theorem for 𝑔 and find the sequence {𝑝𝑛}∞𝑛=1 for 𝑔, it is proved for 𝑓 as we
simply composed with an invertible affine function and added an affine function to 𝑓 : We
reverse the process and apply that to our 𝑝𝑛 , to obtain polynomials approximating 𝑓 . The
function 𝑔 is defined on [0, 1] and 𝑔(0) = 𝑔(1) = 0. For simplicity, assume that 𝑔 is defined
on ℝ by letting 𝑔(𝑥) B 0 if 𝑥 < 0 or 𝑥 > 1. This extended 𝑔 is continuous.

Define

𝑐𝑛 B
(∫ 1

−1
(1 − 𝑥2)𝑛 𝑑𝑥

)−1

, 𝑞𝑛(𝑥) B 𝑐𝑛(1 − 𝑥2)𝑛 .

The choice of 𝑐𝑛 is so that
∫ 1
−1 𝑞𝑛(𝑥) 𝑑𝑥 = 1. See  Figure 11.8 .

−1 0 1
0

1

2

3

4

5

6

Figure 11.8: Plot of the approximate delta functions 𝑞𝑛 on [−1, 1] for 𝑛 = 5, 10, 15, 20, . . . , 100
with higher 𝑛 in lighter shade.
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The functions 𝑞𝑛 are peaks around 0 (ignoring what happens outside of [−1, 1]) that
get narrower and taller as 𝑛 increases, while the area underneath is always 1. A classic
approximation idea is to do a convolution integral with peaks like this: For for 𝑥 ∈ [0, 1], let

𝑝𝑛(𝑥) B
∫ 1

0
𝑔(𝑡)𝑞𝑛(𝑥 − 𝑡) 𝑑𝑡

(
=

∫ ∞

−∞
𝑔(𝑡)𝑞𝑛(𝑥 − 𝑡) 𝑑𝑡

)
.

The idea of this convolution is that we do a “weighted average” of the function 𝑔 around
the point 𝑥 using 𝑞𝑛 as the weight. See  Figure 11.9 .

0.5 1−1
0
1
2
3
4
5
6

G

Figure 11.9: For 𝑥 = 0.3, the plot of 𝑞100(𝑥 − 𝑡) (light gray peak centered at 𝑥), some continuous
function 𝑔(𝑡) (the jagged line) and the product 𝑔(𝑡)𝑞100(𝑥 − 𝑡) (the bold line).

As 𝑞𝑛 is a narrow peak, the integral mostly sees the values of 𝑔 that are close to 𝑥 and
it does the weighted average of them. When the peak gets narrower, we compute this
average closer to 𝑥 and we expect the result to get closer to the value of 𝑔(𝑥). Really, we are
approximating what is called a delta function 

*
 (don’t worry if you have not heard of this

concept), and functions like 𝑞𝑛 are often called approximate delta functions. We could do
this with any set of polynomials that look like narrower and narrower peaks near zero.
These just happen to be the simplest ones. We only need this behavior on [−1, 1] as the
convolution sees nothing further than this as 𝑔 is zero outside [0, 1].

Because 𝑞𝑛 is a polynomial, we write

𝑞𝑛(𝑥 − 𝑡) = 𝑎0(𝑡) + 𝑎1(𝑡) 𝑥 + · · · + 𝑎2𝑛(𝑡) 𝑥2𝑛 ,

where 𝑎𝑘(𝑡) are polynomials in 𝑡, and hence integrable functions. So

𝑝𝑛(𝑥) =
∫ 1

0
𝑔(𝑡)𝑞𝑛(𝑥 − 𝑡) 𝑑𝑡

=
(∫ 1

0
𝑔(𝑡)𝑎0(𝑡) 𝑑𝑡

)
+

(∫ 1

0
𝑔(𝑡)𝑎1(𝑡) 𝑑𝑡

)
𝑥 + · · · +

(∫ 1

0
𝑔(𝑡)𝑎2𝑛(𝑡) 𝑑𝑡

)
𝑥2𝑛 .

*The delta function is not actually a function, it is a “thing” that should give “
∫ ∞
−∞ 𝑔(𝑡)𝛿(𝑥 − 𝑡) 𝑑𝑡 = 𝑔(𝑥).”
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In other words, 𝑝𝑛 is a polynomial 

*
 in 𝑥. If 𝑔(𝑡) is real-valued, then the functions 𝑔(𝑡)𝑎 𝑗(𝑡)

are real-valued and 𝑝𝑛 has real coefficients, proving the “furthermore” part of the theorem.
We still need to prove that {𝑝𝑛}∞𝑛=1 converges to 𝑔. We start with estimating the size

of 𝑐𝑛 . For 𝑥 ∈ [0, 1], we have that 1 − 𝑥 ≤ 1 − 𝑥2. We estimate

𝑐−1
𝑛 =

∫ 1

−1
(1 − 𝑥2)𝑛 𝑑𝑥 = 2

∫ 1

0
(1 − 𝑥2)𝑛 𝑑𝑥

≥ 2
∫ 1

0
(1 − 𝑥)𝑛 𝑑𝑥 =

2
𝑛 + 1 .

So 𝑐𝑛 ≤ 𝑛+1
2 ≤ 𝑛. Let us see how small 𝑞𝑛 is if we ignore some small interval around

the origin, where the peak is. Given any 𝛿 > 0, 𝛿 < 1, we have that for all 𝑥 such that
𝛿 ≤ |𝑥 | ≤ 1,

𝑞𝑛(𝑥) ≤ 𝑐𝑛(1 − 𝛿2)𝑛 ≤ 𝑛(1 − 𝛿2)𝑛 ,
because 𝑞𝑛 is increasing on [−1, 0] and decreasing on [0, 1]. By the ratio test, 𝑛(1 − 𝛿2)𝑛
goes to 0 as 𝑛 goes to infinity.

The function 𝑞𝑛 is even, 𝑞𝑛(𝑡) = 𝑞𝑛(−𝑡), and 𝑔 is zero outside of [0, 1]. So for 𝑥 ∈ [0, 1],

𝑝𝑛(𝑥) =
∫ 1

0
𝑔(𝑡)𝑞𝑛(𝑥 − 𝑡) 𝑑𝑡 =

∫ 1−𝑥

−𝑥
𝑔(𝑥 + 𝑡)𝑞𝑛(−𝑡) 𝑑𝑡 =

∫ 1

−1
𝑔(𝑥 + 𝑡)𝑞𝑛(𝑡) 𝑑𝑡.

Let 𝜖 > 0 be given. As [−1, 2] is compact and 𝑔 is continuous on [−1, 2], we have that 𝑔 is
uniformly continuous. Pick 0 < 𝛿 < 1 such that if |𝑥 − 𝑦 | < 𝛿 (and 𝑥, 𝑦 ∈ [−1, 2]), then

|𝑔(𝑥) − 𝑔(𝑦)| < 𝜖
2 .

Let 𝑀 be such that |𝑔(𝑥)| ≤ 𝑀 for all 𝑥. Let 𝑁 be such that for all 𝑛 ≥ 𝑁 ,

4𝑀𝑛(1 − 𝛿2)𝑛 <
𝜖
2 .

Note that
∫ 1
−1 𝑞𝑛(𝑡) 𝑑𝑡 = 1 and 𝑞𝑛(𝑡) ≥ 0 on [−1, 1]. So for 𝑛 ≥ 𝑁 and every 𝑥 ∈ [0, 1],

|𝑝𝑛(𝑥) − 𝑔(𝑥)| =
����∫ 1

−1
𝑔(𝑥 + 𝑡)𝑞𝑛(𝑡) 𝑑𝑡 − 𝑔(𝑥)

∫ 1

−1
𝑞𝑛(𝑡) 𝑑𝑡

����
=

����∫ 1

−1

(
𝑔(𝑥 + 𝑡) − 𝑔(𝑥))𝑞𝑛(𝑡) 𝑑𝑡����

≤
∫ 1

−1
|𝑔(𝑥 + 𝑡) − 𝑔(𝑥)|𝑞𝑛(𝑡) 𝑑𝑡

=
∫ −𝛿

−1
|𝑔(𝑥 + 𝑡) − 𝑔(𝑥)|𝑞𝑛(𝑡) 𝑑𝑡 +

∫ 𝛿

−𝛿
|𝑔(𝑥 + 𝑡) − 𝑔(𝑥)|𝑞𝑛(𝑡) 𝑑𝑡

+
∫ 1

𝛿
|𝑔(𝑥 + 𝑡) − 𝑔(𝑥)|𝑞𝑛(𝑡) 𝑑𝑡

*Do note that the functions 𝑎 𝑗 depend on 𝑛, so the coefficients of 𝑝𝑛 change as 𝑛 changes.
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≤ 2𝑀
∫ −𝛿

−1
𝑞𝑛(𝑡) 𝑑𝑡 + 𝜖

2

∫ 𝛿

−𝛿
𝑞𝑛(𝑡) 𝑑𝑡 + 2𝑀

∫ 1

𝛿
𝑞𝑛(𝑡) 𝑑𝑡

≤ 2𝑀𝑛(1 − 𝛿2)𝑛(1 − 𝛿) + 𝜖
2 + 2𝑀𝑛(1 − 𝛿2)𝑛(1 − 𝛿)

< 4𝑀𝑛(1 − 𝛿2)𝑛 + 𝜖
2 < 𝜖. □

A convolution often inherits some property of the functions we are convolving. In our
case the convolution 𝑝𝑛 inherited the property of being a polynomial from 𝑞𝑛 . The same
idea of the proof is often used to get other properties. If 𝑞𝑛 or 𝑔 is infinitely differentiable,
so is 𝑝𝑛 . If 𝑞𝑛 or 𝑔 is a solution to a linear differential equation, so is 𝑝𝑛 . Etc.

Let us note an immediate application of the Weierstrass theorem. We have already seen
that countable dense subsets can be very useful.
Corollary 11.7.2. The metric spaces 𝐶

([𝑎, 𝑏],ℝ)
and 𝐶

([𝑎, 𝑏],ℂ)
each contain a countable dense

subset.

Proof. Without loss of generality, consider only 𝐶
([𝑎, 𝑏],ℝ)

(why?). Real polynomials
are dense in 𝐶

([𝑎, 𝑏],ℝ)
by Weierstrass. If we show that every real polynomial can be

approximated by polynomials with rational coefficients, we are done. Indeed, there are
only countably many rational numbers and so there are only countably many polynomials
with rational coefficients (a countable union of countable sets is countable).

Further without loss of generality, suppose [𝑎, 𝑏] = [0, 1]. Let

𝑝(𝑥) B
𝑛∑
𝑘=0

𝑎𝑘 𝑥𝑘

be a polynomial of degree 𝑛 where 𝑎𝑘 ∈ ℝ. Given 𝜖 > 0, pick 𝑏𝑘 ∈ ℚ such that
|𝑎𝑘 − 𝑏𝑘 | < 𝜖

𝑛+1 . Then if we let

𝑞(𝑥) B
𝑛∑
𝑘=0

𝑏𝑘 𝑥𝑘 ,

we have

|𝑝(𝑥) − 𝑞(𝑥)| =
����� 𝑛∑
𝑘=0

(𝑎𝑘 − 𝑏𝑘)𝑥𝑘
����� ≤ 𝑛∑

𝑘=0
|𝑎𝑘 − 𝑏𝑘 |𝑥𝑘 ≤

𝑛∑
𝑘=0

|𝑎𝑘 − 𝑏𝑘 | <
𝑛∑
𝑘=0

𝜖
𝑛 + 1 = 𝜖. □

Remark 11.7.3. While we will not prove so, the corollary above implies that 𝐶
([𝑎, 𝑏],ℂ)

has
the same cardinality as ℝ, which may be a bit surprising. The set of all functions [𝑎, 𝑏] → ℂ

has cardinality strictly greater than the cardinality of ℝ, it has the cardinality of the power
set of ℝ. So the set of continuous functions is a very tiny subset of the set of all functions.

Warning! The fact that every continuous function 𝑓 : [−1, 1] → ℂ (or any interval [𝑎, 𝑏])
can be uniformly approximated by polynomials

𝑛∑
𝑘=0

𝑎𝑘 𝑥𝑘



11.7. THE STONE–WEIERSTRASS THEOREM 183

does not mean that every continuous 𝑓 is analytic, that is, equal to a power series

∞∑
𝑘=0

𝑐𝑘 𝑥𝑘 .

An analytic function is infinitely differentiable, however, the function |𝑥 | is continuous and
near the origin approximable by polynomials, and so provides a counterexample.

The key distinction is that the polynomials coming from the Weierstrass theorem are
not the partial sums of a power series. For each one, the coefficients 𝑎𝑘 above can be
completely different—they do not need to come from a single sequence {𝑐𝑘}∞𝑘=1.

Interestingly, to generalize Weierstrass, we will only need to use it to approximate the
absolute value function by polynomials without a constant term.

Corollary 11.7.4. Let [−𝑎, 𝑎] be an interval. Then there is a sequence of real polynomials {𝑝𝑛}∞𝑛=1
that converges uniformly to |𝑥 | on [−𝑎, 𝑎] and such that 𝑝𝑛(0) = 0 for all 𝑛.

Proof. As 𝑓 (𝑥) B |𝑥 | is continuous and real-valued on [−𝑎, 𝑎], the Weierstrass theorem
gives a sequence of real polynomials {�̃�𝑛}∞𝑛=1 that converges to 𝑓 uniformly on [−𝑎, 𝑎]. Let

𝑝𝑛(𝑥) B �̃�𝑛(𝑥) − �̃�𝑛(0).

Obviously 𝑝𝑛(0) = 0.
Given 𝜖 > 0, let 𝑁 be such that for 𝑛 ≥ 𝑁 , we have

��̃𝑝𝑛(𝑥) − |𝑥 |�� < 𝜖/2 for all 𝑥 ∈ [−𝑎, 𝑎].
In particular, |�̃�𝑛(0)| < 𝜖/2. Then for 𝑛 ≥ 𝑁 ,��𝑝𝑛(𝑥) − |𝑥 |�� = ��̃𝑝𝑛(𝑥) − �̃�𝑛(0) − |𝑥 |�� ≤ ��̃𝑝𝑛(𝑥) − |𝑥 |�� + |�̃�𝑛(0)| < 𝜖/2 + 𝜖/2 = 𝜖. □

Generalizing the corollary, we can make the polynomials from the Weierstrass theorem
be equal to our target function at one point, not just for |𝑥 |, but that’s the one we will need.
It is also possible (see  Exercise 11.7.14 ) to make the polynomials equal at finitely many
points by subtracting not a constant but a properly crafted polynomial.

11.7.2 Stone–Weierstrass approximation

We want to abstract away what is not really necessary and prove a general version of the
Weierstrass theorem, the Stone–Weierstrass theorem 

*
 . Polynomials are dense in the space

of continuous functions on a compact interval. What other kind of families of functions
are also dense? And if the domain is an arbitrary metric space, then we no longer have
polynomials to begin with.

*Named after the American mathematician  Marshall Harvey Stone  (1903–1989), and the German
mathematician  Karl Theodor Wilhelm Weierstrass (1815–1897).

https://en.wikipedia.org/wiki/Marshall_Harvey_Stone
https://en.wikipedia.org/wiki/Karl_Weierstrass
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Definition 11.7.5. A set Aof complex-valued functions 𝑓 : 𝑋 → ℂ is said to be an algebra
(sometimes complex algebra or algebra over ℂ) if for all 𝑓 , 𝑔 ∈ Aand 𝑐 ∈ ℂ, we have

(i) 𝑓 + 𝑔 ∈ A.
(ii) 𝑓 𝑔 ∈ A.

(iii) 𝑐𝑔 ∈ A.
A real algebra or an algebra over ℝ is a set of real-valued functions that satisfies the three
properties above for 𝑐 ∈ ℝ.

We are interested in the case when 𝑋 is a compact metric space. Then 𝐶(𝑋,ℂ) and
𝐶(𝑋,ℝ) are metric spaces. Given a set A ⊂ 𝐶(𝑋,ℂ), the set of all uniform limits is the
metric space closure A. When we talk about closure of an algebra from now on we mean
the closure in 𝐶(𝑋,ℂ) as a metric space. Same for 𝐶(𝑋,ℝ).

The set P of all polynomials is an algebra in 𝐶
([𝑎, 𝑏],ℂ)

, and we have shown that its
closure P = 𝐶

([𝑎, 𝑏],ℂ)
. That is, it is dense. That is the sort of result that we wish to prove.

We leave the following proposition as an exercise.
Proposition 11.7.6. Suppose 𝑋 is a compact metric space. If A⊂ 𝐶(𝑋,ℂ) is an algebra, then the
closure A is also an algebra. Similarly for a real algebra in 𝐶(𝑋,ℝ).

We distill the properties of polynomials that are sufficient for an approximation theorem.

Definition 11.7.7. Let Abe a set of complex-valued functions defined on a set 𝑋.
(i) A separates points if for every 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦, there is an 𝑓 ∈ A such that

𝑓 (𝑥) ≠ 𝑓 (𝑦).
(ii) Avanishes at no point if for every 𝑥 ∈ 𝑋 there is an 𝑓 ∈ Asuch that 𝑓 (𝑥) ≠ 0.

Example 11.7.8: Given any 𝑋 ⊂ ℝ (or 𝑋 ⊂ ℂ), the set P of polynomials in one variable
separates points and vanishes at no point on 𝑋. That is, 1 ∈ P, so it vanishes at no point.
And for 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦, take 𝑓 (𝑡) B 𝑡. Then 𝑓 (𝑥) = 𝑥 ≠ 𝑦 = 𝑓 (𝑦). So P separates points.

Example 11.7.9: The set of functions of the form

𝑓 (𝑡) = 𝑎0 +
𝑘∑
𝑛=1

𝑎𝑛 cos(𝑛𝑡)

is an algebra, which follows by the identity cos(𝑚𝑡) cos(𝑛𝑡) = cos((𝑛+𝑚)𝑡)
2 + cos((𝑛−𝑚)𝑡)

2 . The
algebra vanishes at no point as it contains a constant function. It does not separate points
if the domain is an interval [−𝑎, 𝑎], as 𝑓 (−𝑡) = 𝑓 (𝑡) for all 𝑡. It does separate points if the
domain is [0,𝜋]; cos(𝑡) is one-to-one on [0,𝜋].
Example 11.7.10: The set P of real polynomials with no constant term is an algebra that
vanishes at the origin. Clearly, any function in the closure of P also vanishes at the origin,
so the closure of P cannot be 𝐶

([0, 1],ℝ)
.

Similarly, the set of constant functions is an algebra that does not separate points.
Uniform limits of constants are constants, so we also do not obtain all continuous functions.
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It is interesting that these two properties, “vanishes at no point” and “separates points,”
are sufficient to obtain approximation of any real-valued continuous function. Before we
prove this theorem, we note that such an algebra can interpolate a finite number of values
exactly. We will state this result only for two points as that is all that we will require.
Proposition 11.7.11. Suppose Ais an algebra of complex-valued functions on a set𝑋 that separates
points and vanishes at no point. Suppose 𝑥, 𝑦 are distinct points of 𝑋, and 𝑐, 𝑑 ∈ ℂ. Then there is
an 𝑓 ∈ A such that

𝑓 (𝑥) = 𝑐, 𝑓 (𝑦) = 𝑑.

If A is a real algebra, the conclusion holds for 𝑐, 𝑑 ∈ ℝ.

Proof. There must exist an 𝑔, ℎ, 𝑘 ∈ Asuch that 𝑔(𝑥) ≠ 𝑔(𝑦), ℎ(𝑥) ≠ 0, 𝑘(𝑦) ≠ 0. Let

𝑓 B 𝑐

(
𝑔 − 𝑔(𝑦))ℎ(

𝑔(𝑥) − 𝑔(𝑦))ℎ(𝑥) + 𝑑
(
𝑔 − 𝑔(𝑥)) 𝑘(

𝑔(𝑦) − 𝑔(𝑥)) 𝑘(𝑦)
= 𝑐

𝑔ℎ − 𝑔(𝑦)ℎ
𝑔(𝑥)ℎ(𝑥) − 𝑔(𝑦)ℎ(𝑥) + 𝑑

𝑔𝑘 − 𝑔(𝑥)𝑘
𝑔(𝑦)𝑘(𝑦) − 𝑔(𝑥)𝑘(𝑦) .

We are not dividing by zero (clear from the first formula). Also by the first formula, 𝑓 (𝑥) = 𝑐
and 𝑓 (𝑦) = 𝑑. By the second formula, 𝑓 ∈ A (as A is an algebra). □

Theorem 11.7.12 (Stone–Weierstrass, real version). Let 𝑋 be a compact metric space and Aa
real algebra of real-valued continuous functions on 𝑋, such that A separates points and vanishes
at no point. Then the closure A= 𝐶(𝑋,ℝ).

The proof is divided into several claims.
Claim 1: If 𝑓 ∈ A, then | 𝑓 | ∈ A.

Proof. The function 𝑓 is bounded (continuous on a compact set), so there is an 𝑀 such that
| 𝑓 (𝑥)| ≤ 𝑀 for all 𝑥 ∈ 𝑋. Let 𝜖 > 0 be given. By the corollary to the Weierstrass theorem,
there exists a real polynomial 𝑐1𝑦 + 𝑐2𝑦2 + · · · + 𝑐𝑛𝑦𝑛 (vanishing at 𝑦 = 0) such that�����|𝑦 | − 𝑛∑

𝑘=1
𝑐𝑘𝑦𝑘

����� < 𝜖

for all 𝑦 ∈ [−𝑀,𝑀]. Because A is an algebra and because there is no constant term in the
polynomial,

𝑛∑
𝑘=1

𝑐𝑘 𝑓 𝑘 ∈ A.

As | 𝑓 (𝑥)| ≤ 𝑀, then for all 𝑥 ∈ 𝑋�����| 𝑓 (𝑥)| − 𝑛∑
𝑘=1

𝑐𝑘
(
𝑓 (𝑥)) 𝑘 ����� < 𝜖.

So | 𝑓 | is in the closure of A, which is itself closed. In other words, | 𝑓 | ∈ A. □
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Claim 2: If 𝑓 ∈ Aand 𝑔 ∈ A, then max( 𝑓 , 𝑔) ∈ Aand min( 𝑓 , 𝑔) ∈ A, where(
max( 𝑓 , 𝑔))(𝑥) B max

{
𝑓 (𝑥), 𝑔(𝑥)} , and

(
min( 𝑓 , 𝑔))(𝑥) B min

{
𝑓 (𝑥), 𝑔(𝑥)}.

Proof. Write:

max( 𝑓 , 𝑔) = 𝑓 + 𝑔
2 + | 𝑓 − 𝑔 |

2 , and min( 𝑓 , 𝑔) = 𝑓 + 𝑔
2 − | 𝑓 − 𝑔 |

2 .

As A is an algebra we are done. □

By induction, the claim is also true for the minimum or maximum of a finite collection
of functions.

Claim 3: Given 𝑓 ∈ 𝐶(𝑋,ℝ), 𝑥 ∈ 𝑋, and 𝜖 > 0, there exists a 𝑔𝑥 ∈ Awith 𝑔𝑥(𝑥) = 𝑓 (𝑥) and

𝑔𝑥(𝑡) > 𝑓 (𝑡) − 𝜖 for all 𝑡 ∈ 𝑋.

Proof. Fix 𝑓 , 𝑥, and 𝜖. By  Proposition 11.7.11 , for every 𝑦 ∈ 𝑋, find an ℎ𝑦 ∈ Asuch that

ℎ𝑦(𝑥) = 𝑓 (𝑥), ℎ𝑦(𝑦) = 𝑓 (𝑦).

As ℎ𝑦 and 𝑓 are continuous, the function ℎ𝑦 − 𝑓 is continuous, and the set

𝑈𝑦 B
{
𝑡 ∈ 𝑋 : ℎ𝑦(𝑡) > 𝑓 (𝑡) − 𝜖

}
= (ℎ𝑦 − 𝑓 )−1 ((−𝜖,∞))

is open (it is the inverse image of an open set by a continuous function). Furthermore
𝑦 ∈ 𝑈𝑦 . So the sets𝑈𝑦 cover 𝑋. The space 𝑋 is compact, so there exist finitely many points
𝑦1, 𝑦2, . . . , 𝑦𝑛 in 𝑋 such that

𝑋 =
𝑛⋃
𝑘=1

𝑈𝑦𝑘 .

Let
𝑔𝑥 B max(ℎ𝑦1 , ℎ𝑦2 , . . . , ℎ𝑦𝑛 ).

By Claim 2, 𝑔𝑥 ∈ A. See  Figure 11.10 . Moreover,

𝑔𝑥(𝑡) > 𝑓 (𝑡) − 𝜖

for all 𝑡 ∈ 𝑋, since for every 𝑡, there is a 𝑦𝑘 such that 𝑡 ∈ 𝑈𝑦𝑘 , and so ℎ𝑦𝑘 (𝑡) > 𝑓 (𝑡) − 𝜖.
Finally, ℎ𝑦(𝑥) = 𝑓 (𝑥) for all 𝑦 ∈ 𝑋, so 𝑔𝑥(𝑥) = 𝑓 (𝑥). □

What we have now is for each 𝑥 a function 𝑔𝑥 ∈ A that is within 𝜖 of 𝑓 near 𝑥 (being
continuous), but also 𝑔𝑥 is within 𝜖 of 𝑓 from at least one side at all points. If we cover
𝑋 with neighborhoods where 𝑔𝑥 is a good approximation, we can repeat the idea of the
argument with a minimum to get a function that is within 𝜖 from both sides.
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𝑓 − 𝜖
𝑓

𝑥𝑦1 𝑦2

ℎ𝑦2

𝑔𝑥

ℎ𝑦1

Figure 11.10: Construction of 𝑔𝑥 out of two ℎ𝑦1 (longer dashes) and ℎ𝑦2 (shorter dashes).

Claim 4: If 𝑓 ∈ 𝐶(𝑋,ℝ) and 𝜖 > 0 is given, then there exists an 𝜑 ∈ A such that

| 𝑓 (𝑥) − 𝜑(𝑥)| < 𝜖.

Proof. For every 𝑥 ∈ 𝑋, find the function 𝑔𝑥 as in Claim 3. Let

𝑉𝑥 B
{
𝑡 ∈ 𝑋 : 𝑔𝑥(𝑡) < 𝑓 (𝑡) + 𝜖

}
.

The sets 𝑉𝑥 are open as 𝑔𝑥 and 𝑓 are continuous. As 𝑔𝑥(𝑥) = 𝑓 (𝑥), then 𝑥 ∈ 𝑉𝑥 . So the sets
𝑉𝑥 cover 𝑋. By compactness of 𝑋, there are finitely many points 𝑥1, 𝑥2, . . . , 𝑥𝑛 such that

𝑋 =
𝑛⋃
𝑘=1

𝑉𝑥𝑘 .

Let
𝜑 B min(𝑔𝑥1 , 𝑔𝑥2 , . . . , 𝑔𝑥𝑛 ).

By Claim 2, 𝜑 ∈ A. Similarly as before (same argument as in Claim 3), for all 𝑡 ∈ 𝑋,

𝜑(𝑡) < 𝑓 (𝑡) + 𝜖.

Since all the 𝑔𝑥 satisfy 𝑔𝑥(𝑡) > 𝑓 (𝑡) − 𝜖 for all 𝑡 ∈ 𝑋, 𝜑(𝑡) > 𝑓 (𝑡) − 𝜖 as well. Hence, for all 𝑡,

−𝜖 < 𝜑(𝑡) − 𝑓 (𝑡) < 𝜖,

which is the desired conclusion. □

The proof of the theorem follows from Claim 4. The claim states that an arbitrary
continuous function is in the closure of A, which is already closed. The theorem is proved.

Example 11.7.13: The functions of the form

𝑓 (𝑡) =
𝑛∑
𝑘=1

𝑐𝑘 𝑒 𝑘𝑡 ,

for 𝑐𝑘 ∈ ℝ, are dense in 𝐶
([𝑎, 𝑏],ℝ)

. Such functions are a real algebra, which follows from
𝑒 𝑘𝑡𝑒ℓ 𝑡 = 𝑒(𝑘+ℓ )𝑡 . They separate points as 𝑒 𝑡 is one-to-one. As 𝑒 𝑡 > 0 for all 𝑡, the algebra does
not vanish at any point.
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In general, given a set of functions that separates points and does not vanish at any
point, we let these functions generate an algebra by considering all the linear combinations
of arbitrary multiples of such functions. That is, we consider all real polynomials without
constant term of such functions. In the example above, the algebra is generated by 𝑒 𝑡 . We
consider polynomials in 𝑒 𝑡 without constant term.
Example 11.7.14: We mentioned that the set of all functions of the form

𝑎0 +
𝑁∑
𝑛=1

𝑎𝑛 cos(𝑛𝑡)

is an algebra. When considered on [0,𝜋], it separates points and vanishes nowhere so
 Stone–Weierstrass  applies. As for polynomials, you do not want to conclude that every
continuous function on [0,𝜋] has a uniformly convergent Fourier cosine series, that is, that
every continuous function can be written as

𝑎0 +
∞∑
𝑛=1

𝑎𝑛 cos(𝑛𝑡).

That is not true! There exist continuous functions whose Fourier series does not converge
even pointwise let alone uniformly. See  §11.8 .

To obtain Stone–Weierstrass for complex algebras, we must make an extra assumption.
Definition 11.7.15. An algebra A is self-adjoint if for all 𝑓 ∈ A, the function 𝑓 defined by
𝑓 (𝑥) B 𝑓 (𝑥) is in A, where by the bar we mean the complex conjugate.
Theorem 11.7.16 (Stone–Weierstrass, complex version). Let 𝑋 be a compact metric space and
Aan algebra of complex-valued continuous functions on 𝑋, such that Aseparates points, vanishes
at no point, and is self-adjoint. Then the closure A= 𝐶(𝑋,ℂ).
Proof. Suppose Aℝ ⊂ A is the set of the real-valued elements of A. For 𝑓 ∈ A, write
𝑓 = 𝑢 + 𝑖𝑣 where 𝑢 and 𝑣 are real-valued. Then

𝑢 =
𝑓 + 𝑓

2 , 𝑣 =
𝑓 − 𝑓

2𝑖 .

So 𝑢, 𝑣 ∈ Aas A is a self-adjoint algebra, and since they are real-valued 𝑢, 𝑣 ∈ Aℝ.
If 𝑥 ≠ 𝑦, then find an 𝑓 ∈ Asuch that 𝑓 (𝑥) ≠ 𝑓 (𝑦). If 𝑓 = 𝑢 + 𝑖𝑣, then it is obvious that

either 𝑢(𝑥) ≠ 𝑢(𝑦) or 𝑣(𝑥) ≠ 𝑣(𝑦). So Aℝ separates points. Similarly, for every 𝑥 find 𝑓 ∈ A

such that 𝑓 (𝑥) ≠ 0. If 𝑓 = 𝑢 + 𝑖𝑣, then either 𝑢(𝑥) ≠ 0 or 𝑣(𝑥) ≠ 0. So Aℝ vanishes at no
point. The set Aℝ is a real algebra, and satisfies the hypotheses of the  real Stone–Weierstrass
theorem . Given any 𝑓 = 𝑢 + 𝑖𝑣 ∈ 𝐶(𝑋,ℂ), we find 𝑔, ℎ ∈ Aℝ such that |𝑢(𝑡) − 𝑔(𝑡)| < 𝜖/2

and |𝑣(𝑡) − ℎ(𝑡)| < 𝜖/2 for all 𝑡 ∈ 𝑋. Next, 𝑔 + 𝑖ℎ ∈ A, and�� 𝑓 (𝑡) − (
𝑔(𝑡) + 𝑖ℎ(𝑡)) �� = ��𝑢(𝑡) + 𝑖𝑣(𝑡) − (

𝑔(𝑡) + 𝑖ℎ(𝑡)) ��
≤ |𝑢(𝑡) − 𝑔(𝑡)| + |𝑣(𝑡) − ℎ(𝑡)| < 𝜖/2 + 𝜖/2 = 𝜖

for all 𝑡 ∈ 𝑋. So A= 𝐶(𝑋,ℂ). □
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The self-adjoint requirement is necessary, although it is not so obvious to see it. For an
example, see  Exercise 11.7.9 .

We give an interesting application. When working with functions of two variables, it
may be useful to work with functions of the form 𝑓 (𝑥)𝑔(𝑦) rather than 𝐹(𝑥, 𝑦). For example,
they are easier to integrate. We have the following.

Example 11.7.17: Any continuous 𝐹 : [0, 1] × [0, 1] → ℂ can be approximated uniformly by
functions of the form

𝑛∑
𝑗=1

𝑓𝑗(𝑥)𝑔𝑗(𝑦),

where 𝑓𝑗 : [0, 1] → ℂ and 𝑔𝑗 : [0, 1] → ℂ are continuous.
Proof: It is not hard to see that the functions of the above form are a complex algebra.

It is equally easy to show that they vanish nowhere, separate points, and the algebra is
self-adjoint. As [0, 1] × [0, 1] is compact,  Stone–Weierstrass obtains the result.

11.7.3 Exercises
Exercise 11.7.1: Prove  Proposition 11.7.6 . Hint: If { 𝑓𝑛}∞𝑛=1 is a sequence in 𝐶(𝑋,ℝ) converging to 𝑓 , then
as 𝑓 is bounded, show that 𝑓𝑛 is uniformly bounded, that is, there exists a single bound for all 𝑓𝑛 (and 𝑓 ).

Exercise 11.7.2: Suppose 𝑋 B ℝ (not compact in particular). Show that 𝑓 (𝑡) B 𝑒 𝑡 is not possible to
uniformly approximate by polynomials on 𝑋. Hint: Consider

�� 𝑒 𝑡
𝑡𝑛
�� as 𝑡 → ∞.

Exercise 11.7.3: Suppose 𝑓 : [0, 1] → ℂ is a uniform limit of a sequence of polynomials of degree at most 𝑑,
then the limit is a polynomial of degree at most 𝑑. Conclude that to approximate a function which is not a
polynomial, we need the degree of the approximations to go to infinity.
Hint: First prove that if a sequence of polynomials of degree 𝑑 converges uniformly to the zero function, then
the coefficients converge to zero. One way to do this is linear algebra: Consider a polynomial 𝑝 evaluated at
𝑑 + 1 points to be a linear operator taking the coefficients of 𝑝 to the values of 𝑝 (an operator in 𝐿(ℝ𝑑+1)).

Exercise 11.7.4: Suppose 𝑓 : [0, 1] → ℝ is continuous and
∫ 1

0 𝑓 (𝑥)𝑥𝑛 𝑑𝑥 = 0 for all 𝑛 = 0, 1, 2, . . .. Show
that 𝑓 (𝑥) = 0 for all 𝑥 ∈ [0, 1]. Hint: Approximate by polynomials to show that

∫ 1
0

(
𝑓 (𝑥))2 𝑑𝑥 = 0.

Exercise 11.7.5: Suppose 𝐼 : 𝐶
([0, 1],ℝ) → ℝ is a linear continuous function such that 𝐼(𝑥𝑛) = 1

𝑛+1 for all
𝑛 = 0, 1, 2, 3, . . .. Prove that 𝐼( 𝑓 ) =

∫ 1
0 𝑓 for all 𝑓 ∈ 𝐶 ([0, 1],ℝ)

.

Exercise 11.7.6: Let A be the collection of real polynomials in 𝑥2, that is, polynomials of the form
𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥4 + · · · + 𝑐𝑑𝑥2𝑑.

a) Show that every 𝑓 ∈ 𝐶 ([0, 1],ℝ)
is a uniform limit of polynomials from A.

b) Find an 𝑓 ∈ 𝐶 ([−1, 1],ℝ)
that is not a uniform limit of polynomials from A.

c) Which hypothesis of the real Stone–Weierstrass is not satisfied for the domain [−1, 1]?
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Exercise 11.7.7: Let |𝑧 | = 1 define the unit circle 𝑆1 ⊂ ℂ.

a) Show that functions of the form
𝑛∑

𝑘=−𝑛
𝑐𝑘 𝑧𝑘

are dense in 𝐶(𝑆1 ,ℂ). Notice the negative powers.

b) Show that functions of the form

𝑐0 +
𝑛∑
𝑘=1

𝑐𝑘 𝑧𝑘 +
𝑛∑
𝑘=1

𝑐−𝑘 �̄�𝑘

are dense in 𝐶(𝑆1 ,ℂ). These are so-called harmonic polynomials, and this approximation leads to, for
example, the solution of the steady state heat problem.

Hint: A good way to write the equation for 𝑆1 is 𝑧�̄� = 1.

Exercise 11.7.8: Show that for complex numbers 𝑐 𝑗 , the set of functions of 𝑥 on [−𝜋,𝜋] of the form

𝑛∑
𝑘=−𝑛

𝑐𝑘 𝑒 𝑖𝑘𝑥

satisfies the hypotheses of the complex Stone–Weierstrass theorem and therefore such functions are dense in
the 𝐶

([−𝜋,𝜋],ℂ)
.

Exercise 11.7.9: Let 𝑆1 ⊂ ℂ be the unit circle, that is the set where |𝑧 | = 1. Orient this set counterclockwise.
Let 𝛾(𝑡) B 𝑒 𝑖𝑡 . For the one-form 𝑓 (𝑧) 𝑑𝑧 we write 

*
 ∫

𝑆1
𝑓 (𝑧) 𝑑𝑧 B

∫ 2𝜋

0
𝑓 (𝑒 𝑖𝑡) 𝑖𝑒 𝑖𝑡 𝑑𝑡.

a) Prove that for all nonnegative integers 𝑘 = 0, 1, 2, 3, . . ., we have
∫
𝑆1 𝑧

𝑘 𝑑𝑧 = 0.

b) Prove that if 𝑃(𝑧) = ∑𝑛
𝑘=0 𝑐𝑘𝑧

𝑘 is a polynomial in 𝑧, then
∫
𝑆1 𝑃(𝑧) 𝑑𝑧 = 0.

c) Prove
∫
𝑆1 �̄� 𝑑𝑧 ≠ 0.

d) Conclude that polynomials in 𝑧 (this algebra of functions is not self-adjoint) are not dense in 𝐶(𝑆1 ,ℂ).

Exercise 11.7.10: Let (𝑋, 𝑑) be a compact metric space and suppose A ⊂ 𝐶(𝑋,ℝ) is a real algebra that
separates points, but vanishes at exactly one point 𝑥0 ∈ 𝑋. That is, 𝑓 (𝑥0) = 0 for all 𝑓 ∈ A, but for every
𝑦 ∈ 𝑋 \ {𝑥0} there is a 𝜑 ∈ A such that 𝜑(𝑦) ≠ 0. Prove that every function 𝑔 ∈ 𝐶(𝑋,ℝ) such that
𝑔(𝑥0) = 0 is a uniform limit of functions from A.

Exercise 11.7.11: Let (𝑋, 𝑑) be a compact metric space and suppose A⊂ 𝐶(𝑋,ℝ) is a real algebra. Suppose
that for each 𝑦 ∈ 𝑋 the closure A contains the function 𝜑𝑦(𝑥) B 𝑑(𝑦, 𝑥). Then A= 𝐶(𝑋,ℝ).

*Alternatively, one could define 𝑑𝑧 B 𝑑𝑥 + 𝑖 𝑑𝑦 and extend the path integral from  chapter 9 to complex-
valued one-forms.
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Exercise 11.7.12:

a) Suppose 𝑓 : [𝑎, 𝑏] → ℂ is continuously differentiable. Show that there exists a sequence of polynomials
{𝑝𝑛}∞𝑛=1 that converges in the 𝐶1 norm to 𝑓 , that is, ∥ 𝑓 − 𝑝𝑛 ∥[𝑎,𝑏] + ∥ 𝑓 ′ − 𝑝′𝑛 ∥[𝑎,𝑏] → 0 as 𝑛 → ∞.

b) Suppose 𝑓 : [𝑎, 𝑏] → ℂ is 𝑘 times continuously differentiable. Show that there exists a sequence of
polynomials {𝑝𝑛}∞𝑛=1 that converges in the 𝐶𝑘 norm to 𝑓 , that is,

𝑘∑
𝑗=0

 𝑓 (𝑗) − 𝑝(𝑗)𝑛 
[𝑎,𝑏]

→ 0 as 𝑛 → ∞.

Exercise 11.7.13:

a) Show that an even function 𝑓 : [−1, 1] → ℝ is a uniform limit of polynomials with even powers only,
that is, polynomials of the form 𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥4 + · · · + 𝑎𝑘𝑥2𝑘 .

b) Show that an odd function 𝑓 : [−1, 1] → ℝ is a uniform limit of polynomials with odd powers only, that
is, polynomials of the form 𝑏1𝑥 + 𝑏2𝑥3 + 𝑏3𝑥5 + · · · + 𝑏𝑘𝑥2𝑘−1.

Exercise 11.7.14: Let 𝑓 : [𝑎, 𝑏] → ℝ be continuous.

a) Given two points 𝑥1 , 𝑥2 ∈ [𝑎, 𝑏], show that there exists a sequence of real polynomials {𝑝𝑛}∞𝑛=1 so that
𝑝𝑛(𝑥1) = 𝑓 (𝑥1) and 𝑝𝑛(𝑥2) = 𝑓 (𝑥2) for all 𝑛.

b) Generalize the previous part to 𝑘 points: Given the points 𝑥1 , 𝑥2 , . . . , 𝑥𝑘 ∈ [𝑎, 𝑏], show that there exists
a sequence of real polynomials {𝑝𝑛}∞𝑛=1 so that for all 𝑛, 𝑝𝑛(𝑥 𝑗) = 𝑓 (𝑥 𝑗) for 𝑗 = 1, 2, . . . , 𝑘.
Hint: The polynomial (𝑥 − 𝑥1)(𝑥 − 𝑥2) · · · (𝑥 − 𝑥ℓ−1)(𝑥 − 𝑥ℓ+1) · · · (𝑥 − 𝑥𝑘) is zero at 𝑥 𝑗 for 𝑗 ≠ ℓ but
nonzero at 𝑥ℓ . Use it to construct a polynomial that takes prescribed values at 𝑥1 , 𝑥2 , . . . , 𝑥𝑘 .
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11.8 Fourier series
Note: 3–4 lectures

Fourier series 

*
 is perhaps the most important (and the most difficult) of the series that

we cover in this book. We saw a few examples already, but let us start at the beginning.

11.8.1 Trigonometric polynomials
A trigonometric polynomial is an expression of the form

𝑎0 +
𝑁∑
𝑛=1

(
𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)) ,

or equivalently, thanks to Euler’s formula (𝑒 𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃)):
𝑁∑

𝑛=−𝑁
𝑐𝑛𝑒 𝑖𝑛𝑥 .

The second form is usually more convenient. If 𝑧 ∈ ℂ with |𝑧 | = 1, we write 𝑧 = 𝑒 𝑖𝑥 , and so
𝑁∑

𝑛=−𝑁
𝑐𝑛𝑒 𝑖𝑛𝑥 =

𝑁∑
𝑛=−𝑁

𝑐𝑛𝑧𝑛 .

So a trigonometric polynomial is really a rational function of the complex variable 𝑧 (we are
allowing negative powers) evaluated on the unit circle. There is a wonderful connection
between power series (actually Laurent series because of the negative powers) and Fourier
series because of this observation, but we will not investigate this further.

Another reason why Fourier series is important and comes up in so many applications
is that the functions 𝑒 𝑖𝑛𝑥 are eigenfunctions 

†
 of various differential operators. For example,

𝑑
𝑑𝑥

[
𝑒 𝑖𝑛𝑥

]
= (𝑖𝑛)𝑒 𝑖𝑛𝑥 , 𝑑2

𝑑𝑥2

[
𝑒 𝑖𝑛𝑥

]
= (−𝑛2)𝑒 𝑖𝑛𝑥 .

That is, they are the functions whose derivative is a scalar (the eigenvalue) times itself.
Just as eigenvalues and eigenvectors are important in studying matrices, eigenvalues and
eigenfunctions are important when studying linear differential equations.

The functions cos(𝑛𝑥), sin(𝑛𝑥), and 𝑒 𝑖𝑛𝑥 are 2𝜋-periodic and hence trigonometric
polynomials are also 2𝜋-periodic. We could rescale 𝑥 to make the period different, but the
theory is the same, so we stick with the period 2𝜋. The antiderivative of 𝑒 𝑖𝑛𝑥 is 𝑒 𝑖𝑛𝑥

𝑖𝑛 and so∫ 𝜋

−𝜋
𝑒 𝑖𝑛𝑥 𝑑𝑥 =

{
2𝜋 if 𝑛 = 0,
0 otherwise.

*Named after the French mathematician  Jean-Baptiste Joseph Fourier (1768–1830).
†Eigenfunction is like an eigenvector for a matrix, but for a linear operator on a vector space of functions.

https://en.wikipedia.org/wiki/Joseph_Fourier
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Consider

𝑓 (𝑥) B
𝑁∑

𝑛=−𝑁
𝑐𝑛𝑒 𝑖𝑛𝑥 ,

and for 𝑚 = −𝑁, . . . , 𝑁 compute

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑒−𝑖𝑚𝑥 𝑑𝑥 =

1
2𝜋

∫ 𝜋

−𝜋

(
𝑁∑

𝑛=−𝑁
𝑐𝑛𝑒 𝑖(𝑛−𝑚)𝑥

)
𝑑𝑥 =

𝑁∑
𝑛=−𝑁

𝑐𝑛
1

2𝜋

∫ 𝜋

−𝜋
𝑒 𝑖(𝑛−𝑚)𝑥 𝑑𝑥 = 𝑐𝑚 .

We just found a way of computing the coefficients 𝑐𝑚 using an integral of 𝑓 . If |𝑚 | > 𝑁 , the
integral is 0, so we might as well have included enough zero coefficients to make |𝑚 | ≤ 𝑁 .
Proposition 11.8.1. A trigonometric polynomial 𝑓 (𝑥) = ∑𝑁

𝑛=−𝑁 𝑐𝑛 𝑒
𝑖𝑛𝑥 is real-valued for real 𝑥

if and only if 𝑐−𝑚 = 𝑐𝑚 for all 𝑚 = −𝑁, . . . , 𝑁 .

Proof. If 𝑓 (𝑥) is real-valued, that is 𝑓 (𝑥) = 𝑓 (𝑥), then

𝑐𝑚 =
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑒−𝑖𝑚𝑥 𝑑𝑥 =

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑒−𝑖𝑚𝑥 𝑑𝑥 =

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑒 𝑖𝑚𝑥 𝑑𝑥 = 𝑐−𝑚 .

The complex conjugate goes inside the integral because the integral is done on real and
imaginary parts separately.

On the other hand, if 𝑐−𝑚 = 𝑐𝑚 , then

𝑐−𝑚 𝑒−𝑖𝑚𝑥 + 𝑐𝑚 𝑒 𝑖𝑚𝑥 = 𝑐−𝑚 𝑒 𝑖𝑚𝑥 + 𝑐𝑚 𝑒−𝑖𝑚𝑥 = 𝑐𝑚 𝑒 𝑖𝑚𝑥 + 𝑐−𝑚 𝑒−𝑖𝑚𝑥 ,
which is real valued. Also 𝑐0 = 𝑐0, so 𝑐0 is real. By pairing up the terms, we obtain that 𝑓
has to be real-valued. □

The functions 𝑒 𝑖𝑛𝑥 are also linearly independent.
Proposition 11.8.2. If

𝑁∑
𝑛=−𝑁

𝑐𝑛 𝑒 𝑖𝑛𝑥 = 0

for all 𝑥 ∈ [−𝜋,𝜋], then 𝑐𝑛 = 0 for all 𝑛.

Proof. The result follows immediately from the integral formula for 𝑐𝑛 . □

11.8.2 Fourier series
We now take limits. The series ∞∑

𝑛=−∞
𝑐𝑛 𝑒 𝑖𝑛𝑥

is called the Fourier series and the numbers 𝑐𝑛 the Fourier coefficients. Using Euler’s formula
𝑒 𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃), we could also develop everything with sines and cosines, that is, as
the series 𝑎0 +∑∞

𝑛=1 𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥). It is equivalent, but slightly more messy.



194 CHAPTER 11. FUNCTIONS AS LIMITS

Several questions arise. What functions are expressible as Fourier series? Obviously,
they have to be 2𝜋-periodic, but not every periodic function is expressible with the series.
Furthermore, if we do have a Fourier series, where does it converge (where and if at all)?
Does it converge absolutely? Uniformly? Also note that the series has two limits. When
talking about Fourier series convergence, we often talk about the following limit:

lim
𝑁→∞

𝑁∑
𝑛=−𝑁

𝑐𝑛𝑒 𝑖𝑛𝑥 .

There are other ways we can sum the series to get convergence in more situations, but we
refrain from discussing those. In light of this, define the symmetric partial sums

𝑠𝑁 ( 𝑓 ; 𝑥) B
𝑁∑

𝑛=−𝑁
𝑐𝑛 𝑒 𝑖𝑛𝑥 .

Conversely, for an integrable function 𝑓 : [−𝜋,𝜋] → ℂ, call the numbers

𝑐𝑛 B
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥

its Fourier coefficients. To emphasize the function the coefficients belong to, we write 𝑓 (𝑛). 

*
 

We then formally write down a Fourier series:

𝑓 (𝑥) ∼
∞∑

𝑛=−∞
𝑐𝑛 𝑒 𝑖𝑛𝑥 .

As you might imagine such a series might not even converge. The ∼ doesn’t imply anything
about the two sides being equal in any way. It is simply that we created a formal series
using the formula for the coefficients. We will see that when the functions are “nice
enough,” we do get convergence.

Example 11.8.3: Consider the step function ℎ(𝑥) so that ℎ(𝑥) B 1 on [0,𝜋] and ℎ(𝑥) B −1
on (−𝜋, 0), extended periodically to a 2𝜋-periodic function. With a little bit of calculus, we
compute the coefficients:

ℎ̂(0) = 1
2𝜋

∫ 𝜋

−𝜋
ℎ(𝑥) 𝑑𝑥 = 0, ℎ̂(𝑛) = 1

2𝜋

∫ 𝜋

−𝜋
ℎ(𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥 =

𝑖
((−1)𝑛 − 1

)
𝜋𝑛

for 𝑛 ≥ 1.

A little bit of simplification leads to

𝑠𝑁 (ℎ; 𝑥) =
𝑁∑

𝑛=−𝑁
ℎ̂(𝑛) 𝑒 𝑖𝑛𝑥 =

𝑁∑
𝑛=1

2
(
1 − (−1)𝑛 )

𝜋𝑛
sin(𝑛𝑥).

See the left hand graph in  Figure 11.11 for a graph of ℎ and several symmetric partial sums.
*The notation should seem similar to Fourier transform to those readers that have seen it. The similarity

is not just coincidental, we are taking a type of Fourier transform here.
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For a second example, consider the function 𝑔(𝑥) B |𝑥 | on [−𝜋,𝜋] and then extended
to a 2𝜋-periodic function. Computing the coefficients, we find

�̂�(0) = 1
2𝜋

∫ 𝜋

−𝜋
𝑔(𝑥) 𝑑𝑥 =

𝜋
2 , �̂�(𝑛) = 1

2𝜋

∫ 𝜋

−𝜋
𝑔(𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥 =

(−1)𝑛 − 1
𝜋𝑛2 for 𝑛 ≥ 1.

A little simplification yields

𝑠𝑁 (𝑔; 𝑥) =
𝑁∑

𝑛=−𝑁
�̂�(𝑛) 𝑒 𝑖𝑛𝑥 = 𝜋

2 +
𝑁∑
𝑛=1

2
((−1)𝑛 − 1

)
𝜋𝑛2 cos(𝑛𝑥).

See the right hand graph in  Figure 11.11 .

−� −�
2 0 �

2
�

−1

0

1

−� −�
2 0 �

2
�

0

�
2

�

Figure 11.11: The functions ℎ and 𝑔 in bold, with several symmetric partial sums in gray.

Note that for both 𝑓 and 𝑔, the even coefficients (except �̂�(0)) happen to vanish, but that
is not really important. What is important is convergence. First, at the discontinuity at
𝑥 = 0, we find 𝑠𝑁 (ℎ; 0) = 0 for all 𝑁 , so 𝑠𝑁 (ℎ; 0) converges to a different number from ℎ(0)
(at a nice enough jump discontinuity, the limit is the average of the two-sided limits, see the
exercises). That should not be surprising; the coefficients are computed by an integral, and
integration does not notice if the value of a function changes at a single point. We should
remark, however, that we are not guaranteed that in general the Fourier series converges to
the function even at a point where the function is continuous. We will prove convergence
if the function is at least Lipschitz.

What is really important is how fast the coefficients go to zero. For the discontinuous ℎ,
the coefficients ℎ̂(𝑛) go to zero approximately like 1/𝑛. On the other hand, for the continuous
𝑔, the coefficients �̂�(𝑛) go to zero approximately like 1/𝑛2. The Fourier coefficients “see” the
discontinuity in some sense.

Do note that continuity in this setting is the continuity of the periodic extension, that is,
we include the endpoints ±𝜋. So the function 𝑓 (𝑥) = 𝑥 defined on (−𝜋,𝜋] and extended
periodically would be discontinuous at the endpoints ±𝜋.
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In general, the relationship between regularity of the function and the rate of decay
of the coefficients is somewhat more complicated than the example above might make it
seem, but there are some quick conclusions we can make. We forget about finding a series
for a function for a moment, and we consider simply the limit of some given series. A few
sections ago, we proved that the Fourier series

∞∑
𝑛=1

sin(𝑛𝑥)
𝑛2

converges uniformly and hence converges to a continuous function. This example and its
proof can be extended to a more general criterion.
Proposition 11.8.4. Let

∑∞
𝑛=−∞ 𝑐𝑛 𝑒 𝑖𝑛𝑥 be a Fourier series, and 𝐶, 𝛼 > 1 constants such that

|𝑐𝑛 | ≤ 𝐶
|𝑛 |𝛼 for all 𝑛 ∈ ℤ \ {0}.

Then the series converges (absolutely and uniformly) to a continuous function on ℝ.
The proof is to apply the Weierstrass 𝑀-test ( Theorem 11.2.4 ) and the 𝑝-series test to find

that the series converges uniformly and hence to a continuous function (  Corollary 11.2.8 ).
We can also take derivatives.
Proposition 11.8.5. Let

∑∞
𝑛=−∞ 𝑐𝑛 𝑒 𝑖𝑛𝑥 be a Fourier series, and 𝐶, 𝛼 > 2 constants such that

|𝑐𝑛 | ≤ 𝐶
|𝑛 |𝛼 for all 𝑛 ∈ ℤ \ {0}.

Then the series converges to a continuously differentiable function on ℝ.
The proof is to note that the series converges to a continuous function by the previous

proposition. In particular, it converges at some point. Then differentiate the partial sums
𝑁∑

𝑛=−𝑁
𝑖𝑛𝑐𝑛 𝑒 𝑖𝑛𝑥

and notice that for all nonzero 𝑛

|𝑖𝑛𝑐𝑛 | ≤ 𝐶
|𝑛 |𝛼−1 .

The differentiated series converges uniformly by the 𝑀-test again. Since the differentiated
series converges uniformly, we find that the original series

∑∞
𝑛=−∞ 𝑐𝑛 𝑒 𝑖𝑛𝑥 converges to

a continuously differentiable function, whose derivative is the differentiated series (see
 Theorem 11.2.14 ).

We can iterate this reasoning. Suppose there is some 𝐶 and 𝛼 > 𝑘 + 1 (𝑘 ∈ ℕ) such that
for all nonzero integers 𝑛,

|𝑐𝑛 | ≤ 𝐶
|𝑛 |𝛼 .

Then the Fourier series converges to a 𝑘-times continuously differentiable function. There-
fore, the faster the coefficients go to zero, the more regular the limit is.
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11.8.3 Orthonormal systems
Let us abstract away the exponentials, and study a more general series for a function.
One fundamental property of the exponentials that makes Fourier series work is that the
exponentials are a so-called orthonormal system. Fix an interval [𝑎, 𝑏]. We define an inner
product for the space of functions. We restrict our attention to Riemann integrable functions
as we do not have the Lebesgue integral, which would be the natural choice. Let 𝑓 and 𝑔
be complex-valued Riemann integrable functions on [𝑎, 𝑏] and define the inner product

⟨ 𝑓 , 𝑔⟩ B
∫ 𝑏

𝑎
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥.

If you have seen Hermitian inner products in linear algebra, this is precisely such a product.
We must include the conjugate as we are working with complex numbers. We then have
the “size” of 𝑓 , that is, the 𝐿2 norm ∥ 𝑓 ∥2, by (defining the square)

∥ 𝑓 ∥2
2 B ⟨ 𝑓 , 𝑓 ⟩ =

∫ 𝑏

𝑎
| 𝑓 (𝑥)|2 𝑑𝑥.

Remark 11.8.6. Note the similarity to finite dimensions. For 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑑) ∈ ℂ𝑑, one
defines

⟨𝑧, 𝑤⟩ B
𝑑∑
𝑛=1

𝑧𝑛𝑤𝑛 .

Then the norm is (usually denoted simply by ∥𝑧∥ in ℂ𝑑 rather than by ∥𝑧∥2)

∥𝑧∥2 = ⟨𝑧, 𝑧⟩ =
𝑑∑
𝑛=1

|𝑧𝑛 |2.

This is just the euclidean distance to the origin in ℂ𝑑 (same as ℝ2𝑑).
In what follows, we will assume all functions are Riemann integrable.

Definition 11.8.7. Let {𝜑𝑛}∞𝑛=1 be a sequence of integrable complex-valued functions on
[𝑎, 𝑏]. We say that this is an orthonormal system if

⟨𝜑𝑛 , 𝜑𝑚⟩ =
∫ 𝑏

𝑎
𝜑𝑛(𝑥)𝜑𝑚(𝑥) 𝑑𝑥 =

{
1 if 𝑛 = 𝑚,

0 otherwise.

In particular, ∥𝜑𝑛 ∥2 = 1 for all 𝑛. If we only require that ⟨𝜑𝑛 , 𝜑𝑚⟩ = 0 for 𝑚 ≠ 𝑛, then the
system would be called an orthogonal system.

We noticed above that {
1√
2𝜋

𝑒 𝑖𝑛𝑥
}∞
𝑛=1

is an orthonormal system on [−𝜋,𝜋]. The factor out in front is to make the norm be 1.
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Having an orthonormal system {𝜑𝑛}∞𝑛=1 on [𝑎, 𝑏] and an integrable function 𝑓 on [𝑎, 𝑏],
we can write a Fourier series relative to {𝜑𝑛}∞𝑛=1. Let

𝑐𝑛 B ⟨ 𝑓 , 𝜑𝑛⟩ =
∫ 𝑏

𝑎
𝑓 (𝑥)𝜑𝑛(𝑥) 𝑑𝑥,

and write

𝑓 (𝑥) ∼
∞∑
𝑛=1

𝑐𝑛𝜑𝑛 .

In other words, the series is
∞∑
𝑛=1

⟨ 𝑓 , 𝜑𝑛⟩𝜑𝑛(𝑥).

Notice the similarity to the expression for the orthogonal projection of a vector onto a
subspace from linear algebra. We are in fact doing just that, but in a space of functions.

Theorem 11.8.8. Suppose 𝑓 is a Riemann integrable function on [𝑎, 𝑏]. Let {𝜑𝑛}∞𝑛=1 be an
orthonormal system on [𝑎, 𝑏] and suppose

𝑓 (𝑥) ∼
∞∑
𝑛=1

𝑐𝑛𝜑𝑛(𝑥).

If

𝑠𝑘(𝑥) B
𝑘∑
𝑛=1

𝑐𝑛𝜑𝑛(𝑥) and 𝑝𝑘(𝑥) B
𝑘∑
𝑛=1

𝑑𝑛𝜑𝑛(𝑥)

for some other sequence {𝑑𝑛}∞𝑛=1, then∫ 𝑏

𝑎
| 𝑓 (𝑥) − 𝑠𝑘(𝑥)|2 𝑑𝑥 = ∥ 𝑓 − 𝑠𝑘 ∥2

2 ≤ ∥ 𝑓 − 𝑝𝑘 ∥2
2 =

∫ 𝑏

𝑎
| 𝑓 (𝑥) − 𝑝𝑘(𝑥)|2 𝑑𝑥

with equality only if 𝑑𝑛 = 𝑐𝑛 for all 𝑛 = 1, 2, . . . , 𝑘.

In other words, the partial sums of the Fourier series are the best approximation with
respect to the 𝐿2 norm.

Proof. Let us write∫ 𝑏

𝑎
| 𝑓 − 𝑝𝑘 |2 =

∫ 𝑏

𝑎
| 𝑓 |2 −

∫ 𝑏

𝑎
𝑓 𝑝𝑘 −

∫ 𝑏

𝑎
𝑓 𝑝𝑘 +

∫ 𝑏

𝑎
|𝑝𝑘 |2.

Now ∫ 𝑏

𝑎
𝑓 𝑝𝑘 =

∫ 𝑏

𝑎
𝑓

𝑘∑
𝑛=1

𝑑𝑛𝜑𝑛 =
𝑘∑
𝑛=1

𝑑𝑛

∫ 𝑏

𝑎
𝑓 𝜑𝑛 =

𝑘∑
𝑛=1

𝑑𝑛𝑐𝑛 ,
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and ∫ 𝑏

𝑎
|𝑝𝑘 |2 =

∫ 𝑏

𝑎

𝑘∑
𝑛=1

𝑑𝑛𝜑𝑛
𝑘∑

𝑚=1
𝑑𝑚𝜑𝑚 =

𝑘∑
𝑛=1

𝑘∑
𝑚=1

𝑑𝑛𝑑𝑚

∫ 𝑏

𝑎
𝜑𝑛𝜑𝑚 =

𝑘∑
𝑛=1

|𝑑𝑛 |2.

So ∫ 𝑏

𝑎
| 𝑓 − 𝑝𝑘 |2 =

∫ 𝑏

𝑎
| 𝑓 |2 −

𝑘∑
𝑛=1

𝑑𝑛𝑐𝑛 −
𝑘∑
𝑛=1

𝑑𝑛𝑐𝑛 +
𝑘∑
𝑛=1

|𝑑𝑛 |2

=
∫ 𝑏

𝑎
| 𝑓 |2 −

𝑘∑
𝑛=1

|𝑐𝑛 |2 +
𝑘∑
𝑛=1

|𝑑𝑛 − 𝑐𝑛 |2.

This is minimized precisely when 𝑑𝑛 = 𝑐𝑛 . □

When we do plug in 𝑑𝑛 = 𝑐𝑛 , then∫ 𝑏

𝑎
| 𝑓 − 𝑠𝑘 |2 =

∫ 𝑏

𝑎
| 𝑓 |2 −

𝑘∑
𝑛=1

|𝑐𝑛 |2,

and so for all 𝑘,
𝑘∑
𝑛=1

|𝑐𝑛 |2 ≤
∫ 𝑏

𝑎
| 𝑓 |2.

Note that
𝑘∑
𝑛=1

|𝑐𝑛 |2 = ∥𝑠𝑘 ∥2
2

by the calculation above. We take a limit to obtain the so-called Bessel’s inequality.

Theorem 11.8.9 (Bessel’s inequality 

*
 ). Suppose 𝑓 is a Riemann integrable function on [𝑎, 𝑏].

Let {𝜑𝑛}∞𝑛=1 be an orthonormal system on [𝑎, 𝑏] and suppose

𝑓 (𝑥) ∼
∞∑
𝑛=1

𝑐𝑛𝜑𝑛(𝑥).

Then ∞∑
𝑛=1

|𝑐𝑛 |2 ≤
∫ 𝑏

𝑎
| 𝑓 |2 = ∥ 𝑓 ∥2

2.

In particular,
∫ 𝑏
𝑎
| 𝑓 |2 < ∞ implies the series converges and hence

lim
𝑘→∞

𝑐𝑘 = 0.
*Named after the German astronomer, mathematician, physicist, and geodesist  Friedrich Wilhelm Bessel 

(1784–1846).

https://en.wikipedia.org/wiki/Friedrich_Bessel
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11.8.4 The Dirichlet kernel and approximate delta functions
We return to the trigonometric Fourier series. The system {𝑒 𝑖𝑛𝑥}∞𝑛=1 is orthogonal, but not
orthonormal if we simply integrate over [−𝜋,𝜋]. We can rescale the integral and hence the
inner product to make {𝑒 𝑖𝑛𝑥}∞𝑛=1 orthonormal. That is, if we replace∫ 𝑏

𝑎
with 1

2𝜋

∫ 𝜋

−𝜋
,

(we are just rescaling the 𝑑𝑥 really) 

*
 , then everything works and we obtain that the system

{𝑒 𝑖𝑛𝑥}∞𝑛=1 is orthonormal with respect to the inner product

⟨ 𝑓 , 𝑔⟩ = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) 𝑔(𝑥) 𝑑𝑥.

Suppose 𝑓 : ℝ → ℂ is 2𝜋-periodic and integrable on [−𝜋,𝜋]. Write

𝑓 (𝑥) ∼
∞∑

𝑛=−∞
𝑐𝑛 𝑒 𝑖𝑛𝑥 , where 𝑐𝑛 B

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥.

Recall the notation for the symmetric partial sums, 𝑠𝑁 ( 𝑓 ; 𝑥) B ∑𝑁
𝑛=−𝑁 𝑐𝑛 𝑒

𝑖𝑛𝑥 . The inequality
leading up to Bessel now reads:

1
2𝜋

∫ 𝜋

−𝜋
|𝑠𝑁 ( 𝑓 ; 𝑥)|2 𝑑𝑥 =

𝑁∑
𝑛=−𝑁

|𝑐𝑛 |2 ≤ 1
2𝜋

∫ 𝜋

−𝜋
| 𝑓 (𝑥)|2 𝑑𝑥.

Let the Dirichlet kernel be

𝐷𝑁 (𝑥) B
𝑁∑

𝑛=−𝑁
𝑒 𝑖𝑛𝑥 .

We claim that

𝐷𝑁 (𝑥) =
sin

((𝑁 + 1/2)𝑥)
sin(𝑥/2) ,

for 𝑥 such that sin(𝑥/2) ≠ 0. The left-hand side is continuous on ℝ, and hence the right-hand
side extends continuously to all of ℝ. To show the claim, we use a familiar trick:

(𝑒 𝑖𝑥 − 1)𝐷𝑁 (𝑥) = 𝑒 𝑖(𝑁+1)𝑥 − 𝑒−𝑖𝑁𝑥 .

Multiply by 𝑒−𝑖𝑥/2

(𝑒 𝑖𝑥/2 − 𝑒−𝑖𝑥/2)𝐷𝑁 (𝑥) = 𝑒 𝑖(𝑁+1/2)𝑥 − 𝑒−𝑖(𝑁+1/2)𝑥 .

The claim follows.
*Mathematicians in this field sometimes simplify matters with a tongue-in-cheek definition that 1 = 2𝜋.
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Expand the definition of 𝑠𝑁

𝑠𝑁 ( 𝑓 ; 𝑥) =
𝑁∑

𝑛=−𝑁

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡)𝑒−𝑖𝑛𝑡 𝑑𝑡 𝑒 𝑖𝑛𝑥

=
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡)

𝑁∑
𝑛=−𝑁

𝑒 𝑖𝑛(𝑥−𝑡) 𝑑𝑡 =
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡)𝐷𝑁 (𝑥 − 𝑡) 𝑑𝑡.

Convolution strikes again! As 𝐷𝑁 and 𝑓 are 2𝜋-periodic, we may also change variables
and write

𝑠𝑁 ( 𝑓 ; 𝑥) = 1
2𝜋

∫ 𝑥+𝜋

𝑥−𝜋
𝑓 (𝑥 − 𝑡)𝐷𝑁 (𝑡) 𝑑𝑡 = 1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥 − 𝑡)𝐷𝑁 (𝑡) 𝑑𝑡.

See  Figure 11.12 for a plot of 𝐷𝑁 for 𝑁 = 5 and 𝑁 = 20.
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Figure 11.12: Plot of 𝐷𝑁 (𝑥) for 𝑁 = 5 (gray) and 𝑁 = 20 (black).

The central peak gets taller and taller as 𝑁 gets larger, and the side peaks stay small. We
are convolving (again) with approximate delta functions, although these functions have all
these oscillations away from zero. The oscillations on the side do not go away but they are
eventually so fast that we expect the integral to just sort of cancel itself out there. Overall,
we expect that 𝑠𝑁 ( 𝑓 ) goes to 𝑓 . Things are not always simple, but under some conditions
on 𝑓 , such a conclusion holds. For this reason people write

2𝜋 𝛿(𝑥) ∼
∞∑
𝑛=∞

𝑒 𝑖𝑛𝑥 ,

where 𝛿 is the “delta function” (not really a function), which is an object that will give
something like “

∫ 𝜋

−𝜋 𝑓 (𝑥 − 𝑡)𝛿(𝑡) 𝑑𝑡 = 𝑓 (𝑥).” We can think of 𝐷𝑁 (𝑥) converging in some
sense to 2𝜋 𝛿(𝑥). However, we have not defined (and will not define) what the delta
function is, nor what does it mean for it to be a limit of 𝐷𝑁 or have a Fourier series.
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11.8.5 Localization
If 𝑓 satisfies a Lipschitz condition at a point, then the Fourier series converges at that point.

Theorem 11.8.10. Let 𝑥 be fixed and let 𝑓 be a 2𝜋-periodic function Riemann integrable on
[−𝜋,𝜋]. Suppose there exist 𝛿 > 0 and 𝑀 such that

| 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥)| ≤ 𝑀 |𝑡 |
for all 𝑡 ∈ (−𝛿, 𝛿), then

lim
𝑁→∞

𝑠𝑁 ( 𝑓 ; 𝑥) = 𝑓 (𝑥).
In particular, if 𝑓 is continuously differentiable at 𝑥, then we obtain convergence at 𝑥

(exercise). A function 𝑓 : [𝑎, 𝑏] → ℂ is continuous piecewise smooth if it is continuous and
there exist points 𝑥0 = 𝑎 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑘 = 𝑏 such that for every 𝑗, 𝑓 restricted to
[𝑥 𝑗 , 𝑥 𝑗+1] is continuously differentiable (up to the endpoints).

Corollary 11.8.11. Let 𝑓 be a 2𝜋-periodic function Riemann integrable on [−𝜋,𝜋]. Suppose there
exist 𝑥 ∈ ℝ and 𝛿 > 0 such that 𝑓 is continuous piecewise smooth on [𝑥 − 𝛿, 𝑥 + 𝛿], then

lim
𝑁→∞

𝑠𝑁 ( 𝑓 ; 𝑥) = 𝑓 (𝑥).

The proof of the corollary is left as an exercise. Let us prove the theorem.

Proof of  Theorem 11.8.10 . For all 𝑁 ,

1
2𝜋

∫ 𝜋

−𝜋
𝐷𝑁 = 1.

Write

𝑠𝑁 ( 𝑓 ; 𝑥) − 𝑓 (𝑥) = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥 − 𝑡)𝐷𝑁 (𝑡) 𝑑𝑡 − 𝑓 (𝑥) 1

2𝜋

∫ 𝜋

−𝜋
𝐷𝑁 (𝑡) 𝑑𝑡

=
1

2𝜋

∫ 𝜋

−𝜋

(
𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥))𝐷𝑁 (𝑡) 𝑑𝑡

=
1

2𝜋

∫ 𝜋

−𝜋

𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥)
sin(𝑡/2) sin

((𝑁 + 1/2)𝑡) 𝑑𝑡.
By the hypotheses, for small nonzero 𝑡,���� 𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥)

sin(𝑡/2)
���� ≤ 𝑀 |𝑡 |

|sin(𝑡/2)| .

As sin(𝜃) = 𝜃 + ℎ(𝜃) where ℎ(𝜃)
𝜃 → 0 as 𝜃 → 0, we notice that 𝑀 |𝑡 |

|sin(𝑡/2)| is continuous at the

origin. Hence, 𝑓 (𝑥−𝑡)− 𝑓 (𝑥)
sin(𝑡/2) , as a function of 𝑡, is bounded near the origin. As 𝑡 = 0 is the

only place on [−𝜋,𝜋] where the denominator vanishes, it is the only place where there
could be a problem. So, the function is bounded near 𝑡 = 0 and clearly Riemann integrable
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on any interval not including 0, and thus it is Riemann integrable on [−𝜋,𝜋]. We use the
trigonometric identity

sin
((𝑁 + 1/2)𝑡) = cos(𝑡/2) sin(𝑁𝑡) + sin(𝑡/2) cos(𝑁𝑡),

to compute

1
2𝜋

∫ 𝜋

−𝜋

𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥)
sin(𝑡/2) sin

((𝑁 + 1/2)𝑡) 𝑑𝑡 =
1

2𝜋

∫ 𝜋

−𝜋

(
𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥)

sin(𝑡/2) cos(𝑡/2)
)

sin(𝑁𝑡) 𝑑𝑡 + 1
2𝜋

∫ 𝜋

−𝜋

(
𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥)) cos(𝑁𝑡) 𝑑𝑡.

As functions of 𝑡, 𝑓 (𝑥−𝑡)− 𝑓 (𝑥)
sin(𝑡/2) cos(𝑡/2) and

(
𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥)) are bounded Riemann integrable

functions and so their Fourier coefficients go to zero by  Theorem 11.8.9 . So the two integrals
on the right-hand side, which compute the Fourier coefficients for the real version of the
Fourier series go to 0 as 𝑁 goes to infinity. This is because sin(𝑁𝑡) and cos(𝑁𝑡) are also
orthonormal systems with respect to the same inner product. Hence 𝑠𝑁 ( 𝑓 ; 𝑥) − 𝑓 (𝑥) goes
to 0, that is, 𝑠𝑁 ( 𝑓 ; 𝑥) goes to 𝑓 (𝑥). □

The theorem also says that convergence depends only on local behavior. That is, to
understand convergence of 𝑠𝑁 ( 𝑓 ; 𝑥) we only need to know 𝑓 in some neighborhood of 𝑥.

Corollary 11.8.12. Suppose 𝑓 is a 2𝜋-periodic function, Riemann integrable on [−𝜋,𝜋]. If 𝐽 is
an open interval and 𝑓 (𝑥) = 0 for all 𝑥 ∈ 𝐽, then lim

𝑁→∞
𝑠𝑁 ( 𝑓 ; 𝑥) = 0 for all 𝑥 ∈ 𝐽.

In particular, if 𝑓 and 𝑔 are 2𝜋-periodic functions, Riemann integrable on [−𝜋,𝜋], 𝐽 an open
interval, and 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐽, then for all 𝑥 ∈ 𝐽, the sequence

{
𝑠𝑁 ( 𝑓 ; 𝑥)

}∞
𝑁=1 converges if

and only if
{
𝑠𝑁 (𝑔; 𝑥)}∞𝑁=1 converges.

The first claim follows by taking 𝑀 = 0 in the theorem. The “In particular” follows by
considering 𝑓 − 𝑔, which is zero on 𝐽 and 𝑠𝑁 ( 𝑓 − 𝑔) = 𝑠𝑁 ( 𝑓 ) − 𝑠𝑁 (𝑔). So convergence at
𝑥 depends only on the values of the function near 𝑥. However, we saw that the rate of
convergence, that is, how fast does 𝑠𝑁 ( 𝑓 ) converge to 𝑓 , depends on global behavior of 𝑓 .

Note a subtle difference between the results above and what  Stone–Weierstrass theorem 

gives. Any continuous function on [−𝜋,𝜋] can be uniformly approximated by trigonometric
polynomials, but these trigonometric polynomials may not be the partial sums 𝑠𝑁 .

11.8.6 Parseval’s theorem

Finally, convergence always happens in the 𝐿2 sense and operations on the (infinite) vectors
of Fourier coefficients are the same as the operations using the integral inner product.
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Theorem 11.8.13 (Parseval 

*
 ). Let 𝑓 and 𝑔 be 2𝜋-periodic functions, Riemann integrable on

[−𝜋,𝜋] with

𝑓 (𝑥) ∼
∞∑

𝑛=−∞
𝑐𝑛 𝑒 𝑖𝑛𝑥 and 𝑔(𝑥) ∼

∞∑
𝑛=−∞

𝑑𝑛 𝑒 𝑖𝑛𝑥 .

Then
lim
𝑁→∞

∥ 𝑓 − 𝑠𝑁 ( 𝑓 )∥2
2 = lim

𝑁→∞
1

2𝜋

∫ 𝜋

−𝜋
| 𝑓 (𝑥) − 𝑠𝑁 ( 𝑓 ; 𝑥)|2 𝑑𝑥 = 0.

Also

⟨ 𝑓 , 𝑔⟩ = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 =

∞∑
𝑛=−∞

𝑐𝑛𝑑𝑛 ,

and

∥ 𝑓 ∥2
2 =

1
2𝜋

∫ 𝜋

−𝜋
| 𝑓 (𝑥)|2 𝑑𝑥 =

∞∑
𝑛=−∞

|𝑐𝑛 |2.

Proof. There exists (exercise) a continuous 2𝜋-periodic function ℎ such that

∥ 𝑓 − ℎ∥2 < 𝜖.

Via  Stone–Weierstrass , approximate ℎ with a trigonometric polynomial uniformly. That is,
there is a trigonometric polynomial 𝑃(𝑥) such that |ℎ(𝑥) − 𝑃(𝑥)| < 𝜖 for all 𝑥. Hence

∥ℎ − 𝑃∥2 =

√
1

2𝜋

∫ 𝜋

−𝜋
|ℎ(𝑥) − 𝑃(𝑥)|2 𝑑𝑥 ≤ 𝜖.

If 𝑃 is of degree 𝑁0, then for all 𝑁 ≥ 𝑁0 ,

∥ℎ − 𝑠𝑁 (ℎ)∥2 ≤ ∥ℎ − 𝑃∥2 ≤ 𝜖,

as 𝑠𝑁 (ℎ) is the best approximation for ℎ in 𝐿2 ( Theorem 11.8.8 ). By the inequality leading
up to Bessel,

∥𝑠𝑁 (ℎ) − 𝑠𝑁 ( 𝑓 )∥2 = ∥𝑠𝑁 (ℎ − 𝑓 )∥2 ≤ ∥ℎ − 𝑓 ∥2 ≤ 𝜖.

The 𝐿2 norm satisfies the triangle inequality (exercise). Thus, for all 𝑁 ≥ 𝑁0,

∥ 𝑓 − 𝑠𝑁 ( 𝑓 )∥2 ≤ ∥ 𝑓 − ℎ∥2 + ∥ℎ − 𝑠𝑁 (ℎ)∥2 + ∥𝑠𝑁 (ℎ) − 𝑠𝑁 ( 𝑓 )∥2 ≤ 3𝜖.

Hence, the first claim follows.
Next,

⟨𝑠𝑁 ( 𝑓 ), 𝑔⟩ = 1
2𝜋

∫ 𝜋

−𝜋
𝑠𝑁 ( 𝑓 ; 𝑥)𝑔(𝑥) 𝑑𝑥 =

𝑁∑
𝑛=−𝑁

𝑐𝑛
1

2𝜋

∫ 𝜋

−𝜋
𝑒 𝑖𝑛𝑥𝑔(𝑥) 𝑑𝑥 =

𝑁∑
𝑛=−𝑁

𝑐𝑛𝑑𝑛 .

*Named after the French mathematician  Marc-Antoine Parseval (1755–1836).

https://en.wikipedia.org/wiki/Marc-Antoine_Parseval
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We need the Schwarz (or Cauchy–Schwarz or Cauchy–Bunyakovsky–Schwarz) inequality
for 𝐿2, that is, �����∫ 𝑏

𝑎
𝑓 �̄�

�����2 ≤
(∫ 𝑏

𝑎
| 𝑓 |2

) (∫ 𝑏

𝑎
|𝑔 |2

)
.

Its proof is left as an exercise; it is not much different from the finite-dimensional version.
So ����∫ 𝜋

−𝜋
𝑓 �̄� −

∫ 𝜋

−𝜋
𝑠𝑁 ( 𝑓 )�̄�

���� = ����∫ 𝜋

−𝜋
( 𝑓 − 𝑠𝑁 ( 𝑓 ))�̄�

����
≤

(∫ 𝜋

−𝜋
| 𝑓 − 𝑠𝑁 ( 𝑓 )|2

)1/2 (∫ 𝜋

−𝜋
|𝑔 |2

)1/2
.

The right-hand side goes to 0 as 𝑁 goes to infinity by the first claim of the theorem. That is,
as 𝑁 goes to infinity, ⟨𝑠𝑁 ( 𝑓 ), 𝑔⟩ goes to ⟨ 𝑓 , 𝑔⟩, and the second claim is proved. The last
claim in the theorem follows by using 𝑔 = 𝑓 . □

11.8.7 Exercises
Exercise 11.8.1: Consider the Fourier series

∞∑
𝑘=1

1
2𝑘

sin(2𝑘𝑥).

Show that the series converges uniformly and absolutely to a continuous function. Remark: This is another
example of a nowhere differentiable function (you do not have to prove that) 

*
 . See  Figure 11.13 .

−� −�
2 0 �

2
�

−0.8

−0.4

0

0.4

0.8

Figure 11.13: Plot of
∑∞
𝑛=1

1
2𝑛 sin(2𝑛𝑥).

*See G. H. Hardy, Weierstrass’s Non-Differentiable Function, Transactions of the American Mathematical
Society, 17, No. 3 (Jul., 1916), pp. 301–325. A thing to notice here is the 𝑛th Fourier coefficient is 1/𝑛 if 𝑛 = 2𝑘
and zero otherwise, so the coefficients go to zero like 1/𝑛.
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Exercise 11.8.2: Suppose that a 2𝜋-periodic function that is Riemann integrable on [−𝜋,𝜋], and such
that 𝑓 is continuously differentiable on some open interval (𝑎, 𝑏). Prove that for every 𝑥 ∈ (𝑎, 𝑏), we have
lim
𝑁→∞

𝑠𝑁 ( 𝑓 ; 𝑥) = 𝑓 (𝑥).

Exercise 11.8.3: Prove  Corollary 11.8.11  , that is, suppose a 2𝜋-periodic function is continuous piecewise
smooth near a point 𝑥, then lim

𝑁→∞
𝑠𝑁 ( 𝑓 ; 𝑥) = 𝑓 (𝑥). Hint: See the previous exercise.

Exercise 11.8.4: Given a 2𝜋-periodic function 𝑓 : ℝ → ℂ, Riemann integrable on [−𝜋,𝜋], and 𝜖 > 0, show
that there exists a continuous 2𝜋-periodic function 𝑔 : ℝ → ℂ such that ∥ 𝑓 − 𝑔∥2 < 𝜖.

Exercise 11.8.5: Prove the Cauchy–Bunyakovsky–Schwarz inequality for Riemann integrable functions:�����∫ 𝑏

𝑎
𝑓 �̄�

�����2 ≤
(∫ 𝑏

𝑎
| 𝑓 |2

) (∫ 𝑏

𝑎
|𝑔 |2

)
.

Exercise 11.8.6: Prove the 𝐿2 triangle inequality for Riemann integrable functions on [−𝜋,𝜋]:

∥ 𝑓 + 𝑔∥2 ≤ ∥ 𝑓 ∥2 + ∥𝑔∥2.

Exercise 11.8.7: Suppose for some 𝐶 and 𝛼 > 1, we have a real sequence {𝑎𝑛}∞𝑛=1 with |𝑎𝑛 | ≤ 𝐶
𝑛𝛼 for all 𝑛.

Let

𝑔(𝑥) B
∞∑
𝑛=1

𝑎𝑛 sin(𝑛𝑥).

a) Show that 𝑔 is continuous.

b) Formally (that is, suppose you can differentiate under the sum) find a solution (formal solution, that is,
do not yet worry about convergence) to the differential equation

𝑦′′ + 2𝑦 = 𝑔(𝑥)

of the form

𝑦(𝑥) =
∞∑
𝑛=1

𝑏𝑛 sin(𝑛𝑥).

c) Then show that this solution 𝑦 is twice continuously differentiable, and in fact solves the equation.

Exercise 11.8.8: Let 𝑓 be a 2𝜋-periodic function such that 𝑓 (𝑥) = 𝑥 for 0 < 𝑥 < 2𝜋. Use Parseval’s theorem
to find

∞∑
𝑛=1

1
𝑛2 =

𝜋2

6 .

Exercise 11.8.9: Suppose that 𝑐𝑛 = 0 for all 𝑛 < 0 and
∑∞
𝑛=0 |𝑐𝑛 | converges. Let 𝔻 B 𝐵(0, 1) ⊂ ℂ be the

unit disc, and 𝔻 = 𝐶(0, 1) be the closed unit disc. Show that there exists a continuous function 𝑓 : 𝔻 → ℂ

that is analytic on 𝔻 and such that on the boundary of 𝔻 we have 𝑓 (𝑒 𝑖𝜃) = ∑∞
𝑛=0 𝑐𝑛𝑒

𝑖𝑛𝜃.
Hint: If 𝑧 = 𝑟𝑒 𝑖𝜃, then 𝑧𝑛 = 𝑟𝑛𝑒 𝑖𝑛𝜃.
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Exercise 11.8.10: Show that ∞∑
𝑛=1

𝑒−1/𝑛 sin(𝑛𝑥)

converges to an infinitely differentiable function.

Exercise 11.8.11: Let 𝑓 be a 2𝜋-periodic function such that 𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0 𝑔 for a function 𝑔 that is
Riemann integrable on every interval. Suppose

𝑓 (𝑥) ∼
∞∑

𝑛=−∞
𝑐𝑛 𝑒 𝑖𝑛𝑥 .

Show that there exists a 𝐶 > 0 such that |𝑐𝑛 | ≤ 𝐶
|𝑛 | for all nonzero 𝑛.

Exercise 11.8.12:

a) Let 𝜑 be the 2𝜋-periodic function defined by 𝜑(𝑥) B 0 if 𝑥 ∈ (−𝜋, 0), and 𝜑(𝑥) B 1 if 𝑥 ∈ (0,𝜋),
letting 𝜑(0) and 𝜑(𝜋) be arbitrary. Show that lim

𝑁→∞
𝑠𝑁 (𝜑; 0) = 1/2.

b) Let 𝑓 be a 2𝜋-periodic function Riemann integrable on [−𝜋,𝜋], 𝑥 ∈ ℝ, 𝛿 > 0, and there are continuously
differentiable 𝑔 : [𝑥 − 𝛿, 𝑥] → ℂ and ℎ : [𝑥, 𝑥 + 𝛿] → ℂ where 𝑓 (𝑡) = 𝑔(𝑡) for all 𝑡 ∈ [𝑥 − 𝛿, 𝑥) and
where 𝑓 (𝑡) = ℎ(𝑡) for all 𝑡 ∈ (𝑥, 𝑥 + 𝛿]. Then lim

𝑁→∞
𝑠𝑁 ( 𝑓 ; 𝑥) = 𝑔(𝑥)+ℎ(𝑥)

2 , or in other words,

lim
𝑁→∞

𝑠𝑁 ( 𝑓 ; 𝑥) = 1
2

(
lim
𝑡→𝑥−

𝑓 (𝑡) + lim
𝑡→𝑥+

𝑓 (𝑡)
)
.

Exercise 11.8.13: Let {𝑎𝑛}∞𝑛=1 be such that lim𝑛→∞ 𝑎𝑛 = 0. Show that there is a continuous 2𝜋-periodic
function 𝑓 whose Fourier coefficients 𝑐𝑛 satisfy that for each 𝑁 there is a 𝑘 ≥ 𝑁 where |𝑐𝑘 | ≥ 𝑎𝑘 .
Remark: The exercise says that if 𝑓 is only continuous, there is no “minimum rate of decay” of the coefficients.
Compare with  Exercise 11.8.11 .
Hint: Look at  Exercise 11.8.1 for inspiration.
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algebra,  14 ,  184 

almost every,  125 

almost everywhere,  122 ,  125 

analytic,  153 

antiderivative,  86 

approximate delta function,  180 ,  201 

arc-length measure,  78 

arc-length parametrization,  80 

Arzelà–Ascoli theorem,  174 

basis,  11 

Bessel’s inequality,  199 

bilinear,  20 

bounded domain with piecewise smooth
boundary,  128 

Cantor function,  116 

Cantor set,  113 

Cauchy
complex series,  142 

Cauchy–Schwarz inequality,  20 

chain rule,  38 

change of basis,  26 

characteristic function,  123 

closed path,  71 

closed rectangle,  91 

column,  25 

column vectors,  7 

commutative diagram,  30 

compact operator,  176 

compact support,  99 

complex algebra,  184 

complex conjugate,  140 

complex number,  139 

complex plane,  139 

conservative vector field,  88 

continuous piecewise smooth,  72 ,  202 

continuously differentiable,  48 ,  60 

continuously differentiable path,  71 

converges
complex series,  141 

power series,  153 

converges absolutely
complex series,  141 

converges pointwise,  144 

complex series,  144 

converges uniformly,  144 

convex,  16 

convex combination,  16 

convex hull,  17 

convolution,  180 

cosine,  164 

critical point,  45 

curve,  41 

Darboux integral,  93 

Darboux sum,  92 

derivative,  35 

complex-valued function,  142 

determinant,  27 

Devil’s staircase,  116 

diagonal matrix,  32 

differentiable,  35 

differentiable curve,  41 

differential one-form,  74 

dimension,  11 
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directional derivative,  41 

Dirichlet kernel,  200 

dot product,  20 

eigenvalue,  33 

elementary matrix,  30 

equicontinuous,  173 

euclidean norm,  20 

Euler’s formula,  164 

even permutation,  27 

for almost every,  125 

Fourier coefficients,  193 

Fourier series,  193 

Fubini for sums,  157 

Fubini’s theorem,  104 ,  106 

fundamental theorem of algebra,  170 

general linear group,  24 

generate an algebra,  188 

gradient,  40 

Green’s theorem,  129 

hyperbolic cosine,  168 

hyperbolic sine,  168 

identity,  14 

identity theorem,  161 

imaginary axis,  139 

imaginary part,  140 

implicit function theorem,  55 

indicator function,  123 

inner product,  197 

integrable,  95 

integrable on 𝑆,  124 

inverse function theorem,  51 

invertible linear transformation,  14 

isolated singularity,  171 

Jacobian,  42 

Jacobian conjecture,  54 

Jacobian determinant,  42 

Jacobian matrix,  42 

Jordan measurable,  123 

𝑘-times continuously differentiable
function,  60 

Kronecker density theorem,  177 

Laplace equation,  132 

law of exponents,  164 

Lebesgue–Vitali theorem,  118 

Leibniz integral rule,  65 

length,  79 

length of a curve,  79 

linear,  14 

linear combination,  10 

linear operator,  14 

linear transformation,  14 

linearity of the integral,  96 

linearly dependent,  11 

linearly independent,  11 

longest side,  98 

lower Darboux integral,  93 

lower Darboux sum,  92 

map,  14 

mapping,  14 

matrix,  25 

maximum modulus principle,  169 

maximum principle
analytic functions,  169 

harmonic functions,  133 

mean value property,  132 

mean value theorem,  45 ,  46 

measure zero,  108 

minimum modulus principle,  169 

modulus,  140 

monotonicity of the integral,  96 

𝑛-dimensional volume
Jordan measurable set,  123 

rectangles,  91 

negatively oriented,  128 

norm,  20 

normed vector space,  20 

null set,  108 

nullspace,  15 



INDEX 213

odd permutation,  27 

one-form,  74 

open mapping,  54 

open rectangle,  91 

operator norm,  21 

operator, linear,  14 

orthogonal system,  197 

orthonormal system,  197 

oscillation,  117 

outer measure,  108 

Parseval’s theorem,  203 

partial derivative,  39 

partial derivative of order 𝑘,  60 

partition,  91 

path connected,  83 

path independent,  83 

Peano existence theorem,  178 

Peano surface,  45 

permutation,  27 

piecewise continuously differentiable
path,  71 

piecewise smooth,  202 

piecewise smooth boundary,  128 

piecewise smooth path,  71 

piecewise smooth reparametrization,  73 

Poincaré lemma,  87 

pointwise bounded,  172 

pointwise convergence,  144 

complex series,  144 

polar coordinates,  59 ,  167 

pole,  171 

positively oriented,  128 

potential,  88 

preserve orientation,  73 

radius of convergence,  154 

rational function,  171 

real algebra,  184 

real axis,  139 

real part,  140 

real vector space,  8 

real-analytic,  153 

rectangle,  91 

refinement of a partition,  93 

relative maximum,  45 

relative minimum,  45 

relatively compact,  115 ,  176 

removable singularity,  171 

reparametrization,  73 

reverse orientation,  73 

Riemann integrable,  95 

complex-valued function,  142 

Riemann integrable on 𝑆,  124 

Riemann integral,  95 

Riemann–Lebesgue theorem,  118 

scalars,  7 

self-adjoint,  188 

separates points,  184 

simple path,  71 

simply connected,  86 

sine,  164 

singularity,  171 

smooth path,  71 

smooth reparametrization,  73 

span,  10 

spectral radius,  33 

standard basis,  12 

star-shaped domain,  86 

Stone–Weierstrass
complex version,  188 

real version,  185 

subrectangle,  91 

subspace,  8 

support,  99 

supremum norm,  145 

symmetric,  20 

symmetric group,  27 

symmetric partial sums,  194 

tangent vector,  41 

Taylor’s theorem
real-analytic,  158 

total derivative,  83 

transformation, linear,  14 
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triangle inequality
complex numbers,  140 

norms,  20 

trigonometric polynomial,  192 

type I domain,  129 

type II domain,  129 

type III domain,  129 

uniform convergence,  144 

uniform norm,  145 

uniformly bounded,  172 

uniformly Cauchy,  145 

uniformly equicontinuous,  173 

upper Darboux integral,  93 

upper Darboux sum,  92 

upper triangular matrix,  31 

vanishes at no point,  184 

vector,  7 

vector field,  88 ,  130 

vector space,  8 

vector subspace,  8 

volume,  123 

volume of rectangles,  91 

vortex vector field,  130 

Weierstrass 𝑀-test,  145 ,  146 

Weierstrass approximation theorem,  179 

Weierstrass function,  150 

winding number,  90 

zero of a function,  171 
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