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Abstract

Collatz functions have received considerable attention for their con-
nection to seemingly intractible problems within the fields of cellular
automata (CA), number theory and computation. This paper will seek
to prove certain properties of such functions by utilizing the theory
of multifractals to derive a unified framework of past results. Finally,
bounds on Hölder exponents for specific functions will be calculated,
and in particular the information dimension.

1 Introduction

Generalized Collatz Functions, henceforth known as CFs, describe a series of
affine transformations across modulo residue classes over the integers. Vari-
ous connections have been found between such transformations and ergodic
theory. Perhaps the most well known of these is the so called 3X+1 function.
The generalized problem can be given by Matthews [6, 8] as follows

T (x) =
mix− ri

d
if x ≡ i (mod d) (1.1)

where i = 0, ..., d − 1, and let ri ∈ Z,mi ∈ N∗ satisfy ri ≡ imi (mod d),
then T is a function such that T : Z → Z. This definition will utilize
gcd(mi, ri, d) = 1 only, otherwise known as relatively prime CFs. Then, of
particular interest is a full description of TK(x), and the motivation behind
this paper is that iterating such Collatz-type functions defines a multifractal
spectrum.
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Multifractal systems were formalized by B.B. Mandelbrot in 1974 in his
investigation of fully developed turbulence[7, 4, 10, 5]. Multifractal measures
are generated by multiplicative cascades, and represent a measure around the
boundary of a self-similar tree. They are described by multipliers on dyadic
subintervals partitioned over [0, 1].

2 Definitions

The description of the K-th iterate is given by Matthews as

TK(x) =
m0(x)...mK−1(x)

dK

(
x−

K−1∑
i=0

ri(x)d
i

m0(x)...mi(x)

)
. (2.1)

From now on we’ll assume X0 ∼ U [1, N ] where U is the discrete uniform
distribution on the interval from 1 to N . Observe that since ri ∈ Z its
domain is closed with a change of sign, thus we can instead consider −ri
such that

−
K−1∑
i=0

−ri(x)d
i

m0(x)...mi(x)
=

K−1∑
i=0

ri(x)d
i

m0(x)...mi(x)

which is the same as a reflection of the function about 0.
Then, with Matthew’s definitions as a starting point, mK(x) = mi for

the K-th iterate, so we can group together similar mi. This advances the
expression of TK(X0) to

TK(X0) =
(m0

d

)k0 (m1

d

)k1
...
(md−1

d

)kd−1

(
X0 +

K−1∑
i=0

ri(x)d
i

m0(x)...mi(x)

)
.

(2.2)
Where each ki is just the frequency which the i-th residue appears up to and
including K, and each will have the expression

ki =
K∑
j=1

1(i (mod d))(T
j(X0))

d−1∑
i=0

ki = K.
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Finally, we can then make the observation that TK(X0) follows the multi-
fractal formalism.

We denote βK as the residue class for the K-th iterate. Lagarias origi-
nally proved this sequence is an adic number for the 3X+1 function, and this
was later expanded for an arbitrary function and number d by Matthews, so
β1β2...βK ∈ Zd. The ki count the number of elements in [0, 1, ..., d − 1] for
an adic number’s digit, and observe that Mandelbrot’s construction defines
a mass distribution off of d-adic intervals on [0, 1].

To be specific, we assume there exists a positive, continuous Borel mea-
sure over [0, 1]. Then, we define the d-adic interval of the K-th generation
for the digits βi ∈ [0, 1, ..., d− 1] for an adic number such that

I0.β1β2...βK
=

[
K∑
i=1

βid
−i, d−K +

K∑
i=1

βid
−i

)
.

This defines a sequence of partitions of [0, 1] we’ll denote EK with each having
subintervals with measure d−K . Then, a mass of 1 is assigned to E0 which is
then subdivided according to the ratio w0 : w1 : ... : wd−1 for the subintervals
IK+1 ⊂ IK for EK+1 with

w0 =
m0

r
, w1 =

m1

r
, ..., wd−1 =

md−1

r
,

d−1∑
i=0

mi = r

as we mandate the condition that

d−1∑
i=0

wi = 1.

This defines a Hausdorff measure over each interval which is µ(Iβ1β2...βK
),

or for shorthand

µ0.β1β2...βK
=

K∏
j=1

wβj
= wk0

0 wk1
1 ...w

kd−1

d−1 .

An interval ϵ ∈ [0, 1] has measure d−K with an associated Hölder exponent
α. Specifically the α is the degree of Hölder continuity for the measure. The
coarse α is for an individual X0’s sequence is

α(0.β1β2...βK) = −k0
K

logd(w0)−
k1
K

logd(w1)− ...− kd−1

K
logd(wd−1).
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Where ki/K is the frequency of digits in X0’s associated adic number’s
address. Then a local exponent is described by

α(0.β1β2...) = lim
K→∞

1

K
logd(µ(I0.β1β2...βK

)) = −
d−1∑
i=0

φi logd(wi)

with φi = ki/K being the limiting frequency of digits in the measure’s adic
decimal. Asymptotically across the measure the number of intervals contain-
ing a specific exponent: Nϵ(α) scales according to

Nϵ(α) ∼ ϵ−f(α)

where the f(α) function relates the measure’s Hausdorff dimension to the
scale exponent α.

The first exponent of interest for this paper is α0 or α(0), which is the
global Hölder exponent. The global exponent is given by Evertsz and Mandel-
brot in MULTIFRACTAL MEASURES for the binomial/multinomial mea-
sure such that

α0 = −1

d

d−1∑
i=0

logd(wi).

Which corresponds to K = d, ki = 1 for the dimension of f(α0), and this is
the dimension of the µ’s support, so

f(α0) = dimH(sptµ) = max
α

f(α).

In the case that limϵ→0 it can be proven that the measure converges
to a Cantor set with dimension µ, so the measure by extension is entirely
contained within its supporting Cantor set. This is the second exponent of
interest for this paper, and is denoted α1 or α(1), which is the information
dimension, and satisfies the identity

f(α1) = α1.

This is also the dimension of the measure µ, so

α1 = dimH(µ) = inf{dimH(E) : E is a Borel set with µ(E) > 0}.

Note that this is not the same as the dimension of µ’s support, but
rather the dimension of the measure µ itself. α1 being significant because it
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”contains” the measure, meaning that as K → ∞ the number of visits to
this exponent limits towards 1.

Now we can get back to the original task at hand. Observe then that the
value for the measure is different than the

∏d−1
i=0 (mi/d)

ki term by an amount
equal to (r/d)K , so

TK(X0) = (µ0.β1β2...βK
)
(r
d

)K (
X0 +

K−1∑
i=0

ri(x)d
i

m0(x)...mi(x)

)
.

Note that it’s only necessary to show that a multifractal measure exists
which is equivalent to the (mi/d)

ki terms for all K. On the real number line
T can have any measure, even 0 measure, but its adic sequence generates a
positive measure.

From here we need to look at the summand. Going back to Matthew’s
definitions the summation is equal to

K−1∑
i=0

ri(x)d
i

m0(x)...mi(x)
=

∑K−1
i=0 ri(x)d

imi+1(x)...mK−1(x)

mk0
0 mk1

1 ...m
kd−1

d−1

.

It was proven
∑K−1

i=0 ri(x)d
imi+1(x)...mK−1(x) ∈ Zd by Möller [9], so we will

define its value on the integers as a function of T ’s adic sequence such that

a0.β1β2...βK
=

K∑
i=1

rβi−1
di−1

(
K∏
i

mβi

)
, a0.β1β2...βK

∈ Z.

As a cosmetic choice the summation is shifted forwards by 1 to put it into
the same index as µ, but it’s trivial to tell a is equal to the summand term.
Then

TK(X0) = (µ0.β1β2...βK
)
(r
d

)K (
X0 +

a0.β1β2...βK

mk0
0 mk1

1 ...m
kd−1

d−1

)
and finally

TK(X0) = (µ0.β1β2...βK
)
(r
d

)K
(X0) +

a0.β1β2...βK

dK
. (2.3)

2.1 A Quick Remark

Scott Aaronson [1] considered a different type of function, where ⊥ is taken as
a halt symbol for some given modulo residue. Of note is theMarxen-Buntrock
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machine, which has some relationship with the Busy-Beaver function. This
specific Collatz-type function has d = 3. If we consider the two modulo
residues it contains which consist of affine functions alone, then the resul-
tant multifractal measure will converge to the Lebesgue measure. However,
a somewhat ”natural” generalization is instead to take w0 = 1

2
, w1 = 1

2
and

w2 = 0, where w2 is a third weight which corresponds to ⊥. Assuming this,
it’s fairly trivial to prove that at K → ∞ the global exponent contains ⊥,
which should be a sufficient condition to prove convergence of the function.

There are 2 problems, however. The first is that this wouldn’t exclude
the existence of arbitrarily long orbits of the function, and second that the
introduction of this extra weight causes the Hölder condition to be violated.
As Mandelbrot stated in contrast however, for physical systems the condi-
tion that the Hölder exponent is finite actually can be violated. A full and
complete proof of convergence of such a function is beyond the scope of this
paper, however, as that would require more advanced notions in geometric
measure theory.

3 Housekeeping

Theoretically, more rigmarole is required specifically because we took a0.β1β2...βK

as arbitrary, then it is possible for it to attain an unbounded growth rate as
K → ∞.

Practically, however, it is only necessary to obtain the maximal transfor-
mation of a as the iteration is incremented, then we can produce an upper
bound for TK and determine the constant’s value computationally. It is
strongly suspected, though due to Conway’s uncomputability proof [2], that
it is impossible to find an exact expression for iteration.

As we will see later on, this is not so much a problem as it is just a
mild annoyance which constrains the statements we can make, and indeed
the main derivation is an upper bound. Some housekeeping is required first,
however, before we can start evaluating specific CFs.

Theorem 1. Assume T is not part of a cycle, then

a0.β1β2...βK

dK
≤

ā1+(K−1 (mod d))

d1+(K−1 (mod d))

(m0m1...md−1

dd

)⌊K−1
d

⌋
+ād

(m0m1...md−1

dd

)⌊K−1
d

⌋ − 1

m0m1...md−1 − dd

for K ∈ N, where ā1+(K−1 (mod d)) is a constant dependent on the modulo
residue of K.
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Proof. We can first define accelerated iteration, so we construct an iter-
ated flow equation which will pass through the function’s maximum, so

TK ◦ TK ◦ ... ◦ TK︸ ︷︷ ︸
M times

(X0) =

(
(µ0.β1β2...βK

)
(r
d

)K)M

X0+(a0.β1β2...βK
)

(
(µ0.β1β2...βK

)
(
r
d

)K)M − 1

(µ0.β1β2...βK
)(r)K − dK

.

(3.1)
This is simply the expression for TKM(X0) for a fixed repeating se-

quence of modulo residues β1β2...βK . However, observe that since this is
an affine transformation we know the part independent of X0 is equal to
a0.β1β2..βKM

/dKM , so

a0.β1β2...βK

(
(µ0.β1β2...βK

)
(
r
d

)K)M − 1

(µ0.β1β2...βK
) (r)K − dK

=
a0.β1β2...βKM

dKM
. (3.2)

Choosing K and M corresponds to the addition of KM digits to the
measure’s adic decimal.

Note that while this may be sufficient for sequences of lengthKM , it’s not
so clear for sequences of length i+KM for some initial choice of a sequence
β1β2...βi. For this we will offer two separate proofs, with the first one being
trivial. First we can observe that TKM ◦ T i(X0) = T i+KM(X0). One can
then see that

TKM◦T i(X0) =

(
(µ0.β1β2...βK

)
(r
d

)K)M (
(µ0.β1β2...βi

)X0 +
a0.β1β2...βi

di

)
+
a0.β1β2...βKM

dKM

=
(
µ0.β1β2...βi+KM

)
X0 +

a0.β1β2...βi

di

(
(µ0.β1β2...βK

)
(r
d

)K)M

+
a0.β1β2...βKM

dKM
.

Thus

a0.β1β2...βi+KM

di+KM
=

a0.β1β2...βi

di

(
(µ0.β1β2...βK

)
(r
d

)K)M

+a0.β1β2...βK

(
(µ0.β1β2...βK

)
(
r
d

)K)M − 1

(µ0.β1β2...βK
) (r)K − dK

for a fixed repeating sequence β1β2...βK from βi+1 to βi+KM . We can also
prove it by utilizing the direct definition of a by going back to its introduction
in section 1. So, assume that a0.β1β2...βi+KM

is fixed at a single exponent
determined by β1β2...βK from residues βi+1 to βi+KM , then

a0.β1β2...βi+KM
=

i+KM∑
j=1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
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=
i∑

j=1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
+

i+KM∑
j=i+1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
.

It is fairly trivial to show that the first summation is equal to

i∑
j=1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
= (mk0

0 mk1
1 ...m

kd−1

d−1 )
M

i∑
j=1

rβj−1
dj−1

(
i∏
j

mβj

)

= (mk0
0 mk1

1 ...m
kd−1

d−1 )
Ma0.β1β2...βi

.

Where the kis are the frequencies of digits in the sequence β1β2...βK . For
the remaining summation it’s not as clear, however. Though one can observe
that

i+K∑
j=i+1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
= di(mk0

0 mk1
1 ...m

kd−1

d−1 )
M

K∑
j=1

rβj−1
dj−1

m1(x)m2(x)...mj(x)

= di(mk0
0 mk1

1 ...m
kd−1

d−1 )
M

K−1∑
j=0

rβj
dj

m0(x)m1(x)...mj(x)
.

Going back to our definitions, observe, however, that the summation is simply

K−1∑
j=0

rβj
dj

m0(x)m1(x)...mj(x)
=

(
a0.β1β2...βK

mk0
0 mk1

1 ...m
kd−1

d−1

)

which then brings our original term equal to

di(mk0
0 mk1

1 ...m
kd−1

d−1 )
M−1a0.β1β2...βK

.

In fact since the same sequence of modulo residues is repeated across each
iteration, for the remaining intervals from i + K + 1 to i + KM this value
will be the same, so

i+2K∑
j=i+K+1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
= di+K(mk0

0 mk1
1 ...m

kd−1

d−1 )
M−1

K∑
j=1

rβj−1
dj−1

m1(x)m2(x)...mj(x)

= di+K(mk0
0 mk1

1 ...m
kd−1

d−1 )
M−2a0.β1β2...βK

...
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i+KM∑
j=i+KM−K+1

rβj−1
dj−1

(
i+KM∏

j

mβj

)
= di+K(M−1)(mk0

0 mk1
1 ...m

kd−1

d−1 )
K∑
j=1

rβj−1
dj−1

m1(x)m2(x)...mj(x)

= di+K(M−1)a0.β1β2...βK
.

So then finally we can observe that this entire sum is equal to

dia0.β1β2...βK

(
M∑
j=1

dK(j−1)(mk0
0 mk1

1 ...m
kd−1

d−1 )
M−j

)
.

Rearranging this we get

dia0.β1β2...βK

(
M−1∑
j=0

dK(M−j−1)(mk0
0 mk1

1 ...m
kd−1

d−1 )
j

)

= di+KM
(a0.β1β2...βK

dK

)M−1∑
j=0

((m0

d

)k0 (m1

d

)k1
...
(md−1

d

)kd−1

)j

= di+KM
(a0.β1β2...βK

dK

)M−1∑
j=0

(
µ0.β1β2...βK

(r
d

)K)j

= di+KMa0.β1β2...βK

(
µ0.β1β2...βK

(
r
d

)K)M − 1

µ0.β1β2...βK
(r)K − dK

.

So then finally we can put it all together such that

a0.β1β2...βi+KM

di+KM
=

a0.β1β2...βi

di

(
µ0.β1β2...βK

(r
d

)K)M

+a0.β1β2...βK

(
µ0.β1β2...βK

(
r
d

)K)M − 1

µ0.β1β2...βK
(r)K − dK

.

(3.3)
Otherwise there isn’t much to say about this expression, but chiefly we

can verify it’s correct by observing that choosing β1β2...βi ≡ β1β2...βK is
exactly equivalent to taking M + 1.

It should be stated now that the i is used because we are interested
in finding a mapping to the congruence class K → K (mod d). So since
Tm ◦ T n = Tm+n we’re finding

TK(X0) →
{
T 1+dM(X0), T

2+dM(X0), ..., T
d+dM(X0)

}
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which is an upper bound.
We are specifically interested in the maximal transformation, so the choice

of K, ki such that a0.β1β2...βK
/dK is maximized. So, we can take the minimal

covering of the measure’s fractal set by taking K = d, ki = 1 such that

a0.β1β2...βi+dM

di+dM
≤ a0.β1β2...βi

di
µ(IMd )

(r
d

)dM
+ a0.β1β2...βd

µ(IMd )
(
r
d

)dM − 1

µ(I1d) (r)
d − dd

. (3.4)

Note that this bound is valid even for an aperiodic sequence, since as Man-
delbrot showed the coarse exponent will lie on the interval (αmin, αmax).

The IMd is used to denote the interval containing the global exponent,
and indicates the measure is d-dimensional with M in the address for each
dimension. Furthermore, from now on M will be utilized in iteration as op-
posed to K. This is a purely a cosmetic choice, but is done to emphasize
that we have already chosen a value for K, so it’s fixed.

The presence of the measure in 3.3. proves that a has nonzero Haus-
dorff dimension, and in fact it must have the same spectrum as µ, so an
equivalent statement is simply that we are fixing the a0.β1β2...βK

/dK at its
Hausdorff/capacity dimension.

The problem then becomes about finding

S = {ā1, ā2, ..., ād}

which form a set of constants where āi is the maximal constant among all the
choices for a0.β1β2...βi

on Z in the path of the global exponent, so the sequence
β1β2...βi is without repeated residues.

All of these indices can then be rescaled according to the floor function
⌊M−1

d
⌋ as the transformation for i + dM → i + 1 + dM is equivalent to

swapping a constant such that āM (mod d) → āM+1 (mod d). The M is shifted
backwards by 1 due to the initial iteration index being of length i. Then, we
find

a0.β1β2...βM

dM
≤

ā1+(M−1 (mod d))

d1+(M−1 (mod d))

(m0m1...md−1

dd

)⌊M−1
d

⌋
+ād

(m0m1...md−1

dd

)⌊M−1
d

⌋ − 1

m0m1...md−1 − dd

for M ∈ N and ā1+(M−1 (mod d)) ∈ S.
■

We can apply this back to our original definition in 2.3, so

TM(X0) ≤ (µ0.β1β2...βM
)
(r
d

)M
(X0) +

ā1+(M−1 (mod d))

d1+(M−1 (mod d))

(m0m1...md−1

dd

)⌊M−1
d

⌋
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+ād

(m0m1...md−1

dd

)⌊M−1
d

⌋ − 1

m0m1...md−1 − dd
. (3.5)

In practice, however, computing the āi is easier said than done. We can
replace the term with its upper bound as we know that max(S) = ād. The
proof of this is very simple, as since we already know that there’s only one
sequence of length d+dM where the function achieves its absolute maximum
it must be that T i+dM(X0) < T d+dM(X0), i ∈ [1, d − 1]. This is where the
function’s coarse exponent is equal to the global exponent for all K.

Then let B be the set of all affine transformations fi =
mix+ri

d
for a given

T , then let P (B) be the set of all permutations of B with each element
composed together, then the value of ād can be given by

ād = max(S) = max{ddv(x)−m0m1...md−1(x)|v ∈ P (B)}

which gives us the much simpler upper bound

a0.β1β2...βM

dM
≤ ād

(m0m1...md−1

dd

)1+⌊M−1
d

⌋ − 1

m0m1...md−1 − dd
.

There is one more scenario, and that’s if all the āi are negative while X0 ∈ N+

or all the āi are positive while X0 ∈ N−. in which case we can take āi = 0
for all i.

Conversely, suppose X0 ∈ N−, then the minimal ad, which we will denote

¯
ad, can instead be given by a simple change of sign for the ād. Otherwise,
none of our assumptions are altered.

4 Multifractality

Matthews proposed a series of conjectures surrounding CFs, and it can be
shown that these conjectures are resolved through multifractal analysis. This
section is dedicated to that.

Theorem 2. If m0m1...md−1 > dd, then ∀x0, limM→∞ TM(x0) = ∞ almost
surely. If m0m1...md−1 < dd, then ∀x0, limM→∞ TM(x0) ∈ Ω where Ω is
some finite cycle.

Proof. Let Ω be a cycle of T , then evaluating the upper bound in 3.5
gives us

lim
M→∞

TM(X0) → Ω,
m0m1...md−1

dd
< 1
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or
lim

M→∞
TM(X0)

as→ ∞,
m0m1...md−1

dd
> 1.

The proof of this is a fairly simple application of convergence of random
variables. In particular, as Mandelbrot showed the measure can be inter-
preted as a random variable with the global exponent being it’s expecta-
tion, and at the global exponent the multipliers will then grow according to(
(m0m1...md−1)

1
d/d
)M

. It’s then a straightforwards application of the law of

large numbers which proves convergence. Note that µ > 0 always, and this
is for the same reason as given by Mandelbrot.

It is important to state that in the case m0m1...md−1 > dd there will be
some exceptional set of x0 for which T limits to Ω, which will have natural
density 0. But as M → ∞ the measure will either limit towards Ω or ∞ but
can’t exhibit other behavior as we are only looking at relatively prime CFs,
meaning the measure is never Lebesgue. This being the same condition as
m0m1...md−1 ̸= dd.
■

While the upper bound tells us the conditions for when a function will
always converge to a cycle, it does not tell us what the largest cycle is or how
to find it. Though when TM(X0) ∈ Ω it will have an associated repeating
d-adic sequence ϵ1ϵ2...ϵ|Ω|, and this will correspond to only a singular scaling
exponent. As M → ∞ then T ’s associated modulo residue frequencies will
limit towards the value

φ|Ωi| =
|Ωi|
|Ω|

.

Where Ωi ⊆ Ω is the subset of elements in Ω such that x ∈ Ωi, x ≡ i (mod d)
with the convention |Ω| = card(Ω) for a set.

Assume TM(X0) converges to Ω for some value of M , then T ’s coarse
exponent will converge to the local exponent given by

αΩ = α(0.ϵ1ϵ2ϵ3...) = −
d−1∑
i=0

φ|Ωi| logd(wi).

This value will be indicated with αΩ in the future. The principal problem
being that we have no immediate way to derive Ω’s invariant measure

µ0.ϵ1ϵ2...ϵ|Ω| =
d−1∏
i=0

w
|Ωi|
i .
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Which the |Ωi| are clearly dependent on the individual choice of ri and initial
choice of x0.

When T is in a cycle αΩ ends up being the only non-vanishing exponent, or
rather that T is infinitely more present on αΩ than any other exponent. One
might be led to believe that this is the information dimension α1. However
one can construct instances where αΩ = α0, the most famous example being
the 3X + 1 function, which would then imply that α0 = α1, which clearly
contradicts µ having a spectrum. The problem is that at ∞ the traditional
definition of α1 is not applicable as

lim
M→∞

(d−|Ω|)M = 0.

Which the ”normal” α1 is only really valid for when the measure is not part
of a CF, in which case we would expect the sequence to remain Bernoulli at
∞. So at ∞ then µ is contained in a set of measure 0. We will instead need
to look further to derive the information dimension.

Furthermore, T can have an arbitrary number of cycles each with its own
exponent, each corresponding to the root of disjoint and infinite trees over
Z. So in reality µ describes a number of separate first order spectrums equal
to the number of cycles present, and not just a single spectrum.

5 A Theory of Cycles

Shalom Eliahou in his 1991 paper [3] derived a very interesting inequality of
the upper/lower bounds on the cycles of the 3X + 1 function. Suppose we
take T as the 3X + 1 function and Ω1 ⊂ Ω as the set of odd elements of a
cycle, then his derivation is that

log2(3 +M−1) <
card(Ω)

card(Ω1)
≤ log2(3 +m−1)

where M = max(Ω) and m = min(Ω).
This is a very interesting inequality, and perhaps surprising to some de-

gree. However, the method’s main problem is that it does not consider the
multifractal and scale invariant properties of the function. Though, since this
paper is dedicated to finding the cycles of CFs and not just the 3X+1 prob-
lem in particular, it’s then interesting to consider taking Eliahou’s method
to its logical conclusion on how to derive upper/lower bounds on the cycles
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of any given function.
In the same manner as Eliahou’s paper∏

x∈Ω

x =
∏
x∈Ω

T (x)

∏
x∈Ω

T (x)

x
= 1

T (x)

x
=

mi − ri
x

d
if x ≡ i (mod d).

Again to make our lives easier we will only consider −ri from here on out as
again, the ri’s domain Z is closed with respect to a change of sign, so∏

x∈Ω0

(
m0 +

r0
x

) ∏
x∈Ω1

(
m1 +

r1
x

)
...

∏
x∈Ωd−1

(
md−1 +

rd−1

x

)
= d|Ω|.

Then, let Pi = max(Ωi) and ρi = min(Ωi). The inequality will then
follow

d−1∏
i=0

(
mi +

ri
Pi

)|Ωi|

≤ d|Ω| ≤
d−1∏
i=0

(
mi +

ri
ρi

)|Ωi|

.

Then miraculously, and without even realizing it, we have now bounded Ω’s
Borel set simply by utilizing some basic assumptions.

Also observe that these two expressions will be equal if and only if
max(Ωi) = min(Ωi) for all i. Then finally we take the logarithm of this
expression to extract |Ω|, so

d−1∑
i=0

|Ωi| logd
(
mi +

ri
Pi

)
≤ |Ω| ≤

d−1∑
i=0

|Ωi| logd
(
mi +

ri
ρi

)
. (5.1)

Then we take the reciprocal

1∑d−1
i=0 |Ωi| logd

(
mi +

ri
Pi

) ≥ 1

|Ω|
≥ 1∑d−1

i=0 |Ωi| logd
(
mi +

ri
ρi

) ,
and finally

−
∑d−1

i=0 |Ωi| ln(wi)∑d−1
i=0 |Ωi| ln

(
mi +

ri
Pi

) ≥ αΩ ≥ −
∑d−1

i=0 |Ωi| ln(wi)∑d−1
i=0 |Ωi| ln

(
mi +

ri
ρi

) .
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Note that the numerator is actually a positive number as wi < 1 for all i, so
the inequality is not reversed again. While this initially appears quite intim-
idating, recall that it is simply an interval on µ’s large deviation spectrum.
Some notation is in order, so we’ll use

αT (P ) = −
∑d−1

i=0 |Ωi| ln(wi)∑d−1
i=0 |Ωi| ln

(
mi +

ri
Pi

) and αT (ρ) = −
∑d−1

i=0 |Ωi| ln(wi)∑d−1
i=0 |Ωi| ln

(
mi +

ri
ρi

) .
Now, to go futher we will need to go back to the notion of ”measure”.

The αΩ does not have measure, after all it’s just a point! Conversely, the
interval defined by the P and ρ does have positive measure when

αT (P )− αT (ρ) > 0.

Observe that this is fulfilled if and only if max(Ωi) ̸= min(Ωi) for at least
one i, so if we assume this then αT (P ) and αT (ρ) form an open interval on
(αmin, αmax).

As we showed before, as M → ∞ if µ’s positive measure is concentrated
on a single α, then it is not contained in a Borel set. However in the converse
situation given a set α ⊂ (αmin, αmax) there must exist some corresponding
Borel set in (0, 1) which contains µ. Recall that the dimension of the measure
µ is given by

dimH(µ) = inf{dimH(E) : E is a Borel set with µ(E) > 0}.

Which then we must conclude

dimH(µ) = inf(f(αT (ρ)), f(αT (P ))) = f(αT (ρ)) = αT (ρ).

Note that the f(α) corresponds to Rényi entropies. So, as the information
dimension is the exponent for which f(α) = α, it must then satisfy αT (ρ) < 1.
Observe then it should trivially follow that

(0, 1) ∩ (αT (ρ), αT (P )) ̸= {∅}.

There is an exception, however, and that’s for when |Ωi| = 0 for some i. The
reason for this being somewhat subtle, as when this happens µ is no longer
supported on its original Cantor set C, and in this case

sptµ ⊂ C.
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We cannot guarantee anything about µ as our assumptions are violated, so
we will ignore cycles with this property in the future. Furthermore, we must
also ignore cycles containing 0 as when this happens we cannot guarantee
the expression in 5.1 is defined.

This serves as a good segue into a proof of the largest cycle’s location,
but first we need to establish some conditions.

Consider two cycles of the same function T which we will denote Ω̄ and

¯
Ω, where ρ̄, P̄ ∈ Ω̄ and

¯
ρ,

¯
P ∈

¯
Ω. If we view their respective Ωi as vectors,

then αT : Ω → (αmin, αmax) is a function space of the vector’s L∞-norm, thus
the condition that αT (ρ̄) > αT (

¯
P ) is equivalent to min(Ω̄) > max(

¯
Ω) on N+

and max(Ω̄) < min(
¯
Ω) on N−, which the latter follows from the norm being

over the absolute value of Ω’s elements. And this is possible because it is
a function across finite sets, which is exactly why it’s a function space and
thus preserves the norm. Furthermore, this gives perhaps a more rigorous
justification for the derivation of dimH(µ) = αT (ρ) from above, as under the
L∞-norm αT (ρ) is uniformly convergent to the infimum.

We can then begin some analysis, so let

Ĉ =
⋃

αT (P )≥1

Ω

be the union of all Ω ⊂ Z for a given T such that αT (P ) ≥ 1.

Theorem 3. No cycles can exist on the interval (−∞,min(Ĉ))∪(max(Ĉ),∞).

Proof. Suppose max(Ĉ) ∈ N+. We can denote a hypothetical cycle with a
minimum larger than max(Ĉ) as Ω̄, meaning max(Ĉ) < min(Ω̄). Conversely,
suppose min(Ĉ) ∈ N−. We’ll denote a hypothetical cycle with a maximum
smaller than min(Ĉ) as

¯
Ω, meaning min(Ĉ) > max(

¯
Ω). Yet, as we showed

above these conditions lead to αT (ρ̄) and αT (
¯
ρ) being greater than or equal

to 1, which furnishes the required contradiction. Clearly then Ω̄ and
¯
Ω can-

not exist.
There are a couple more situations, and that’s if the function lacks a cycle

with positive measure on either N+ or N−. However, in this case as again
the norm is with respect to the absolute value of the cycle’s elements, then
we need only look for a cycle with αT (P ) ≥ 1 on the opposing domain to
bound the location of possible cycles.

The last situation is if there are no cycles with positive measure on either
domain, in which case we cannot say anything. Recall these derivations are
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only if max(Ωi) ̸= min(Ωi) for at least one i and |Ωi| ≠ 0 for all i.
■

In all likelihood the latter restriction can be dropped with either a more
careful derivation of the initial bounds on |Ω|, or an altering of the infor-
mation dimension’s bound. A notable exception happens when d = 2, as
if either |Ω0| or |Ω1| is 0 then the function must be at a fixed point and
wont have positive measure. So far inequalities have been presented without
evaluating any specific function. This section is dedicated to both providing
examples and expanding upon the previous sections.

In theory these ρi, Pi may be able to be found analytically, but this is
either incredibly difficult or impossible. However, theorem 3 entails it can
be done empirically by examining a measurable cycle and calculating to de-
termine if αT (P ) > 1. If not, then larger/smaller cycle’s exponents must be
computed. This algorithm is then continued until the above conditions are
fulfilled.
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