
MODULE THEORY
An approach to linear algebra

Electronic Edition

T. S. Blyth
Professor Emeritus,

University of St Andrews

0 0 0






y







y







y

0−−−−−−−→A∩ B−−−−−−−−→B−−−−−−−→ B/(A∩ B)−−−−−→0






y







y







y

0−−−−−−−−→A−−−−−−−−−→M−−−−−−−−→M/A−−−−−−−→0






y







y







y

0−−−−−→A/(A∩ B)−−−−−→M/B−−−−−→M/(A+ B)−−−−−→0






y







y







y

0 0 0



PREFACE

to the Second O.U.P. Edition 1990

Many branches of algebra are linked by the theory of modules. Since the notion of a
module is obtained essentially by a modest generalisation of that of a vector space,
it is not surprising that it plays an important role in the theory of linear algebra.
Modules are also of great importance in the higher reaches of group theory and ring
theory, and are fundamental to the study of advanced topics such as homological
algebra, category theory, and algebraic topology. The aim of this text is to develop
the basic properties of modules and to show their importance, mainly in the theory
of linear algebra.

The first eleven sections can easily be used as a self-contained course for first
year honours students. Here we cover all the basic material on modules and vector
spaces required for embarkation on advanced courses. Concerning the prerequisite
algebraic background for this, we mention that any standard course on groups, rings,
and fields will suffice. Although we have kept the discussion as self-contained as pos-
sible, there are places where references to standard results are unavoidable; readers
who are unfamiliar with such results should consult a standard text on abstract alge-
bra. The remainder of the text can be used, with a few omissions to suit any particular
instructor’s objectives, as an advanced course. In this, we develop the foundations of
multilinear and exterior algebra. In particular, we show how exterior powers lead to
determinants. In this edition we include also some results of a ring-theoretic nature
that are directly related to modules and linear algebra. In particular, we establish the
celebrated Wedderburn–Artin Theorem that every simple ring is isomorphic to the
ring of endomorphisms of a finite-dimensional module over a division ring. Finally,
we discuss in detail the structure of finitely generated modules over a principal ideal
domain, and apply the fundamental structure theorems to obtain, on the one hand,
the structure of all finitely generated abelian groups and, on the other, important
decomposition theorems for vector spaces which lead naturally to various canonical
forms for matrices.

At the end of each section we have supplied a number of exercises. These provide
ample opportunity to consolidate the results in the body of the text, and we include
lots of hints to help the reader gain the satisfaction of solving problems.

Although this second edition is algebraically larger than the first edition, it is
geometrically smaller. The reason is simple: the first edition was produced at a time
when rampant inflation had caused typesetting to become very expensive and, re-
grettably, publishers were choosing to produce texts from camera-ready material
(the synonym of the day for typescript). Nowadays, texts are still produced from
camera-ready material but there is an enormous difference in the quality. The inter-
vening years have seen the march of technology: typesetting by computer has arrived
and, more importantly, can be done by the authors themselves. This is the case with
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the present edition. It was set entirely by the author, without scissors, paste, or any
cartographic assistance, using the mathematical typesetting system TEX developed
by Professor Donald Knuth, and the document preparation system LATEX developed
by Dr Leslie Lamport. To be more precise, it was set on a Macintosh II computer us-
ing the package MacTEX developed by FTL systems Inc. of Toronto. We record here
our gratitude to Lian Zerafa, President of FTL, for making this wonderful system
available.

St Andrews
August 1989 T.S.B.

Added January 2018

The advance of technology has brought us into the era of electronic books, thus
making it possible to resurrect many fine texts that have long been out of print and
therefore difficult and expensive to obtain. What is reproduced here is basically the
same as the 1990 printed second edition. However, set on my iMac using TeXShop
with the package [charter]mathdesign, it takes up fewer pages. In preparing this
digital edition I have taken care of typographical errors that were present in the
printed second edition. I record here my grateful thanks to those who have been
kind enough to communicate them to me. The main difference between this edition
and the 1990 printed second edition is of course that this one is free to download!
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1
MODULES; VECTOR SPACES; ALGEBRAS

In this text our objective will be to develop the foundations of that branch of math-
ematics called linear algebra. From the various elementary courses that he has fol-
lowed, the reader will recognise this as essentially the study of vector spaces and
linear transformations, notions that have applications in several different areas of
mathematics.

In most elementary introductions to linear algebra the notion of a determinant
is defined for square matrices, and it is assumed that the elements of the matrices
in question lie in some field (usually the field R of real numbers). But, come the
consideration of eigenvalues (or latent roots), the matrix whose determinant has to
be found is of the form









x11 −λ x12 . . . x1n
x21 x22 −λ . . . x2n
...

...
. . .

...
xn1 xn2 . . . xnn −λ









and therefore has its entries in a polynomial ring. This prompts the question of
whether the various properties of determinants should not really be developed in
a more general setting, and leads to the wider question of whether the scalars in
the definition of a vector space should not be restricted to lie in a field but should
more generally belong to a ring (which, as in the case of a polynomial ring, may be
required at some stage to be commutative).

It turns out that the modest generalisation so suggested is of enormous impor-
tance and leads to what is arguably the most important structure in the whole of
algebra, namely that of a module. The importance of this notion lies in a greatly ex-
tended domain of application, including the higher reaches of group theory and ring
theory, and such areas as homological algebra, category theory, algebraic topology,
etc..

Before giving a formal definition of a module, we ask the reader to recall the
following elementary notions. If E is a non-empty set then an internal law of compo-
sition on E is a mapping f : E × E→ E. Given (x , y) ∈ E × E it is common practice
to write f (x , y) as x + y , or x y , except when it might cause confusion to use such
additive or multiplicative notations, in which case notations such as x ? y , x ◦ y ,
x � y , etc., are useful. A set on which there is defined an internal law of composi-
tion that is associative is called a semigroup. By a group we mean a semigroup with
an identity element in which every element has an inverse. By an abelian group we
mean a group in which the law of composition is commutative. By a ring we mean
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a set E endowed with two internal laws of composition, these being traditionally
denoted by (x , y) 7→ x + y and (x , y) 7→ x y , such that

(1) E is an abelian group under addition;
(2) E is a semigroup under multiplication;
(3) (∀x , y, z ∈ E) x(y + z) = x y + xz, (y + z)x = y x + zx .

A ring R is said to be unitary if it has a multiplicative identity element, such an
element being written 1R. By an integral domain we mean a unitary ring in which
the non-zero elements form a (cancellative) semigroup under multiplication. By a
division ring we mean a unitary ring in which the non-zero elements form a group
under multiplication. A ring is commutative if the multiplication is commutative. By
a field we mean a commutative division ring.

In what follows we shall have occasion to consider mappings of the form f :
F × E → E where F and E are non-empty sets. Such a mapping will be denoted by
(λ, x) 7→ λx and called a left action on E by elements of F . Although here λx is
simply the juxtaposition of λ ∈ F and x ∈ E with λ written on the left, it is often
often called left multiplication of elements of E by elements of F . In this context the
elements of F are often called scalars. In a similar way we can define a right action
on E by elements of F to be a mapping f : E × F → E described by (x ,λ) 7→ xλ.

• It should be noted that a particular case of an external law is obtained by
taking F = E in which case we obtain a mapping f : E × E → E which is an
internal law of composition on E.

Definition 1.1 Let R be a unitary ring. By an R-module, or a module over R, we shall
mean an additive abelian group M together with a left action R×M → M , described
by (λ, x) 7→ λx , such that

(1) (∀λ ∈ R)(∀x , y ∈ M) λ(x + y) = λx +λy;
(2) (∀λ,µ ∈ R)(∀x ∈ M) (λ+µ)x = λx +µx;
(3) (∀λ,µ ∈ R)(∀x ∈ M) λ(µx) = (λµ)x;
(4) (∀x ∈ M) 1R x = x .

A module over a field F is called an F-vector space.

• An R-module, as we have defined it, is often called a left R-module. The reason
for this is that the scalars are written on the left. By writing xλ instead of λx
throughout and altering (3) and (4) of the definition to

(3′) (∀x ∈ M)(∀λ,µ ∈ R) (xλ)µ= x(λµ);
(4′) (∀x ∈ M) x1R = x ,

we obtain what is called a right R-module, the external law in this case being a
right action on M . In what follows we shall make the convention that the term
R-module will always mean a left R-module, and whenever we have occasion
to talk about a right R-module we shall use that adjective.

• Some authors prefer not to include the identity element 1R in the above defi-
nition. What we have called an R-module they would call a unitary R-module.
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If M is an R-module then we shall denote the additive identity of M by 0M , and
that of R by 0R. The following elementary properties will be used without reference
in what follows.

Theorem 1.1 Let M be an R-module. Then
(1) (∀λ ∈ R) λ0M = 0M ;
(2) (∀x ∈ M) 0R x = 0M ;
(3) (∀λ ∈ R)(∀x ∈ M) λ(−x) = −(λx) = (−λ)x.

Moreover, when R is a division ring,
(4) λx = 0M implies that λ= 0R or x = 0M .

Proof (1) We have λ0M = λ(0M +0M ) = λ0M +λ0M whence it follows that λ0M =
0M .
(2) 0R x = (0R + 0R)x = 0R x + 0R x whence 0R x = 0M .
(3) By (1), we have 0M = λ0M = λ[x + (−x)] = λx + λ(−x) whence λ(−x) =

−λx; and, by (2), we have 0M = 0R x = [λ+(−λ)]x = λx+(−λ)x whence (−λ)x =
−λx .
(4) Suppose now that R is a division ring and that λx = 0M with λ 6= 0R. Then

using the fact that λ has a multiplicative inverse we have x = 1R x = (λ−1λ)x =
λ−1(λx) = λ−10M = 0M . �

Example 1.1 Every unitary ring R is an R-module; the action R×R→ R is the mul-
tiplication in R. Likewise, any field F is an F -vector space.

Example 1.2 Every additive abelian group M can be considered as a Z-module;
here the action Z×M → M is given by (m, x) 7→ mx where

mx =















x + x + · · ·+ x
︸ ︷︷ ︸

m

if m> 0;

0 if m= 0;

−|m|x if m< 0.

Example 1.3 The field C of complex numbers can be considered as an R-vector
space; the action R×C→ C is described by

(λ, x + i y) 7→ λ(x + i y) = λx + iλy.

More generally, if R is a unitary ring and S is a subring of R that contains 1R then R
can be considered as an S-module; here the action is (s, r) 7→ sr.

Example 1.4 If R is a unitary ring and n is a positive integer consider the abelian
group Rn of all n-tuples of elements of R under the component-wise addition

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

Define a left action R× Rn→ Rn in the obvious way, namely by

r(x1, . . . , xn) = (r x1, . . . , r xn).

Then Rn becomes an R-module. Similarly, if F is a field then F n is an F -vector space.
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Example 1.5 Let R be a unitary ring and let RN denote the set of all mappings f :
N→ R (i.e. the set of all sequences of elements of R). Endow RN with the obvious
addition, namely for f , g ∈ RN define f + g by the prescription

( f + g)(n) = f (n) + g(n).

Clearly, RN forms an abelian group under this law of composition. Now define an
action R× RN→ RN by (r, f ) 7→ r f where r f ∈ RN is given by the prescription

(r f )(n) = r f (n).

This then makes RN into an R-module.

Each of the above examples can be made into a right module in the obvious way.

Definition 1.2 Let R be a commutative unitary ring. By an R-algebra we shall mean
an R-module A together with an internal law of composition A×A→ A, described by
(x , y) 7→ x y and called multiplication, which is distributive over addition and such
that

(∀λ ∈ R)(∀x , y ∈ A) λ(x y) = (λx)y = x(λy).

By imposing conditions on the multiplication in the above definition we obtain
various types of algebra. For example, if the multiplication is associative then A is
called an associative algebra (note that in this case A is a ring under its internal laws
of addition and multiplication); if the multiplication is commutative then A is called
a commutative algebra; if there is a multiplicative identity element in A then A is said
to be unitary. A unitary associative algebra in which every non-zero element has an
inverse is called a division algebra.

Example 1.6 C is a division algebra over R.

Example 1.7 Let R be a commutative unitary ring and consider the R-module RN of
Example 1.5. Given f , g ∈ RN, define the product map f g : N→ R by the prescription

( f g)(n) =
n
∑

i=1
f (i)g(n− i).

It is readily verified that the law of composition described by ( f , g) 7→ f g makes
RN into an R-algebra. This R-algebra is called the algebra of formal power series with
coefficients in R.

The reason for this traditional terminology is as follows. Let t ∈ RN be given by

t(n) =
§

1 if n= 1;
0 otherwise.

Then for every positive integer m the m-fold composite map

tm = t ◦ t ◦ · · · ◦ t
︸ ︷︷ ︸

m

is given by

tm(n) =
§

1 if n= m;
0 otherwise.
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Consider now (without worrying how to imagine the sum of an infinite number of
elements of RN or even questioning the lack of any notion of convergence) the formal
power series associated with f ∈ RN given by

ϑ = f (0)t0 + f (1)t1 + f (2)t2 + · · ·+ f (m)tm + · · · =
∑

i¾0
f (i)t i ,

where t0 = idR, the identity map on R. Since, as is readily seen,

(∀n ∈ N) ϑ(n) = f (n),
it is often said that f can be represented symbolically by the above formal power
series.

Example 1.8 If R is a unitary ring then the set Matn×n(R) of n× n matrices over R
is a unitary associative R-algebra.

EXERCISES

1.1 Let M be an abelian group and let End M be the set of all endomorphisms on M , i.e. the
set of all group morphisms f : M → M . Show that End M is an abelian group under
the law of composition ( f , g) 7→ f + g where

(∀x ∈ M) ( f + g)(x) = f (x) + g(x).

Show also that

(a) (End M ,+,◦) is a unitary ring;

(b) M is an End M -module under the action End M × M → M given by ( f , m) 7→
f ·m= f (m);

(c) if R is a unitary ring and µ : R→ End M is a ring morphism such that µ(1R) = idM ,
then M is an R-module under the action R× M → M given by (λ, m) 7→ λm =
[µ(λ)](m).

1.2 Let R be a unitary ring and M an abelian group. Prove that M is an R-module if and
only if there is a 1-preserving ring morphism f : R→ End M .

[Hint. ⇒ : For every r ∈ R define fr : M → M by fr(m) = rm. Show that fr ∈ End M
and let f be given by r 7→ fr .

⇐ : Use Exercise 1.1(c).]

1.3 Let G be a finite abelian group with |G|= m. Show that if n, t ∈ Z then

n≡ t (mod m) =⇒ (∀g ∈ G) ng = t g.

Deduce that G is a Z/mZ-module under the action Z/mZ×G→ G which is defined by
(n+mZ, g) 7→ ng. Conclude that every finite abelian group whose order is a prime p
can be regarded as a vector space over a field of p elements.

1.4 Let S be a non-empty set and R a unitary ring. If F is the set of all mappings f : S→ R
such that f (s) = 0 for almost all s ∈ S, i.e. all but a finite number of s ∈ S, show that F
is an R-module under the addition defined by ( f + g)(s) = f (s) + g(s) and the action
defined by (λ f )(s) = λ f (s).
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1.5 If R is a commutative unitary ring show that the set Pn(R) of all polynomials over R
of degree less than or equal to n is an R-module. Show also that the set P(R) of all
polynomials over R is a unitary associative R-algebra.

1.6 If A is a unitary ring define its centre to be

Cen A= {x ∈ A ; (∀y ∈ A) x y = y x}.

Show that Cen A is a unitary ring. If R is a commutative unitary ring, prove that A is
a unitary associative R-algebra if and only if there is a 1-preserving ring morphism
ϑ : R→ Cen A.

[Hint.⇒ : Denoting the action of R on A by (r, a) 7→ r · a, define ϑ by ϑ(r) = r · 1A.

⇐ : Define an action by (r, a) 7→ r · a = ϑ(r)a.]

1.7 Let S and R be unitary rings and let f : S→ R be a 1-preserving ring morphism. If M is
an R-module prove that M can be regarded as an S-module under the action S×M → M
given by (s, x) 7→ f (s)x .

1.8 Show that if V is a vector space over a field F then the set T of linear transformations
f : V → V is a unitary associative F -algebra. If F[X ] denotes the ring of polynomials
over F and α is a fixed element of T , show that V can be made into an F[X ]-module
by the action F[X ]× V → V defined by

(p, x) 7→ p ·α x = [p(α)](x).



2
SUBMODULES; INTERSECTIONS AND SUMS

If S is a non-empty subset of an additive group G then S is said to be a stable subset
of G, or to be closed under the operation of G, if

(∀x , y ∈ S) x + y ∈ S.

Equivalently, S is a stable subset of G if the restriction to S×S of the law of composi-
tion on G induces a law of composition on S, these laws being denoted by the same
symbol + without confusion. In this case it is clear that S is a semigroup. By a sub-
group of G we mean a non-empty subset that is stable and which is also a group with
respect to the induced law of composition. The reader will recall that a non-empty
subset H of a group G is a subgroup of G if and only if

(∀x , y ∈ H) x − y ∈ H.

Definition 2.1 By a submodule of an R-module M we mean a subgroup N of M that
is stable under the action of R on M , in the sense that if x ∈ N and λ ∈ R then
λx ∈ N .

It is clear that a non-empty subset N of an R-module M is a submodule of M if
and only if

(∀x , y ∈ N)(∀λ ∈ R) x − y ∈ N and λx ∈ N . (2.1)

These conditions can be combined into the single condition

(∀x , y ∈ N)(∀λ,µ ∈ R) λx +µy ∈ N . (2.2)

To see this, observe that if (2.1) holds then λx ∈ N and−µy ∈ N , whence λx+µy =
λx−(−µy) ∈ N . Conversely, if (2.2) holds then takingλ= 1R andµ= −1R we obtain
x − y ∈ N ; and taking µ= 0 we obtain λx ∈ N .

The notion of a subspace of a vector space is defined similarly. Likewise, we say
that a non-empty subset B of an R-algebra A is a subalgebra of A if

(∀x , y ∈ B)(∀λ ∈ R) x − y ∈ B, x y ∈ B, λx ∈ B.

Example 2.1 Let R be a unitary ring considered as an R-module (Example 1.1). The
submodules of R are precisely the left ideals of R. Likewise, if we consider R as a
right R-module the its submodules are precisely its right ideals.
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• Although we agree to omit the adjective ‘left’ when talking about modules, it
is essential (except in the case where R is commutative) to retain this adjective
when referring to left ideals as submodules of R.

Example 2.2 Borrowing some notions from analysis, let C be the set of continuous
functions f : [a, b]→ R. Clearly, C can be given the structure of an R-vector space
(essentially as in Example 1.5). The subset D that consists of the differentiable func-
tions on [a, b] is then a subspace of C; for, if f , g ∈ D then, as is shown in analysis,
(∀λ,µ ∈ R) λ f +µg ∈ D.

Example 2.3 If G is an abelian group then the submodules of the Z-module G are
simply the subgroups of G.

Example 2.4 The vector space C of Example 2.2 becomes an R-algebra when we
define a multiplication on C by ( f , g) 7→ f g where

(∀x ∈ [a, b]) ( f g)(x) = f (x)g(x).

It is readily verified that the subspace D is a subalgebra of C .

Our first result is a simple but important one.

Theorem 2.1 The intersection of any family of submodules of an R-module M is a
submodule of M.

Proof Suppose that (Mi)i∈I is a family of submodules of M . Then we observe first
that

⋂

i∈I
Mi 6= ; since every submodule, being a subgroup, contains the identity ele-

ment 0. Now, since each Mi is a submodule, we have

x , y ∈
⋂

i∈I
Mi =⇒ (∀i ∈ I) x , y ∈ Mi

=⇒ (∀i ∈ I) x − y ∈ Mi

=⇒ x − y ∈
⋂

i∈I
Mi

and
x ∈

⋂

i∈I
Mi ,λ ∈ R =⇒ (∀i ∈ I) λx ∈ Mi =⇒ λx ∈

⋂

i∈I
Mi .

Consequently,
⋂

i∈I
Mi is a submodule of M . �

The above result leads to the following observation. Suppose that S is a subset
(possibly empty) of an R-module M and consider the collection of all the submod-
ules of M that contain S. By Theorem 2.1, the intersection of this collection is a
submodule of M , and it clearly contains S. It is thus the smallest submodule of M to
contain S. We call this the submodule generated by S and denote it by 〈S〉. We shall
now give an explicit description of this submodule. For this purpose we require the
following notion.
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Definition 2.2 Let M be an R-module and let S be a non-empty subset of M . Then
x ∈ M is a linear combination of elements of S if there exist elements x1, . . . , xn in S
and scalars λ1, . . . ,λn in R such that

x =
n
∑

i=1
λi x i = λ1 x1 + · · ·+λn xn.

We denote the set of all linear combinations of elements of S by LC(S).

Theorem 2.2 Let S be a subset of the R-module M. Then

〈S〉=
§ {0} if S = ;;

LC(S) if S 6= ;.

Proof It is clear that if S = ; then the smallest submodule that contains S is the
smallest submodule of M , namely the zero submodule {0}. Suppose then that S 6= ;.
It is clear that LC(S) is a submodule of M . Moreover, S ⊆ LC(S) since for every x ∈ S
we have x = 1R x ∈ LC(S). As 〈S〉 is, by definition, the smallest submodule to contain
S, we therefore have 〈S〉 ⊆ LC(S). On the other hand, every linear combination of
elements of S clearly belongs to every submodule that contains S and so we have
the reverse inclusion LC(S) ⊆ 〈S〉, whence the result follows. �

Definition 2.3 We say that an R-module M is generated by the subset S, or that S is
a set of generators of M , when 〈S〉 = M . By a finitely generated R-module we mean
an R-module which has a finite set of generators.

One of the main theorems that we shall eventually establish concerns the struc-
ture of finitely generated R-modules where R is a particularly important type of ring
(in fact, a principal ideal domain). As we shall see in due course, this structure the-
orem has far-reaching consequences.

Suppose now that (Mi)i∈I is a family of submodules of an R-module M and con-
sider the submodule of M that is generated by

⋃

i∈I
Mi . This is the smallest submodule

of M that contains every Mi . By abuse of language it is often referred to as the sub-
module generated by the family (Mi)i∈I . It can be characterised in the following way.

Theorem 2.3 Let (Mi)i∈I be a family of submodules of an R-module M. If P?(I) de-
notes the set of all non-empty finite subsets of I then the submodule generated by

⋃

i∈I
Mi

consists of all finite sums of the form
∑

j∈J
m j where J ∈ P?(I) and m j ∈ M j .

Proof A linear combination of elements of
⋃

i∈I
Mi is precisely a sum of the form

∑

j∈J
m j for some J ∈ P?(I). �

Because of Theorem 2.3, we call the submodule generated by the family (Mi)i∈I
the sum of the family and denote it by

∑

i∈I
Mi . In the case where the index set I is
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finite, say I = {1, . . . , n}, we often write
∑

i∈I
Mi as

n
∑

i=1
Mi or as M1+ · · ·+Mn. With this

notation we have the following immediate consequences of the above.

Corollary 1 [Commutativity of
∑

]

If σ : I → I is a bijection then
∑

i∈I
Mi =

∑

i∈I
Mσ(i). �

Corollary 2 [Associativity of
∑

]

If (Ik)k∈A is a family of non-empty subsets of I with I =
⋃

k∈A
Ik then

∑

i∈I
Mi =

∑

k∈A

�

∑

i∈Ik

Mi

�

.

Proof A typical element of the right-hand side is
∑

k∈J

�

∑

i∈Jk

mi

�

where Jk ∈ P?(Ik)

and J ∈ P?(A). By associativity of addition in M this can be written as
∑

i∈K
mi where

K =
⋃

k∈J
Jk ∈ P?(I). Thus the right-hand side is contained in the left-hand side. As

for the converse inclusion, a typical element of the left-hand side is
∑

i∈J
mi where

J ∈ P?(I). Now J = J ∩ I =
⋃

k∈A
(J ∩ Ik) so if we define Jk = J ∩ Ik we have Jk ∈ P?(Ik)

and, by the associativity of addition in M ,
∑

i∈J
mi =

∑

k∈B

�

∑

i∈Jk

mi

�

where B ∈ P?(A).

Consequently the left-hand side is contained in the right-hand side. �

Corollary 3 (∀i ∈ I)
∑

i∈I
Mi = Mi +

∑

j 6=i
M j .

Proof Take A= {1, 2}, I1 = {i} and I2 = I \ I1 in the above. �

• Note that
⋃

i∈I
Mi 6=

∑

i∈I
Mi in general, for

⋃

i∈I
Mi need not be a submodule. For

example, take I = {1, 2} and let M1, M2 be the subspaces of the vector space
R2 given by M1 = {(x , 0) ; x ∈ R} and M2 = {(0, y) ; y ∈ R}. We have
M1 +M2 = R2 whereas M1 ∪M2 ⊂ R2.

Suppose now that M is an R-module and that A, B are submodules of M . We
know that A+B is the smallest submodule of M that contains both A and B, and that
A∩ B is the largest submodule contained in both A and B. The set of submodules of
M , ordered by set inclusion, is therefore such that every two-element subset {A, B}
has a supremum (namely A+ B) and an infimum (namely A∩ B). Put another way,
the set of submodules of M , ordered by set inclusion, forms a lattice. An important
property of this lattice is that it is modular, by which we mean the following.

Theorem 2.4 [Modular law] If M is an R-module and if A, B, C are submodules of
M with C ⊆ A then

A∩ (B + C) = (A∩ B) + C .
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Proof Since C ⊆ A we have A+C = A. Now (A∩B)+C ⊆ A+C and (A∩B)+C ⊆ B+C
and so we have

(A∩ B) + C ⊆ (A+ C)∩ (B + C) = A∩ (B + C).

To obtain the reverse inclusion, let a ∈ A∩ (B + C). Then a ∈ A and there exist b ∈
B, c ∈ C such that a = b+ c. Since C ⊆ A we have c ∈ A and therefore b = a− c ∈ A.
Consequently b ∈ A∩ B and so a = b+ c ∈ (A∩ B) + C . �

EXERCISES

2.1 Determine all the subspaces of the R-vector space R2. Give a geometric interpretation
of these subspaces. Do the same for R3.

2.2 Let M be an R-module. If S is a non-empty subset of M , define the annihilator of S in
R by

AnnR S = {λ ∈ R ; (∀x ∈ S) λx = 0}.

Show that AnnR S is a left ideal of R and that it is a two-sided ideal whenever S is a
submodule of M .

2.3 Describe the kernel of the ring morphism µ of Exercise 1.1.

2.4 Prove that the ring of endomorphisms of the abelian group Z is isomorphic to the ring
Z, and that the ring of endomorphisms of the abelian groupQ is isomorphic to the field
Q.

[Hint. Use Exercises 1.1 and 2.3; note that if f ∈ EndZ then f = µ[ f (1)].]

2.5 Let M be an R-module. If r, s ∈ R show that

r − s ∈ AnnR M ⇒ (∀x ∈ M) r x = sx .

Deduce that M can be considered as an R/AnnR M -module. Show that the annihilator
of M in R/AnnR M is zero.

2.6 Let R be a commutative unitary ring and let M be an R-module. For every r ∈ R let rM =
{r x ; x ∈ M} and Mr = {x ∈ M ; r x = 0}. Show that rM and Mr are submodules of
M . In the case where R = Z and M = Z/nZ, suppose that n = rs where r and s are
mutually prime. Show that rM = Ms.

[Hint. Use the fact that there exist a, b ∈ Z such that ra+ sb = 1.]

2.7 Let (Mi)i∈I be a family of submodules of an R-module M . Suppose that, for every finite
subset J of I , there exists k ∈ I such that (∀ j ∈ J) M j ⊆ Mk. Show that

⋃

i∈I
Mi and

∑

i∈I
Mi

coincide. Show that in particular this arises when I = N and the Mi form an ascending
chain M0 ⊆ M1 ⊆ M2 ⊆ · · · .

2.8 An R-module M is said to be simple if it has no submodules other than M and {0}.
Prove that M is simple if and only if M is generated by every non-zero x ∈ M .
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2.9 If R is a unitary ring prove that R is a simple R-module if and only if R is a division ring.

[Hint. Observe that, for x 6= 0, the set Rx = {r x ; r ∈ R} is a non-zero submodule,
whence it must coincide with R and so contains 1R.]

2.10 Find subspaces A, B, C of R2 such that

(A∩ B) + (A∩ C) ⊂ A∩ (B + C).

2.11 If M is an R-module and A, B, C are submodules of M such that

A⊆ B, A+ C = B + C , A∩ C = B ∩ C ,

prove that A= B.

[Hint. A= A+ (A∩ C) = · · · ; use the modular law.]

2.12 Let V be a vector space over a field F and let α : V → V be a linear transformation on
V . Consider V as an F[X ]-module under the action defined via α as in Exercise 1.8.
Let W be an F[X ]-submodule of V . Prove that W is a subspace of V that satisfies the
property

x ∈W =⇒ α(x) ∈W.

Conversely, show that every subspace W of V that satisfies this property is an F[X ]-
submodule of V .



3
MORPHISMS; EXACT SEQUENCES

The reader will recall that in the theory of groups, for example, an important part
is played by the structure-preserving mappings or morphisms. Precisely, if G and H
are groups whose laws of composition are each denoted by + for convenience then
a mapping f : G→ H is called a morphism (or homomorphism) if

(∀x , y ∈ G) f (x + y) = f (x) + f (y).

Such a mapping sends G onto a subgroup of H, namely the subgroup

Im f = { f (x) ; x ∈ G}.

For such a mapping f we have, with 0G and 0H denoting respectively the identity
elements of G and H,

(α) f (0G) = 0H ;
(β) (∀x ∈ G) f (−x) = − f (x).

In fact, f (0G) = f (0G + 0G) = f (0G) + f (0G) whence, by cancellation, f (0G) = 0H ;
and f (x) + f (−x) = f [x + (−x)] = f (0G) = 0H so that f (−x) = − f (x).

We shall now define the notion of a morphism from one R-module to another.
This will obviously be an extension of the notion of a group morphism, so that (α)
and (β) above will hold.

Definition 3.1 If M and N are R-modules then a mapping f : M → N is called an
R-morphism if

(1) (∀x , y ∈ M) f (x + y) = f (x) + f (y);
(2) (∀x ∈ M)(∀λ ∈ R) f (λx) = λ f (x).

When R is a field an R-morphism is traditionally called a linear transformation.
An R-morphism f is called an R-monomorphism if it is injective; an R-epimorphism if
it is surjective; and an R-isomorphism if it is bijective. An R-morphism f : M → M is
often called an R-endomorphism on M .

Example 3.1 If M and N are abelian groups considered as Z-modules then a Z-
morphism f : M → N is simply a group morphism. For, by induction, we have
(∀n ∈ N) f (nx) = nf (x) and consequently (∀n ∈ Z) f (nx) = nf (x).

Example 3.2 If M is an R-module and n is a positive integer then for i = 1, . . . , n
the mapping pri : M n→ M described by

pri(x1, . . . , xn) = x i

is an R-epimorphism, called the i-th projection of M n onto M .
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An important property of an R-morphism f : M → N is that it induces mappings
between the lattices of submodules. In fact if we define, for every submodule X of
M ,

f →(X ) = { f (x) ; x ∈ X }

and, for every submodule Y of N ,

f ←(Y ) = {x ∈ M ; f (x) ∈ Y }

then we have the following result.

Theorem 3.1 Let M and N be R-modules and f : M → N an R-morphism. Then for
every submodule X of M the set f →(X ) is a submodule of N, and for every submodule
Y of N the set f ←(Y ) is a submodule of M.

Proof We note first that f →(X ) 6= ; since X contains 0M and so f →(X ) contains
f (0M ) = 0N . If now y, z ∈ f →(X ) then there exist a, b ∈ X such that y = f (a), z =
f (b) whence, since X is a submodule of M ,

y − z = f (a)− f (b) = f (a− b) ∈ f →(X ).

Also, for every λ ∈ R we have, again since X is a submodule,

λy = λ f (a) = f (λa) ∈ f →(X ).

Thus f →(X ) is a submodule of N .
Suppose now that Y is a submodule of N . Then f ←(Y ) 6= ; since it clearly con-

tains 0M . If now a, b ∈ f ←(Y ) we have f (a), f (b) ∈ Y whence, since Y is a submod-
ule of N , f (a − b) = f (a) − f (b) ∈ Y and so a − b ∈ f ←(Y ). Also, if λ ∈ R then
f (λa) = λ f (a) ∈ Y so that λa ∈ f ←(Y ). Thus f ←(Y ) is a submodule of M . �

If L(M) denotes the lattice of submodules of M then the previous result shows
that we can define mappings f → : L(M)→ L(N) and f ← : L(N)→ L(M), described
respectively by X 7→ f →(X ) and Y 7→ f ←(Y ). A simple consequence of the definitions
is that each of these induced mappings is inclusion-preserving in the sense that if
X1, X2 are submodules of M such that X1 ⊆ X2 then f →(X1) ⊆ f →(X2); and if Y1, Y2
are submodules of N such that Y1 ⊆ Y2 then f ←(Y1) ⊆ f ←(Y2).

For an R-morphism f : M → N the submodule f →(M) of N is called the image
of f and is written Im f ; and the submodule f ←{0N} of M is called the kernel of f
and is written Ker f .

• In the case of vector spaces and linear transformations the terms range R( f )
and null-space N( f ) are sometimes used instead of image and kernel respec-
tively.

It is clear that a necessary and sufficient condition for an R-morphism to be an
epimorphism is that Im f be as large as possible, namely Im f = N . Likewise, a
necessary and sufficient condition for f to be a monomorphism is that Ker f be as
small as possible, namely Ker f = {0M}. In fact, if Ker f = {0M} and x , y ∈ M are
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such that f (x) = f (y) then f (x− y) = f (x)− f (y) = 0M gives x− y ∈ Ker f = {0M}
and so x = y; conversely, if f is injective and x ∈ Ker f then f (x) = 0N = f (0M )
gives x = 0M so that Ker f = {0M}. Note that no use is made here of the left action;
the results are purely group-theoretic.

Theorem 3.2 Let f : M → N be an R-morphism. If A is a submodule of M and B is a
submodule of N then
(1) f →[A∩ f ←(B)] = f →(A)∩ B;
(2) f ←[B + f →(A)] = f ←(B) + A.

Proof (1) Observe first that if y ∈ f ←(B) then f (y) ∈ B and therefore we have
that f →[ f ←(B)] ⊆ B. The fact that f → is inclusion-preserving now implies that the
left-hand side is contained in the right-hand side. To obtain the reverse inclusion,
suppose that y ∈ f →(A)∩B. Then y = f (a) and y ∈ B. Since then f (a) ∈ B we have
a ∈ f ←(B) and y ∈ f →[A∩ f ←(B)].

(2) Since for a ∈ A we have f (a) ∈ f →(A) we see that A ⊆ f ←[ f →(A)]. The
fact that f ← is inclusion-preserving now implies that the left-hand side contains the
right-hand side. For the reverse inclusion, let x ∈ f ←[B + f →(A)]. Then f (x) ∈
B + f →(A) and so there exist a ∈ A and b ∈ B such that f (x) = b + f (a). Then
f (x − a) = f (x)− f (a) = b ∈ B and so x − a ∈ f ←(B) whence x ∈ f ←(B) + A. �

Corollary 1 If A is a submodule of M and B is a submodule of N then
(3) f →[ f ←(B)] = B ∩ Im f ;
(4) f ←[ f →(A)] = A+ Ker f .

Proof For (3), take A= M in (1); and for (4) take B = {0N} in (2). �

Just as with group morphisms, we can compose R-morphisms in the appropriate
situation to form new R-morphisms. The basic facts concerning this are the following,
which we shall use in the sequel without reference:

(a) if f : M → N and g : N → P are R-morphisms then so is g ◦ f .
(b) if f : M → N and g : N → P are R-epimorphisms then so is g ◦ f .
(c) if f : M → N and g : N → P are R-monomorphisms then so is g ◦ f .
(d) if g ◦ f is an epimorphism then so is g.
(e) if g ◦ f is a monomorphism then so is f .

Concerning composite morphisms we now consider some so-called ‘diagram-
completing’ problems. Suppose that we are given a diagram of R-modules and R-
morphisms of the form

A
g

−−−−−→C

f







y

B

We pose the question: under what conditions does there exist an R-morphism h :
B → C such that h ◦ f = g? We can also formulate the ‘dual’ problem, obtained
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essentially by reversing all the arrows. Specifically, given a diagram of R-modules
and R-morphisms of the form

C






y

g

B−−−−−→
f

A

under what conditions does there exist an R-morphism h : C → B such that f ◦h= g?

Let us first consider these problems when A, B, C are simply sets and f , g are
simply mappings.

Theorem 3.3 (a) If A, B, C are non-empty sets and f : A → B, g : A → C are
mappings then the following statements are equivalent :

(1) there exists a mapping h : B→ C such that h ◦ f = g;
(2) (∀x , y ∈ A) f (x) = f (y) =⇒ g(x) = g(y).

(b) If A, B, C are non-empty sets and f : B → A, g : C → A are mappings then
the following statements are equivalent :

(3) there exists a mapping h : C → B such that f ◦ h= g;
(4) Im g ⊆ Im f .

Proof (1)⇒ (2) : If h : B → C exists such that h ◦ f = g and if x , y ∈ A are such
that f (x) = f (y) then clearly we have g(x) = h[ f (x)] = h[ f (y)] = g(y).
(2)⇒ (1) : Consider the subset G of Im f × C given by

G = {(y, z) ; (∃x ∈ A) y = f (x), z = g(x)}.

We note that G 6= ;; for, given any x ∈ A we have ( f (x), g(x)) ∈ G. Now given any
y ∈ Im f there is a unique z ∈ C such that (y, z) ∈ G. In fact, if y = f (x) choose
z = g(x) to see that such an element z exists. To see that such an element z is unique,
suppose that (y, z) ∈ G and (y, z′) ∈ G; then by the definition of G we have

(∃x , x ′ ∈ A) y = f (x) = f (x ′), z = g(x), z′ = g(x ′)

whence, by (2), g(x) = g(x ′) and consequently z = z′. We can therefore define a
mapping t : Im f → C by the prescription

(∀x ∈ A) t[ f (x)] = g(x).

We now construct a mapping h : B→ C by the prescription

h(y) =
§

t(y) if y ∈ Im f ;
any c ∈ C otherwise.

Then for every x ∈ A we have h[ f (x)] = t[ f (x)] = g(x) so that h ◦ f = g.

As for the dual problem, we now establish the equivalence of (3) and (4).
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(3)⇒ (4) : If h : C → B exists such that f ◦ h = g then for every x ∈ C we have
g(x) = f [h(x)] ∈ Im f and so Im g ⊆ Im f .
(4)⇒ (3) : If (4) holds then for every x ∈ C there exists y ∈ B such that g(x) =

f (y). Given any x ∈ C , label (courtesy of the axiom of choice) as yx any element of B
such that g(x) = f (yx). We can thus define a mapping h : C → B by the prescription
h(x) = yx . Then the equalities f [h(x)] = f (yx) = g(x) give f ◦ h= g. �

Corollary 1 (a) If A, B are non-empty sets and f : A → B is a mapping then the
following statements are equivalent :

(α) f is injective;
(β) there exists g : B→ A such that g ◦ f = idA;
(γ) f is left cancellable, in the sense that for every non-empty set C and all

mappings h, k : C → A,

f ◦ h= f ◦ k =⇒ h= k.

(b) If A, B are non-empty sets and f : A → B is a mapping then the following
statements are equivalent :

(α′) f is surjective;
(β ′) there exists g : B→ A such that f ◦ g = idB;
(γ′) f is right cancellable, in the sense that for every non-empty set C and all

mappings h, k : B→ C,

h ◦ f = k ◦ f =⇒ h= k.

Proof (α)⇔ (β) : This follows immediately from (1)⇔ (2) on taking C = A and
g = idA.
(β)⇒ (γ) : If f ◦h= f ◦k then composing each side on the left with g and using

the fact that g ◦ f = idA we obtain h= k.
(γ)⇒ (α) : Suppose that f is not injective. Then for some x , y ∈ A with x 6= y we

have f (x) = f (y). Let C be any non-empty set and let h, k : C → A be the ‘constant’
mappings given by

(∀c ∈ C) h(c) = x , k(c) = y.

Then clearly h 6= k and

(∀c ∈ C) f [h(c)] = f (x) = f (y) = f [k(c)]

so that f ◦h= f ◦k. Thus if (α) does not hold then neither does (γ), and consequently
(γ)⇒ (α).

As for the dual situation, we now establish the equivalence of (α′), (β ′), (γ′).
(α′)⇔ (β ′) : This is immediate from (3)⇔ (4).
(β ′)⇒ (γ′) : If h ◦ f = k ◦ f then composing each side on the right with g and

using the fact that f ◦ g = idB we obtain h= k.
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(γ′) ⇒ (α′) : If B is a singleton then f is automatically surjective and there is
nothing to prove. Suppose then that B contains at least two distinct elements p, q.
Let h, k : B→ B be given by

h(x) =
§

x if x ∈ Im f ;
p otherwise, k(x) =

§

x if x ∈ Im f ;
q otherwise.

Then for every y ∈ A we have h[ f (y)] = f (y) = k[ f (y)] and so h ◦ f = k ◦ f .
Applying (γ′) we deduce that h = k. Now if Im f 6= B we must have Im f ⊂ B
whence there exists x ∈ B with x 6∈ Im f . For such an element x we have h(x) = p
and k(x) = q whence, since h = k, we obtain the contradiction p = q. We conclude
therefore that Im f = B so that f is surjective. �

One is tempted to conjecture that Theorem 3.3 and its Corollary can be made
into module-theoretic results by replacing ‘non-empty set’ by ‘R-module’ and ‘map-
ping’ by ‘R-morphism’ throughout. However, as the following examples show, such
a conjecture is in general false.

Example 3.3 Consider the diagram of Z-modules and Z-morphisms

Z
idZ−−−−−→Z

×2







y

Z

in which idZ is the identity morphism and ×2 is the Z-morphism described by n 7→
2n. Although, by Theorem 3.3(a), there is a mapping h : Z→ Z such that h◦ (×2) =
idZ, no such Z-morphism can exist. For, suppose that h were such a Z-morphism.
Then for every n ∈ Z we would have 2h(n) = h(2n) = n. In particular, we would
have 2h(1) = 1; and this is impossible since the equation 2x = 1 has no solution in
Z.

Example 3.4 For a given prime p, consider the subgroup Qp of Q that is given by

Qp = {x ∈Q ; (∃k ∈ Z)(∃n ∈ N) x = k/pn}.

Observe that Z is a subgroup of Qp so we can form the quotient group Qp/Z. Con-
sider now the diagram of Z-modules and Z-morphisms

Qp/Z






y

id

Qp/Z−−−−−→
f
Qp/Z

where id is the identity morphism and f is the Z-morphism described by x 7→ px .
Since for all k and n we have
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k
pn
+Z= p

�

k
pn+1

+Z
�

we see that Im f = Qp/Z = Im id. By Theorem 3.3(b) there is therefore a mapping
h :Qp/Z→Qp/Z such that f ◦h= id. However, no such Z-morphism can exist. For,
suppose that h were such a Z-morphism. Then we would have

1
p +Z= f

�

h
�

1
p +Z

��

= p
�

h
�

1
p +Z

��

= h
�

p
�

1
p +Z

��

= h(1+Z)= 0+Z

which contradicts the fact that x +Z= 0+Z if and only if x ∈ Z.

Despite the above examples, there are certain situations in which, given some
extra conditions, we do have module-theoretic analogues of Theorem 3.3. The fol-
lowing two results indicate such situations; we shall see others later.

Theorem 3.4 Consider the diagram

A
g

−−−−−→ C

f







y

B

of R-modules and R-morphisms in which f is an R-epimorphism. The following condi-
tions are equivalent :

(1) there is a unique R-morphism h : B→ C such that h ◦ f = g;

(2) Ker f ⊆ Ker g.

Moreover, such an R-morphism h is a monomorphism if and only if Ker f = Ker g.

Proof (1) ⇒ (2) : Suppose that (1) holds. If x ∈ Ker f then g(x) = h[ f (x)] =
h(0) = 0 whence (2) follows.
(2)⇒ (1) : Suppose now that Ker f ⊆ Ker g. Given x , y ∈ A we have

f (x) = f (y) =⇒ f (x − y) = f (x)− f (y) = 0B
=⇒ x − y ∈ Ker f ⊆ Ker g
=⇒ g(x)− g(y) = g(x − y) = 0C
=⇒ g(x) = g(y).

By Theorem 3.3(a) we can therefore define a mapping h : B→ C such that h◦ f = g.
Since f is surjective by hypothesis, it follows by the Corollary to Theorem 3.3 that
f is right cancellable and so h is unique. It remains to show that h is in fact an
R-morphism. Since f is surjective, this follows from the equalities

h[ f (x) + f (y)] = h[ f (x + y)] = g(x + y) = g(x) + g(y) = h[ f (x)] + h[ f (y)];
h[λ f (x)] = h[ f (λx)] = g(λx) = λg(x) = λh[ f (x)].
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Finally we observe that if h is injective then since g(x) = h[ f (x)] we have

x ∈ Ker g =⇒ f (x) ∈ Ker h= {0B}=⇒ x ∈ Ker f ,

and so Ker g ⊆ Ker f whence we have equality by (2). Conversely, suppose that
Ker g = Ker f and let x ∈ Ker h. Since f is surjective we have x = f (y) for some
y ∈ A and so 0B = h(x) = h[ f (y)] = g(y) and consequently y ∈ Ker g = Ker f
whence x = f (y) = 0B and h is injective. �

Theorem 3.5 Consider the diagram

C






y

g

B−−−−−→
f

A

of R-modules and R-morphisms in which f is an R-monomorphism. The following con-
ditions are equivalent :

(1) there is a unique R-morphism h : C → B such that f ◦ h= g;

(2) Im g ⊆ Im f .

Moreover, such an R-morphism h is an epimorphism if and only if Im g = Im f .

Proof (1)⇒ (2) : If (1) holds then, for every c ∈ C , g(x) = f [h(x)] ∈ Im f , whence
(2) holds.
(2) ⇒ (1) : If (2) holds then by Theorem 3.3(b) there is a mapping h : C → B

such that f ◦ h = g. Since f is injective by hypothesis, it follows by the Corollary to
Theorem 3.3 that that f is left cancellable and so h is unique. Now for all c, d ∈ C
and λ ∈ R we have the equalities

f [h(c + d)] = g(c + d) = g(c) + g(d) = f [h(c)] + f [h(d)] = f [h(c) + h(d)];
f [h(λc)] = g(λc) = λg(c) = λ f [h(c)] = f [λh(c)].

Since f is injective we deduce that h(c+d) = h(c)+h(d) and h(λc) = λh(c), so that
h is indeed an R-morphism.

Finally, we observe that if h is surjective then for every b ∈ B there exists c ∈ C
such that b = h(c), whence f (b) = f [h(c)] = g(c) and consequently Im f ⊆ Im g,
whence we have equality by (2). Conversely, if Im f = Im g then for every b ∈ B
there exists c ∈ C such that f (b) = g(c) = f [h(c)] whence b = h(c), since f is
injective. Consequently, h is surjective. �

In the discussion to follow we shall on several occasions be faced with the prob-
lem of finding a morphism that will ‘complete’ a given diagram in an agreeable way,
just as we were able in Theorems 3.4 and 3.5 to find morphisms that ‘completed’ the
triangles there in such a way that, loosely speaking, following the arrows, all paths
with the same departure set and same arrival set are equal. To be somewhat more
precise, we introduce the following concept.
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Definition 3.2 Given a diagram of sets and mappings, we say that the diagram is
commutative if all composite mappings from any given departure set to any given
arrival set are equal.

By way of illustration, we note that the triangle

A
g

−−−−−→C

f







y

B

�
��

�
�

h

is commutative if and only if h ◦ f = g. Also, the diagram

A
f

−−−−−→ B
g

−−−−−→ C






y

α







y

β







y

γ

A′ −−−−−→
f ′

B′ −−−−−→
g ′

C ′

is commutative if and only if f ′ ◦α= β ◦ f and g ′ ◦β = γ◦ g; i.e. if and only if each
of its squares is commutative.

The notion of a commutative diagram will appear many times in the discussion
to follow. Linked with this is another important concept which we now introduce.

Definition 3.3 By a sequence of R-modules and R-morphisms we shall mean a dia-
gram of the form

· · · −−−−−→Mi−1
fi−1−−−−−→Mi

fi−−−−−→Mi+1−−−−−→ · · ·

Such a sequence is said to be exact at Mi if Im fi−1 = Ker fi , and to be exact if it is
exact at each Mi .

The above sequence is therefore exact if, at each stage, the image of the input
morphism coincides with the kernel of the output morphism.

Simple examples of exact sequences are given in the following result, in which
all zero modules are written 0.

Theorem 3.6 If f : M → N is an R-morphism and if 0 → M , N → 0 denote the
inclusion map and the zero map respectively then f is

(1) a monomorphism if and only if 0−−→M
f
−−→N is exact :

(2) an epimorphism if and only if M
f
−−→N −−→0 is exact :

(3) an isomorphism if and only if 0−−→M
f
−−→N −−→0 is exact.

Proof This is immediate from the definitions. �
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Example 3.5 If f : A→ B is a morphism of abelian groups then we have the exact
sequence

0−−−−−→Ker f
ι

−−−−−→A
\

−−−−−→A/Ker f −−−−−→0

in which ι is the inclusion map and \ is the natural epimorphism. Likewise, we have
the exact sequence

0−−−−−→ Im f −−−−−→B−−−−−→B/ Im f −−−−−→0.

As we shall see in due course, exact sequences of the form

0−−−−−→M ′
f

−−−−−→M
g

−−−−−→M ′′−−−−−→0

are of especial importance. They are called short exact sequences.

• Note that in an exact sequence the composite of two successive morphisms is
the zero morphism. The converse of this is not true in general, for f ◦ g = 0 is
equivalent to Im g ⊆ Ker f . Sequences in which fi ◦ fi−1 = 0 for every index i
are called semi-exact.

By way of illustrating the foregoing notions we shall derive a useful property of
the kernel of an R-morphism. This follows from the following result.

Theorem 3.7 Given the diagram of R-modules and R-morphisms

A






y

ϑ

0−−−−−→X−−−−−→
f

Y−−−−−→
g

Z

in which the row is exact and g ◦ ϑ = 0, there is a unique R-morphism h : A→ X such
that the completed diagram is commutative.

Proof Since g ◦ ϑ = 0 and since the row is exact we have

Imϑ ⊆ Ker G = Im f .

Since, by Theorem 3.6(1), f is a monomorphism, the result is an immediate conse-
quence of Theorem 3.5. �

Theorem 3.8 Let f : M → N be an R-morphism. If ι : Ker f → M is the inclusion
map then

(1) f ◦ ι = 0;

(2) if P is an R-module and if g : P → M is an R-morphism such that f ◦ g = 0
then there is a unique R-morphism ϑ : P → Ker f such that the following diagram is
commutative :
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P






y

g

Ker f −−−−−→
ι

M−−−−−→
f

N

�
��=

�
��

ϑ

Proof (1) is obvious, and (2) is an immediate consequence of Theorem 3.7. �

• It can be shown (see Exercise 3.5 for the details) that the pair (Ker f , ι) is
characterised by the properties of Theorem 3.8. Note that this characterisation
involves only morphisms, and not elements of the modules in question.

In order to give the reader a deeper appreciation of commutative diagrams, we
end the present section by illustrating the technique which is often referred to as
‘diagram chasing’.

Theorem 3.9 [The four lemma] Suppose that the diagram of R-modules and R-
morphisms

A
f

−−−−−→B
g

−−−−−→C
h

−−−−−→D






y

α







y

β







y

γ







y

δ

A′−−−−−→
f ′

B′−−−−−→
g ′

C ′−−−−−→
h′

D′

is commutative and has exact rows. Then the following hold :

(1) if α,γ are epimorphisms and δ is a monomorphism then β is an epimorphism ;
(2) if α is an epimorphism and β ,δ are monomorphisms then γ is a monomor-

phism.

Proof (1) : Let b′ ∈ B′. Since γ is surjective there exists c ∈ C such that g ′(b′) =
γ(c). By the commutativity of the right-hand square we then have

δ[h(c)] = h′[γ(c)] = h′[g ′(b′)] = 0,

since h′ ◦ g ′ = 0. Thus h(c) ∈ Kerδ = 0 and so h(c) = 0, giving c ∈ Ker h = Im g so
that c = g(b) for some b ∈ B. Then, by the commutativity of the middle square,

g ′(b′) = γ(c) = γ[g(b)] = g ′[β(b)].

Consequently b′−β(b) ∈ Ker g ′ = Im f ′ so that b′−β(b) = f ′(a′) for some a′ ∈ A′.
Since α is surjective there exists a ∈ A such that a′ = α(a) and so, by the commuta-
tivity of the left-hand square, b′ − β(b) = f ′[α(a)] = β[ f (a)]. We thus have

b′ = β(b) + β[ f (a)] = β[b+ f (a)] ∈ Imβ .

Consequently, β is surjective.
(2) : Let c ∈ Kerγ. Then δ[h(c)] = h′[γ(c)] = h′(0) = 0 and so h(c) ∈ Kerδ = 0.

Thus c ∈ Ker h = Im g so that c = g(b) for some b ∈ B. Now 0 = γ(c) = γ[g(b)] =
g ′[β(b)] so β(b) ∈ Ker g ′ = Im f ′ whence β(b) = f ′(a′) for some a′ ∈ A′. Now a′ =
α(a) for some a ∈ A, so β(b) = f ′[α(a)] = β[ f (a)]. Since β is a monomorphism,
we deduce that b = f (a) whence c = g(b) = g[ f (a)] = 0 since f ◦ g = 0. �
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Theorem 3.10 [The five lemma] Suppose that the diagram of R-modules and R-
morphisms

A−−−−−→B−−−−−→C −−−−−→D−−−−−→ E






y

α1







y

α2







y

α3







y

α4







y

α5

A′−−−−−→B′−−−−−→C ′−−−−−→D′−−−−−→E′

is commutative with exact rows. If α1,α2,α4,α5 are isomorphisms then so is α3.

Proof Applying Theorem 3.9(1) to the right-hand three squares we see that α3 is
an epimorphism; and applying Theorem 3.9(2) to the left-hand three squares we
see that α3 is a monomorphism. Thus α3 is an isomorphism. �

Corollary 1 Suppose that the diagram of R-modules and R-morphisms

0−−−−−→A−−−−−→B−−−−−→C −−−−−→0






y

α







y

β







y

γ

0−−−−−→A′−−−−−→B′−−−−−→C ′−−−−−→0

is commutative with exact rows. If α and γ are isomorphsims then so is β .

Proof Take A= A′ = E = E′ = 0 in the above. �

EXERCISES

3.1 Let R be a commutative unitary ring. Prove that a mapping f : R × R → R is an R-
morphism if and only if there exist α,β ∈ R such that

(∀x , y ∈ R) f (x , y) = αx + β y.

3.2 Let M and N be R-modules. Prove that if M is simple (Exercise 2.8) then every non-
zero R-morphism f : M → N is a monomorphism; and that if N is simple then every
non-zero R-morphism f : M → N is an epimorphism. Deduce that if M is a simple
R-module then the ring (EndRM ,+,◦) of R-morphisms g : M → M is a division ring.

3.3 If f : M → N is an R-morphism prove that f → ◦ f ← ◦ f → = f → and that similarly
f ← ◦ f → ◦ f ← = f ←.

3.4 If A and B are submodules of an R-module M , establish a short exact sequence

0−−−−−→A∩ B
ϑ

−−−−−→A× B
π

−−−−−→A+ B−−−−−→0.

[Hint. Observe that the ‘obvious’ definitions of ϑ and π, namely ϑ(x) = (x , x) and
π(x , y) = x + y , do not work; try π(x , y) = x − y .]

3.5 Let f : M → N be an R-morphism and suppose that there is given an R-module X
together with an R-monomorphism j : X → M such that

(1) f ◦ j = 0;
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(2) for every R-module P and every R-morphism g : P → M such that f ◦ g = 0 there
is a unique R-morphism ϑ : P → X such that

P






y

g

X−−−−−→
j

M−−−−−→
f

N
�
�	

�
�

ϑ

is commutative.

Prove that there is a unique R-isomorphism ξ : Ker f → X such that

X
j

−−−−−→M

ξ

x







Ker f

���

��
ι

is commutative, ι being the inclusion map.

[Hint. Take P = Ker f and g = ι to obtain the existence of an R-morphism ξ. Now take
P = X and g = j in Theorem 3.8 to obtain ξ′ say. Show, using the Corollary to Theorem
3.3, that ξ ◦ ξ′ and ξ′ ◦ ξ are identity morphisms.]

3.6 Given the diagram of R-modules and R-morphisms

X
f

−−−−−→Y
g

−−−−−→Z−−−−−→0






y

ϑ

A

in which the row is exact and ϑ ◦ f = 0, prove that there is a unique R-morphism
h : Z → A such that h ◦ g = ϑ.

3.7 Consider the diagram of R-modules and R-morphisms

0






y

A′2






y

ι2

0−−−−−→A′1−−−−−→ι1
A−−−−−→

π1
A′′1−−−−−→0







y

π2

A′′2






y

0

��
�
� @R

@
@

@R
@

@ ���

��

f α

β g

If this diagram is commutative with the row and column exact, prove that α and β are
zero morphisms, and that f and g are isomorphisms.



26 Module Theory

3.8 The diagram of R-modules and R-morphisms

A
f

−−−−−→B
g

−−−−−→C






y

α







y

β







y

γ

A′−−−−−→
f ′

B′−−−−−→
g′

C ′

is given to be commutative with α,β ,γ isomorphisms. Prove that the top row is exact
if and only if the bottom row is exact.

3.9 Suppose that the diagram of R-modules and R-morphisms

A
f

−−−−−→B
g

−−−−−→C






y

α







y

β







y

γ

A′−−−−−→
f ′

B′−−−−−→
g′

C ′

is commutative and has exact rows. Prove that

(1) if α,γ, f ′ are monomorphisms then so is β;

(2) if α,γ, g are epimorphisms then so is β .

3.10 [The 3× 3 lemma] Consider the diagram of R-modules and R-morphisms

0 0 0






y







y







y

0−−−−−→A′
α′

−−−−−→A
β ′

−−−−−→A′′−−−−−→0






y

f ′







y

f







y

f ′′

0−−−−−→B′
α

−−−−−→B
β

−−−−−→B′′−−−−−→0






y

g′







y

g







y

g′′

0−−−−−→C ′ C C ′′−−−−−→0






y







y







y

0 0 0

Given that the diagram is commutative, that all three columns are exact, and that the
top two rows are exact, prove that there exist unique R-morphisms α′′ : C ′ → C and
β ′′ : C → C ′′ such that the resulting bottom row is exact and the completed diagram is
commutative.

[Hint. Observe that g ◦ α ◦ f ′ = 0 so that Ker g ′ = Im f ′ ⊆ Ker g ◦ α. Use Theorem 3.4
to produce α′′. Argue similarly to produce β ′′. Now chase!]
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3.11 A short exact sequence of the form

( f , E, g) ≡ 0−−→A
f
−−→ E

g
−−→B−−→0

is called an extension of A by B. Given any R-modules A and B, show that at least one
extension of A by B exists.

Two extensions ( f1, E1, g1) and ( f2, E2, g2) of A by B are said to be equivalent if there
is an R-morphism h : E1→ E2 such that h ◦ f1 = f2 and g2 ◦ h = g1. Prove that such an
R-morphism h is an isomorphism.

Show that there are extensions

0−−→Z2−−→Z2 ×Z4−−→Z4−−→0,

0−−→Z2−−→Z8−−→Z4−−→0

of Z2 by Z4 that are not equivalent.



4
QUOTIENT MODULES; ISOMORPHISM THEOREMS

We shall now consider an important way of constructing new modules from old
ones. This arises from the following problem. Suppose that M is an R-module and
that E is an equivalence relation on M . For each x ∈ M we denote the class of x
modulo E by [x]E . Precisely when can we define laws of composition on the set
M/E of equivalence classes in such a way that M/E becomes an R-module with the
reasonable requirement that the natural surjection \E : M → M/E given by x 7→ [x]E
be an epimorphism? This very important question is settled in the following result.

Theorem 4.1 Let M be an R-module and let E be an equivalence relation on M. Then
the following statements are equivalent :

(1) there is a unique addition ([x]E , [y]E) 7→ [x]E + [y]E and a unique R-action
(λ, [x]E) 7→ λ[x]E such that M/E is an R-module and the natural surjection \E is an
R-epimorphism, i.e. the following identities hold :

(∀x , y ∈ M)(∀λ ∈ R) [x]E + [y]E = [x + y]E , λ[x]E = [λx]E;

(2) E is compatible with the structure of M, in the sense that

x ≡ a(E), y ≡ b(E) =⇒ x + y ≡ a+ b(E),
x ≡ a(E), λ ∈ R =⇒ λx ≡ λa(E);

(3) there is a submodule ME of M such that

x ≡ y(E) ⇐⇒ x − y ∈ ME .

Proof (1)⇔ (2) : This is immediate on applying Theorem 3.3 to the diagram

M ×M
g

−−−−−→M/E

f







y

M/E ×M/E

�
�>

�
��

internal law

where f is given by (x , y) 7→ ([x]E , [y]E) and g is given by (x , y) 7→ [x + y]E , and
to the diagram

R×M
g ′

−−−−−→M/E

f ′







y

R×M/E

�
�>

�
��

action
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where f ′ is given by (λ, x) 7→ (λ, x/E) and g ′ is given by (λ, x) 7→ [λx]E . The
uniqueness of the laws of composition so obtained follows from the fact that both
vertical maps are surjective and so are right cancellable.
(2) ⇒ (3) : Suppose that E is compatible with the structure of M . Then [0]E ,

the class of 0 modulo E, is a submodule of M . In fact, if x ≡ 0(E) and y ≡ 0(E)
then, by the compatibility, x − y ≡ 0 − 0 = 0(E) and if x ≡ 0(E) and λ ∈ R then
λx ≡ λ0= 0(E). Moreover, we have

x ≡ y(E) =⇒ x − y ≡ y − y = 0(E);
x − y ≡ 0(E) =⇒ x = (x − y) + y ≡ 0+ y = y(E),ϑ

so that x ≡ y(E)⇔ x − y ∈ [0]E .
(3)⇒ (2) : Suppose that ME is a submodule of M such that x ≡ y(E) is equiv-

alent to x − y ∈ ME . Then from x ≡ a(E) and y ≡ b(E) we have x − a ∈ ME and
y − b ∈ ME so that, ME being a submodule, x + y − (a + b) ∈ ME whence x + y ≡
a+b(E). Similarly, from x ≡ a(E)we have, for every λ ∈ R, λx−λa = λ(x−a) ∈ ME
so that λx ≡ λa(E). Thus E is compatible with the structure of M . �

Definition 4.1 When the situation described in Theorem 4.1 holds we call M/E the
quotient module of M by the compatible equivalence relation E.

Identifying equivalence relations on M that yield the same quotient set, we now
observe that there is a bijection from the set of compatible equivalences on M to the
set of submodules of M . This is given as follows : for every compatible equivalence
relation E on M define ϑ(E) to be the submodule [0]E . That ϑ is surjective follows
from the fact that if N is a submodule of M then the relation F given by

x ≡ y(F) ⇐⇒ x − y ∈ N

is (as is readily seen) a compatible equivalence relation on M with x ≡ 0(F) equiva-
lent to x ∈ N , so that ϑ(F) = [0]F = N . That ϑ is also injective results from the fact
that if E, F are compatible equivalence relations on M such that ϑ(E) = ϑ(F) then
[0]E = [0]F and so, by Theorem 4.1(3), x ≡ y(E) is equivalent to x ≡ y(F), whence
E = F by the agreed identification.

Because of this bijection, it is standard practice to write M/N for the quotient
module M/E where N is the submodule that corresponds to E (namely N = [0]E).
This abuse of notation yields a corresponding abuse of language : we call M/N the
quotient module of M by the sumbodule N . In this case the equivalence class of x will
be written [x]N . Note that, as in the case of quotient groups, [x]N coincides with
the coset x + N = {x + n ; n ∈ N}; for

y ∈ [x]N ⇐⇒ [y]N = [x]N ⇐⇒ y − x ∈ N ⇐⇒ (∃n ∈ N) y − x = n.

We now consider the question of how to identify the submodules of a quotient
module.

Theorem 4.2 [Correspondence theorem] If N is a submodule of an R-module M
then there is an inclusion-preserving bijection from the set of submodules of M/N to
the set of submodules of M that contain N.
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Proof Suppose that A is a submodule of M that contains N . Then the set A/N =
{[a]N ; a ∈ A} is clearly a submodule of M/N . Consider the mapping ϑ from the set
of all such submodules A to the set of submodules of M/N described by ϑ(A) = A/N .
Since ϑ so defined is the restriction (to the set of submodules that contain N) of \→N ,
it is clear that ϑ is inclusion preserving.

We observe from the Corollary to Theorem 3.2 that if N ⊆ A then

\←N [ϑ(A)] = \
←
N [\

→
N (A)] = A+ Ker \N = A+ N = A.

Consequently, if ϑ(A) = ϑ(B) then A= B and so ϑ is injective.
We now observe that if P is any submodule of M/N then, again by the Corollary

to Theorem 3.2,

ϑ[\←N (P)] = \
→
N [\

←
N (P)] = P ∩ Im \N = P ∩M/N = P.

Consequently ϑ is also surjective. �

Corollary 1 Every submodule of M/N is of the form A/N where A is a submodule of
M that contains N. �

We now consider certain induced morphisms from one quotient module to an-
other, and in so doing establish some fundamental isomorphisms.

Theorem 4.3 Let M and N be R-modules and let f : M → N be an R-morphism. If
A and B are submodules of M and N respectively then the following statements are
equivalent :

(1) f →(A) ⊆ B;

(2) there is a unique R-morphism f? : M/A→ N/B such that the diagram

M−−
f

−−−−−→N

\A







y







y

\B

M/A−−−−−→
f?

N/B

is commutative.
Moreover, when such an R-morphism f? exists, it is

(a) a monomorphism if and only if A= f ←(B);
(b) an epimorphism if and only if B + Im f = N.

Proof Applying Theorem 3.4 to the diagram

M
\B◦ f

−−−−−→N/B

\A







y

M/A
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we see that (2) holds if and only if Ker \A ⊆ Ker(\B ◦ f ). Now clearly

x ∈ Ker \A ⇐⇒ [x]A = [0]A ⇐⇒ x ∈ A,

and similarly

x ∈ Ker(\B ◦ f ) ⇐⇒ [ f (x)]B = [0]B ⇐⇒ f (x) ∈ B.

Thus we see that (2) holds if and only if x ∈ A implies f (x) ∈ B, which is (1).
As for the last statements, we observe that f →(A) ⊆ B is equivalent to A⊆ f ←(B)

and that therefore

Ker f? = {[x]A ; f (x) ∈ B}= {[x]A ; x ∈ f ←(B)}= f ←(B)/A,

so that f is injective if and only if A= f ←(B).
Finally, Im f? = {[ f (x)]B ; x ∈ M} and so f? is surjective if and only if

(∀n ∈ N)(∃x ∈ M) [n]B = [ f (x)]B,

which is equivalent to the condition

(∀n ∈ N)(∃x ∈ M) n− f (x) ∈ B,

which is clearly equivalent to N = B + Im f . �

If f : M → N is an R-morphism then we shall denote by f + : M → Im f the
R-morphism given by the same prescription as f , namely f +(x) = f (x). Note that
although f and f + have the same effect on x ∈ M we distinguish between them
since they have different arrival sets; f + is surjective whereas f need not be.

Theorem 4.4 [First isomorphism theorem] Let f : M → N be an R-morphism.
Then there is a unique R-isomorphism ζ : M/Ker f → Im f such that the diagram

M
f +

−−−−−→Im f

\







y

M/Ker f

��>
�
��

ζ

is commutative.

Proof Applying Theorem 4.3 in the case where N = Im f , B = {0N} and A= Ker f
we obtain the existence of a unique R-morphism ζ : M/Ker f → Im f such that
ζ ◦ \= f +. Since f + is surjective, so is ζ. Moreover, Ker f = f ←{0}= f ←(B) and so
ζ is also injective. Thus ζ is an isomorphism. �

Corollary 1 If f : M → N is an R-morphism then there is an inclusion-preserving
bijection from the set of submodules of Im f to the set of submodules of M that contain
Ker f .
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Proof This is immediate by Theorem 4.2. �

Corollary 2 [Canonical decomposition] Every R-morphism can be expressed as the
composite of an epimorphism, an isomorphism and a monomorphism.

Proof With the above notation, the diagram

M−−−
f

−−−−−→N

\







y

x







ι

M/Ker f −−−−−→
ζ

Im f
Z
Z~

Z
Z
Z

f +

is commutative, ι being the natural inclusion. It follows that f = ι ◦ ζ ◦ \. �

• Although the above decomposition is called canonical (or natural), it is by no
means unique; but if

M
α

−−−−−→A
β

−−−−−→B
γ

−−−−−→N

is another such decomposition of f then necessarily A ' M/Ker f and B '
Im f (see Exercise 4.6).

Theorem 4.5 [Second isomorphism theorem] If M is an R-module and if N , P are
submodules of M such that P ⊆ N then N/P is a submodule of M/P and there is a
unique R-isomorphism h : M/N → (M/P)/(N/P) such that the following diagram is
commutative:

M−−
\P−−−−−−−−→M/P

\N







y







y

\

M/N−−−−−→
h

(M/P)/(N/P)

Proof We know by the Corollary to Theorem 4.2 that N/P is a submodule of M/P.
Since \→P (N) = {[n]P ; n ∈ N} = N/P, we can apply Theorem 4.3 to the above
diagram to obtain the existence of a unique R-morphism h : M/N → (M/P)/(N/P)
making the diagram commutative. Now since, by the commutativity, h ◦ \N is an
epimorphism, so is h. To show that h is also a monomorphism, it suffices to note that
\←P (N/P) = N and appeal to Theorem 4.3 again. �

The third isomorphism theorem that we shall establish is a consequence of the
following.

Given an R-module M and a submodule A of M , it is clear that we have an exact
sequence

0−−→A
ιA−−→M

\A−−→M/A−−→0

in which ιA is the natural inclusion and \A is the natural surjection. This therefore
generalises to arbitrary R-modules the situation in Example 3.3, in which the abelian
groups are considered as Z-modules.
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Theorem 4.6 If A and B are submodules of an R-module M then there is the commu-
tative diagram with exact rows and columns

0 0 0






y







y







y

0−−−−−−−→A∩ B−−−−−−−−→B−−−−−−−→ B/(A∩ B)−−−−−→0






y







y







y

0−−−−−−−−→A−−−−−−−−−→M−−−−−−−−→M/A−−−−−−−→0






y







y







y

0−−−−−→A/(A∩ B)−−−−−→M/B−−−−−→M/(A+ B)−−−−−→0






y







y







y

0 0 0

Proof Let ιA : A→ M be the natural inclusion. Then ι→A (A∩ B) ⊆ B and so we can
apply Theorem 4.3 to obtain the commutative diagram

A−
ιA−−−−−−−−→M

\







y







y

\B

A/(A∩ B)−−−−−→
(ιA)?

M/B

Considering likewise the natural inclusion ιB : B→ M , we obtain a similar commu-
tative diagram. These diagrams can be joined together and extended to form all but
the bottom right-hand corner of the big diagram, namely

• • •
↓ ↓ ↓

• → • → • → • → •
↓ ↓ ↓

• → • → • → • → •
↓ ↓

• → • → •
↓
•

We can now complete the bottom right-hand corner by defining ζB : M/A →
M/(A+ B) and ζA : M/B→ M/(A+ B) by the prescriptions

ζB([x]A) = [x]A+B, ζA([x]B) = [x]A+B.
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It is clear that ζB,ζA are R-morphisms which make the completed diagram commu-
tative. We now show that the bottom row

0−−→A/(A∩ B)
(ιA)?−−→M/B

ζA−−→M/(A+ B)−−→0

is exact. By symmetry, the right-hand column will also be exact. Now, since ζA is
clearly surjective and (ιA)? is injective by Theorem 4.3, it suffices to prove that
Im(ιA)? = KerζA. For this purpose, we note that Im(ιA)? = {[x]B ; x ∈ A} and
KerζA = {[x]B ; x ∈ A+ B}. Observing that

x ∈ A+ B =⇒ (∃a ∈ A)(∃b ∈ B) x = a+ b =⇒ [x]B = [a+ b]B = [a]B,

we obtain KerζA ⊆ Im(ιA)?; and observing that

x ∈ A=⇒ (∃a ∈ A) x = a =⇒ (∀b ∈ B) [x]B = [a]B = [a+ b]B,

we obtain the reverse inclusion. �

Corollary 1 [Third isomorphism theorem] If A and B are submodules of an R-
module M then

A/(A∩ B)' (A+ B)/B.

Proof Since A and B are submodules of A+ B we can apply the above in the case
where M = A+ B. The bottom row of the diagram becomes

0−−→A/(A∩ B)−−→(A+ B)/B−−→(A+ B)/(A+ B)−−→0.

Since (A + B)/(A + B) is a zero module, the exactness of this row together with
Theorem 3.6(3) gives the required isomorphism. �

The last of the isomorphism theorems that we shall require is the following, in
which the diagram is a Hasse diagram. The interpretation of this is that an ascending
line segment from A to B indicates that A is a submodule of B.

Theorem 4.7 [The butterfly of Zassenhaus] Let M be an R-module and suppose
that N, P, N ′, P ′ are submodules of N such that N ⊆ P and N ′ ⊆ P ′. Then relative to
the Hasse diagram

N ∩ P ′• •N ′ ∩ P

N• • •N ′

N + (P ∩ N ′)• •N ′ + (N ∩ P ′)

•P ∩ P ′

N + (P ∩ P ′)• •N ′ + (P ∩ P ′)

P• •P ′

@@ �� @@ ��
B
BB

b
b

bb

"
"
""

�
��

�
�
�
�

@
@@

�
��

L
L
L
L

A
A

�
�

in which the unlabeled submodule is (N∩P ′)+(N ′∩P), the following quotient modules
are isomorphic :

N + (P ∩ P ′)
N + (P ∩ N ′)

'
P ∩ P ′

(N ∩ P ′) + (N ′ ∩ P)
'

N ′ + (P ∩ P ′)
N ′ + (N ∩ P ′)

.
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Proof Since P ∩ N ′ ⊆ P ∩ P ′ we have

(P ∩ P ′) + N + (P ∩ N ′) = (P ∩ P ′) + N

and, by the modular law (Theorem 2.4),

(P ∩ P ′)∩ [N + (P ∩ N ′)] = (P ∩ P ′ ∩ N) + (P ∩ N ′) = (P ′ ∩ N) + (P ∩ N ′).

Applying the third isomorphism theorem with A= P ∩ P ′ and B = N + (P ∩ N ′), we
obtain an isomorphism

P ∩ P ′

(N ∩ P ′) + (N ′ ∩ P)
'

N + (P ∩ P ′)
N + (P ∩ N ′)

.

The second isomorphism shown follows by symmetry. �

We end this section with some remarks concerning R-algebras. We have defined
a subalgebra of an R-algebra A to be a submodule that is also an R-algebra with
respect to the multiplication in A.

Definition 4.2 By an ideal of an R-algebra A we mean a subalgebra X of A such that
AX ⊆ X and XA ⊆ X , where AX = {ax ; a ∈ A, x ∈ X } and similarly for XA. By an
R-algebra morphism from an R-algebra A to an R-algebra B we mean an R-morphism
f : A→ B that is also a morphism with respect to the semigroup structure; in other
words if, for all x , y ∈ A and all λ ∈ R,

f (x + y) = f (x) + f (y), f (λx) = λ f (x), f (x y) = f (x) f (y).

Note that if f : A→ B is an R-algebra isomorphism then so is f −1 : B → A. This
is readily seen on replacing x , y in the above equalities by f −1(x), f −1(y).

We leave the reader the task of showing that Theorem 4.1 has an analogue in
terms of R-algebras in which the rôle of the associated submodule is assumed by
an associated ideal. This analogue leads to the notion of the quotient algebra of an
R-algebra A by an ideal X . Somewhat later, we shall require the following result
concerning R-algebras.

Theorem 4.8 Let A be an R-algebra and M an R-module. Suppose that there is an
R-isomorphism f : A→ M. Then there is a unique multiplication on M such that M is
an R-algebra with f an R-algebra isomorphism.

Proof Define a multiplication on M by

(x , y) 7→ x · y = f [ f −1(x) f −1(y)].

Then since A is an R-algebra and f , f −1 are R-morphisms it is readily seen that

(∀λ ∈ R)(∀x , y ∈ M) λ(x · y) = (λx) · y = x · (λy).

Thus M is an R-algebra. Since, from the above definition,

f (x) · f (y) = f
�

f −1[ f (x)] f −1[ f (y)]
�

= f (x y)

we see that f is an R-algebra isomorphism.
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That the multiplication is unique follows from the fact that if (x , y) 7→ x ? y is a
law of composition on M such that f is an R-algebra isomorphism then, since f −1

is also an R-algebra isomorphism, we deduce from f −1(x ? y) = f −1(x) f −1(y) that
x ? y = f [ f −1(x) f −1(y)]. �

EXERCISES
4.1 An R-module is said to be cyclic if it is generated by a singleton subset. Let M = Rx be a

cyclic R-module. Recalling that the annihilator of x is the submodule AnnR{x} = {λ ∈
R ; λx = 0}, prove that M ' R/AnnR{x}.

Deduce that if R is a principal ideal domain, i.e. a commutative integral domain in
which every ideal is generated by a singleton subset, and if x ∈ R is such that AnnR(x) =
pkR for some p ∈ R (see Exercise 2.2) then the only submodules of M are those in the
chain

0= pk M ⊂ pk−1M ⊂ · · · ⊂ pM ⊂ p0M = M .

[Hint. Use the correspondence theorem.]

4.2 Let A, B be submodules of an R-module M . Establish an exact sequence of the form

0−−→M/(A∩ B)−−→M/A×M/B−−→M/(A+ B)−−→0.

Deduce that

(A+ B)/(A∩ B)' (A+ B)/A× (A+ B)/B ' B/(A∩ B)× A/(A∩ B).

4.3 Let R be a commutative unitary ring. Show that if I and J are ideals of R then there is
an exact sequence

0−−→ I ∩ J −−→R−−→R/I × R/J −−→R/(I + J)−−→0.

4.4 Let f : M → N be an R-morphism. By a cokernel of f we mean a pair (P,π) consisting
of an R-module P together with an R-epimorphism π : N → P such that

(1) π ◦ f = 0;

(2) for every R-module X and every R-morphism g : N → X such that g ◦ f = 0 there
is a unique R-morphism ϑ : X → P such that the diagram

M
f

−−−−−→N
π

−−−−−→P

g







y

X

���
�
�

ϑ

is commutative.

Prove that (N/ Im f , \) is a cokernel of f .

Show also, in a manner dual to that of Exercise 3.5, that cokernels are unique to
within R-isomorphism.
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4.5 [The snake diagram] Suppose that the diagram of modules and morphisms

A
u

−−−−−→B
v

−−−−−→C −−−−−→0






y

α







y

β







y

γ

0−−−−−→A′−−−−−→
u′

B′−−−−−→
v′

C ′

is commutative and has exact rows. Show that this can be extended to a diagram

0 0 0






y







y







y

Kerα−−
u1−−−−−→Kerβ−−

v1−−−−−→Kerγ






y

i







y

j







y

k

A−−−−−
u
−−−−−→B−−−−−

v
−−−−−→C−−−−−→0







y

α







y

β







y

γ

0−−−−−→A′−−−−−
u′
−−−−−→B′−−−−−

v′
−−−−−→C ′







y

p







y

q







y

r

A′/ Imα
u2−−−−−→B′/ Imβ

v2−−−−−→C ′/ Imγ






y







y







y

0 0 0

which is also commutative and has exact rows and columns. Show also that there is a
‘connecting morphism’ ϑ : Kerγ→ A′/ Imα such that

Kerα
u1−−−−−→Kerβ

v1−−−−−→Kerγ

A′/ Imα
u2−−→B′/ Imβ

v2−−→C ′/ Imγ

������9

���
���

ϑ

is exact.

[Hint. To construct ϑ : given x ∈ Kerγ let y ∈ B be such that v(y) = k(x). Show
that β(y) ∈ Ker v′ so that there exists a unique a′ ∈ A′ such that u′(a′) = β(y). Show
that the prescription ϑ(x) = p(a′) is well defined (i.e. independent of y) and does the
trick.]

4.6 Let f : M → N be an R-morphism and suppose that f can be expressed as the composite
map

M
α
−−→A

β
−−→B

γ
−−→N

where α is an epimorphism, β is an isomorphism, and γ is a monomorphism. Prove
that A' M/Ker f and B ' Im f .

[Hint. Use Theorems 3.4 and 3.5.]
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4.7 Let R be a commutative unitary ring and let Rn[X ] be the R-module of all polynomials
of degree less than or equal to n with coefficients in R. Show that, for n≥ 1,

Rn−1[X ]' Rn[X ]/R.

[Hint. Consider the differentiation map.]

4.8 If R is a commutative integral domain and x is a non-zero element of R let Rxn =
{y xn ; y ∈ R}. Show that Rxn is a submodule of R for every positive integer n and that
there is a descending chain of R-modules

R ⊇ Rx ⊇ Rx2 ⊇ · · · ⊇ Rxn−1 ⊇ Rxn ⊇ · · ·

in which Rxn−1/Rxn ' R/Rx for every n.

[Hint. Consider ϑ : R→ Rxn/Rxn+1 given by ϑ(r) = r xn+Rxn+1. Show that Kerϑ = Rx
and use the first isomorphism theorem.]

4.9 Given the diagram A
α
−−→B

β
−−→C of R-modules and R-morphisms, show that there is

an exact sequence

Kerα→ Ker(β ◦α)→ Kerβ → B/ Imα→ C/ Im(β ◦α)→ C/ Imβ .



5
CHAIN CONDITIONS; JORDAN-HÖLDER TOWERS

Definition 5.1 An R-module M is said to be noetherian, or to satisfy the ascending
chain condition on submodules, if for every ascending chain

M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mi ⊆ Mi+1 ⊆ · · ·

of submodules, there is a natural number n such that (∀k ≥ n) Mk = Mn.

• Roughly speaking, this says that after a certain point the increasing sequence
(Mi)i∈N becomes stationary.

Definition 5.2 We say that an R-module M satisfies the maximum condition if every
non-empty collection of submodules of M has a maximal member relative to the
ordering of set inclusion.

Our immediate task now is to show that the above two definitions are equivalent.

Theorem 5.1 For an R-module M the following statements are equivalent :

(1) M is noetherian ;
(2) M satisfies the maximum condition ;
(3) every submodule of M is finitely generated.

Proof (1)⇒ (2) : Let C be a non-empty collection of submodules of M and choose
M0 ∈ C . If M0 is not maximal in C then there exists M1 ∈ C with M0 ⊂ M1. If M1 is
not maximal in C then there exists M2 ∈ C such that M0 ⊂ M1 ⊂ M2. This argument
yields an ascending chain of submodules of M . By (1) there exists a natural number
n such that (∀k ≥ n) Mk = Mn. The chain therefore becomes stationary at Mn which
is then maximal in C .
(2)⇒ (3) : Let N be a submodule of M . The collection F of all submodules of N

that are finitely generated is not empty since it clearly contains the zero submodule
of M which is generated by ; (Theorem 2.2). By (2) there is therefore a maximal
element, N ? say, in F . Now for any x ∈ N the submodule N ?+Rx of N generated by
N ? ∪ {x} is finitely generated and so belongs to F . But N ? ⊆ N ? + Rx and so, since
N ? is maximal in F , we have N ? = N ? + Rx , whence Rx ⊆ N ? and so x ∈ N ?. Thus
we see that N ⊆ N ? whence we have N = N ? (since N ? is a submodule of N), and
consequently N is finitely generated.
(3)⇒ (1) : Let M0 ⊆ M1 ⊆ M2 ⊆ · · · be an ascending chain of submodules of M .

We note first that
∑

i∈N
Mi =

⋃

i∈N
Mi .
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In fact, if x ∈
∑

I∈N
Mi then we have x =

∑

I∈I
mi where I is a finite subset of N and

mi ∈ Mi for every i ∈ I . If now j denotes the greatest element of I then since Mi ⊆ M j
for every i ∈ I we clearly have x ∈ M j ⊆

⋃

i∈N
Mi . Thus we see that

∑

i∈N
Mi ⊆

⋃

i∈N
Mi ,

with the reverse inclusion obvious.
Now by the hypothesis

∑

i∈N
Mi is finitely generated, say by {x1, . . . , xn}; and since

each x i ∈
∑

i∈N
Mi =

⋃

i∈N
Mi we have x i ∈ M j for some j. There being only finitely many

x i , there is therefore a natural number n (namely, the largest such j encountered)
such that x i ∈ Mn for i = 1, . . . , r. Since the set {x1, . . . , x r} generates

∑

i∈N
Mi , it

follows that
∑

i∈N
Mi ⊆ Mn. Again since

∑

i∈N
Mi =

⋃

i∈N
Mi we deduce that

∑

i∈N
Mi = Mn

whence it follows that the given chain terminates and we have (1). �

We can of course define the dual concepts of descending chain condition on sub-
modules and minimum condition in the obvious way. We say that M is artinian if it
satisfies the descending chain condition on submodules. The analogue of Theorem
5.1 is the following.

Theorem 5.2 For every R-module M the following statements are equivalent:

(1) M is artinian ;
(2) M satisfies the minimum condition.

Proof (1)⇒ (2) : This is similar to (1)⇒ (2) in Theorem 5.1.
(2)⇒ (1) : If M does not satisfy the descending chain condition on submodules

then M must have an infinite descending chain of submodules

M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mi ⊃ Mi+1 ⊃ . . . .

Clearly, the collection C of all the Mi in this chain has no minimal element and so
M cannot satisfy the minimum condition. �

Chain conditions have hereditary properties, as we shall now see.

Theorem 5.3 If an R-module M satisfies either chain condition then every submodule
and every quotient module of M satisfies the same chain condition.

Proof The statement concerning submodules is obvious since every submodule of
a submodule of M is also a submodule of M . As for quotient modules, the result is
an immediate consequence of the correspondence theorem (Theorem 4.2). �

The converse of Theorem 5.3 also holds. In fact, there is a much stronger result :

Theorem 5.4 5.4 If M is an R-module and if N is a submodule of M such that N and
M/N satisfy the same chain condition then M also satisfies that chain condition.

Proof We give a proof for the case of the ascending chain condition; that for the
descending chain condition is similar.
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Suppose that
M0 ⊆ M1 ⊆ · · · ⊆ Mi ⊆ Mi+1 ⊆ · · ·

is an ascending chain of submodules of M . Then

M0 ∩ N ⊆ M1 ∩ N ⊆ · · · ⊆ Mi ∩ N ⊆ Mi+1 ∩ N ⊆ · · ·

is an ascending chain of submodules of N and, by Theorem 3.1,

\→N (M0) ⊆ \→N (M1) ⊆ · · · ⊆ \→N (Mi) ⊆ \→N (Mi+1 ⊆ · · ·

is an ascending chain of submodules of M/N . Since, by hypothesis, N is noetherian
there is a positve integer n such that

(∀k ≥ n) Mk ∩ N = Mn ∩ N ;

and since M/N is also noetherian there is a positive integer m such that

(∀k ≥ m) \→N (Mk) = \
→
N (Mm).

Now let p =max{n, m}; then we have

(∀k ≥ p) Mk ⊇ Mp; Mk ∩ N = Mp ∩ N ; \→N (Mk) = \
→
N (Mp).

Suppose that t is any integer greater than or equal to p. Since \→N (Mt) = \→N (Mp),
given any y ∈ Mt there exists x ∈ Mp such that y + N = x + N , so that y − x ∈ N .
But since Mp ⊆ Mt we have x ∈ Mt and so y − x ∈ Mt . Thus

y − x ∈ Mt ∩ N = Mp ∩ N ⊆ Mp

and so y − x = z ∈ Mp whence y = x + z ∈ Mp. It follows that Mt ⊆ Mp, whence
Mt = Mp. Thus M is noetherian. �

A natural question arises at this stage, namely whether we can find a character-
isation of R-modules which satisfy both chain conditions. This we now proceed to
do. For this purpose we require some additional terminology.

Definition 5.3 An R-module M is said to be simple if the only submodules of M are
{0} and M .

We note by the following result that every simple R-module is finitely generated.

Theorem 5.5 If M is an R-module then M is simple if and only if

M = Rx = {r x ; r ∈ R}

for every non-zero x ∈ M.

Proof ⇒ : If M is simple then x = 1x ∈ Rx 6= {0} for every x 6= 0; and since Rx is
a submodule of M we have Rx = M .
⇐ : If Rx = M for every non-zero x ∈ R, let N 6= {0} be be a submodule of M .

Given n ∈ N with n 6= 0 we have M = Rx ⊆ N whence M = N and M is simple. �
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Example 5.1 If V is a vector space over a field F then for every non-zero x ∈ F the
subspace Fx = {λx ; λ ∈ F} is simple. In particular, the F -vector space F is simple.

The following result deals with how morphisms are affected when there are no
proper submodules.

Theorem 5.6 Let M , N be R-modules and let f : M → N be a non-zero R-morphism.
Then

(1) if M is simple, f is a monomorphism;

(2) if N is simple, f is an epimorphism.

Proof (1) Ker f is a submodule of M so, since f is not the zero morphism, we must
have Ker f = {0} whence f is a monomorphism.

(2) Im f is a submodule of N so, since f is not the zero morphism, we must have
Im f = N whence f is an epimorphism. �

Corollary 1 [Schur] If M is a simple R-module then the ring EndRM of R-morphisms
f : M → M is a division ring.

Proof By (1) and (2) above, every non-zero f ∈ EndRM is an R-isomorphism and
so is an invertible element in the ring. �

Definition 5.4 If M is an R-module then by a tower of submodules of M we shall
mean a finite decreasing chain of submodules

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr = {0}.

If we have two towers of submodules of M , say

T1 : M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr = {0};
T2 : M = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nt = {0},

then we say that T2 is a refinement of T1 if for j = 1, . . . , r there exists i ∈ {1, . . . , t}
such that Ni = M j; in other words, if every module in the chain T1 appears in the
chain T2. We say that the towers T1 and T2 are equivalent if t = r and there is a
permutation σ on {1, . . . , r} such that Ni/Ni+1 ' Mσ(i)/Mσ(i)+1.

Theorem 5.7 [Schreier’s refinement theorem] If M is an R-module and if T1, T2 are
towers of submodules of M then there are refinements S1 of T1 and S2 of T2 that are
equivalent.

Proof Given the towers

T1 : M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr = {0};
T2 : M = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nt = {0},

define (for i = 1, . . . r and j = 1, . . . , t)

Mi, j = Mi + (Mi−1 ∩ N j);
N j,i = N j + (N j−1 ∩Mi).
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Suppose, without loss of generality, that t ≤ r. Then, defining Mi,k = Mi,t for k =
t + 1, . . . , r we have the descending chains

· · ·Mi−1 = Mi,0 ⊇ Mi,1 ⊇ · · · ⊇ Mi,t = · · ·= Mi,r = Mi = Mi+1,0 · · ·
· · ·N j−1 = N j,0 ⊇ N j,1 ⊇ . . . . . . . . . . . . . . . .⊇ N j,r = N j = N j+1,0 · · ·

which are refinements of T1, T2 respectively. Let us now consider the quotient mod-
ules formed by consecutive entries Mi, j−1 ⊇ Mi, j and N j,i−1 ⊇ N j,i in these chains. It
is immediate from the Zassenhaus butterfly (Theorem 4.7 with N = Mi ⊂ Mi−1 = P
and N ′ = N j ⊂ N j−1 = P ′) that for i, j = 1, . . . , r we have

Mi, j−1/Mi, j ' N j,i−1/N j,i .

Consequently we see that Mi, j−1 = Mi, j if and only if N j,i−1 = N j,i . We conclude that
on deleting from the above chains all entries that are equal to their predecessor we
obtain refinements S1 of T1 and S2 of T2 that are equivalent. �

Definition 5.5 By a Jordan-Hölder tower of submodules of an R-module M we shall
mean a tower

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr = {0}.

in which every quotient module Mi/Mi+1 is simple.

The importance of the concept of a Jordan-Hölder tower lies in the observation
that the inclusion-preserving bijection from the set of submodules P of M such that
Mi ⊇ P ⊇ Mi+1 to the set of submodules of Mi/Mi+1 shows immediately that if T
is a Jordan-Hölder tower then T has no proper refinement; in other words, if T ′ is a
refinement of T then necessarily the entries of T ′ are precisely those of T . This leads
to the following result.

Theorem 5.8 If M is an R-module and

T1 : M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr = {0},
T2 : M = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nt = {0},

are Jordan-Hölder towers of submodules of M then t = r and T1, T2 are equivalent.

Proof By Schreier’s refinement theorem, T1 and T2 admit equivalent refinements
S1 and S2 respectively. But since T1 and T2 are Jordan-Hölder towers their only
refinements are themselves. �

This result shows in particular that the number of non-zero submodules that appear
in any Jordan-Hölder tower is independent of the choice of the tower. This number is
called the height of the tower. By abuse of language we also call it the height of the
module M and denote it by h(M).

• Most authors use the term composition series instead of Jordan-Hölder tower,
in which case they use the term length instead of height.
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Theorem 5.9 An R-module M has a Jordan-Hölder tower of submodules if and only
if it is both artinian and noetherian. In this case every tower of submodules has a
refinement which is a Jordan-Hölder tower.

Proof Suppose first that M has a Jordan-Hölder tower and let h be its height. We
prove that M satisfies both chain conditions by induction on h. Clearly, if h= 0 then
M = {0} and there is nothing to prove. Assume, therefore, that the result is true for
all R-modules having Jordan-Hölder towers of height less than n (where n> 1). Let
M be an R-module having a Jordan-Hölder tower of height n, say

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn−1 ⊃ Mn = {0}.

Then we observe that

M/Mn−1 = M0/Mn−1 ⊃ M1/Mn−1 ⊃ · · · ⊃ Mn−1/Mn−1 = {0}

is a Jordan-Hölder tower for M/Mn−1 of height n − 1. In fact, it is clear that the
inclusions in this second tower are strict; and by the second isomorphism theorem
(Theorem 4.5) we have, for i = 1, . . . , n− 1,

(Mi/Mn−1)/(Mi+1/Mn−1)' Mi/Mi+1

amd so each quotient module is simple since Mi/Mi+1 is simple. By the induc-
tion hypothesis, therefore, M/Mn−1 satisfies both chain conditions. However, since
Mn−1 = Mn−1/{0} = Mn−1/Mn we see that Mn−1 is simple and hence trivially satis-
fies both chain conditions. It is now immediate by Theorem 5.4 that M satisfies both
chain conditions. This then shows that the result holds for all modules of height n
and completes the induction.

Conversely, suppose that M satisfies both chain conditions. Let C be the collection
of all the submodules of M that have Jordan-Hölder towers. Then C 6= ; since every
descending chain of non-zero submodules M0 ⊃ M1 ⊃ M2 ⊃ . . . terminates at Mp say
which must be simple and so has a Jordan-Hölder tower of height 1. We now note
that C has a maximal element, M? say; for otherwise the ascending chain condition
would be violated. We now show that M? = M , whence M will have a Jordan-Hölder
tower. Suppose, by way of obtaining a contradiction, that M? 6= M . Then M/M? is
not a zero module and so, since M/M? inherits the descending chain condition from
M , it follows that M/M? has simple submodules. There therefore exists M?? such
that M? ⊂ M?? ⊆ M with M??/M? a simple module. Now M?? has a Jordan-Hölder
tower (since M? does, and M??/M? is simple) and so we have M?? ∈ C , which
contradicts the maximality of M? in C . This contradiction shows that we must have
M = M?, whence M has a Jordan-Hölder tower.

As for the final statement, let T be a tower of submodules of M and let J be a
Jordan-Hölder tower of submodules of M . By Schreier’s refinement theorem (Theo-
rem 5.7) there are refinements T0 of T and J0 of J that are equivalent. But since J
is a Jordan-Hölder tower J0 coincides with J . Thus T0 is also a Jordan-Hölder tower.
Consequently, T has the Jordan-Hölder refinement T0. �

Definition 5.6 We say that an R-module is of finite height if it is both artinian and
noetherian.
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EXERCISES
5.1 If A is a commutative integral domain prove that the following statements are equiva-

lent

(a) A is a principal ideal domain;
(b) as an A-module, A is noetherian and the sum of two principal ideals of A is a

principal ideal.

[Hint. (2)⇒ (1) : If I is an ideal of A then, as an A-module, I is finitely generated, say

by {x1, . . . , xn}; observe that I =
n
∑

i=1
Ax i .]

5.2 Let M be an R-module of finite height. If N is a submodule of M prove that there is a
Jordan-Hölder tower

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr−1 ⊃ Mr = {0}.

with, for some index k, Mk = N .

[Hint. Use Theorem 5.9; consider a tower of submodules of N .]

5.3 Let M and N be R-modules of finite height. Prove that if there is a non-zero R-morphism
f : M → N then there are Jordan-Hölder towers

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mr−1 ⊃ Mr = {0},
N = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nt−1 ⊃ Nt = {0},

with the property that, for some i and j,

Mi/Mi+1 ' N j/N j+1.

[Hint. Use Exercise 5.2; consider a Jordan-Hölder tower through Ker f .]

5.4 If M is an R-module of finite height and if N is a submodule of M prove that

h(N) + h(M/N) = h(M).

[Hint. Use Exercise 5.2.]

Deduce that N = M if and only if h(N) = h(M).

5.5 If M and N are R-modules with M of finite height and if f : M → N is an R-morphism,
prove that Im f and Ker f are of finite height with

h(Im f ) + h(Ker f ) = h(M).

5.6 Let M1, . . . , Mn be R-modules of finite height. Prove that if there is an exact sequence

0−−→M1
f1−−→M2

f2−−→· · ·
fn−1−−→Mn−−→0

then
n
∑

k=1
(−1)kh(Mk) = 0.
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[Hint. Use Theorem 3.6 (the case n = 2) and induction. For the inductive step use the
sequences

0−−→M1
f1−−→M2

f2−−→· · ·−−→Mn−2
π
−−→K −−→0,

0−−→K
i
−−→Mn−1

fn−1−−→Mn−−→0

in which K = Ker fn−1 = Im fn−2, π= f +n−2 and i is the natural inclusion.]

Deduce that if M and N are submodules of finite height of an R-module P then M+N
is of finite height with

h(M + N) + h(M ∩ N) = h(M × N) = h(M) + h(N).

[Hint. Apply the above to the exact sequence

0−−→M ∩ N −−→M × N −−→M + N −−→0

of Exercise 3.4.]

Show also that P/(M ∩ N) is of finite height with

h[P/(M ∩ N)] + h[P/(M + N)] = h(P/M) + h(P/N).

[Hint. Use the exact sequence of Exercise 4.3.]

5.7 Let M be an R-module of finite height. If f : M → M is an R-morphism, prove that f is
injective if and only if f is surjective.

[Hint. Note that for every positive integer n the R-morphism f n is injective/surjective
whenever f is injective/surjective. Consider the chains

0 ⊆ Ker f ⊆ Ker f 2 ⊆ · · · ⊆ Ker f n ⊆ Ker f n+1 ⊆ · · · ;

M ⊇ Im f ⊇ Im f 2 ⊇ · · · ⊇ Im f n ⊇ Im f n+1 ⊇ · · · .]

5.8 Let M and N be noetherian R-modules and let P be an R-module such that there is a
short exact sequence

0−−→M
f
−−→ P

g
−−→N −−→0.

If A is a submodule of P show that A∩ Im f is finitely generated, say by {x1, . . . , x r}.
Now show that there exist y1, . . . , yn ∈ A such that {y1, . . . , yn, x1, . . . , x r} generates A.
Deduce that P is also noetherian.

5.9 Determine which of the chain conditions, if any, are satisfied in each of the following
modules :

(1) Z as a Z-module;

(2) Zm as a Z-module;

(3) Zm as a Zm-module;

(4) Q as a Q-module;

(5) Q as a Z-module;

(6) Q[X ] as a Q-module;

(7) Q[X ] as a Q[X ]-module;

(8) Q[X ]/M as a Q[X ]-module, where M is a proper submodule.
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5.10 Let F be a field and let Mn be the ring of n×n matrices over F . For i = 1, . . . , n let Ei ∈ Mn

be the matrix whose (i, i)-th entry is 1 and all other entries are 0. For i = 1, . . . , n define

Bi = Mn(E1 + · · ·+ Ei).

Prove that
Mn = Bn ⊃ Bn−1 ⊃ · · · ⊃ B1 ⊃ B0 = {0}

is a Jordan-Hölder tower for the Mn-module Mn.

5.11 For a given prime p let

Qp =
§

x ∈Q ; (∃k ∈ Z)(∃n ∈ N) x =
k
pn

ª

.

Show that the Z-module Qp/Z is artinian but not noetherian.

[Hint. Let H be a non-zero subgroup of Qp/Z. Let t be the smallest positive integer
such that, for some k relatively prime to p, k/pt +Z 6∈ H. Show that H coincides with
St−1/Z where

St−1 =

�

0,
1

pt−1
,

2
pt−1

, . . . ,
pt−1 − 1

pt−1

�

.]



6
PRODUCTS AND COPRODUCTS

We turn our attention now to another important way of constructing new modules
from old ones. For this purpose, we begin with a very simple case of what we shall
consider in general.

If A and B are R-modules then the cartesian product set A× B can be made into
an R-module in the obvious component-wise manner, namely by defining (a1, b1) +
(a2, b2) = (a1+a2, b1+b2) and λ(a1, a2) = (λa1,λa2). Associated with this cartesian
product module A×B are the natural epimorphisms prA : A×B→ A and prB : A×B→ B
given by prA(a, b) = a and prB(a, b) = b. Now there is an interesting ‘element-
free’ characterisation of such a cartesian product module, namely that if X is any
R-module and f1 : X → A and f2 : X → B are R-morphisms then there is a unique
R-morphism ϑ : X → A× B such that the diagrams

X






y

f1

A× B−−−−−→
prA

A

�
�=

�
��

ϑ

X






y

f2

A× B−−−−−→
prB

B

�
�=

�
��

ϑ

are commutative. In fact, ϑ is given by ϑ(x) =
�

( f1(x), f2(x)
�

.

Our immediate objective is to generalise this to an arbirtary collection of R-
modules. For this purpose, we introduce the following notion.

Definition 6.1 Let (Mi)i∈I be a family of R-modules. By a product of this family we
shall mean an R-module P together with a family ( fi)i∈I of R-morphisms fi : P → Mi
such that, for every R-module M and every family (gi)i∈I of R-morphisms gi : M →
Mi , there is a unique R-morphism h : M → P such that every diagram

M






y

gi

P−−−−−→
fi

Mi

��	

�
�

h

is commutative. We denote such a product module by
�

P, ( fi)i∈I

�

.

Theorem 6.1 If
�

P, ( fi)i∈I

�

is a product of the family (Mi)i∈I of R-modules then each
fi is an epimorphism.

Proof Given i ∈ I , take M = Mi , gi = idMi
and g j the zero map for j 6= i in the

above definition. Then fi ◦ h= idMi
whence fi is an epimorphism. �
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Theorem 6.2 [Uniqueness] Let
�

P, ( fi)i∈I

�

be a product of the family (Mi)i∈I of
R-modules. Then

�

P ′, ( f ′i )i∈I

�

is also a product of this family if and only if there is a
unique R-isomorphism h : P ′→ P such that (∀i ∈ I) fi ◦ h= f ′i .

Proof Suppose that
�

P ′, ( f ′i )i∈I

�

is also a product. Then there exist unique mor-
phisms h : P ′→ P and k : P → P ′ such that, for every i ∈ I , the diagrams

P ′






y

f ′i

P−−−−−→
fi

Mi

�
�	

�
�

h

P






y

fi

P ′−−−−−→
f ′i

Mi

�
�	

�
�

k

are commutative. Since then fi ◦ h ◦ k = f ′i ◦ k = fi , the diagram

P






y

fi

P−−−−−→
fi

Mi

��	

�
�

h ◦ k

is commutative for every i ∈ I . But, from the definition of product, only one R-
morphism exists making this last diagram commutative for every i ∈ I ; and clearly
idP does just that. We deduce, therefore, that h ◦ k = idP . In a similar way we can
show that k ◦ h= idP ′ , whence we see that h is an isomorphism with h−1 = k.

Suppose, conversely, that that the condition holds. Then since fi = f ′i ◦ h−1 for
every i ∈ I , we can use the fact that

�

P, ( fi)i∈I

�

is a product to produce a unique
R-morphism ϑ : M → P such that the diagram

M






y

gi

P−−−−−→
h−1

P ′−−−−−→
f ′i

Mi

�����)

��
��ϑ

is commutative. Consider now h−1 ◦ ϑ : M → P ′. We have f ′i ◦ (h
−1 ◦ ϑ) = gi , and if

t : M → P ′ is any R-morphism such that f ′i ◦ t = gi then the equalities

gi = f ′i ◦ t = f ′i ◦ h−1 ◦ h ◦ t

together with the uniqueness property of ϑ give h ◦ t = ϑ whence t = h−1 ◦ ϑ. This
then shows that

�

P ′, ( f ′i )i∈I

�

is also a product of (Mi)i∈I . �

We shall now settle the question concerning the existence of products. For this
purpose, we ask the reader to recall that if (Ei)i∈I is a family of sets indexed by I then
the cartesian product set ∧∨

i∈I
Ei is defined to be the set of all mappings f : I →

⋃

i∈I
Ei

such that f (i) ∈ Ei for each i ∈ I . Following standard practice, we write f (i) as x i



50 Module Theory

and denote f by (x i)i∈I , so that ∧∨
i∈I

Ei consists of those families (x i)i∈I of elements of
⋃

i∈I
Ei such that x i ∈ Ei for every i ∈ I .

Given a family (Mi)i∈I of R-modules, the cartesian product set ∧∨
i∈I

Mi can be given

the structure of an R-module in an obvious way, namely by defining laws of compo-
sition by

(mi)i∈I + (ni)i∈I = (mi + ni)i∈I , λ(mi)i∈I = (λmi)i∈I .

We shall denote the R-module so formed also by ∧∨
i∈I

Mi without confusion and shall

call it the cartesian product module (or direct product) of the family (Mi)i∈I . For every
j ∈ I the j-th canonical projection pr j : ∧∨

i∈I
Mi → M j is defined by the prescription

pr j

�

(mi)i∈I

�

= m j . It is clear that each pr j is an R-epimorphism.

Theorem 6.3 [Existence]
�

∧∨
i∈I

Mi , (pri)i∈I

�

is a product of the family (Mi)i∈I .

Proof Let M be an arbitrary R-module and let (gi)i∈I be a family of R-morphisms
with gi : M → Mi for each i ∈ I . Define a mapping h : M → ∧∨

i∈I
Mi as follows : for

every x ∈ M let the i-th component of h(x) be given by
�

h(x)
�

i = gi(x); in other
words, h(x) =

�

gi(x)
�

i∈I . It is then readily verified that h is an R-morphism and is
such that pri ◦ h = gi for every i ∈ I . That h is unique follows from the fact that
if k : M → ∧∨

i∈I
Mi is also an R-morphism such that pri ◦ k = gi for every i ∈ I then

clearly

(∀i ∈ I)(∀x ∈ M)
�

k(x)
�

i = gi(x) =
�

h(x)
�

i

whence we see that k = h. �

Corollary 1 [Commutativity of ∧∨] If σ : I → I is a bijection then there is an R-
isomorphism

∧∨
i∈I

Mi ' ∧∨
i∈I

Mσ(i).

Proof It is clear that
�

∧∨
i∈I

Mσ(i), (prσ(i))i∈I

�

is also a product of (Mi)i∈I whence the

result follows by Theorem 6.2. �

Corollary 2 [Associativity of ∧∨] If {Ik ; k ∈ A} is a partition of I then there is an
R-isomorphism

∧∨
i∈I

Mi ' ∧∨
k∈A

�

∧∨
i∈Ik

Mi

�

.

Proof Let M be an arbitrary R-module. Given any Mi let k ∈ A be such that i ∈ Ik.
Then in the diagram
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M






y

gi

∧∨
k∈A

�

∧∨
i∈Ik

Mi

�

−−−−−→
prk

∧∨
i∈Ik

Mi−−−−−→pri
Mi

�����)

��
��

��
f

��+
�
�
�

hk

there is a unique R-morphism hk : M → ∧∨
i∈Ik

Mi such that pri ◦hk = gi for every i ∈ Ik,

and a unique R-morphism f : M → ∧∨
k∈A

�

∧∨
i∈Ik

Mi

�

such that prk◦ f = hk for every k ∈ A.

It follows that f satisfies the property

(∀i ∈ Ik)(∀k ∈ A) pri ◦ prk ◦ f = gi .

Suppose now that f ′ : M → ∧∨
k∈A

�

∧∨
i∈Ik

Mi

�

is also an R-morphism satisfying this prop-

erty. Given x ∈ M , let f (x) = (xk)k∈A where xk = (mi)i∈Ik
for every k ∈ A, and let

f ′(x) = (x ′k)k∈A where x ′k = (m
′
i)i∈Ik

for every k ∈ A. Then we have

�

gi(x) = (pri ◦ prk)[ f (x)] = pri(xk) = mi ,

gi(x) = (pri ◦ prk)[ f ′(x)] = pri(x ′k) = m′i ,

whence it follows that f ′(x) = f (x) and consequently that f ′ = f . This then shows
that ∧∨

k∈A

�

∧∨
i∈Ik

Mi

�

together with the family
�

pri ◦ prk

�

i∈Ik ,k∈A is a product of (Mi)i∈I .

The required isomorphism now follows by Theorem 6.2. �

The above results show that, to within R-isomorphism, there is a unique product
of the family (Mi)i∈I . As a model of this we can choose the cartesian product module
∧∨

i∈I
Mi together with the canonical projections.

In the case where I is finite, say I = {1, . . . , n}, we often write ∧∨
i∈I

Mi as
n

∧∨
i=1

Mi or

as M1 × · · · ×Mn, the elements of which are the n-tuples (m1, . . . , mn) with mi ∈ Mi
for i = 1, . . . , n. Note that Corollary 6.2 above implies in particular that

∧∨
i∈I

Mi ' Mi × ∧∨
j 6=i

M j ,

and that Corollary 6.1 implies in particular that M ×N ' N ×M . Thus, for example,
we have

M1 × (M2 ×M3)'
3

∧∨
i=1

Mi ' (M1 ×M2)×M3.

We shall now consider the question that is dual to the above, namely that which
is obtained by reversing all the arrows.

Definition 6.2 Let (Mi)i∈I be a family of R-modules. By a coproduct of this family we
shall mean an R-module C together with a family ( fi)i∈I of R-morphisms fi : Mi → C
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such that, for every R-module M and every family (gi)i∈I of R-morphisms gi : Mi →
M , there is a unique R-morphism h : C → M such that every diagram

Mi
gi−−−−−→M

fi







y

C

��>
�

��
h

is commutative. We denote such a coproduct by
�

C , ( fi)i∈I

�

.

Theorem 6.4 If
�

C , ( fi)i∈I

�

is a coproduct of the family (Mi)i∈I of R-modules then
each fi is a monomorphism.

Proof Given i ∈ I , take M = Mi , gi = idMi
, and g j the zero map for j 6= i in the

above definition. Then it follows from h ◦ fi = idMi
that each fi is a monomorphism.

�

Theorem 6.5 [Uniqueness] Let
�

C , ( fi)i∈I

�

be a coproduct of the family (Mi)i∈I of
R-modules. Then

�

C ′, ( f ′i )i∈I

�

is also a coproduct of (Mi)i∈I if and only if there is an
R-isomorphism h : C → C ′ such that (∀i ∈ I) h ◦ fi = f ′i .

Proof This is exactly the dual of the proof of Theorem 6.2; we leave the details to
the reader. �

As to the existence of coproducts, consider the subset of the cartesian product
module ∧∨

i∈I
Mi that consists of those families (mi)i∈I of elements of

⋃

i∈I
Mi which are

such that mi = 0 for ‘almost all’ i ∈ I ; i.e. mi = 0 for all but finitely many mi .
It is clear that this subset of ∧∨

i∈I
Mi is a submodule of ∧∨

i∈I
Mi . We call it the external

direct sum of the family (Mi)i∈I and denote it by
⊕

i∈I
Mi . For every j ∈ I we denote

by in j : M j →
⊕

i∈I
Mi the mapping given by the prescription in j(x) = (x i)i∈I , where

x i = 0 for i 6= j and x j = x . It is readily seen that in j is an R-monomorphism; we
call it the j-th canonical injection of M j into

⊕

i∈I
Mi .

Theorem 6.6 [Existence]
�
⊕

i∈I
Mi , (ini)i∈I

�

is a coproduct of the family (Mi)i∈I .

Proof Let M be an arbitrary R-module and let (gi)i∈I be a family of R-morphisms
with gi : Mi → M for every i ∈ I . Define a mapping h :

⊕

i∈I
Mi → M by the prescription

h
�

(mi)i∈I

�

=
∑

i∈I
gi(mi).

Note immediately that h is well defined since for every family (mi)i∈I all but a finite
number of the mi are zero. It is readily verified that h is an R-morphism. Moreover,
for every x ∈ Mi we have h[ini(x)] = gi(x) and so h ◦ ini = gi for every i ∈ I .
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To show that h is unique, suppose that k :
⊕

i∈I
Mi → M is also an R-morphism

such that k◦ ini = gi for all i ∈ I . Then for all (mi)i∈I ∈
⊕

i∈I
Mi we have, recalling that

all sums involved are well defined,

k
�

(mi)i∈I

�

=
∑

i∈I
(k ◦ ini)(mi) =

∑

i∈I
gi(mi) = h

�

(mi)i∈I

�

,

and consequently k = h. �

Corollary 1 [Commutativity of
⊕

] If σ : I → I is a bijection then there is an R-
isomorphism

⊕

i∈I
Mi '

⊕

i∈I
Mσ(i).

Proof It is clear that
�
⊕

i∈I
Mσ(i),

�

inσ(i)
�

i∈I

�

is also a coproduct of (Mi)i∈I whence

the result follows from Theorem 6.5. �

Corollary 2 [Associativity of
⊕

] If {Ik ; k ∈ A} is a partition of I then there is an
R-isomorphism

⊕

i∈I
Mi '

⊕

k∈A

�
⊕

i∈Ik

Mi

�

.

Proof Let M be an arbitrary R-module. Given any Mi let k ∈ A be such that i ∈ Ik.
Then in the diagram

Mi−−
gi−−−−−→M

ini







y

⊕

i∈Ik

Mi

ink







y

⊕

k∈A

�
⊕

i∈Ik

Mi

�

�
��

�
�

hk

�
�
�
���

�
�
�
�

f

there is a unique R-morphism hk :
⊕

i∈Ik

Mi → M such that hk ◦ ini = gi for every i ∈ Ik,

and a unique R-morphism f such that f ◦ ink = hk for every k ∈ A.
It follows that f satisfies the property

(∀i ∈ Ik)(∀k ∈ A) f ◦ ink ◦ ini = gi .

Suppose now that f ′ :
⊕

k∈A

�
⊕

i∈Ik

Mi

�

→ M is also an R-morphism that satisfies this

property. Let pr⊕j :
⊕

i∈I
Mi → M j be the restriction to

⊕

i∈I
Mi of pr j : ∧∨

i∈I
Mi → M j . Then,

observing that
∑

j∈I
(in j ◦ pr⊕j ) is the identity map on

⊕

j∈I
M j , we have
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f ′ =
∑

k∈A

∑

i∈Ik

�

f ′ ◦ ink ◦ ini ◦ pr⊕i ◦ pr⊕k
�

=
∑

k∈A

∑

i∈Ik

�

gi ◦ pr⊕i ◦ pr⊕k
�

=
∑

k∈A

∑

i∈Ik

�

f ◦ ink ◦ ini ◦ pr⊕i ◦ pr⊕k
�

= f .

This then shows that
⊕

k∈A

�
⊕

i∈Ik

Mi

�

together with the family
�

ink ◦ ini

�

i∈Ik ,k∈A is a co-

product of the family (Mi)i∈I . The required isomorphism now follows by Theorem
6.5. �

The above results show that, to within R-isomorphism, there is a unique coprod-
uct of the family (Mi)i∈I of R-modules. As a model of this we can choose the external
direct sum

⊕

i∈I
Mi together with the canonical injections.

In the case where I is finite, say I = {1, . . . , n}, we often write
⊕

i∈I
Mi as

n
⊕

i=1
Mi or

as M1 ⊕ · · · ⊕Mn, the elements of which are the n-tuples (m1, . . . , mn) with mi ∈ Mi
for i = 1, . . . , n.

• Thus we see that when the index set I is finite, the modules
⊕

i∈I
Mi and ∧∨

i∈I
Mi

coincide.

Note also that Corollary 6.4 above implies in particular that

⊕

i∈I
Mi ' Mi ⊕

⊕

j 6=i
M j ,

and that Corollary 6.3 implies in particular that M1 ⊕ M2 ' M2 ⊕ M1. Thus, for

example, we have M1 ⊕ (M2 ⊕M3)'
3
⊕

i=1
Mi ' (M1 ⊕M2)⊕M3.

• The reader will find it instructive to verify Theorem 6.6 in the case where
I = {1,2}.

The following is a useful characterisation of coproducts.

Theorem 6.7 An R-module M and a family (i j) j∈I of R-morphisms i j : M j → M form a
coproduct of (M j) j∈I if and only if there is a family (π j) j∈I of R-morphismsπ j : M → M j
such that

(1) πk ◦ i j =

�

idM j
if k = j,

0 if k 6= j;

(2) (∀m ∈ M) π j(m) = 0 for all but finitely many j ∈ I and

∑

j∈I
(i j ◦π j)(m) = m.
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Proof Suppose first that
�

M , (i j) j∈I

�

is a coproduct of (M j) j∈I . Then by Theorems
6.5 and 6.6 there is an R-isomorphism f :

⊕

j∈I
M j → M such that, for every j ∈ I , the

diagram

M j

i j
−−−−−→M

in j







y

⊕

j∈I
M j

�
��

��
f

is commutative. For every j ∈ I define π j : M → M j by

π j = pr⊕j ◦ f −1

where pr⊕j denotes the restriction to
⊕

j∈I
M j of the j-th projection pr j : ∧∨

j∈I
M j → M j .

Then for all k, j ∈ I we have

πk ◦ i j = pr⊕j ◦ f −1 ◦ i j = pr⊕j ◦ in j =

�

idM j
if k = j;

0 if k 6= j.

Moreover, for every m ∈ M , the equality π j(m) = pr⊕j [ f
−1(m)] shows that π j(m) is

zero for all but a finite number of j ∈ I . Finally,
∑

j∈I
(i j ◦π j)(m) =

∑

j∈I

�

f ◦ in j ◦ pr⊕j ◦ f −1
�

(m)

=
�

f ◦
∑

j∈I
(in j ◦ pr⊕j ) ◦ f −1

�

(m)

= m,

since
∑

j∈I

�

in j ◦ pr⊕j
�

is the identity map on
⊕

j∈I
M j .

Suppose, conversely, that (1) and (2) hold. Then, by (2), the prescription

(∀m ∈ M) g(m) =
∑

j∈I
(in j ◦π j)(m)

yields an R-morphism g : M →
⊕

j∈I
M j . By Theorem 6.6, there is an R-morphism

h :
⊕

j∈I
M j → M such that h ◦ in j = i j for every j ∈ I . The diagram

M j M

in j







y

⊕

j∈I
M j

-i j
�
π j

�
��

��
h

��	
�
�

g

now gives, for every m ∈ M ,
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h[g(m)] =
∑

j∈I
(h ◦ in j ◦π j)(m) =

∑

j∈I
(i j ◦π j)(m) = m

and so h ◦ g is the identity map on M . Now given x ∈
⊕

j∈I
M j we also have, using the

fact that
∑

j∈I

�

in j ◦ pr⊕j
�

(x) = x ,

g[h(x)] =
∑

j∈I
(in j ◦π j)[h(x)]

=
∑

j∈I

∑

k∈I

�

in j ◦π j ◦ h ◦ ink ◦ pr⊕k
�

(x)

=
∑

j∈I

∑

k∈I

�

in j ◦π j ◦ ik ◦ pr⊕k
�

(x)

=
∑

j∈I

�

in j ◦ pr⊕j
�

(x) by (1)

= x .

Thus g ◦ h is the identity map on
⊕

j∈I
M j . It follows that g, h are mutually inverse R-

isomorphisms. Appealing now to Theorem 6.5 we see that
�

M , (i j) j∈I

�

is a coproduct
of (M j) j∈I . �

• Note that when the index set I is finite, say I = {1, . . . , n}, condition (2) of

Theorem 6.7 simplifies to
n
∑

j=1
(i j ◦π j) = idM .

• There is, of course, a characterisation of products that is dual to that in Theo-
rem 6.7; see Exercise 6.9.

We now turn our attention to a family (Mi)i∈I where each Mi is a submodule of
a given R-module M . For every j ∈ I let ι j : M j → M be the natural inclusion and let
h :
⊕

i∈I
Mi → M be the unique R-morphism such that the diagram

M j

ι j
−−−−−→M

in j







y

⊕

i∈I
Mi

�
��

��
h

is commutative for every j ∈ I . From the proof of Theorem 6.6, we know that h is
given by

h
�

(m j) j∈I

�

=
∑

j∈I
ι j(m j) =

∑

j∈I
m j .

Thus we see that Im h is the submodule
∑

i∈I
Mi . Put another way, we have the exact

sequence
⊕

i∈I
Mi

h
−−−−−→M

\
−−−−−→M/

∑

i∈I
Mi −−−−−→0.
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Definition 6.3 If M is an R-module and (Mi)i∈I is a family of submodules of M then
we shall say that M is the internal direct sum of the family (Mi)i∈I if the mapping
h :
⊕

i∈I
Mi → M described above is an isomorphism.

• Since, by the above definition, internal direct sums (when they exist) are iso-
morphic to external direct sums, we shall adopt the practice of denoting in-
ternal direct sums also by the symbol

⊕

. We shall also omit the adjectives
‘internal’ and ‘external’ as applied to direct sums since the context will always
make it clear which one is involved.

Theorem 6.8 An R-module M is the direct sum of a family (Mi)i∈I of submodules if
and only if every x ∈ M can be written in a unique way as x =

∑

i∈I
mi where mi ∈ Mi

for every i ∈ I with almost all mi = 0.

Proof The mapping h described above is surjective if and only if M = Im h=
∑

i∈I
Mi ,

which is equivalent to saying that every x ∈ M can be expressed in the form x =
∑

i∈I
mi where mi ∈ Mi for every i ∈ I and almost all mi = 0. Also, since we have

∑

i∈I
mi = h

�

(mi)i∈I

�

, we see that h is injective if and only if such expressions are

unique. �

Theorem 6.9 Let (Mi)i∈I be a family of submodules of an R-module M. Then the fol-
lowing statements are equivalent :
(1)

∑

i∈I
Mi is the direct sum of (Mi)i∈I ;

(2) if
∑

i∈I
mi = 0 with mi ∈ Mi for every i ∈ I then mi = 0 for every i ∈ I ;

(3) (∀i ∈ I) Mi ∩
∑

j 6=i
M j = {0}.

Proof (1)⇒ (2) : By Theorem 6.8, the only way 0 can be expressed as a sum is the
trivial way.
(2) ⇒ (3) : Let x ∈ Mi ∩

∑

j 6=i
M j , say x = mi =

∑

j 6=i
m j . Then mi +

∑

j 6=i
(−m j) = 0

whence, by (2), mi = 0 and so x = 0.
(3)⇒ (1) : Suppose that

∑

i∈I
mi =

∑

i∈I
ni with mi , ni ∈ Mi for each i. Then we have

mi − ni =
∑

j 6=i
(n j − m j) where the left-hand side belongs to Mi and the right-hand

side belongs to
∑

j 6=i
M j . By (3) we deduce that mi − ni = 0, whence (1) follows by

Theorem 6.8. �

Corollary 1 If A, B are submodules of M then M = A⊕B if and only if M = A+B and
A∩ B = {0}. �

Definition 6.4 We shall say that submodules A, B of an R-module M are supplemen-
tary if M = A⊕ B. A submodule N of M is called a direct summand of M if there is a
submodule P of M such that N and P are supplementary.
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• It should be noted that an arbitrary submodule of an R-module M need not
have a supplement. For example, let p, q ∈ Z \ {0,1} and consider the sub-
modules pZ, qZ of Z. We have pZ ∩ qZ 6= {0}. Since all the submodules of Z
are of the form nZ for some n ∈ Z, it follows that pZ (with p 6= 0, 1) has no
supplement in Z.

• Note also that supplements need not be unique. For example, consider the
R-vector space R2 and the subspaces

X = {(x , 0) ; x ∈ R}, Y = {(0, y) ; y ∈ R}, D = {(r, r) ; r ∈ R}.

It is clear that every (x , y) ∈ R2 can be expressed as

(x , y) = (x , x) + (0, y − x) = (y, y) + (x − y, 0)

whence we see by Corollary 6.5 that R2 = D⊕ Y = D⊕ X .

However, as our next result shows, any two supplements of a submodule are
isomorphic.

Theorem 6.10 If M1, M2 are supplementary submodules of M. Then M2 ' M/M1.

Proof Since M = M1 ⊕ M2 the canonical projection pr2 : M → M2, described by
pr2(m1+m2) = m2, is clearly surjective with Kerpr2 = M1. Thus, by the first isomor-
phism, theorem we have M2 = Impr2 ' M/Kerpr2 = M/M1. �

The notion of a direct summand is intimately related to a particular type of short
exact sequence. We shall now describe this connection.

Definition 6.5 An exact sequence of the form N
g
−−→ P−−→0 is said to split if there

is an R-morphism π : P → N such that g ◦π = idP ; and 0−−→M
f
−−→N is said to

split if there is an R-morphism ρ : N → M such that ρ ◦ f = idM . Such R-morphisms
π,ρ will be called splitting morphisms.

• Note that in the above definition g is an epimorphism so there always exists
a mapping π : P → N such that g ◦π = idP ; and since f is a monomorphism
there always exists a mapping ρ : N → M such that ρ ◦ f = idM .

Definition 6.6 We shall say that a short exact sequence

0−−−−−→M
f

−−−−−→N
g

−−−−−→ P−−−−−→0

splits on the right whenever N
g
−−→ P−−→0 splits; and that it splits on the left when-

ever 0−−→M
f
−−→N splits.

Theorem 6.11 For a short exact sequence

0−−−−−→M
f

−−−−−→N
g

−−−−−→ P−−−−−→0

the following statements are equivalent :



Products and coproducts 59

(1) the sequence splits on the right;

(2) the sequence splits on the left;

(3) Im f = Ker g is a direct summand of N.

Proof (1)⇒ (3) : Suppose that π : P → N is a right-hand splitting morphism and
consider Ker g ∩ Imπ. If x ∈ Ker g ∩ Imπ then g(x) = 0P and x = π(p) for some
p ∈ P whence

0P = g(x) = g[π(p)] = p

and consequently x = π(p) = π(0P) = 0N . Thus we see that Ker g ∩ Imπ = {0}.
Moreover, for every n ∈ N we have

g
�

n− (π ◦ g)(n)
�

= g(n)− (g ◦π ◦ g)(n) = g(n)− g(n) = 0P

and so n− (π ◦ g)(n) ∈ Ker g. Observing that every n ∈ N can be written

n= (π ◦ g)(n) + n− (π ◦ g)(n),

we see that N = Imπ + Ker g. It follows by Corollary 1 of Theorem 6.9 that N =
Imπ⊕ Ker g.
(3)⇒ (1) : Suppose that N = Ker g ⊕ A for some submodule A of N . Then every

n ∈ N can be written uniquely as n = y + a where y ∈ Ker g and a ∈ A. Consider
the restriction gA of g to A. Since g(n) = g(a) and g is surjective, we see that gA
is surjective. It is also injective since if a ∈ Ker gA then 0 = gA(a) = g(a) and so
a ∈ Ker g ∩A= {0}. Thus gA : A→ P is an R-isomorphism. Since then gA ◦ g−1

A = idP
we see that g−1

A induces a right-hand splitting morphism.
(2) ⇒ (3) : Suppose that ρ : N → M is a left-hand splitting morphism. If x ∈

Im f ∩ Kerρ then x = f (m) for some m ∈ M and ρ(x) = 0M . Thus 0M = ρ(x) =
ρ[ f (m)] = m and so x = f (m) = f (0M ) = 0N whence Im f ∩ Kerρ = {0}. Since
every n ∈ N can be written n= ( f ◦ρ)(n)+n−( f ◦ρ)(n)where n−( f ◦ρ)(n) ∈ Kerρ,
we deduce that N = Im f ⊕ Kerρ.
(3)⇒ (2) : If N = Im f ⊕B then every n ∈ N can be written uniquely as n= x+ b

where x ∈ Im f and b ∈ B. Since f is a monomorphism there is precisely one m ∈ M
such that f (m) = x so we can write this element as f −1(x) without confusion. Now
define ρ : N → M by setting ρ(n) = ρ(x + a) = f −1(x). Then for all m ∈ M we
have ρ[ f (m)] = f −1[ f (m)] = m, so that ρ ◦ f = idM and ρ is a left-hand splitting
morphism. �

• Note from the above result that if the short exact sequence

0−−−−−→M
f

−−−−−→N
g

−−−−−→ P−−−−−→0

splits and if ρ,π are splitting morphisms then we have

Ker g ⊕ Imπ= N = Im f ⊕ Kerρ.

Since π and f are monomorphisms we have Imπ' P and Im f ' M , so
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N ' Ker g ⊕ P = Im f ⊕ P ' M ⊕ P.

Note also, conversely, that

0−−−−−→M
i

−−−−−→M ⊕ P
ϑ

−−−−−→ P−−−−−→0

is split exact where i : M → M ⊕ P is the canonical injection m 7→ (m, 0) and
ϑ : M ⊕ P → P is the projection (m, p) 7→ p.

Definition 6.7 Let N and P be supplementary submodules of an R-module M , so
that every x ∈ M can be written uniquely in the form x = n+ p where n ∈ N and
p ∈ P. By the projection on N parallel to P we shall mean the mapping p : M → M
described by p(x) = n. An R-morphism f : M → N is called a projection if there exist
supplementary submodules N , P of M such that f is the projection on N parallel to
P.

Theorem 6.12 If M1 and M2 are supplementary submodules of an R-module M and
if f is the projection on M1 parallel to M2 then
(1) M1 = Im f = {x ∈ M ; f (x) = x};
(2) M2 = Ker f ;
(3) f ◦ f = f .

Proof (1) It is clear that M1 = Im f ⊇ {x ∈ M ; f (x) = x}. If now m1 ∈ M1
then its unique representation as a sum is m1 = m1 + 0 whence f (m1) = m1 and
consequently m1 ∈ {x ∈ M ; f (x) = x}.

(2) Let x ∈ M have the unique representation x = m1 +m2 where m1 ∈ M1 and
m2 ∈ M2. Then since f (x) = m1 we have

f (x) = 0 ⇐⇒ m1 = 0 ⇐⇒ x = m2 ∈ M2.

(3) For every x ∈ M we have f (x) ∈ M1 and so, by (1), we have that f [ f (x)] =
f (x). �

Definition 6.8 A morphism f : M → M such that f ◦ f = f will be called idempotent.

By Theorem 6.12(3), projections are idempotent. In fact, as we shall now show,
the converse is also true.

Theorem 6.13 An R-morphism f : M → M is a projection if and only if it is idem-
potent, in which case M = Im f ⊕ Ker f and f is the projection on Im f parallel to
Ker f .

Proof Suppose that f is idempotent. If x ∈ Im f ∩ Ker f then x = f (y) for some
y ∈ M and f (x) = 0, so

x = f (y) = f [ f (y)] = f (x) = 0.

Moreover, for every x ∈ M ,

f
�

x − f (x)
�

= f (x)− f [ f (x)] = 0,

and so x− f (x) ∈ Ker f . Then from the identity x = f (x)+ x− f (x) we deduce that
M = Im f ⊕ Ker f .
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Suppose now that m = x + y where x ∈ Im f and y ∈ Ker f . Then x = f (z) for
some z ∈ M and f (y) = 0, so that

f (m) = f (x + y) = f (x) + 0= f [ f (z)] = f (z) = x .

In other words, f is the projection on Im f parallel to Ker f .
As observed above, the converse is clear by Theorem 6.12(3). �

Corollary 1 If f : M → M is a projection then so is idM − f , in which case Im f =
Ker(idM − f ).

Proof Writing f ◦ f as f 2, we deduce from f 2 = f that

(idM − f )2 = idM − f − f + f 2 = idM − f .

Moreover, by Theorem 6.12(1),

x ∈ Im f ⇐⇒ x = f (x) ⇐⇒ (idM − f )(x) = 0

and so Im f = Ker(idM − f ). �

We shall now show how the decomposition of an R-module into a finite direct
sum of submodules can be expressed in terms of projections. As we shall see in due
course, this result opens the door to a deep study of linear transformations and their
representation by matrices.

Theorem 6.14 An R-module M is the direct sum of submodules M1, . . . , Mn if and only
if there are non-zero R-morphisms p1, . . . , pn : M → M (necessarily projections) such
that

(1)
n
∑

i=1
pi = idM ;

(2) (i 6= j) pi ◦ p j = 0.

Proof Suppose first that M =
n
⊕

i=1
Mi . Then for each i we have M = Mi ⊕

∑

j 6=i
M j . Let

pi be the projection on Mi parallel to
∑

j 6=i
M j . Then, for x ∈ M and i 6= j,

pi[p j(x)] ∈ p→i (Im p j) = p→i (M j) by Theorem 6.12

⊆ p→i
�∑

j 6=i
M j

�

= p→i (Ker pi) by Theorem 6.12

= {0}

and so pi ◦ p j = 0 for i 6= j. Also, since every x ∈ M can be written uniquely as

x =
n
∑

i=1
x i where x i ∈ Mi for i = 1, . . . , n, and since pi(x) = x i for each i, we observe

that
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x =
n
∑

i=1
x i =

n
∑

i=1
pi(x) =

�

n
∑

i=1
pi

�

(x),

whence we deduce that
n
∑

i=1
pi = idM .

Conversely, suppose that p1, . . . , pn satisfy (1) and (2). Then we note that

pi = pi ◦ idM = pi ◦
�

n
∑

i=1
p j

�

=
n
∑

i=1
(pi ◦ p j) = pi ◦ pi

so that each pi is idempotent and hence a projection. By (1) we have

x = idM (x) =
�

n
∑

i=1
pi

�

(x) =
n
∑

i=1
pi(x) ∈

n
∑

i=1
Im pi ,

whence M =
n
∑

i=1
Im pi .

Moreover, if x ∈ Im pi∩
∑

j 6=i
Im p j then x = pi(x) and x =

∑

j 6=i
x j where p j(x j) = x j

for every j 6= i. Consequently, by (2),

x = pi(x) = pi

�∑

j 6=i
x j

�

= pi

�∑

j 6=i
p j(x j)

�

=
∑

j 6=i
(pi ◦ p j)(x j) = 0.

It follows that M =
n
⊕

i=1
Im Pi . �

EXERCISES

6.1 Let M be an R-module and let M1, . . . , Mn be submodules of M such that M =
n
⊕

i=1
Mi .

For k = 1, . . . , n let Nk be a submodule of Mk and let N =
n
∑

i=1
Ni . Prove that

(1) N =
n
⊕

i=1
Ni;

(2) M/N '
n
⊕

i=1
Mi/Ni .

6.2 Let M be an R-module of finite height. Prove that for every R-morphism f : M → N
there exists n ∈ N such that M = Im f n ⊕ Ker f n.

[Hint. The ascending chain {0} ⊆ Ker f ⊆ Ker f 2 ⊆ . . . terminates after p steps, and the
descending chain M ⊇ Im f ⊇ Im f 2 ⊇ . . . after q steps; consider n=max{p, q}.]

6.3 If M and N are R-modules let MorR(M , N) be the set of R-morphisms f : M → N . Show
that MorR(M , N) is an abelian group which is an R-module whenever R is commutative.

Suppose that R is commutative and that A1, . . . , An are submodules of M such that

M =
n
⊕

i=1
Ai . For j = 1, . . . , n let L j be the set of R-morphisms g : M → N such that

⊕

i 6= j
A j ⊆ Ker g. Prove that each L j is an R-module and that L j 'MorR(A j , N).
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[Hint. Observe that there is an R-isomorphism ϑ j : A j → M/
⊕

i 6= j
Ai . Now form the dia-

gram M

\







y

M/
⊕

i 6= j
Ai−−−−−→

f?
N

ϑ j

x







A j

Z
Z~

Z
ZZ f

in which f? is given by Theorem 3.4. Examine the mapping f 7→ f? ◦ ϑ j .]

6.4 If M is an R-module and (Ni)i∈I is a family of R-modules, establish the following iso-
morphisms of abelian groups :

(a) MorR

�
⊕

i∈I
Ni , M

�

' ∧∨
i∈I

MorR(Ni , M);

(b) MorR

�

M , ∧∨
i∈I

Ni

�

' ∧∨
i∈I

MorR(M , Ni).

[Hint. (a) : Given f :
⊕

i∈I
Ni → M let ϑ( f ) =

�

f ◦ ini

�

i∈I
;

(b) : Given f : M → ∧∨
i∈I

Ni let ζ( f ) =
�

pri ◦ f
�

i∈I
.]

Deduce that
MorR

�
⊕

i∈I
Mi , ∧∨

j∈I
N j

�

' ∧∨
(i, j)∈I×J

MorR(Mi , N j).

Establish an abelian group isomorphism MorZ(Z,Z)' Z. Deduce that, for all positive
integers n and m,

MorZ(Zn,Zm)' Znm.

6.5 A submodule M of ∧∨
i∈I

Mi is said to be a subdirect product of the family (Mi)i∈I if, for every

i ∈ I , the restriction prM
i : M → Mi of the canonical projection pri is an R-epimorphism.

If N is an R-module and there is a family ( fi)i∈I of R-epimorphisms fi : N → Mi such
that

⋂

i∈I
Ker fi = {0}, prove that N is isomorphic to a subdirect product of (Mi)i∈I .

Show that Z is isomorphic to a subdirect product of (Z/nZ)n>1.

6.6 An R-morphism f : M → N is said to be regular if there is an R-morphism g : N → M
such that f ◦ g ◦ f = f . Prove that f : M → N is regular if and only if

(1) Ker f is a direct summand of M ;

(2) Im f is a direct summand of N .

[Hint. Use the canonical sequences

Ker f
i1−−−−−→M

\1−−−−−→M/Ker f

ζ−1

x













y

ζ

Im f
i2−−−−−→N

\2−−−−−→N/ Im f

and Theorem 6.11.]
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6.7 Let (Mi)i∈I and (Ni)i∈I be families of R-modules. If, for every i ∈ I , fi : Mi → Ni is an
R-morphism define the direct sum of the family ( fi)i∈I to be the R-morphism f :

⊕

i∈I
Mi →

⊕

i∈I
Ni given by f

�

(mi)i∈I

�

=
�

fi(mi)
�

i∈I
. Prove that

(1) Ker f =
⊕

i∈I
Ker fi;

(2) Im f =
⊕

i∈I
Im fi .

If (Li)i∈I is also a family of R-modules and gi : Li → Mi is an R-morphism for every
i ∈ I , let g be he direct sum of the family (gi)i∈I . Prove that

⊕

i∈I
Li

g
−−−−−→

⊕

i∈I
Mi

f
−−−−−→

⊕

i∈I
Ni

is an exact sequence if and only if, for every i ∈ I ,

Li
gi−−−−−→Mi

fi−−−−−→Ni

is an exact sequence.

6.8 An R-module M is said to be indecomposable if its only direct summands are {0} and
M . Show that the Z-module Qp/Z is indecomposable.

6.9 Prove that an R-module M together with a family (π j) j∈I of R-morphisms with π j :
M → M j is a product of the family (M j) j∈I if and only if there is a family (i j) j∈I of
R-morphisms i j : M j → M such that

(1) πk ◦ i j =

�

idM j
if k = j,

0 if k 6= j;

(2) for every (x j) j∈I ∈ ∧∨
j∈I

M j there is a unique x ∈ M such that π j(x) = x j for every

j ∈ I .

6.10 If M is an R-module and f : M → M is an R-morphism prove that the following state-
ments are equivalent :

(1) M = Im f + Ker f ;

(2) Im f = Im( f ◦ f ).

6.11 If M is an R-module and p, q : M → M are projections prove that

(1) Im p = Im q if and only if p ◦ q = q and q ◦ p = p;

(2) Ker p = Ker q if and only if p ◦ q = p and q ◦ p = q.

6.12 Let V be a vector space and let p, q be projections. Prove that p + q is a projection if
and only if p◦q = q◦ p = 0, in which case p+q is the projection on Im p+ Im q parallel
to Ker p ∩ Ker q.
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6.13 The diagram of R-modules and R-morphisms

· · · →Ai
fi−−→Bi

gi−−→Ci
hi−−→Ai+1

fi+1−−→Bi+1
gi+1−−→Ci+1→ ·· ·







y

αi







y

βi







y

γi







y

αi+1







y

βi+1







y

γi+1

· · · →A′i−−→
f ′i

B′i−−→
g′i

C ′i−−→
h′i

A′i+1−−→
f ′i+1

B′i+1−−→
g′i+1

C ′i+1→ ·· ·

is given to be commutative with exact rows. If each γi is an isomorphism, establish the
exact sequence

· · · → Ai
ϕi−−−−−→A′i ⊕ Bi

ϑi−−−−−→B′i
hi◦γ−1

i ◦g
′
i−−−−−−−−→Ai+1→ ·· ·

where ϕi is given by
ϕi(ai) =

�

αi(ai), fi(ai)
�

and ϑi is given by
ϑi(a

′
i , bi) = f ′i (a

′
i)− βi(bi).



7
FREE MODULES; BASES

Definition 7.1 Let R be a unitary ring and let S be a non-empty set. By a free R-
module on S we shall mean an R-module F together with a mapping f : S → F
such that, for every R-module M and every mapping g : S → M , there is a unique
R-morphism h : F → M such that the diagram

S
g

−−−−−→M

f







y

F

���

�
�

h

is commutative. We denote such an R-module by (F, f ).

• Roughly speaking, a free module F on S allows us to ‘trade in’ a mapping from
S for an R-morphism from F .

Theorem 7.1 If (F, f ) is a free module on S then f is injective and Im f generates F.

Proof To show that f is injective, let x , y ∈ S be such that x 6= y; we have to
show that f (x) 6= f (y). For this purpose, let M be an R-module having more than
one element (e.g. R itself will do) and choose any mapping g : S → M such that
g(x) 6= g(y). Let h : F → M be the unique R-morphism such that h ◦ f = g. Then
since h[ f (x)] = g(x) 6= g(y) = h[ f (y)] we must have f (x) 6= f (y).

To show that Im f generates F , let A be the submodule of F that is generated by
Im f and consider the diagram

S
f +
−−→Im f

ι
−−→A

ιA−−−−−→F

f







y

F

��
�*

����

h ��
��

��1

�����

ιA ◦ h

in which ι is the inclusion map from Im f to A, ιA is that from A to F , and f + : S→
Im f is given by f +(x) = f (x) for every x ∈ S. Since F is free on S there is a unique
R-morphism h : F → A such that h ◦ f = ι ◦ f +. The mapping k : F → F given by
k = ιA ◦h is then an R-morphism such that k ◦ f = ιA ◦ ι ◦ f +. But since F is free on S
there can be only one R-morphism ϑ : F → F such that ϑ◦ f = ιA◦ ι ◦ f +; and clearly
ϑ = idF does just that. We must therefore have ιA ◦ h = k = idF , from which we see
that ιA is surjective. We conclude that A= F and hence that Im f generates F . �
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Theorem 7.2 [Uniqueness] Let (F, f ) be a free R-module on the non-empty set S.
Then (F ′, f ′) is also a free R-module on S if and only if there is a unique R-morphism
j : F → F ′ such that j ◦ f = f ′.

Proof Suppose first that (F ′, f ′) is also free on S. Then there are R-morphisms j :
F → F ′ and k : F ′→ F such that the diagrams

S
f ′

−−−−−→F ′

f







y

F

���

��
j

S
f

−−−−−→F

f ′







y

F ′

���

��
k

are commutative. Then since k◦ j◦ f = k◦ f ′ = f we have the commutative diagram

S
f

−−−−−→F

f







y

F

�
��

�
�

k ◦ j

But, again since F is free on S, only one morphism can complete this diagram in
a commutative manner; and clearly idF does just that. We conclude, therefore, that
k ◦ j = idF . In a similar manner we can show that j ◦ k = id′F . It follows that j, k are
mutually inverse R-isomorphisms.

Suppose, conversely, that the condition is satisfied. Then since f = j−1◦ f ′ we can
use the fact that (F, f ) is free on S to build, for any R-module M and any mapping
g : S→ M , the diagram

S
g

−−−−−→M

f ′







y

x







h

F ′ F
@@R

@
@ f

-j
�

j−1

in which h ◦ j−1 ◦ f ′ = h ◦ f = g. That (F ′, f ′) is also free on S will follow if we can
show that if t : F ′→ M is an R-morphism such that t ◦ f ′ = g then t = h ◦ j−1. Now
t ◦ f ′ = g is equivalent to t ◦ j ◦ f = g which, by the uniqueness of h, is equivalent
to t ◦ h= j, which in turn is equivalent to t = h ◦ j−1. �

We shall now settle the question concerning the existence of free modules.

Theorem 7.3 [Existence] For every non-empty set S and every unitary ring R there
is a free R-module on S.

Proof Consider the set F of mappings ϑ : S → R which are such that ϑ(s) = 0
for ‘almost all’ s ∈ S, i.e. all but a finite number of s ∈ S. It is readily seen that F ,
equipped with the laws of composition given by

(∀s ∈ S) (ϑ+ ζ)(s) = ϑ(s) + ζ(s);
(∀λ ∈ R)(∀s ∈ S) (λϑ)(s) = λϑ(s),
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is an R-module. Now define a mapping f : S→ F by assigning to s ∈ S the mapping
f (s) : S→ R given by

[ f (s)](t) =

�

1 if t = s;

0 if t 6= s.

We shall show that (F, f ) is a free R-module on S.
For this purpose, suppose that M is an R-module and that g : S→ M is a mapping.

Define a mapping h : F → M by the prescription

h(ϑ) =
∑

s∈S
ϑ(s)g(s).

Note that each such sum is well defined since there is at most a finite number of
terms different from zero. It is clear that h is an R-morphism. Moreover, since

(∀s ∈ S) h[ f (s)] =
∑

t∈S
[ f (s)](t) · g(t) = g(s),

we have h ◦ f = g. To establish the uniqueness of h, we note first that for all ϑ ∈ F
and all t ∈ S we have

ϑ(t) = ϑ(t) · 1R =
∑

s∈S
ϑ(s) · [ f (s)](t) =

�∑

s∈S
ϑ(s) f (s)

�

(t)

and so
(∀ϑ ∈ F) ϑ =

∑

s∈S
ϑ(s) f (s).

Thus, if h′ : F → M is also an R-morphism such that h′ ◦ f = g, then for all ϑ ∈ F we
have

h′(ϑ) =
∑

s∈S
ϑ(s)h′[ f (s)] =

∑

s∈S
ϑ(s)g(s) = h(ϑ).

Hence h′ = h as required. �

The above results show that, to within R-isomorphism, there is a unique free
R-module on a non-empty set S. As a model of this, we may choose the R-module
constructed in the above proof. We shall refer to this particular R-module by calling
it henceforth the free R-module on S.

Definition 7.2 We shall say that an R-module M is free if there is a free R-module
(F, f ) on some non-empty set S such that M is isomorphic to F .

Our immediate aim is to determine a simple criterion for an R-module to be free.
For this purpose, we require the following notion.

Definition 7.3 A non-empty subset S of an R-module M is said to be linearly inde-
pendent (or free) if, for every finite sequence x1, . . . , xn of distinct elements of S,

n
∑

i=1
λi x i = 0M ⇒ λ1 = · · ·= λn = 0R.

Put another way, S is linearly independent if the only way of expressing 0 as a linear
combination of distinct elements of S is the trivial way (in which all the coefficients
are zero).
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• Note that no linearly independent subset of an R-module M can contain the
zero element of M ; for we can fabricate the equality

1R0M + 0R x1 + · · ·+ 0R xn = 0M

thus expressing 0M s a linear combination of {0M , x1, . . . , xn} in which not all
the coefficients are zero.

• Note also that in a vector space V every singleton subset {x} with x 6= 0V is
linearly independent; for if we had λx = 0 with λ 6= 0 then it would follow
that

x = λ−1λx = λ−10= 0,

a contradiction. In contrast, if we consider a unitary ring R as an R-module
then, if R has zero divisors, singleton subsets need not be linearly independent.

Definition 7.4 By a basis of an R-module M we shall mean a linearly independent
subset of M that generates M .

Theorem 7.4 A non-empty subset S of an R-module M is a basis of M if and only
if every element of M can be expressed in a unique way as a linear combination of
elements of S.

Proof If S is a basis of M then, since S generates M , every x ∈ M can be expressed
as a linear combination of elements of S. Suppose now that

x =
n
∑

i=1
λi x i =

m
∑

j=1
µ j y j

where x1, . . . , xn are distinct elements of S and y1, . . . , ym are distinct elements of S.
Then we can form the equation

n
∑

i=1
λi x i +

m
∑

j=1
(−µ j)y j = 0.

The linear independence of S now shows that for distinct x i , y j we have λi = µ j = 0,
and when x i = y j we have λi = µ j . Consequently x has a unique expression as a
linear combination of elements of S.

Suppose, conversely, that this condition holds. Then clearly S generates M . Also,
0 can be expressed uniquely as a linear combination of elements of S, so that S is
linearly independent. Thus S is a basis. �

• Observe from the above proof that in order to show that x has a unique ex-
pression as a linear combination of elements of S, there is no loss in generality
in assuming that m= n and yi = x i .

Example 7.1 If M is an R-module and n is a positive integer then the R-module Rn

has the basis {e1, . . . , en} where

ei = (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, . . . , 0).

We call this the natural basis of Rn.
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Example 7.2 Consider the differential equation D2 f +2D f + f = 0. The reader will
know that, loosely speaking, the general solution is f : x 7→ (A+ Bx)e−x where
A, B are arbitrary constants. To be somewhat more precise, the solution space is the
subspace LC{ f1, f2} of the vector space V of twice-differentiable functions f : R→ R
where f1(x) = e−x and f2(x) = xe−x . Since { f1, f2} is linearly independent (write
λ1 f1 +λ2 f2 = 0 and differentiate), it therefore forms a basis for the solution space.
Note that, in contrast, V does not have a finite basis.

Theorem 7.5 Let (F, f ) be the free R-module on S. Then Im f is a basis of F.

Proof Recall that (F, f ) is the R-module constructed in the proof of Theorem 7.3.
That Im f generates F is immediate from Theorem 7.1. Observe that, from the proof
of Theorem 7.3, we have

(∀ϑ ∈ F) ϑ =
∑

s∈S
ϑ(s) f (s).

Suppose now that we have

m
∑

i=1
αi f (x i) =

m
∑

i=1
βi f (x i)

where f (x1), . . . , f (xm) are distinct elements of Im f . Let ϑ,ζ : S → R be given by
the prescriptions

ϑ(x) =
§

0 if (∀i) x 6= x i;
αi if (∃i) x = x i .

ζ(x) =
§

0 if (∀i) x 6= x i;
βi if (∃i) x = x i .

It is clear that ϑ,ζ ∈ F . Moreover,

ϑ =
∑

s∈S
ϑ(s) f (s) =

m
∑

i=1
αi f (x i);

ζ=
∑

s∈S
ζ(s) f (s) =

m
∑

i=1
βi f (x i);

Consequently, ϑ = ζ and hence αi = βi . It now follows by Theorem 7.4 that Im f is
a basis of F . �

Corollary 1 If (M ,α) is a free R-module on S then Imα is a basis of M.

Proof Let (F, f ) be the free R-module on S. Then by Theorem 7.2 there is a unique
R-isomorphism such that the diagram

S
α

−−−−−→M

f







y

F

���

�
�

ϑ

is commutative. Since then ϑ→(Im f ) = Imα, we deduce from the fact that isomor-
phisms clearly carry bases to bases that Imα is a basis of M . �
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We can now establish a simple criterion for a module to be free.

Theorem 7.6 An R-module is free if and only if it has a basis.

Proof If M is a free R-module then M is isomorphic to the free R-module on some
non-empty set. Since isomorphisms carry bases to bases, it follows that M has a
basis.

Conversely, suppose that S is a basis of M and let (F, f ) be the free R-module
on S. Then if ιS : S → M is the natural inclusion there is a unique R-morphism
h : F → M such that h◦ f = ιS . We shall show that h is an isomorphism, whence the
result will follow.

Now Im h is a submodule of M that contains S and so, since S generates M ,
we must have Im h = M . Consequently, h is surjective. Also, we know (from the
proof of Theorem 7.3 on taking g = ιS) that h(ϑ) =

∑

s∈S
ϑ(s)s where ϑ(x) = 0 for

all but a finite number of elements x1, . . . , xn of S. If now ϑ ∈ Ker h then we obtain

0 =
n
∑

i=1
ϑ(x i)x i from which we deduce, since {x1, . . . , xn} is linearly independent,

that ϑ(x i) = 0 for every x i . This then implies that ϑ = 0 and consequently h is also
injective. �

Corollary 1 A free R-module is isomorphic to a direct sum of copies of R. More precisely,
if {ai ; i ∈ I} is a basis of M then M =

⊕

i∈I
Rai where Rai ' R for every i ∈ I .

Proof By Theorems 6.8 and 7.4, we have M =
⊕

i∈I
Rai; and since each singleton

{ai} is linearly independent, the R-morphism fi : R→ Rai given by fi(r) = rai is an
R-isomorphism. �

The following important properties relate bases to R-morphisms.

Theorem 7.7 Let M be a free R-module and let A = {ai ; i ∈ I} be a basis of M. If
N is an R-module and if (bi)i∈I is a family of elements of N then there is a unique
R-morphism f : M → N such that

(∀i ∈ I) f (ai) = bi .

Proof Since every element of M can be expressed uniquely as a linear combination
of elements of A, we can define a mapping f : M → N by the prescription

f
�

n
∑

i=1
λiai

�

=
n
∑

i=1
λi bi .

It is readily verified that f is an R-morphism and that f (ai) = bi for every i ∈ I .
Suppose now that g : M → N is also an R-morphism such that g(ai) = bi for every

i ∈ I . Given x ∈ M with say x =
n
∑

i=1
λiai , we have

g(x) = g
�

n
∑

i=1
λiai

�

=
n
∑

i=1
λi g(ai) =

n
∑

i=1
λi bi = f (x)

and so g = f , whence the uniqueness of f follows. �
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Corollary 1 Let B be a non-empty subset of an R-module M and let ιB : B→ M be the
natural inclusion. Then B is a basis of M if and only if (M , ιB) is a free R-module on B.

Proof The necessity follows immediately from Theorem 7.7; and the sufficiency
follows from the Corollary to Theorem 7.5. �

Corollary 2 If M and N are free R-modules and if f : M → N is an R-morphism then
f is an isomorphism if and only if, whenever {ai ; i ∈ I} is a basis of M, { f (ai) ; i ∈ I}
is a basis of N.

Proof It is enough to establish the sufficiency; and for this it is enough to observe
from the proof of Theorem 7.7 that if if {bi ; i ∈ I} is a basis then f is an isomor-
phism. �

Corollary 3 Let f : M → N be an R-morphism. If M is free then f is completely
determined by f →(B) for any basis B of M.

Proof This is immediate from Corollary 1; for by that result the restriction of f to
B extends to a unique R-morphism from M to N , namely f itself. �

Corollary 4 Let f , g : M → N be R-morphisms. If M is free and if f (x) = g(x) for all
x in some basis B of M then f = g.

Proof The restriction of f − g to B is the zero map and so, by Corollary 3, f − g is
the zero map from M to N . �

Concerning direct sums of free modules, the above results yield the following.

Theorem 7.8 Let M be an R-module and let (Mλ)λ∈I be a family of submodules of M
such that M =

⊕

λ∈I
Mλ. If Bλ is a basis of Mλ for every λ ∈ I then

⋃

λ∈I
Bλ is a basis of M.

Proof Given Bλ consider the diagram

Bλ
jλ−−−−−→

⋃

λ∈I
Bλ

g
−−−−−→N

iλ







y







y

i

Mλ

⊕

λ∈I
Mλ=M-inλ

�
pr⊕
λ

in which iλ, jλ, i are the natural inclusions, and g :
⋃

λ∈I
Bλ → N is a mapping to an

arbitrary R-module N .
Since Bλ is a basis of Mλ we have, by Corollary 1 of Theorem 7.7, that (Mλ, iλ) is

free on Bλ. There is therefore a unique R-morphism ϑλ : Mλ→ N such that ϑλ ◦ iλ =
g ◦ jλ. We now define a mapping ζ :

⊕

λ∈I
Mλ→ N by the prescription

ζ(y) =
∑

µ∈I

�

ϑµ ◦ pr⊕µ
�

(y).

[Recall that pr⊕µ(y) = 0 for all but a finite number of µ ∈ I so that ζ is well defined.]



Free modules; bases 73

For every x ∈ Bλ we then have

(ζ ◦ i ◦ jλ)(x) =
∑

µ∈I

�

ϑµ ◦ pr⊕µ ◦ i ◦ jλ
�

(x)

=
∑

µ∈I

�

ϑµ ◦ pr⊕µ ◦ inλ ◦ iλ
�

(x)

= (ϑλ ◦ iλ)(x)
= (g ◦ jλ)(x).

Since the jλ are natural inclusions and since {Bλ ; λ ∈ I} is a partition of
⋃

λ∈I
Bλ [for

if λ,µ ∈ I and λ 6= µ then necessarily Bλ∩Bµ ⊆ Mλ∩Mµ = {0} by Theorem 6.9 and,
since {0} is not independent, Bλ ∩ Bµ = ;], it follows that ζ ◦ i = g. The result will
now follow from Corollary 1 of Theorem 7.7 if we can show that ζ is unique with
respect to this property.

For this purpose, suppose that k :
⊕

λ∈I
Mλ → N is also an R-morphism such that

k ◦ i = g. Then for every λ ∈ I we have k ◦ i ◦ jλ = g ◦ jλ whence k ◦ inλ ◦ iλ = g ◦ jλ
and so k ◦ inλ = ϑλ by the uniqueness of ϑλ. Then for every y ∈

⊕

λ∈I
Mλ we have

k(y) =
∑

µ∈I

�

k ◦ inµ ◦ pr⊕µ
�

(y) =
∑

µ∈I

�

ϑµ ◦ pr⊕µ
�

(y) = ζ(y)

and so k = ζ. �

So far in this section we have restricted our attention to a non-empty set S.
A free module on such a set is clearly never a zero module. Henceforth we shall
make the convention that the empty subset of an R-module M will be considered as a
linearly independent subset of M . This is not unreasonable since the condition that
defined linear independence may be regarded as being satisfied ‘vacuously’ by ;
simply because it has no elements.

• The courtesy of regarding ; as linearly independent yields the advantage of
having ; as a basis for every zero module (recall Theorem 2.2), so that we can
also regard a zero module as being free.

We shall now derive the important result that every vector space has a basis. In
fact, for future purposes we shall establish this in a more general setting.

To be more precise, whereas a vector space is properly defined as an F -module
where F a field we shall now consider the more general concept of an R-module
where R is a division ring. Since a field is precisely a commutative division ring, it is
convenient to introduce the following terminology.

Definition 7.5 By a∆-vector space we shall mean a∆-module where∆ is a division
ring.

The more general result that every ∆-vector space has a basis is a consequence
of the following extremely important result, the proof of which uses Zorn’s axiom.
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Theorem 7.9 Let V be a ∆-vector space. If I is a linearly independent subset of V
and if G is a set of generators of V with I ⊆ G, then there is a basis B of V such that
I ⊆ B ⊆ G.

Proof Let C be the collection of all linearly independent subsets A of V such that
I ⊆ A ⊆ G. We note that C 6= ; since it clearly contains I . Let T = {A j ; j ∈ J} be
a totally ordered subset of C and let D =

⋃

j∈J
A j . Clearly, we have I ⊆ D ⊆ G. We

shall show that D is linearly independent whence it will follow that D ∈ C and is
the supremum of T , so that C is inductively ordered. For this purpose, let x1, . . . , xn

be distinct elements of D and suppose that
n
∑

i=1
λi x i = 0. Since every x i belongs to

some A j and since T is totally ordered, there exists Ak ∈ T such that x1, . . . , xn ∈ Ak.
Since Ak is linearly independent we deduce that λ1 = · · ·= λn = 0 whence D is also
linearly independent and consequently C is inductively ordered.

It follows by Zorn’s axiom thatC has a maximal element, B say. Now B is linearly
independent (since it belongs toC ); we shall show that it is also a set of generators of
V whence it will be a basis with the required property. For this purpose, let W be the

subspace generated by B and let x ∈ V . Since G generates V we have x =
n
∑

i=1
λi gi for

some λi , . . . ,λn ∈ F and g1, . . . , gn ∈ G. Now if x 6∈W there exists some g j such that
g j 6∈W (for otherwise every g j would be in W and so x , being a linear combination
of these elements, would also be in W , contradicting the hypothesis) whence B∪{g j}

is a linearly independent subset of G (for, if
n
∑

i=1
λi bi +µg j = 0 with every bi ∈ B and

µ 6= 0 then g j = −µ−1
�

n
∑

i=1
λi bi

�

∈W , a contradiction, so that µ= 0 and
n
∑

i=1
λi bi = 0

whence also every λi = 0). Since g j 6∈ B, this contradicts the maximality of B in C .
We conclude from this that we must have x ∈W , whence W = V and consequently
B is a basis of V with I ⊆ B ⊆ G. �

Corollary 1 Every ∆-vector space has a basis.

Proof Take I = ; and G = V in Theorem 7.9. �

Corollary 2 Every linearly independent subset I of a∆-vector space V can be extended
to a basis of V .

Proof Take G = V in Theorem 7.9. �

The previous result leads to the following property of bases.

Theorem 7.10 If B is a basis of a free R-module M then B is both a minimal generating
subset and a maximal linearly independent subset of M.

In the case where V is a ∆-vector space, the following are equivalent:
(1) B is a basis of V ;
(2) B is a minimal generating subset;
(3) B is a maximal linearly independent subset.
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Proof Suppose that B is not a minimal set of generators of M . Then there exists a
set G of generators with G ⊂ B and, for some x ∈ B \G, the set B \{x} generates M .

For such an element x we have x =
n
∑

i=1
λi x i where x1, . . . , xn are distinct elements

of B \ {x}. This can be written in the form 1R x +
n
∑

i=1
(−λi)x i = 0 and contradicts the

linear independence of B. Thus we deduce that B is a minimal generating subset.
Suppose now that y ∈ M \ B. Then there exist distinct elements x1, . . . , xn of

B and r1, . . . , rn ∈ R such that y =
n
∑

i=1
ri x i whence 1R y +

n
∑

i=1
(−ri)x i = 0 which

shows that B ∪ {y} is not linearly independent. Thus B is also a maximal linearly
independent subset.

To show that (1), (2), (3) are equivalent in the case of a vector space V , it suffices
to show that (2)⇒ (1) and (3)⇒ (1).
(2)⇒ (1) : By Theorem 7.9 there is a basis B? of V such that ; ⊆ B? ⊆ B. Since

B? is also a generating subset, the minimality of B yields B? = B whence B is a basis.
(3)⇒ (1) : By Corollary 2 of Theorem 7.9 there is a basis B? such that B ⊆ B?.

Since B is also linearly independent the maximality of B yields B = B? whence B is
a basis. �

• Note that the implications (2)⇒ (1) and (3)⇒ (1) do not hold in general for
R-modules. For example, if n is a positive integer then in the Z-module Z/nZ
the set {1+nZ} is a minimal generating subset but is not linearly independent
(for we have n(1 + nZ) = 0 + nZ with n 6= 0) and so is not a basis. In fact
the Z-module Z/nZ has no basis. Likewise, in the Z-module Q every element
t with t 6= 0 and t 6= 1/k where k 6= 0 is such that {t} is a maximal linearly
independent subset but is not a generating subset and so is not a basis. In fact
the Z-module Q has no basis.

We shall now establish a striking result concerning the cardinality of bases in
a ∆-vector space. In the proof of this, the properties of infinite cardinals play an
important role.

Theorem 7.11 All bases of a ∆-vector space are equipotent.

Proof Suppose first that the∆-vector space V has an infinite basis B. Then we have
V =

⊕

x∈B
∆x where ∆x = {λx ; λ ∈ ∆} is the subspace generated by {x}. Now the

mapping ϑ : ∆→ ∆x given by ϑ(λ) = λx is an isomorphism (recall Theorems 5.5
and 5.6), and so we have that V =

⊕

i∈I
Vi where Card I = Card B and Vi '∆ for every

i ∈ I . Suppose now that B? is any basis of V . For every y ∈ B? let Jy denote the
(finite) set of indices i ∈ I such that the component of y in Vi is non-zero. Since B?

is a basis, we have I =
⋃

y∈B?
Jy . Now if Card B? were finite we would have

Card B = Card I ≤
∑

y∈B?
Card Jy ≤ Card B? ·max{Card Jy ; y ∈ B?}
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and Card B would be finite, contradicting the hypothesis. We thus see that Card B?

is infinite. We now have

Card B ≤
∑

y∈B?
Card Jy ≤ Card B? · ℵ0 ≤ (Card B?)2 = Card B?.

Likewise, Card B? ≤ Card B. It therefore follows by the Schröder-Bernstein Theorem
that B? is equipotent to B.

Suppose now that V has a finite basis. Then the above argument shows that all
bases of V are finite. If B = {x1, . . . , xn} is a basis of V then, since each ∆x i is a
simple ∆-module and since for k = 1, . . . , n we have

k
⊕

i=1
∆x i

�
k−1
⊕

i=1
∆x i =

�

∆xk ⊕
k−1
⊕

i=1
∆x i

�

�
k−1
⊕

i=1
∆x i '∆xk,

we see that

{0} ⊂∆x1 ⊂
2
⊕

i=1
∆x i ⊂

3
⊕

i=1
∆x i ⊂ · · · ⊂

n
⊕

i=1
∆x i = V

is a Jordan-Hölder tower for V of height n, the number of elements in the basis B.
The invariance of the height of such a tower now implies that all bases of V have
the same number of elements. �

• The result of Theorem 7.11 is not true in general for free R-modules. Indeed,
as we shall now show, if the ground ring R is ‘bad’ enough then it is possible
for a free R-module to have bases of different cardinalities. Suppose that R
is a unitary ring and consider the R-module S f (R) that consists of all finite
sequences of elements of R, i.e. all mappings f : N→ R such that f (i) = 0 for
all but finitely many i ∈ N. As an R-module, S f (R) is free; its natural basis is
{ei ; i ∈ N} where

ei(n) =
§

1 if n= i;
0 otherwise.

Consider now the ring EndS f (R) of group morphisms f : S f (R) → S f (R).
Regarding End S f (R) an an End S f (R)-module (in which the action is compo-
sition of mappings), we see that the singleton {id} is a basis for this module.
However, consider now f , g ∈ End S f (R) given by

f (ei) =
§

en if i = 2n;
0 if i = 2n+ 1, g(ei)) =

§

0 if i = 2n;
en if i = 2n+ 1.

Note that we have defined f , g only on the natural basis of S f (R); this is suffi-
cient to describe f , g completely (Corollary 3 of Theorem 7.7). As can now be
readily verified, every ϑ ∈ End S f (R) can be expressed uniquely in the form

ϑ = α ◦ f + β ◦ g.

In fact, α,β ∈ End S f (R) are given by α(ei) = ϑ(e2i) and β(ei) = ϑ(e2i+1).
Consequently we see that { f , g} is also a basis for this module.
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• Despite the above, it should be noted that if M and N are R-modules each
having a basis of n elements then M and N are R-isomorphic. In fact they are
each isomorphic to the R-module Rn. For example, if {a1, . . . , an} is a basis of

M then f : M → R given by f
�

n
∑

i=1
λiai

�

= (λ1, . . . ,λn) is an R-isomorphism. In

particular, therefore, from the previous remark, if we denote the ring End S f (R)
by A then the A-modules A and A2 are A-isomorphic!

Concerning equipotent bases, Theorem 7.11 can be extended as follows to free R-
modules where R is a commutative unitary ring. In the proof of this we shall make use
of a result in ring theory known as Krull’s Theorem, namely that every commutative
unitary ring has a maximal ideal.

Theorem 7.12 Let R be a commutative unitary ring. If M is a free R-module then all
bases of M are equipotent.

Proof Let I be a maximal ideal of R. Then the quotient ring R/I is a field. Consider
the subset I M of M consisting of all finite sums of the form

∑

i
λi x i where λi ∈ I and

x i ∈ M ; in other words, I M is the set of all linear combinations of elements of M
with coefficients in the maximal ideal I . It is clear that I M is a submodule of M , so
we can form the quotient module M/I M . Observing that

r − t ∈ I =⇒ (∀x ∈ M) r x − t x = (r − t)x ∈ I M

=⇒ (∀x ∈ M) r x + I M = t x + I M ;

x − y ∈ I M =⇒ (∀t ∈ R) t x − t y = t(x − y) ∈ I M

=⇒ (∀t ∈ R) t x + I M = t y + I M ,

and consequently that

r − t ∈ I
x − y ∈ I M

ª

=⇒ r x + I M = t y + I M ,

we can define an action of R/I on M/I M by the prescription

(r + I) · (x + I M) = r x + I M .

Clearly, this makes M/I M into a vector space over the field R/I .
Suppose now that {x j ; j ∈ J} is a basis of M . Then the mapping described

by x j 7→ x j + I M is injective. For, suppose that x j + I M = xk + I M with x j 6= xk.
Then x j − xk ∈ I M , which is impossible since I , being a maximal ideal of R, does
not contain 1R. We therefore deduce, on passing to quotients, that (x j + I M) j∈J is a
family of distinct elements of M/I M that generates M/I M . Now, all sums indicated
being well defined, we have
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∑

j
(r j + I) · (x j + I M) = 0+ I M =⇒

∑

j
r j x j ∈ I M

=⇒ (∃t j ∈ I)
∑

j
r j x j =

∑

j
t j x j

=⇒ (∀ j) r j = t j ∈ I

=⇒ (∀ j) r j + I = 0+ I

and so we see that {x j + I M ; j ∈ J} is indeed a basis of the R/I -vector space
M/I M . Since this basis is equipotent to the basis {x j ; j ∈ J}, the result follows
from Theorem 7.11. �

Because of the above results we can introduce the following terminology.

Definition 7.6 If R is a commutative unitary ring, or a division ring, and if M is a
free R-module then by the dimension of M over R we shall mean the cardinality of
any basis of M . We denote this by dim M . In the case where dim M is finite we shall
say that M is finite-dimensional.

EXERCISES
7.1 Let f : M → M be an R-morphism. Show that if f is a monomorphism then f is not a left

zero divisor in the ring EndRM . If M is free, establish the converse : that if f ∈ EndRM
is not a left zero divisor then f is a monomorphism.

[Hint. Let {mi ; i ∈ I} be a basis of M and suppose that Ker f 6= {0}. Let (ni)i∈I be a
family of non-zero elements of Ker f and let g : M → M be the unique R-morphism
such that g(mi) = ni for every i ∈ I (Theorem 7.7). Observe that Im g ⊆ Ker f .]

7.2 Let p be a prime. Show that the Z-module Qp/Z is not free.

[Hint. Show that the endomorphism on Qp/Z described by x 7→ px is neither a left
zero divisor nor a monomorphism and use Exercise 7.1.]

7.3 Let f : M → M be an R-morphism. Show that if f is an epimorphism then f is not a
right zero divisor in the ring EndRM . Give an example of a free Z-module M and an
f ∈ EndZM such that f is neither a right zero divisor nor an epimorphism.

[Hint. Try multiplication by 2 on Z.]

7.4 Let F be a field and let q ∈ F[X ] be of degree n. Show that if 〈q〉 denotes the ideal
of F[X ] generated by q then F[X ]/〈q〉 can be made into a vector space over F . If
\ : F[X ]→ F[X ]/〈q〉 is the natural epimorphism, show that {\(X 0), \(X 1), . . . , \(X n−1)}
is a basis for F[X ]/〈q〉.

7.5 By a net over the interval [0, 1] of R we mean a finite sequence (ai)0≤i≤n+1 such that

0= a0 < a1 < · · ·< an < an+1 = 1.

By a step function on [0,1[ we mean a mapping f : [0, 1[→ R for which there exists a
net (ai)0≤i≤n+1 over [0,1] and a finite sequence (bi)0≤i≤n of elements of R such that

(i = 0, . . . , n)(∀x ∈ [ai , ai+1[) f (x) = bi .
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Show that the set E of step functions on [0,1[ is an R-vector space and that a basis of
E is the set {ek ; k ∈ R} of functions ek : [0, 1[→ R given by

ek(x) =
§

0 if 0≤ x < k;
1 if k ≤ x < 1.

By a piecewise linear function on [0,1[ we mean a mapping f : [0, 1[→ R for which
there exists a net (ai)0≤i≤n+1 and finite sequences (bi)0≤i≤n, (ci)0≤i≤n of elements of R
such that

(i = 0, . . . , n)(∀x ∈ [ai , ai+1[) f (x) = bi x + ci .

Show that the set F of piecewise linear functions on [0, 1[ is an R-vector space and
that a basis of F is the set { fk ; k ∈ R} of functions fk : [0,1[→ R given by

fk(x) =
§

0 if 0≤ x < k;
x − k if k ≤ x < 1.

If G is the subset of F consisting of those piecewise linear functions g that are con-
tinuous with g(0) = 0, show that G and E are subspaces of F such that F = G ⊕ E.

Show finally that the assignment f 7→ f ?, where

f ?(x) =

∫ x

0

f (t) d t,

defines an isomorphism from E onto G.

[Hint. Draw pictures!]

7.6 For every positive integer n let En be the set of functions f : R→ R given by a prescrip-
tion of the form

f (x) = a0 +
n
∑

k=1
(akcos kx + bksin kx)

where a0, ak, bk ∈ R for k = 1, . . . , n. Show that En is a subspace of the R-vector space
Map(R,R) of all mappings from R to itself. Prove that if f ∈ En is the zero function
then all the coefficients ai , bi are zero.

[Hint. Use induction; consider D2 f + n2 f where D denotes the differentiation map.]

Deduce that the 2n+ 1 functions

x 7→ 1, x 7→ cos kx , x 7→ sin kx (k = 1, . . . , n)

constitute a basis for En.

7.7 Let R be a commutative unitary ring and let I be an ideal of R. Prove that every linearly
independent subset of the R-module I has at most one element.

[Hint. x y − y x = 0.]

Deduce that if I is finitely generated, but not principal (i.e. not generated by a single-
ton), then I has no basis.
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7.8 Let R be a commutative unitary ring with the property that every ideal of R is a free
R-module. Prove that R is a principal ideal domain.

[Hint. Use Exercise 7.7.]

7.9 Given p, q ∈ C with q 6= 0, let S be the set of sequences a = (ai)i∈NN of complex
numbers such that

(∀n ∈ N) an+2 + pan+1 + qan = 0.

Show that S is a subspace of the vector space CN. Show also that S ' C2.

[Hint. Consider f : S→ C2 given by f (a) = (a0, a1).]

7.10 Given α,β ∈ R with α 6= β , show that the set of rational functions of the form

x 7→
a0 + a1 x + · · ·+ ar+s−1 x r+s−1

(x −α)r(x − β)s

is an R-vector space of dimension r + s.

7.11 Let Cn[X ] be the C-vector space of dimension n+ 1 of complex polynomials of degree
less than or equal to n. If P0, . . . , Pn ∈ C[X ] are such that deg Pi = i for every i, prove
that {P0, . . . , Pn} is a basis of Cn[X ].

[Hint. Show by induction that X k is a linear combination of P0, . . . , Pn.]

Suppose now that P0, . . . , Pn are given by

P0(X ) = X 0; (1≤ k ≤ n) Pk(X ) = X (X − 1) · · · (X − k+ 1).

Show that there is a unique C-morphism f : Cn[X ]→ Cn[X ] such that f (X k) = Pk for
every k, and that f is a bijection.

[Hint. If P(X ) =
n
∑

i=0
akX k define f (P) =

n
∑

i=0
ak Pk.]

7.12 Let V be a finite-dimensional vector space over a field F . Prove that V has precisely
one basis if and only if either V = {0}, or F ' Z/2Z and dim V = 1.

[Hint. If V has at least two elements then every singleton {x} with x 6= 0 can be
extended to a basis. Deduce that V is finite and, by considering the sum of all the
non-zero elements, show that V has at most one non-zero element.]

7.13 Let V be the R-vector space generated by the six functions

x 7→ 1, x , x2, ex , xex , x2ex .

Let W be the subspace generated by the first five of these functions. Describe the in-
duced map D? : V/W → V/W (Theorem 4.3) where D denotes the differentiation
map.

7.14 Let F be a field of p elements and let V be a vector space of dimension n over F . Show
that V has pn elements. Deduce that V has pn−1 linearly independent singleton subsets.
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Use induction to show that if 1 ≤ m ≤ n then the number of linearly independent
subsets of V consisting of m elements is

1
m!

m−1
∏

t=0
(pn − pt).

Hence determine the number of bases of V .

7.15 Let R and S be unitary rings and let f : S → R be a 1-preserving ring morphism. If
M is an R-module let M[S] denote M regarded as an S-module (as in Exercise 1.7). If
{ri ; i ∈ I} is a set of generators (respectively, a linearly independent subset) of M[S]
and if {m j ; j ∈ J} is a set of generators (respectively, a linearly independent subset)
of M , prove that {ri m j ; (i, j) ∈ I × J} is a set of generators (rspectively, a linearly
independent subset) of M[S].

7.16 Give an example to show that a submodule of a free module need not be free.

[Hint. Let R= Z×Z; consider the R-module R and the submodule Z× {0}.]
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If M and N are R-modules then the set of R-morphisms f : M → N will be denoted
by MorR(M , N).

• Since the term R-homomorphism is often used instead of R-morphism, the set
MorR(M , N) is often denoted by HomR(M , N).

It is clear that MorR(M , N) forms an abelian group under the addition ( f , g) 7→ f + g
where

(∀x ∈ M) ( f + g)(x) = f (x) + g(x).

One is tempted to say that ‘obviously’ MorR(M , N) forms an R-module under the
action (λ, f ) 7→ λ f where

(∀x ∈ M) (λ f )(x) = λ f (x).

However, this is not the case; for in general we have

(λ f )(rm) = λ f (rm) = λr f (m) 6= rλ f (m) = r(λ f )(m).

Nevertheless, it is obvious from this that MorR(M , N) does form an R-module when
R is commutative (for then λr = rλ).

Theorem 8.1 If (Ni)i∈I is a family of R-modules then for every R-module M there are
abelian group isomorphisms

(a) MorR

�

⊕

i∈I
Ni , M

�

' ∧∨
i∈I

MorR(Ni , M);

(b) MorR

�

M , ∧∨
i∈I

Ni

�

' ∧∨
i∈I

MorR(M , Ni).

Proof (a) Let ϑ ∈ MorR

�

⊕

i∈I
Ni , M

�

→ ∧∨
i∈I

MorR(Ni , M) be given by the prescription

ϑ( f ) = ( f ◦ ini)i∈I . It is clear that ϑ is an abelian group morphism. To show that ϑ is
surjective, let (gi)i∈I ∈ ∧∨

i∈I
MorR(Ni , M). Then there is an R-morphism ζ :

⊕

i∈I
Ni → M

such that every diagram

Ni
gi−−−−−→M

ini







y

⊕

i∈I
Ni

�
��

��
ζ
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is commutative. Since then ϑ(ζ) = (ζ ◦ ini)i∈I = (gi)i∈I we see that ϑ is surjective.
To show that ϑ is also injective, let α ∈ Kerϑ. Then 0 = ϑ(α) = (α ◦ ini)i∈I and so
every diagram

Ni
0

−−−−−→M

ini







y

⊕

i∈I
Ni

�
��

��
α

is commutative, in which 0 is the zero morphism. Now since
�

⊕

i∈I
Ni , (ini)i∈I

�

is a

coproduct of (Ni)i∈I and since the zero morphism from
⊕

i∈I
Ni to M also makes each

such diagram commutative, we deduce that α= 0, whence ϑ is also injective.
(b) This is dual to the proof of (a), and we leave the details to the reader. It

suffices to replace
⊕

by ∧∨ , reverse the arrows, and define ϑ( f ) = (pri ◦ f )i∈I . �

Corollary 1 If R is commutative then the above Z-isomorphisms are R-isomorphisms.�

Corollary 2 If I = {1, . . . , n}, then there are Z-isomorphisms

MorR

� n
⊕

i=1
Ni , M

�

'
n
⊕

i=1
MorR(Ni , M), MorR

�

M ,
n
⊕

i=1
Ni

�

'
n
⊕

i=1
MorR(M , Ni). �

We shall now focus our attention on natural ways of defining Z-morphisms be-
tween Z-modules of the form MorR(M , N).

Suppose that A, B are R-modules and that f ∈MorR(A, B). If M is any R-module
then we can define a mapping

MorR(M , A)
f?−−−−−→MorR(M , B)

by the assignment
ϑ −→ f?(ϑ) = f ◦ ϑ.

M

ϑ







y

A−−−−−→
f

B
@@R

@
@ f ◦ ϑ = f?

It is clear that f? so defined is a Z-morphism; we say that it is induced by f .
Likewise, we can define a Z-morphism

MorR(A, M)
f ?

←−−−−MorR(B, M)

by the assignment
f ?(ϑ) = ϑ ◦ f ←− ϑ.
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M
x







ϑ

A−−−−−→
f

B

�
��

�
�

f ? = ϑ ◦ f

We also say that f ? is induced by f .

• A useful mnemonic in distinguishing between f? and f ? is that lower star in-
dicates composition on the left by f (unless, of course, you write mappings on
the right, in which case forget it!).

Theorem 8.2 Given R-morphisms A
f

−−−−−→B
g

−−−−−→C we have
(1) (g ◦ f )? = g? ◦ f?;
(2) (g ◦ f )? = f ? ◦ g?.

If also h ∈MorR(A, B) and k ∈MorR(B, C) then
(3) ( f + h)? = f? + h?;
(4) (g + k)? = g? + k?.

Proof (1) This is immediate on considering the composite assignment

ϑ −→ f?(ϑ) = f ◦ ϑ −→ g?( f ◦ ϑ) = g ◦ f ◦ ϑ.

(2) This is immediate on condidering the composite assignment

ϑ ◦ f ◦ g = g?(ϑ ◦ f )←− ϑ ◦ f = f ?(ϑ)←− ϑ.

(3) and (4) follow respectively from the fact that f + h) ◦ ϑ = ( f ◦ ϑ) + (h ◦ ϑ)
and ϑ ◦ (g + k) = (ϑ ◦ g) + (ϑ ◦ k). �

• Property (1) of Theorem 8.2 is often referred to by saying that the assign-
ment f 7→ f? is covariant, and property (2) is referred to by saying that the
assignment f 7→ f ? is contravariant.

Our main interest in the induced Z-morphisms f? and f ? is in order to examine
what happens to short exact sequences of R-modules when we form the morphism
groups of the terms in the sequence from, and to, some given R-module. More ex-
plicitly, we have the following results, in which we write 0AB for the zero morphism
from A to B.

Theorem 8.3 Consider a short exact sequence

0−−−−−→A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

of R-modules and R-morphisms. If M is an arbitrary R-module then each of the induced
sequences of Z-modules and Z-morphisms

(1) 0−−−−−→MorR(M , A′)
f?−−−−−→MorR(M , A)

g?−−−−−→MorR(M , A′′);

(2) MorR(A′, M)
f ?

←−−−−MorR(A, M)
g?

←−−−−MorR(A′′, M)←−−−−0

is exact.
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Proof We shall show that (1) is exact. A similar argument will establish the exact-
ness of (2).

We have to show that
(a) f is a monomorphism;
(b) Im f? ⊆ Ker g?;
(c) Ker g? ⊆ Im f?.

(a) : Given ϑ ∈ Ker f? we have 0MA = f?(ϑ) = f ◦ ϑ whence ϑ = 0MA since f is a
monomorphism and so is left cancellable.
(b) : If ϑ ∈ Im f? then there exists ϑ′ ∈MorR(M , A′) such that ϑ = f?(ϑ′) = f ◦ϑ′.

Consequently
g?(ϑ) = g?[ f?(ϑ

′)] = (g ◦ f )?(ϑ
′) = 0MA′′

since, by the exactness of the given sequence, g ◦ f = 0A′A′′ . Thus ϑ ∈ Ker g? and we
have established (b).
(c) : If ϑ ∈ Ker g? then for every x ∈ M we have

g[ϑ(m)] = [g?(ϑ)](m) = 0MA′′

and so ϑ(m) ∈ Ker g = Im f . Thus there exists x ′ ∈ A′ such that ϑ(m) = f (x ′); and
since f is a monomorphism such an element x ′ is unique. We can therefore define
a mapping ϑ′ : M → A′ by setting ϑ′(m) = x ′. Clearly, ϑ′ is an R-morphism and
ϑ = f ◦ ϑ′ = f?(ϑ′) ∈ Im f?. Thus we see that Ker g? ⊆ Im f?. �

• It is important to note that the induced sequences of Theorem 8.3 are not
short exact in general, for the induced Z-morphisms g? and f ? need not be
surjective. For example, consider the short exact sequence of Z-modules and
Z-morphisms

0−−−−−→Z
ι

−−−−−→Q
\

−−−−−→Q/Z−−−−−→0.

The induced Z-morphism

MorZ(Z/2Z,Q)
\?−−−−−→MorZ(Z/2Z,Q/Z)

cannot be surjective since

MorZ(Z/2Z,Q) = 0 6=MorZ(Z/2Z,Q/Z).

In fact, given ϑ ∈MorZ(Z/2Z,Q) let x = ϑ(1+ 2Z). We have

2x = 2ϑ(1+ 2Z) = ϑ(2+ 2Z) = ϑ(0+ 2Z) = 0,

whence x = 0 and consequently ϑ = 0. On the other hand, the mapping
described by

0+ 2Z 7→ 0+Z, 1+ 2Z 7→ 1
2 +Z

is a non-zero element of MorZ(Z/2Z,Q/Z).
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In a similar way, the induced Z-morphism

MorZ(Z,Z)
ι?

←−−−−MorZ(Q,Z)

cannot be surjective since

MorZ(Q,Z) = 0 6=MorZ(Z,Z).

In fact, given ϑ ∈ MorZ(Q,Z) suppose that ϑ(1) 6= 0. Then for every non-
zero r ∈ Z we have ϑ(1) = rϑ(1/r), whence r divides ϑ(1). However, by the
fundamental theorem of arithmetic, ϑ(1) has only finitely many divisors. We
deduce, therefore, that we must have ϑ(1) = 0. For all non-zero p, q ∈ Z we
then have

0= pϑ(1) = pϑ
�q

q

�

= pqϑ
�1

q

�

= qϑ
� p

q

�

,

whence ϑ(p/q) = 0 and so ϑ is the zero map. On the other hand, idZ is clearly
a non-zero element of MorZ(Z,Z). Indeed, the groups MorZ(Z,Z) and Z are
isomorphic; see Exercise 2.4.

Despite the above remark, we have the following situation.

Theorem 8.4 Suppose that

0−−−−−→A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

is a split short exact sequence of R-modules and R-morphisms. Then for every R-module
M there are induced split exact sequences of Z-modules and Z-morphisms

0−−−−−→MorR(M , A′)
f?−−−−−→MorR(M , A)

g?−−−−−→MorR(M , A′′)−−−−−→0;

0←−−−−MorR(A
′, M)

f ?
←−−−−MorR(A, M)

g?
←−−−−MorR(A

′′, M)←−−−−0.

Proof We shall establish the first sequence, the second being similar. To show that
(1) is exact, it suffices by Theorem 8.3 to show, using the fact that the original short
exact sequence splits, that g? is surjective. Suppose then that ϑ′′ ∈MorR(M , A′′) and
let g be a splitting morphism associated with g. Consider the mapping ϑ = g ◦ ϑ′′.
Clearly, ϑ ∈ MorR(M , A) and g?(ϑ) = g ◦ ϑ = g ◦ g ◦ ϑ′′ = ϑ′′ and so g? is indeed
surjective. That (1) now splits follows from the fact that g◦g = idA′′ ; for, by Theorem
8.2(1), we have g? ◦ g? = (g ◦ g)? = (idA′′)? = id where this last identity map is that
on MorR(M , A′′). �

The above discussion leads in a natural way to the following notion.

Definition 8.1 An R-module M is said to be projective if, for every short exact se-
quence

0−−−−−→A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

of R-modules and R-morphisms, the induced Z-morphism

MorR(M , A)
g?−−−−−→MorR(M , A′′)

is surjective.
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We now derive an alternative characterisation of projective modules.

Theorem 8.5 An R-module P is projective if and only if every diagram of R-modules
and R-morphisms of the form

P






y

ϑ′′

A−−−−−→
g

A′′−−−−−→0 (exact)

can be extended to a commutative diagram
P






y

ϑ′′

A−−−−−→
g

A′′−−−−−→0 (exact)
�
�	

��ϑ

Proof Clearly, P is projective if and only if for every epimorphism g the induced
morphism g? is surjective; in other words, if and only if for every ϑ ∈ MorR(P, A′′)
there exists ϑ ∈MorR(P, A) such that ϑ′′ = g?(ϑ) = g ◦ ϑ. �

• Roughly speaking, Theorem 8.5 says that P is projective if morphisms from
P can be ‘lifted’ through epimorphisms. The morphism ϑ that completes the
above diagram is called a projective lifting of ϑ′′.

• Projective liftings are not unique in general.
• The characterisation in Theorem 8.5 is often taken as a definition of a projec-

tive module.

As for examples of projective modules, an abundance is provided by the following
result.

Theorem 8.6 Every free module is projective.

Proof Suppose that M is a free R-module and consider the diagram
M






y

f

A−−−−−→
g

B−−−−−→0 (exact)

We have to establish the existence of an R-morphism ϑ : M → A such that g ◦ϑ = f .
For this purpose, let S be a basis of M . Then, since g is surjective, for every x ∈ S
there exists a ∈ A such that f (x) = g(a). For each x ∈ S choose once and for all an
element ax ∈ A such that f (x) = g(ax). We can then define a mapping ζ : S → A
by the prescription ζ(x) = ax . Since M is free on S, we can extend ζ to a unique R-
morphism ϑ : M → A such that ϑ◦ιS = ζwhere ιS : S→ M is the natural inclusion. If
fS : S→ B denotes the restriction of f to S, we then have g◦ϑ◦ιS = g◦ζ= fS = f ◦ιS
whence we see that the R-morphisms g ◦ ϑ and f coincide on the basis S. Applying
Corollary 4 of Theorem 7.7, we deduce that g ◦ ϑ = f and consequently that M is
projective. �
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• The converse of Theorem 8.6 is not true; see Exercise 8.2 for an example of
a projective module that is not free. Thus the class of projective modules is
larger than the class of free modules.

Our objective now is to obtain further useful characterisations of projective mod-
ules. For this purpose, we require the following result.

Theorem 8.7 Every module is isomorphic to a quotient module of a free module.

Proof Let M be an R-module and let S be a set of generators of M (e.g. the set M
itself will do). Let F be a free R-module on S. Then the natural inclusion ι : S→ M
extends to a unique R-morphism h : F → M . Since S = ι→(S) ⊆ h→(F) and since
S generates M , it follows that h→(F) = M . Thus h is an epimorphism and so M =
Im h' F/Ker h. �

Corollary 1 Every finitely-generated module is isomorphic to a quotient module of a
free module having a finite basis. �

Theorem 8.8 For an R-module P the following are equivalent :

(1) P is projective;

(2) every exact sequence M −−→ P−−→0 splits;

(3) P is a direct summand of a free R-module.

Proof (1)⇒ (2) : Consider the diagram
P






y

idP

M−−−−−→
π

P−−−−−→0 (exact)

Since P is projective there is an R-morphism f : P → M such that π ◦ f = idP ; in
other words, M −−→ P−−→0 splits.
(2)⇒ (3) : Let F be a free R-module with the set P as a basis and form the exact

sequence
F

π
−−−−−→ P−−−−−→0

where π is an extension of idP and so is an epimorphism. By the hypothesis, the
short exact sequence

0−−−−−→Kerπ
ι
−−→ F

π
−−−−−→ P−−−−−→0

splits on the right. As we saw in Section 6, we then have F ' Kerπ⊕ P. This direct
sum module is therefore free and has P as a direct summand.
(3)⇒ (1) : Consider the diagram

P






y

µ

A−−−−−→
π

B−−−−−→0 (exact)
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By hypothesis, there exists an R-module Q and a free R-module F such that F = P⊕Q.
Define µ′ : F → B by the prescription

(∀x = p+ q ∈ F) µ′(x) = µ(p).

It is readily seen that µ′ is an R-morphism. Now F , being free, is projective by Theo-
rem 8.6 and so µ′ can be lifted to an R-morphism µ′′ : F → A such that π◦µ′′ = µ′. It
then follows that the restriction µ′′P of µ′′ to P is an R-morphism such that π◦µ′′P = µ,
and hence that P is projective. �

By applying the above results in the particular case of a vector space, we can ob-
tain several fundamental properties of subspaces and linear transformations. First
we make the observation that since a vector space V has a basis (Corollary 1 to
Theorem 7.9), it is free (Theorem 7.6), whence it is projective (Theorem 8.6). Con-
sequently, by Theorem 8.8, we can assert that

every short exact sequence of vector spaces splits.

This simple observation yields the following results.

Theorem 8.9 Every subspace of a vector space is a direct summand.

Proof The canonical short exact sequence

0−−−−−→W
ιW−−−−−→V

\W−−−−−→V/W −−−−−→0

splits and so, by Theorem 6.11, Ker \W =W is a direct summand of V . �

Corollary 1 If W is a subspace of V then

dim V = dim W + dim V/W.

Proof There exists a subspace W ′ such that V =W ⊕W ′. By Theorem 7.8 we have
dim V = dim W + dim W ′; and by Theorem 6.10 we have dim W ′ = dim V/W . �

Corollary 2 If V and W are vector spaces and f : V →W is a linear transformation
then

dim V = dim Im f + dim Ker f .

Proof This follows from Corollary 1 and the first isomorphism theorem on taking
W = Ker f . �

• dimIm f is often callled the rank of f and dimKer f is often called the nullity
of f . Then Corollary 2 above can be expressed in the form :

rank + nullity = dimension of departure space.

This is sometimes also referred to as the dimension theorem .

Corollary 3 If W is a subspace of V then dim W ≤ dim V . Moreover, if V is of finite
dimension then dim W = dim V implies that W = V .
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Proof The first statement is clear. As for the second, if dim V is finite then, by
Corollary 1, dim V = dim W implies that dim V/W = 0, whence W = V since the
only vector spaces of dimension 0 are the zero spaces. �

• The second part of Corollary 3 is not true when V is of infinite dimension,
for infinite cardinals are not cancellable under addition. Likewise it does not
hold in general for modules; for example, the free Z-module Z has dimension
1 (since {1} is a basis) as does every submodule tZ with t 6= 0,1 (since {t} is
a basis).

Corollary 4 If V and W are finite-dimensional vector spaces with dim V = dim W
and if f : V →W is a linear transformation then the following are equivalent :

(1) f is injective;
(2) f is surjective;
(3) f is bijective.

Proof This is immediate from Corollaries 2 and 3; for f is injective if and only if
dimKer f = 0, which is the case if and only if dim W = dim V = dimIm f , which is
equivalent to W = Im f , i.e. to f being surjective. �

Using exact sequence, we can generalise Corollary 1 above as follows.

Theorem 8.10 For an exact sequence

0−−−−−→V0
f0−−−−−→V1

f1−−−−−→ · · ·
fn−1−−−−−→Vn−−−−−→0

of vector spaces and linear transformations we have
∑

k odd
dim Vk =

∑

k even
dim Vk.

If, moreover, every Vi is of finite dimension then

n
∑

i=0
(−1)n dim Vi = 0.

Proof Clearly, dim V0 = dimIm f0 and dim Vn = dim Im fn−1. Moreover, for 0< k <
n− 2 we have, by Corollary 2 of Theorem 8.9,

dim Vk+1 = dimIm fk+1 + dimKer fk−1

= dimIm fk+1 + dimIm fk.

Thus, on summing separately the dimensions of the odd-numbered spaces and those
of the even-numbered spaces in the sequence, we see that

∑

k odd
dim Vk =

n
∑

k=0
dim Im fk =

∑

k even
dim Vk.

The second statement is an obvious consequence of the first. �
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Corollary 1 If A, B are subspaces of a vector space V then

dim(A+ B) + dim(A∩ B) = dim(A× B) = dim A+ dim B.

Proof Consider the exact sequence

0−−−−−→A
ϑ

−−−−−→A× B
π

−−−−−→B−−−−−→0

where ϑ is given by a 7→ (a, 0) and π is given by (a, b) 7→ b. Applying the above
results, we obtain dim(A× B) = dim A+ dim B. Consider now the sequence

0−−−−−→A∩ B
α

−−−−−→A× B
β

−−−−−→A+ B−−−−−→0

where α is given by x 7→ (x , x) and β is given by (a, b) 7→ a− b. It is clear that α is
a monomorphism and that β is an epimorphism. Moreover, Kerβ = Imα and so the
sequence is exact. Consequently, dim(A× B) = dim(A∩ B) + dim(A+ B). �

Corollary 2 If V, W, X are finite-dimensional vector spaces and if f : V → W and
g : W → X are linear transformations then

dimIm(g ◦ f ) = dim Im f − dim(Im f ∩ Ker g)
= dim(Im f + Ker g)− dim Ker g.

Proof By Corollary 1, we have

dim(Im f + Ker g) + dim(Im f ∩ Ker g) = dimIm f + dimKer g.

Rearranging this, we obtain

dimIm f − dim(Im f ∩ Ker g) = dim(Im f + Ker g)− dimKer g.

We now show that the left-hand side coincides with dimIm(g ◦ f ). For this purpose,
we note that if g f denotes the restriction of g to the subspace Im f then

Ker g f = Im f ∩ Ker g and dim Im g f = dimIm(g ◦ f ).

Hence dimIm(g ◦ f ) = dimIm f − dimKer g f = dimIm f − dim(Im f ∩ Ker g). �

Theorem 8.11 If V and W are finite-dimensional vector spaces and if f : V → W is
a linear transformation then, for every subspace V ′ of V ,

dim f →(V ′) = dim V ′ − dim(Ker f ∩ V ′),

and, for every subspace W ′ of W,

dim f ←(W ′) = dim(Im f ∩W ′) + dim Ker f .
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Proof The first statement is immediate from Corollary 2 of Theorem 8.9 on observ-
ing that if f ′ is the restriction of f to V ′ then Im f ′ = f →(V ′) and Ker f ′ = Ker f ∩V ′.

Now by the Corollary to Theorem 3.2 we see that Im f ∩W ′ = f →[ f ←(W ′)] and
so, by the first statement,

dim(Im f ∩W ′) = dim f ←(W ′)− dim
�

Ker f ∩ f ←(W ′)
�

.

The second statement now follows from the fact that f ← is inclusion-preserving, so
that Ker f = f ←{0} ⊆ f ←(W ′). �

We end the present section by returning to the problem of the commutative com-
pletion of certain triangles in the presence of projective modules.

Theorem 8.12 Let P be a projective module and suppose that the diagram

P






y

ϑ

X−−−−−→
α

Y−−−−−→
β

Z

is such that the row is exact and β ◦ ϑ = 0. Then there is an R-morphism ζ : P → X
such that α ◦ ζ= ϑ.

Proof Since β ◦ ϑ = 0 we have Imϑ ⊆ Kerβ = Imα. Applying the projectivity of P
to the diagram

P






y

ϑ+

X−−−−−→
α+

Imα−−−−−→0

in which ϑ+,α+ are given by p 7→ ϑ(p), x 7→ α(x) we obtain the existence of an
R-morphism ζ : P → X such that α+ ◦ ζ= ϑ+. Since then

(∀y ∈ P) α[ζ(y)] = α+[ζ(y)] = ϑ+(y) = ϑ(y),

we have α ◦ ζ= ϑ. �

Theorem 8.13 Consider the diagram

C






y

g

B−−−−−→
f

A

of R-modules and R-morphisms. Suppose that C is projective. Then the following are
equivalent :

(1) there is an R-morphism h : C → B such that f ◦ h= g;

(2) Im g ⊆ Im f .
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Proof (1)⇒ (2) : as in Theorem 3.5.
(2)⇒ (1) : Consider the diagram

C






y

g

B−−−−−→
f

A−−−−−→
\

A/ Im f

in which the row is exact. If (2) holds then Im g ⊆ Im f = Ker \ so that \ ◦ g = 0 and
(1) follows by Theorem 8.12. �

Theorem 8.14 Consider the diagram

A
g

−−−−−→C

f







y

B

of vector spaces and linear transformations. The following are equivalent :

(1) there is a linear transformation h : B→ C such that h ◦ f = g;

(2) Ker f ⊆ Ker g.

Proof (1)⇒ (2) : as in Theorem 3.4.
(2) ⇒ (1) : If (2) holds then by Theorem 3.4 there is a linear transformation

h′ : Im f → C such that h′[ f (x)] = g(x) for all x ∈ A. Let { f (ei) ; i ∈ I} be
a basis of the subspace Im f of B. By Theorem 7.9 we can extend this to a basis
{ f (ei) ; i ∈ I}∪{x j ; j ∈ J} of B. Choosing a family (c j) j∈J of elements of C , we can
define a linear transformation h : B→ C by the prescription

(∀i ∈ I) h[ f (ei)] = g(ei), (∀ j ∈ J) h(x j) = c j .

Then clearly h is such that h ◦ f = g. �

• Note that Theorem 8.14 does not hold in general for modules. The reason for
this is essentially that if N is a submodule of a module M such that N has
a basis then we cannot in general extend this to a basis of M . For example,
{2} is a basis of the submodule 2Z of the free Z-module Z, but this cannot be
extended to a basis of Z.

EXERCISES
8.1 Let m and n be integers, each greater than 1. Show that the prescription ϑ(x +mZ) =

nx + nmZ describes a Z-morphism ϑ : Z/mZ → Z/nmZ. Prove that the Z-module
MorZ(Z/mZ,Z/nmZ) is generated by {ϑ} and deduce that

MorZ(Z/mZ,Z/nmZ)' Z/mZ.

[Hint. Show that AnnZ(ϑ) = mZ and use Exercise 4.1.]
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8.2 Let R be a commutative unitary ring and let I be an ideal of R. If M is an R-module
define

MI = {x ∈ M ; I ⊆ AnnR(x)}.

Prove that MI is an R-module and that the assignment f 7→ f (1 + I) defines an R-
isomorphism

ϑ : MorR(R/I , M)→ MI .

Hence establish a Z-isomorphism

MorZ(Z/nZ,Q/Z)' Z/nZ.

[Hint. Consider ζ : Z→ (Q/Z)nZ given by ζ(m) = m
n +Z.]

8.3 If (Pα)α∈I is a family of R-modules each of which is projective prove that
⊕

α∈I
Pα is pro-

jective. Conversely, prove that if
⊕

α∈I
Pα is projective then so is each Pα.

[Hint. Working with the diagram

Pα






y

inα
⊕

α∈I
Pα






y

f

A−−−−−→
g

B −−−−−→0 (exact)

determine the appropriate fill-in maps.]

8.4 If p is a prime, establish a short exact sequence

0−−→Z/pZ−−→Z/p2Z−−→Z/pZ−−→0

that does not split. Deduce that a submodule of a projective module need not be pro-
jective.

8.5 Let n be an integer greater than 1. For every divisor r of n consider the ideal r(Z/nZ)
of the ring Z/nZ. Show how to construct an exact sequence

0−−→
n
r
(Z/nZ)−−→Z/nZ−−→ r(Z/nZ)−−→0.

Prove that the following are equivalent :

(a) the above short exact sequence splits;
(b) h.c.f.{r, n/r}= 1;
(c) the Z/nZ-module r(Z/nZ) is projective.

Hence give an example of a projective module that is not free.

[Hint. Consider Z/2Z as a Z/6Z-module.]
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8.6 Suppose that in the diagram of R-modules and R-morphisms

0−−→K1
i
−−→P1

p
−−→B−−→0







y

idB

0−−→K2−−→
j

P2−−→q B−−→0

the rows are exact and P1 is projective. Prove that there exist R-morphisms β : P1→ P2

and α : K1→ K2 such that the completed diagram is commutative.

[Hint. Use the projectivity of P1 to construct β . As for α, observe that q ◦β ◦ i = 0; use
Theorem 3.7.]

Consider now the sequence

0−−→K1
ϑ
−−→ P1 ⊕ K2

π
−−→ P2−−→0

in which ϑ is given by ϑ(k) =
�

i(k),α(k)
�

and π is given by π(p1, k2) = β(p1)− j(k2).
Show that this sequence is exact. Deduce that if P2 is also projective then P1 ⊕ K2 '
P2 ⊕ K1.

8.7 Show that every diagram of R-modules and R-morphisms of the form

P ′ P ′′

α







y







y

β

0−−→E′−−→
f

E−−→
g

E′′−−→0

in which the row is exact and P ′, P ′′ are projective can be extended to a commutative
diagram

0−−→P ′
i
−−→Ps

π
−−→P ′′−−→0







y

α







y

γ







y

β

0−−→E′−−→
f

E −−→
g

E′′−−→0

in which the top row is exact and P is also projective.

[Hint. Take P = P ′ ⊕ P ′′. Let β be a projective lifting of β and let j : P → P ′ be a
left-hand splitting morphism; consider the mapping γ= ( f ◦α ◦ j) = (β ◦π).]

8.8 Let the diagram of R-modules and R-morphisms

. . .−−→P3
g3−−→P2

g2−−→P1
g1−−→A






y

k0

. . .−−→Q3−−→
h3

Q2−−→
h2

Q1−−→
h1

B−−→0

be such that both rows are exact and each Pi is projective. Prove that for every positive
integer n there is an R-morphism kn : Pn→Qn such that hn ◦ kn = kn−1 ◦ gn.

[Hint. Use Theorem 8.5 and induction.]
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8.9 Let R be a commutative unitary ring. Let X and Y be R-modules with X projective. If
A, B are submodules of X , Y respectively show that the set

∆A,B = { f ∈MorR(X , Y ) ; f →(A) ⊆ B}

is a submodule of the R-module MorR(X , Y ). Show also that there is an R-isomorphism

MorR(X/A, Y /B)'∆A,B/∆X ,B .

8.10 If M and N are R-modules consider the set P(M , N) of those R-morphisms f : M → N
that ‘factor through projectives’ in the sense that there is a commutative diagram

P






y

β

M−−−−−→
f

N

���

��

α

in which P is projective. Show that P(M , N) forms a subgroup of the group MorR(M , N).

[Hint. If f factors through P and g factors through Q show that f − g factors through
P ⊕Q.]

If [M , N] denotes the corresponding quotient group, prove that for every exact se-
quence

0−−→N ′
f
−−→N

g
−−→N ′′−−→0

there is an induced exact sequence of Z-modules and Z-morphisms

[M , N ′]
f ′
−−→[M , N]

g′
−−→[M , N ′′].

[Hint. The sequence

MorR(M , N ′)−−→
f?

MorR(M , N)−−→
g?

MorR(M , N ′′)

is exact. If α ∈ P(M , N ′) observe that f?(α) ∈ P(M , N) and use Theorem 4.3 to produce
f ′; similarly for g ′.]

8.11 An exact sequence of the form

. . .−−→ Pn
fn−−→ Pn−1

fn−1−−→ . . .
f1−−→ P0−−→0

is said to split if there exist R-morphisms gi : Pi → Pi+1 such that

(a) f1 ◦ g0 = idP0
;

(b) (∀i ≥ 1) gi−1 fi + fi+1 gi = idP+i .

Prove by induction that if each Pi is projective then the above sequence splits.
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8.12 Let ∆n be the ring of lower triangular n× n matrices X = [x i j] over a field F (so that
x i j = 0 if i < j). Let A= [ai j] and B = [bi j] in ∆n be given respectively by

ai j =

�

1 if i = j + 1;

0 otherwise,
bi j =

�

1 if i = j = 1;

0 otherwise.

If Θn = {X ∈∆n ; (i = 1, . . . , n) x ii = 0} prove that

0−−→∆nB
f
−−→∆n

g
−−→Θn−−→0,

where f is the natural inclusion and g is given by g(X ) = XA, is a split exact sequence
of ∆n-modules. Deduce that Θn is a projective ∆n-module.

8.13 Let V and W be finite-dimensional vector spaces over a field F . If f : V →W is a linear
transformation let the rank of f be written ρ( f ). Prove that, for every λ ∈ F ,

ρ(λ f ) =

�

ρ( f ) if λ 6= 0;

0 if λ= 0.

Prove also that if g : V →W is also linear then

|ρ( f )−ρ(g)| ≤ ρ( f + g)≤ ρ( f ) +ρ(g).

[Hint. Establish the right-hand inequality from Im( f + g) ⊆ Im f + Im g. As for the
left-hand inequality, write f = ( f + g)− g and apply the right-hand inequality together
with the first part of the question.]

8.14 Let V, W, X be finite-dimensional vector spaces over a field F and let f : V → W and
g : W → X be linear transformations. Prove that

ρ( f ) +ρ(g)− dim W ≤ ρ(g ◦ f )≤min{ρ( f ),ρ(g)}.

[Hint. For the left-hand inequality consider the restriction of g to Im f ; and for the
right-hand inequality use Corollary 2 of Theorem 8.11.]



9
DUALITY ; TRANSPOSITION

In the previous section we noted that if M and N are R-modules then the abelian
group MorR(M , N) is not in general an R-module. Let us now examine the particular
case where N = R. Noting that expressions of the form r f (m)λ are meaningful for
r,λ ∈ R and f ∈ MorR(M , R), we can give MorR(M , R) the structure of a right R-
module as follows : for every f ∈ MorR(M , R) and every λ ∈ R let f λ : M → R be
given by the prescription ( f λ)(m) = f (m)λ. Then by virtue of the equalities

( f λ)(rm) = f (rm)λ= r f (m)λ= r( f λ)(m),

the group morphism f λ is indeed an R-morphism and so is in MorR(M , R).

Definition 9.1 If M is an R-module then the dual of M is the right R-module M d =
MorR(M , R). The elements of the dual module M d are called linear forms (or linear
functionals) on M .

It is clear that in an analogous way we can start withn a right R-module N and
form its dual, which will be a left R-module . In particular, if M is an R-module then
we can form the dual of the right R-module M d , thus obtaining the (left) R-module
(M d)d . We shall denote this by M dd and call it the bidual of M .

• Similarly, we can give MorR(R, M) the structure of a left R-module, but this
turns out to be isomorphic to M ; see Exercise 9.1.

Example 9.1 As in the remark following Theorem 8.3 we haveQd = 0, (Z/2Z)d = 0
and Zd ' Z. More generally, it can likewise be shown that (Z/nZ)d = 0 as a Z-
module. In contrast, note that (Z/nZ)d ' Z/nZ as Z/nZ-modules; for the Z/nZ-
module Z/nZ is free, of dimension 1, and it is readily seen that the assignment
f 7→ f (1+ nZ) yields a Z/nZ-isomorphism from (Z/nZ)d to Z/nZ.

If M is an R-module and M d is its dual then in what follows we shall write a
typical element of M d as xd (remember that it is an R-morphism). We shall also
use the following notation : given x ∈ M and yd ∈ M d we denote by 〈x , yd〉 the
element yd(x) of R. With this notation we see immediately that, for all x , y ∈ M , all
xd , yd ∈ M d , and all λ ∈ R, we have the identities :

(α) 〈x + y, xd〉= 〈x , xd〉+ 〈y, xd〉;
(β) 〈x , xd + yd〉= 〈x , xd〉+ 〈x , yd〉;
(γ) 〈λx , xd〉= λ〈x , xd〉;
(δ) 〈x , xdλ〉= 〈x , xd〉λ.
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Theorem 9.1 9.1 Let M be a free R-module with basis {ei ; i ∈ I}. For every i ∈ I let
ed

i : M → R be the (unique) R-morphism such that

ed
i (e j) =

�

0 if j 6= i;

1 if j = i.

Then {ed
i ; i ∈ I} is a linearly independent subset of M d .

Proof It is clear that ed
i ∈ M d for every i ∈ I and that ed

i = ed
j if and only if i = j.

Now if
t
∑

i=1
ed

i λi = 0 in M d then for j = 1, . . . , n we have

0R =
�

t
∑

i=1
ed

i λi

�

(e j) =
t
∑

i=1
(ed

i λi)(e j) =
t
∑

i=1
ed

i (e j)λi = λ j

whence {ed
i ; i ∈ I} is linearly independent. �

Corollary 1 If x =
n
∑

i=1
x iei then ed

i (x) = x i for each i.

Proof ed
i (x) = ed

i

�

n
∑

j=1
x je j

�

=
n
∑

j=1
x je

d
i (e j) = x i . �

• Because of Corollary 1, the R-morphisms ed
i are often called the coordinate

forms associated with the elements ei .

Corollary 2 If I is finite, say I = {1, . . . , n}, then {ed
1 , . . . , ed

n} is a basis of M d .

Proof Given f ∈ M d and x =
n
∑

i=1
x iei ∈ M we have, using Corollary 1,

�

n
∑

i=1
ed

i f (ei)
�

(x) =
n
∑

i=1
ed

i (x) f (ei) =
n
∑

i=1
x i f (ei) = f (x)

and consequently f =
n
∑

i=1
ed

i f (ei), which shows that {ed
1 , . . . , ed

n} generates M d . Since

this set is linearly independent, it therefore forms a basis of M d . �

Definition 9.2 If M is a free R-module and if B = {e1, . . . , en} is a finite basis of M
then by the basis dual to B we shall mean the basis {ed

1 , . . . , ed
n} of M d .

Let us now return to the identities (α) to (δ) above. It is clear from (β) and (δ)
that, for every x ∈ M , the mapping xdd : M d → R given by the prescription

xdd(xd) = 〈x , xd〉

is a linear form on the right R-module M d and so is an element of the bidual module
M dd (hence our choice of the notation xdd). Consider now the mapping ddM : M →
M dd given by x 7→ xdd . It is quickly verified using (α) and (γ) that this is an R-
morphism. We call it the canonical R-morphism from M to M dd .
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• The various notational conventions described above may be summarised in
the identities

xdd(xd) = 〈x , xd〉= xd(x)

where x ∈ M , xd ∈ M d and xdd ∈ M dd .

In general, the canonical R-morphism ddM need not be either injective or surjec-
tive. However, we do have the following important result.

Theorem 9.2 If M is a free R-module then the canonical morphism ddM : M → M dd

is a monomorphism. Moreover, if M has a finite basis then ddM is an isomorphism.

Proof Let {ei ; i ∈ I} be a basis of M and let {ed
i ; i ∈ I} be the set of corresponding

coordinate forms. Suppose that x ∈ Ker ddM and that x =
∑

i∈J
x iei where J is some

finite subset of I . Then since xdd is the zero element of M dd we have xdd(yd) = 0
for all yd ∈ M d . In particular, for every i ∈ J we have, by Corollary 1 of Theorem
9.1, 0 = xdd(ed

i ) = 〈x , ed
i 〉 = ed

i (x) = x i . It follows that x = 0 and hence that dM is
a monomorphism.

Suppose now that I is finite, say I = {1, . . . , n}. Since

edd
i (e j) = 〈ei , ed

j 〉= ed
j (ei) =

�

1 if i = j;

0 if i 6= j,

we see that the edd
i are the coordinate forms associated with the ed

i and so, by Corol-
lary 2 of Theorem 9.1, {edd

1 , . . . , edd
n } is the basis of M dd that is dual to the basis

{ed
1 , . . . , ed

n} of M d . It now follows by Corollary 2 to Theorem 7.7 that ddM is an
R-isomorphism. �

• In the case where M is a free R-module having a finite basis we shall hence-
forth agree to identify M and M dd . We can do so, of course, only because of
the isomorphism ddM which, from the above, is canonical in the sense that
it is independent of any choice of bases. However, we shall not identify M
and M d in this case, despite the fact that for any (finite) basis of M the cor-
responding dual basis has the same cardinality so that M and M d are also
isomorphic (by the Corollary 2 to Theorem 7.7). In fact, M and M d are not
canonically isomorphic. What we mean here by a canonical isomorphism is
an R-isomorphism ζ : M → M d which is such that, for all x , y ∈ M and all
R-isomorphisms f : M → M , 〈x ,ζ(y)〉= 〈 f (x),ζ[ f (y)]〉. We refer the reader
to Exercise 9.8 for specific details.

Definition 9.3 Let M and N be R-modules. By the transpose of an R-morphism f :
M → N we shall mean the induced R-morphism

M d =MorR(M , R)←−−−−MorR(N , R) = N d

given by the assignment
yd ◦ f ←−−−− yd .

We shall denote the transpose of f by f t .
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• It is clear from the definition that f t is a Z-morphism. That it is an R-morphism
follows from the equalities [ f t(ydλ)](x) = (ydλ)[ f (x)] = yd[ f (x)]λ =
[(yd ◦ f )(x)]λ= [(yd ◦ f )λ](x) = [ f t(yd)λ](x).

• In terms of the notation introduced previously, we have, for all x ∈ M and all
yd ∈ N d ,

〈 f (x), yd〉= 〈x , f t(yd)〉.

In fact, the left-hand side is yd[ f (x)] = (yd ◦ f )(x) = [ f t(yd)](x) which is
the right-hand side.

The principal properties of transposition are as follows.

Theorem 9.3 (1) For every R-module M, (idM )t = idM d ;

(2) If f , g ∈MorR(M , N) then ( f + g)t = f t + g t ;

(3) If f ∈MorR(M , N) and g ∈MorR(N , P) then (g ◦ f )t = f t ◦ g t .

Proof (1) is obvious from the definition of transpose; and (2), (3) are special cases
of Theorem 8.2(4),(2). �

Corollary 1 If f : M → N is an R-isomorphism then so is f t : N d → M d ; moreover,
in this case, ( f t)−1 = ( f −1)t .

Proof This is immediate from (1) and (3). �

We can, of course, apply the previous definition to the R-morphism f t : N d →
M d , thereby obtaining its transpose, namely ( f t)t : M dd → N dd given by ϑ 7→ ϑ◦ f t .
We call ( f t)t the bitranspose of f and shall denote it henceforth by f t t .

The connection between bitransposes and biduals can be summarised as follows.

Theorem 9.4 For every R-morphism f : M → N there is the commutative diagram

M
f

−−−−−→ N

ddM







y







y

ddN

M dd−−−−−→
f t t

N dd

Proof For every x ∈ M we have (ddN ◦ f )(x) = [ f (x)]ddN and ( f t t ◦ ddM )(x) =
f t t(xddM ). Moreover„ for all x ∈ M and all yd ∈ N d ,

[ f (x)]ddN (yd) = 〈 f (x), yd〉= 〈x , f t(yd)〉;

[ f t t(xddM )](yd) = (xddM ◦ f t)(yd) = 〈x , f t(yd)〉,

whence the result follows. �

• Note that if M and N are free R-modules each having a finite basis and if
f : M → N is an R-morphism then, on identifying M dd with M and N dd with
N , we obtain from Theorem 9.4 the equality f t t = f . These identifications
also happily reduce notational complexities to a reasonable level!
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By way of applying Theorem 9.4, we can obtain the following generalisation of
Theorem 9.2.

Theorem 9.5 If P is a projective module then the canonical morphism ddP is a mono-
morphism; moreover, if P is finitely generated then ddP is an isomorphism.

Proof If P is projective then, by Theorem 8.7, P is a direct summand of a free
module F . Let ιP : P → F be the natural inclusion. Then by Theorem 9.4 we have
the commutative diagram

P
ιP−−−−−→ F

ddP







y







y

ddF

Pdd−−−−−→
ι t t
P

F dd

Since ddF is injective by Theorem 9.2, we deduce that ι t t
P ◦ ddP is injective whence

so is ddP .
Suppose now that P is also finitely generated. Then by the Corollary to Theorem

8.7 there is a free R-module F with a finite basis and an R-epimorphism π : F → P.
Since P is projective, Theorem 8.8 yields the split short exact sequence

0−−−−−→Kerπ
ι

−−−−−→ F
π

−−−−−→ P−−−−−→0

in which ι is the natural inclusion. Applying Theorem 8.4(2) twice (with M = R)
and Theorem 9.4, we obtain the commutative diagram

0−−−−−→ K
ι

−−−−−→ F
π

−−−−−→ P −−−−−→0






y

ddK







y

ddF







y

ddP

0−−−−−→Kdd−−−−−→
ι t t

F dd−−−−−→
πt t

Pdd−−−−−→0

in which K = Kerπ and each row is split exact. Since ddF is an isomorphism by
Theorem 9.2, we deduce that ddP ◦π is surjective, whence so is ddP . It now follows
from the first part of the theorem that ddP is an isomorphism. �

We now consider further relations between a module and its dual.

Definition 9.4 If M is an R-module then x ∈ M is said to be annihilated by xd ∈ M d

if xd(x) = 〈x , xd〉= 0.

It is clear from the equalities (β) and (γ) immediately preceding Theorem 9.1
that for every non-empty subset E on M the set of elements of M d that annihilate
every element of E forms a submodule of M d . We denote this submodule of M d by

E� = {xd ∈ M d ; (∀x ∈ E) 〈x , xd〉= 0}

and call this the submodule of M d that annihilates E. In particular, we obviously have
{0M}� = M d and M� = {0M d }.

The connection between duality, transposition and annihilation can now be sum-
marised as follows, in which we denote by L(M) the lattice of submodules of M .
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Theorem 9.6 For every R-morphism f : M → N there is the commutative diagram

L(M)
�

−−−−−→L(M d)

f →







y







y

( f t )←

L(N)−−−−−→
�

L(N d)

Proof What we have to show is that, for every submodule A of M ,

[ f →(A)]� = ( f t)←(A�).

This follows immediately from the observation that

yd ∈ [ f →(A)]� ⇐⇒
�

∀x ∈ f →(A)
�

0= 〈x , yd〉
⇐⇒ (∀a ∈ A) 0= 〈 f (a), yd〉= 〈a, f t(yd)〉
⇐⇒ f t(yd) ∈ A�

⇐⇒ yd ∈ ( f t)←(A�). �

Corollary 1 If f : M → N is an R-morphism then (Im f )� = Ker f t .

Proof It suffices to take A= M in the above. �

Corollary 2 If A is a submodule of M then (M/A)d ' A�.

Proof Consider the natural short exact squence

0−−−−−→A
ι

−−−−−→M
\

−−−−−→M/A−−−−−→0.

By Theorem 8.3 we have the induced short exact sequence

Ad ι t

←−−−−M d \t

←−−−− (M/A)d←−−−−0.

By Corollary 1 and the exactness, (M/A)d ' Im \t = Ker ι t = (Im ι)� = A�. �

We now turn our attention again to finite-dimensional vector spaces and derive
some further properties of the dimension function.

Theorem 9.7 If V is a finite-dimensional vector space and if W is a subspace of V then

dim W� = dim V − dim W.

Moreover, if we identify V with its bidual then (W�)� =W.

Proof If W = V then the result is clear. Suppose then that W ⊂ V . Let dim V = n
and note that by Corollary 3 of Theorem 8.9 we have dim W = m where m < n.
Let {a1, . . . , am} be a basis of W and extend this to a basis {a1, . . . , am, am+1, . . . , an}
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of V . Let {ad
1 , . . . , ad

n} be the basis of V d that is dual to this basis of V . If now x =
n
∑

i=1
ad

i λi ∈W� then for j = 1, . . . , m we have

0= 〈a j , xd〉=
n
∑

i=1
〈a j , ad

i 〉λi = λ j .

It follows immediately that {ad
m+1, . . . , ad

n} is a basis for W� and hence that

dim W� = n−m= dim V − dim W.

As for the second statement, consider the subspace (W�)� of V dd = V . By def-
inition, every element of W is annihilated by every element of W� and so we have
W ⊆ (W�)�. On the other hand, by the first part of the theorem,

dim(W�)� = ddim V d − dim W� = n− (n−m) = m= dim W.

We conclude from Corollary 3 of Theorem 8.9 that (W�)� =W . �

Corollary 1 The assignment W 7→W� yields a bijection from the set of m-dimensional
subspaces of V to the set of m− n-dimensional subspaces of V d . �

Theorem 9.8 Let V and W be finite-dimensional vector spaces over the same field F.
If f : V →W is a linear transformation then

(1) (Im f )� = Ker f t ;

(2) (Ker f )� = Im f t ;

(3) dim Im f = dim Im f t ;

(4) dim Ker f = dim Ker f t .

Proof (1) follows from Corollary 1 of Theorem 9.6; and (2) follows from (1), The-
orem 9.7 and the remark preceding Theorem 9.5. As for (3) and (4), we observe
that, by (1) and (2),

dimIm f t = n− dim Ker f t

= n− dim(Im f )�

= n− (n− dimIm f )
= dim Im f

= n− dim Ker f ,

from which both (3) and (4) follow. �

We shall see the importance of Theorem 9.8 in the next section.

EXERCISES
9.1 Let M be an R-module. For every R-morphism f : R → M and every λ ∈ R let λ f :

R→ M be given by the prescription (λ f )(r) = f (rλ). Show that λ f ∈MorR(R, M) and
deduce that MorR(R, M) is an R-module. Show also that ϑ : MorR(R, M)→ M given by
ϑ( f ) = f (1R) is an R-isomorphism.
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9.2 Let Rn[X ] denote the (n+ 1)-dimensional vector space of pokynomials over R of de-
gree less than or equal to n. If t1, . . . , tn+1 are n + 1 distinct real numbers and if for
i = 1, . . . , n+ 1 the mappings ζti

: Rn[X ]→ R are the corresponding substitution mor-
phisms, given by ζti

(p) = p(t i) for each i, prove that

B = {ζti
; i = 1, . . . , n+ 1}

is a basis for the dual space (R[x])d . Determine a basis of Rn[X ] of which B is the dual.

[Hint. Consider the Lagrange polynomials

Pj =
∏

i 6= j

X − t i

t j − t i

where i, j = 1, . . . , n+ 1.]

9.3 Let R be a commutative unitary ring regarded as an R-module. Let m and n be positive
integers. Given f1, . . . , fm ∈ (Rn)d , define f : Rn→ Rm by the prescription

f (x) =
�

f1(x), . . . , fm(x)
�

.

Show that f ∈MorR(Rn, Rm) and that every element of MorR(Rn, Rm) is of this form for
some f1, . . . , fm ∈ (Rn)d .

[Hint. Consider fi = pri ◦ f .]

9.4 If (Mi)i∈I is a family of R-modules prove that
�
⊕

i∈I
Mi

�d
' ∧∨

i∈I
M d

i .

[Hint. Use Theorem 8.1(a).]

9.5 Prove that an R-morphism is surjective if and only if its transpose is injective.

9.6 Let V be a finite-dimensional vector space and let (Vi)i∈I be a family of subspaces of V .
Prove that

�⋃

i∈I
Vi

��
=
⋂

i∈I
V�i ,

�⋂

i∈I
Vi

��
=
∑

i∈I
V�i .

[Hint. Observe first that X ⊆ Y implies Y � ⊆ X�.]

9.7 If V is a finite-dimensional vector space and W is a subspace of V prove that V d/W� '
W d .

[Hint. Show that f − g ∈W� if and only if the restrictions of f , g to W coincide.]

9.8 In this exercise we indicate a proof of the fact that if V is a vector space of dimension
n > 1 over a field F then there is no canonical isomorphism ζ : V → V d except when
n= 2 and F ' Z/2Z. By such an isomorphism ζwe mean one such that, for all x , y ∈ V
and all isomorphisms f : V → V ,

(?) 〈x ,ζ(y)〉= 〈 f (x),ζ[ f (y)]〉.

If ζ is such an isomorphism show that for y 6= 0 the subspace Kerζ(y) = {ζ(y)}� is
of dimension n− 1.
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Suppose first that n> 3. If there exists t 6= 0 such that t ∈ Kerζ(t) let {t, x1, . . . , xn−2}
be a basis of Kerζ(t), extended to a basis {t, x1, . . . , xn−2, z} of V . Let f : V → V be the
(unique) linear transformation such that

f (t) = t, f (x1) = z, f (z) = x1, f (x i) = x i(i 6= 1).

Show that f is an isomorphism that does not satisfy (?). [Take x = x1, y = t.] If, on
the other hand, for every t 6= 0 we have t /∈ Kerζ(t), let {x1, . . . , xn−1} be a basis of
Kerζ(t) so that {x1, . . . , xn, t} is a basis of V . Show that

{x1 + x2, x2 + t, x3, . . . , xn−1, t + x1}

is also a basis of V . Show also that x2 ∈ Kerζ(x1). [Assume the contrary and use
Theorem 7.10.] Now show that if f : V → V is the (unique) linear transformation such
that

f (x1) = x1 + x2, f (x2) = x2 + t, f (t) = t + x1, f (x i) = x i(i 6= 1,2)

then f is an isomorphism that does not satisfy (?). [Take x = x1, y = t.] Conclude that
we must have n= 2.

Suppose now that |F |> 3 and let λ ∈ F be such that λ 6= 0, 1. If there exists t 6= 0 such
that t ∈ Kerζ(t) observe that {t} is a basis of Kerζ(t) and extend this to a basis {t, z}
of V . If f : V → V is the (unique) linear transformation such that f (t) = t, f (z) = λz,
show that f is an isomorphism that does not satisfy (?). [Take x = z, y = t.] If, on
the other hand, for all t 6= 0 we have t /∈ Kerζ(t) let {z} be a basis of Kerζ(t) so
that {z, t} is a basis of V . If f : V → V is the (unique) linear transformation such that
f (z) = λz, f (t) = t, show that f is an isomorphism that does not satisfy (?). [Take
x = y = z.] Conclude that we must have |F |= 2.

Now examine the F -vector space F2 where F ' Z/2Z.

[Hint. Observe that the dual of F2 is the set of linear transformations f : F × F → F .
Since |F2| = 4 there are 24 = 16 laws of composition on F . Only four of these can be
linear transformations from F × F to F ; and each is determined by its action on the
natural basis of F2. Compute (F2)d and determine a canonical isomorphism from F2

onto (F2)d .]

9.9 Let E and F be vector spaces over a field K and let u : E→ F be a linear transformation.
If V is a subspace of E prove that

[u→(V )]d ' (ut)→(F d)/[V� ∩ (ut)→(F d)].

[Hint. Consider the mapping ϑ : (ut)→(F d)→ [u→(V )]d described by sending f d ◦u to
the restriction of f d to u→(V ).]
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MATRICES; LINEAR EQUATIONS

In this section we introduce the notion of a matrix and illustrate the importance of
some of the previous results in the study of linear equations. The reader will un-
doubtedly be familiar with several aspects of this, in perhaps a less general setting,
and for this reason we shall be as brief as possible.

Definition 10.1 Let S be a non-empty set. By an m×n matrix over S we shall mean
a mapping f : [1, m]× [1, n]→ S. We shall write the element f (i, j) of S as x i j and
denote such a mapping by the array









x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...
xm1 xm2 . . . xmn









which consists of m rows and n columns, the entry x i j appearing at the intersection
of the i-th row and the j-th column. We shall often abbreviate this to [x i j]m×n.

It is clear from the definition of equality for mappings that we have [x i j]m×n =
[yi j]p×q if and only if m= p, n= q and x i j = yi j for all i, j.

We shall denote the set of m × n matrices over a unitary ring R by Matm×n(R).
Clearly, it form an R-module under the component-wise definitions

[x i j]m×n + [yi j]m×n = [x i j + yi j]m×n, λ[x i j]m×n = [λx i j]m×n.

Definition 10.2 Let R be a unitary ring and let M be a free R-module of dimension
n. By an ordered basis of M we shall mean a sequence (ai)1≤i≤n of elements of M
such that the set {a1, . . . , an} is a basis of M . We shall often write an ordered basis
as simply (ai)n.

• Note that every basis of n elements gives rise to n! distinct ordered bases since
there are n! bijections on a set of n elements.

Suppose now that R is a unitary ring and that M , N are free R-modules of dimen-
sions m, n respectively. Suppose further that (ai)m, (bi)n are given ordered bases of
M , N and that f : M → N is an R-morphism. Then we know by Theorem 7.7 and its
Corollary 3 that f is entirely determined by the mn scalars x i j such that

( j = 1, . . . , m) f (a j) =
n
∑

i=1
x i j bi = x1 j b1 + · · ·+ xn j bn.
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The n×m matrix X = [x ji]n×m (note the reversal!) is called the matrix of f relative to
the ordered bases (ai)m and (bi)n. We shall denote it by Mat[ f , (bi)n, (ai)m] or simply
Mat f if there is no confusion over the ordered bases.

• Note again that it is an n×m matrix that represents an R-morphism from an
m-dimensional module to an n-dimensional module. This conventional twist
is deliberate and the reason for it will soon be clear.

Theorem 10.1 Let R be a unitary ring and let M , N be free R-modules of dimensions
m, n referred respectively to ordered bases (ai)m, (bi)n. Then the mapping

ϑ : MorR(M , N)→Matn×m(R)

given by ϑ( f ) =Mat[ f , (bi)n, (ai)m] is an R-isomorphism.

Proof It suffices to note that if A=Mat f and B =Mat g then A+ B =Mat( f + g),
and λA=Mat(λ f ). �

Definition 10.3 If X = [x i j]m×n and Y = [yi j]n×p are matrices over a unitary ring R
then we define the product XY to be the m× p matrix [zi j]m×p given by

zi j =
n
∑

k=1
x ik yk j .

The reason for this (at first sight rather strange) definition is made clear by the
following result.

Theorem 10.2 Let R be a unitary ring and let M , N , P be free R-modules of dimensions
m, n, p respectively. If (ai)m, (bi)n, (ci)p are fixed ordered bases of M , N , P respectively
and if f ∈MorR(M , N), g ∈MorR(N , P) then

Mat[g ◦ f , (ci)p, (ai)m] =Mat[g, (ci)p, (bi)n]Mat[ f , (bi)n, (ai)m].

Proof Let Mat f = [x i j]n×m and Mat g = [yi j]p×n. Then for j = 1, . . . , m we have

(g ◦ f )(a j) = g
� n
∑

i=1
x i j bi

�

=
n
∑

i=1
x i j g(bi) =

p
∑

k=1

� n
∑

i=1
x i j yki

�

ck

from which the result follows. �

• In a more succinct way, the equality of Theorem 10.2 can be written in the
form Mat(g ◦ f ) =Mat g Mat f . It is precisely to have the product in this order
that the above twist is adopted.

Corollary 1 Matrix multiplication as defined above is associative.

Proof It suffices to observe that composition of morphisms is associative. �

Corollary 2 If (ai)n is an ordered basis of an n-dimensional module over a unitary
ring R then the mapping

ϑ : MorR(M , M)→Matn×n(R)

given by ϑ( f ) =Mat[ f , (ai)n, (ai)n] is a ring isomorphism.
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Proof It suffices to note that Matn×n(R) is an R-algebra, the identity element of
which is the diagonal matrix

In =













1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1













i.e. that given by In = [δi j]n×n where

δi j =

�

1 if i = j;

0 if i 6= j,

and that Mat[idM , (ai)n, (ai)n] = I . �

Corollary 3 Mat[ f , (ai)n, (ai)n] is an invertible element in the ring Matn×n(R) if and
only if f is an R-isomorphism. �

The importance of invertible matrices is illustrated in the following result. This
tells us how the matrix representing an R-morphism changes when we switch refer-
ence to a new ordered basis.

Theorem 10.3 Let R be a unitary ring and let M , N be free R-modules of dimensions
m, n respectively.
(1) Let (ai)m, (a′i)m be ordered bases of M and let (bi)n, (b′i)n be ordered bases of

N. Given f ∈MorR(M , N), suppose that Mat[ f , (bi)n, (ai)m] = A. Then

Mat[ f , (b′i)n, (a′i)m] =Q−1AP

where P =Mat[idM , (ai)m, (a′i)m] and Q =Mat[idN , (bi)n, (b′i)n].
(2 Conversely, if (ai)m and (bi)n are ordered bases of M and N respectively and if

A, B are n×m matrices over R such that, for some invertible m×m matrix P and some
invertible n × n matrix Q, B = Q−1AP then there is an R-morphism f : M → N and
ordered bases (a′i)m, (b′i)n of M , N respectively such that A= Mat[ f , (bi)n, (ai)m] and
B =Mat[ f , (b′i)n, (a′i)m].

Proof (1) Let M ; (ai)m denote that M is referred to the ordered basis (ai)m and
consider the diagram

M ; (ai)m
f ; A

−−−−−→N ; (bi)n

idM ;P

x







idN ;Q

x













y

idN ;Q−1

M ; (a′i)m−−−−−→f ;?
N ; (b′i)n

in which, for example, f ; A indicates that A is the matrix of f relative to the ordered
bases (ai)m, (bi)n. Note by Theorem 10.2 that Q =Mat[idN , (bi)n, (b′i)n] is invertible
with Q−1 =Mat[idn, (b′i)n, (bi)n]. Again by Theorem 10.2, we have
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Q−1AP = Mat[idN , (b′i)n, (bi)n]Mat[ f , (bi)n, (ai)m]Mat[idM , (ai)m, (a′i)m]
= Mat[idN , (b′i)n, (bi)n]Mat[ f , (bi)n, (a′i)m]
= Mat[ f , (b′i)n, (a′i)m],

so that the unknown ? in the diagram is indeed Q−1AP.
(2) Let P = [pi j]m×m and Q = [qi j]n×n and define

a′j =
m
∑

i=1
pi jai , b′j =

n
∑

i=1
qi j bi .

Since P is invertible there is an R-isomorphism g with P =Mat[g, (ai)m, (ai)m] and
since a′i = g(ai) for each i we see that (a′i)m is an ordered basis of M (for iso-
morphisms carry bases to bases). It is now clear that P = Mat[idM , (ai)m, (a′i)m].
Similarly we see that Q = Mat[idN , (bi)n.(b′i)n]. Now by Theorem 10.1 there exists
f ∈ MorR(M , N) such that A = Mat[ f , (bi)n, (ai)m]. Let C = Mat[ f , (b′i)n, (a′i)m];
then by part (1) we have C =Q−1AP = B. �

Definition 10.4 If (ai)m and (a′i)m are given ordered bases of M then the matrix
Mat[idM , (a′i)m, (ai)m] is called the transition matrix (or matrix which represents the
change of basis) from (ai)m to (a′i)m.

It is immediate from the previous result that two m× n matrices A, B represent
the same R-morphism with respect to possibly different ordered bases if and only if
there are invertible matrices P,Q (namely, transition matrices) with P of size m×m
and Q of size n× n such that B =Q−1AP. We describe this situation by saying that A
and B are equivalent. It is clear that the relation of being equivalent is an equivalence
relation on the set Matn×m(R). An important problem from both the theoretical and
practical points of view is that of locating a particularly simple representative, or
canonical form, in each equivalence class. In order to tackle this problem, we require
the following notions.

Definition 10.5 By the transpose of an n×m matrix A= [ai j]n×m we mean the m×n
matrix At = [a ji]m×n.

The reason for this choice of terminology is clear from the following result.

Theorem 10.4 Let R be a unitary ring and let M , N be free R-modules of dimensions
m, n respectively. If f : M → N is an R-morphism and (ai)m, (bi)n are ordered bases of
M , N with Mat[ f , (bi)n, (ai)m] = A then Mat[ f t , (ad

i )m, (bd
i )n] = At .

Proof Let Mat[ f t , (ad
i )m, (bd

i )n] = [bi j]m×n. Then we have



















〈 f (ai), bd
j 〉=

¬ n
∑

t=1
at i bt , bd

j

¶

=
n
∑

t=1
at i〈bt , bd

j 〉= a ji;

||

〈ai , f t(bd
j )〉=

¬

ai ,
m
∑

t=1
bt ja

d
t

¶

=
m
∑

t=1
bt j〈ai , ad

t 〉= bi j ,

from which the result follows. �
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Suppose now that f : [1, m] × [1, n] → S is an m × n matrix. Then for every
p ∈ [1, n] the restriction fp : [1, m]×{p} → S is an m×1 matrix which we shall call
the p-th column matrix of f . The p-th row matrix of f is defined similarly. The p-th
column and p-th row matrices of a matrix A= [ai j]m×n that represents f are then

�

ap1 ap2 . . . apn

�

,









a1p
a2p
...

amp









.

Definition 10.6 By the column rank of an m× n matrix A over a unitary ring R we
shall mean the dimension of the submodule of Matm×1(R) generated by the columns
of A. Similarly, the row rank of A is the dimension of the submodule generated by
the rows of A.

For the rest of this section we restrict our attention again to vector spaces, though
the results that follow do not depend on commutativity.

Theorem 10.5 Let V and W be vector spaces of dimensions m, n respectively over a
field F. Let f : V →W be a linear transformation and let A be the matrix of f relative
to fixed ordered bases (ai)m, (bi)n respectively. Then the following coincide:

(1) the column rank of A;

(2) dimIm f ;

(3) the row rank of A;

(4) dimIm f t .

Proof Let A= [ai j]n×m and recall that

(?) ( j = 1, . . . , m) f (a j) =
n
∑

i=1
ai j bi .

Now the mapping ϑ : Matn×1(F)→W given by

ϑ









x1
x2
...

xn









=
n
∑

i=1
x i bi

is clearly an isomorphism which, by virtue of (?), takes the j-th column matrix of A
onto f (a j) and hence maps the subspace of Matn×1(F) generated by the columns ma-
trices of A onto Im f . Thus we see that the column rank of A coincides with dim Im f .
Likewise we can show that the column rank of At is dim Im f t . Now since the column
rank of At is clearly the same as the row rank of A, the result follows by Theorem
9.8(3). �
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Corollary 1 If g : V →W is also a linear transformation and if the matrix of g relative
to (ai)m, (bi)n is B then the following statements are equivalent :

(1) the subspace of Matn×1(F) generated by the column matrices of A coincides with
the subspace generated by the column matrices of B;

(2) Im f = Im g.

Proof It suffices to recall that ϑ in the above proof is an isomorphism that maps the
column space of A onto Im f . �

• Because of the equivalence of (1) and (3) in Theorem 10.5, we shall talk simply
of the rank of a matrix over a field when referring to either the row rank or
the column rank.

• In view of the definition of row and column rank, the result of Theorem 10.5 is
really quite remarkable; for there is no obvious reason why we should expect
the row rank of a matrix to coincide with the column rank. Indeed, the result
holds only because the corresponding result for linear transformations [Theo-
rem 9.8(3)] is a very natural one. In contrast, we note that Theorem 10.5, and
hence Theorem 9.8, does not hold in general for R-modules; for an illustration
of this we refer the reader to Exercise 10.7.

It is clear that, relative to the equivalence relation described above, the only
matrix that is equivalent to the m×n zero matrix is the m×n zero matrix. As for the
other equivalence classes, we shall now locate a particularly simple representative
of each.

Theorem 10.6 Let A be a non-zero m× n matrix over a field F. If A is of rank r then
A is equivalent to a matrix of the form

�

Ir Or×n−r

Om−r×r Om−r×n−r

�

.

Proof Let V andW be vector spaces over F of dimensions n and m respectively.
Let (ai)n, (bi)m be ordered bases of V, W and let f : V → W be a linear transfor-
mation such that A = Mat[ f , (bi)m, (ai)n]. By Corollary 2 of Theorem 8.9 we have
dimKer f = n− r, so there is an ordered basis α= (a′i)n of V such that {a′r+1, . . . , a′n}
is a basis of Ker f . Since { f (a′1), . . . , f (a′r)} is then a basis of Im f , we can extend
this to a basis

{ f (a′1), . . . , f (a′r), b′r+1, . . . , b′m}

of W . Let β = (βi)m be the ordered basis given by βi = f (a′i) for i = 1, . . . , r and
βr+i = b′r+i for i = 1, . . . , m− r. Then it is readily seen that the matrix of f relative to
the ordered bases α,β is of the stated form, and this is equivalent to A by Theorem
10.3. �

Corollary 1 Two m×n matrices over a field are equivalent if and only if they have the
same rank. �
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Corollary 2 If A is an n × n matrix over a field then the following statements are
equivalent :

(1) A is invertible;

(2) A is of rank n;

(3) A is equivalent to the identity matrix In.

Proof This is immediate from Corollary 4 of Theorem 8.9. �

• The matrix exhibited in Theorem 10.6 is called the canonical matrix of rank r,
or the canonical form of A under the relation of equivalence.

We now consider a particularly important application of matrices, namely to the
solution of systems of linear equations over a field.

Consider the following system of ‘m equations in n unknowns’ :















a11 x1 + a12 x2 + · · · + a1n xn = b1
a21 x1 + a22 x2 + · · · + a2n xn = b2

...
...

...
...

am1 x1 + am2 x2 + · · · + amn xn = bm

The m × n matrix A = [ai j]m×n is called the coefficient matrix of the system. By
abuse of language we shall henceforth refer to such a system by means of its matrix
representation

A









x1
x2
...

xn









=









b1
b2
...

bm









which we shall abbreviate for convenience to A[x i]n = [bi]m. In this way we can
represent the given system by a single matrix equation. The m × (n + 1) matrix
whose first n column matrices are those of A and whose (n+ 1)-th column matrix is
[bi]m is called the augmented matrix of the system.

Theorem 10.7 The system of equations A[x i]n = [bi]m over a field F has a solution if
and only if the coefficient matrix and the augmented matrix have the same rank.

Proof For i = 1, . . . , n let the i-th column matrix of A be Ai . Then the system can

be written in the form
n
∑

i=1
Ai x i = [bi]m. It follows that a solution exists if and only if

[bi]m belongs to the subspace of Matm×1(F) generated by the column matrices of A,
which is the case if and only if the (column) rank of A is the (column) rank of the
augmented matrix. �

If f is a linear transformation then related to the equation f (x) = y there is
the equation f (x) = 0. The latter is called the associated homogeneous equation. The
importance of this stems from the following result.
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Theorem 10.8 If x0 is a solution of the linear equation f (x) = y then the solution
set of this equation is the set of elements of the form x0 + z where z is a solution of the
associated homogeneous equation.

Proof This is immediate from the observation that

f (x) = y = f (x0) ⇐⇒ f (x − x0) = 0. �

• If V and W are vector spaces and if f : V →W is linear then clearly the solu-
tions of the equation f (x) = 0 constitute the subspace Ker f . We can therefore
rephrase Theorem 10.8 in the form : the solution set of f (x) = y is either empty
or is a coset of the solution space of f (x) = 0.

Theorem 10.9 Let A be an m × n matrix over a field F. Then the solution space of
A[x i]n = [0]m is of dimension n− rank A.

Proof Let fA : Matn×1(F) → Matm×1(F) be the linear transformation which given
by fA

�

[x i]n
�

= A[x i]n. Then it is readily verified that, relative to the natural ordered
bases of Matn×1(F) and Matm×1(F), the matrix of fA is precisely A. The solution space
of A[x i]n = [0]m is now Ker fA and its dimension is n−dimIm fA which, by Theorem
10.5, is n− rank A. �

In the elementary solution of linear equations, as is often illustrated by means
of worked examples in introductory courses on linear algebra, there are three basic
operations involved, namely

1. interchanging two equations;
2. multiplying an equation by a non-zero scalar;
3. forming a new equation by adding to one a multiple of another.

The same operations can be performed on the rows of the coefficient matrix of the
system and are called elementary row operations . When the coefficients are elements
of a given field, these operations are ‘reversible’ in the sense that we can always per-
form the ‘inverse’ operation and obtain the system we started off with. Consequently,
these operations do not alter the solution set of the system.

Definition 10.7 By an elementary matrix of size m×m over a field we shall mean a
matrix that has been obtained from the identity matrix Im by applying to it a single
elementary row operation.

The importance of elementary matrices stems from the following result.

Theorem 10.10 Let A and B be m× n matrices over a field F. If B is obtained from A
by means of a single elementary row operation then B = PA where P is the elementary
matrix obtained by applying the same elementary row operation to Im.

Proof We shall make use of the Kronecker symbol δi j given by

δi j =

�

1 if i = j;

0 if i 6= j.

Recall that Im = [δi j]m×m.
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Suppose first that P = [pi j] is obtained from Im by interchanging the i-th and
j-th rows of Im (with, of course, i 6= j). Then the r-th row of P is given by

(t = 1, . . . , m) pr t =







δi t if r = j;

δ j t if r = i;

δr totherwise.

Consequently,

[PA]rs =
m
∑

t=1
pr t ats =







ais if r = j;

a js if r = i;

ars otherwise.

Thus we see that PA is the matrix obtained from A by interchanging the i-th and j-th
rows of A.

Suppose now that P is obtained from Im by multiplying the i-th row of Im by λ.
Then the r-th row of P is given by

(t = 1, . . . , m) pr t =

�

λδi t if r = i;

δr t otherwise.

Consequently,

[PA]rs =
m
∑

t=1
pr t ats =

�

λais if r = i;

ars otherwise,

whence we see that PA is obtained from A by multiplying the i-th row of A by λ.
Finally, suppose that P is obtained from Im by adding λ times the i-th row to the

j-th row (with i 6= j). Then, if Eλi j denotes the m×m matrix that has λ in the (i, j)-th
position and 0 elsewhere, we have

[PA]rs = [A+ Eλi jA]rs =

�

ars if r 6= i;

ais +λa js if r = i.

So PA is obtained from A by adding λ times the i-th row of A to the j-th row of A. �

Since to every elementary row operation there corresponds a unique ‘inverse’
operation that restores the status quo, it is clear the every elementary matrix is in-
vertible.

We shall now introduce a second equivalence relation on the set of m×n matrices
over a field.

Definition 10.8 We say that two m × n matrices over a field are row equivalent if
one can be obtained from the other by means of a finite sequence of elementary row
operations

Clearly, this concept of row equivalence defines an equivalence relation on the
set Matm×n(F). It can be variously characterised as follows.
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Theorem 10.11 Let A and B be m × n matrices over a field F. Then the following
statements are equivalent :

(1) A and B are row equivalent;
(2) A[x i]n = [0]m if and only if B[x i]n = [0]m;

(3) there is an invertible matrix P such that B = PA;

(4) the subspace of Mat1×n(F) generated by the row matrices of A coincides with
that generated by the row matrices of B.

Proof (1)⇔ (2) : Row operations do not alter solution sets.
(1)⇒ (3) : This is clear from Theorem 10.10 and the fact that every product of

invertible matrices is invertible.
(3) ⇒ (2) : Suppose that B = PA where P is invertible. Then AX = 0 implies

BX = PAX = P0 = 0, and the converse implication follows similarly using the fact
that A= P−1B.
(4)⇔ (2) : Clearly, (4) holds if and only if the subspace of Matn×1(F) generated

by the column matrices of At coincides with the subspace generated by the column
matrices of B t . Now if fA, fB : Matn×1(F) → Matm×1(F) are given by fA

�

[x i]n
�

=
A[x i]n and fB

�

[x i]n
�

= B[x i]n then the matrices of fA, fB relative to the natural bases
are A, B respectively. Taking dual spaces and transposes in the Corollary of Theorem
10.5, we thus see that (4) holds if and only if Im f t

A = Im f t
B which, by Theorem

9.8(2), is equivalent to (Ker fA)� = (Ker fB)� which, by Theorem 9.7, is equivalent
to Ker fA = Ker fB which is equivalent to (2). �

Corollary 1 Row-equivalent matrices are equivalent. �

Corollary 2 If A is an n × n matrix over a field F then the following statements are
equivalent :

(1) A is row-equivalent to In;

(2) A[x i]n = [0]n has a unique solution, namely [0]n;

(3) A is invertible;

(4) A is a product of elementary matrices. �

It is clear from the above that the only m×n matrix that is row-equivalent to the
zero m× n matrix is the zero m× n matrix. As for the other equivalence classes, we
shal now locate a particularly simple representative, or canonical form, in each.

Definition 10.9 By a row-echelon (or stairstep) matrix we shall mean a matrix of
the form













0 . . . 0 ?
?
?

?
. . .













in which all the entries ‘under the stairs’ are zero, all the ‘corner entries’ (those
marked ?) are non-zero, and all other entries are arbitrary.
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• Note that the ‘stairstep’ descends one row at a time and that a ‘step’ may tra-
verse several columns.

By a Hermite matrix we shall mean a row-echelon matrix in which every corner
entry is 1 and every entry lying above a corner entry is 0.

Thus a Hermite matrix is of the typical form

















0 . . . 0 1 ? ? ? 0 0 ? ? ? 0 ? ? 0 . . .
1 0 ? ? ? 0 ? ? 0 . . .

1 ? ? ? 0 ? ? 0 . . .
1 ? ? 0 . . .

1 . . .
. . .

















Theorem 10.12 Every non-zero m× n matrix A over a field F is row-equivalent to a
unique m× n Hermite matrix.

Proof Reading from the left, the first non-zero column of A contains at least one
non-zero entry. A suitable permutation of the rows yields a row-equivalent matrix of
the form

B =









0 . . . 0 b11 b12 . . . b1p
0 . . . 0 b21 b22 . . . b2p

...
...

...
...

0 . . . 0 bm1 bm2 . . . bmp









in which b11 6= 0. Now for i = 2, . . . , m subtract from the i-th row bi1 b−1
11 times the

first row. This yields a row-equivalent matrix of the form

C =









0 . . . 0 b11 b12 . . . b1p
0 . . . 0 0 c22 . . . c2p

...
...

...
...

0 . . . 0 0 cm2 . . . cmp









in which we see the beginning of the stairstep. We now repeat the process using the
(m−1)×(p−1)matrix C ′ = [ci j]. It is clear that, continuing in this way, we eventually
obtain a row-echelon matrix Z which, by its construction, is row-equivalent to A.
Since every corner entry of Z is non-zero we can multiply every non-zero row of Z
by the inverse of the corner entry in that row. This produces a row-echelon matrix
Z ′ every corner entry of which is 1. We now subtract suitable multiples of every non-
zero row from those rows lying above it to reduce to zero the entries lying above the
corner entries. This then produces a Hermite matrix that is row-equivalent to A.

To establish the uniqueness of this Hermite matrix, it is clearly sufficient to show
that if A, B are m× n Hermite matrices that are row-equivalent then A= B. This we
proceed to do by induction on the number of columns.
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It is clear that the only m×1 Hermite matrix is [1 0 . . . 0]t , so the result is trivial
in the case where n = 1. Suppose, by way of induction, that all row-equivalent
Hermite matrices of size m × (n − 1) are identical and let A, B be row-equivalent
Hermite matrices of size m × n. By Theorem 10.11 there is an invertible matrix P
such that B = PA. Let A+, B+ be the m × (n − 1) matrices consisting of the first
n− 1 columns of A, B. Then clearly B+ = PA+ and so A+, B+ are row-equivalent, by
Theorem 10.11 again. By the induction hypothesis, therefore, we have A+ = B+. The
result will now follow if we can show that the n-th columns of A and B coincide. For
this purpose, we note that since A, B are row-equivalent they have the same rank,
namely the number of corner entries. If rank A = rank B = r then we have either
rank A+ = r or rank A+ = r−1. In the latter case the n-th columns of A and B consist
of a corner entry 1 in the r-th row and zero entries elsewhere, whence these columns
are equal. In the former case, let i ∈ [1, r]. Then by Theorem 10.11 we have

(?) [bi1 . . . bin] =
r
∑

k=1
λk[ak1 . . . akn].

In particular, for the matrix A+(= B+) we have

[ai1 . . . ai,n−1] =
r
∑

k=1
λk[ak1 . . . ak,n−1]

whence, since the first r rows matrices of A+ form a linearly independent subset of
Mat1×(n−1)(F), we obtain λi = 1 and λk = 0 for k 6= i. It now follows from (?) that

[bi1 . . . bin] = [ai1 . . . ain]

whence bin = ain. Thus the n-th columns of A, B coincide. �

Interesting points about about the above proof are firstly the uniqueness of the
Hermite form, and secondly that the proof describes a systematic procedure for solv-
ing systems of linear equations. By way of illustration, consider the following system
whose coefficient matrix is in Mat4×4(R) :











x + y + z + t = 4
x + λy + z + t = 4
x + y + λz + (3−λ)t = 6

2x + 2y + 2z + λt = 6

Applying the procedure for reducing the augmented matrix ro row-echelon form, we
obtain the matrix

Z =







1 1 1 1 4
0 λ− 1 0 0 0
0 0 λ− 1 2−λ 2
0 0 0 λ− 2 −2






.

Now if λ 6= 1,2 the rank of the coefficient matrix is clearly 4, as is that of the aug-
mented matrix, and so a solution exists by Theorem 10.7; moreover, in this case a
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solution is unique, for the coefficient matrix is of rank 4 and so the solution space
of the associated homogeneous system is of dimension 4 − 4 = 0 (Theorem 10.9)
whence the uniqueness follows by Theorem 10.8. To determine the solution in this
case, we transform the above matrix to the unique associated Hermite matrix, ob-
taining

H =







1 0 0 0 4+ 2
λ−2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 − 2

λ−2






.

The unique solution of the corresponding system of equations may now be read off,
namely

x = 4+
2

λ− 2
, y = 0, z = 0, t = −

2
λ− 2

.

Consider now the case λ= 2. Here the matrix Z becomes






1 1 1 1 4
0 1 0 0 0
0 0 1 0 2
0 0 0 0 −2






.

In this case the rank of the coefficient matrix is 3 whereas that of the augmented
matrix is 4. In this case, therefore, the solution set is empty.

Finally, consider the case where λ= 1. Here the matrix Z becomes






1 1 1 1 4
0 0 0 0 0
0 0 0 1 2
0 0 0 −1 −2






,

the corresponding Hermite matrix being






1 1 1 0 2
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0






.

Here the coefficient matrix and the augmented matrix are each of rank 2, so a so-
lution exists. The dimension of the solution space of the associated homogeneous
system is 4− 2 = 2 and, using Theorem 10.8, we see that (x , y, z, t) is a solution of
the given system (when λ= 1) if and only if there exist α,β ∈ R such that

(x , y, z, t) = (2,0, 0,2) +α(−1, 1,0, 0) + β(−1, 0,1, 0).

We close this section with a brief mention of another equivalence relation, this
time on the set of n × n matrices over a field F . Suppose that V is a vector space
of dimension n over F and that f : V → V is linear. Under what conditions do two
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n× n matrices A, B represent f relative to different ordered bases? It is clear from
Theorem 10.3 that this is the case if and only if there is an invertible n× n matrix
P such that B = P−1AP. When this is so, we shall say that A and B are similar.
Similar matrices are evidently equivalent. The relation of being similar is clearly
an equivalence relation on the set of n × n matrices over F . Again an important
problem from both the theoretical and practical points of view is that of locating a
particularly simple representative, or canonical form, in each equivalence class. In
the exercises for this section we indicate some of these canonical forms. In general,
however, we require high-powered techniques to tackle this problem and we shall
do so for particular types of matrices in the final section, by which time we shall
have all the necessary machinery at our disposal.

EXERCISES

10.1 Let V be a finite-dimensional vector space over a field F . A linear transformation f :
V → V is said to be symmetric if f = f t , and skew-symmetric if f = − f t . Show that
the set of symmetric transformations forms a subspace of MorF (V, V ) as does the set of
skew-symmetric transformations. If F is not of characteristic 2, show that MorF (V, V )
is the direct sum of these subspaces. Express this result in terms of matrices.

10.2 Define elementary column operations on a matrix in a similar way to elementary row
operations. Call matrices A, B column-equivalent if one can be obtained from the other
by a finite sequence of column operations. Prove that A, are column-equivalent if and
only if there is an invertible matrix Q such that A= BQ. Deduce that A, B are equivalent
if and only if one can be obtained from the other by a finite sequence of row and column
operations.

10.3 For the real matrix




1 2 3 −2
2 −2 1 3
3 0 4 1





compute the canonical matrix N that is equivalent to A. Compute also invertible matri-
ces P,Q such that N = PAQ.

10.4 Prove that an n × n matrix over a field is invertible if and only if ithe corresponding
Hermite matrix is In. Use this fact to obtain a practical method of determining whether
or not a given n× n matrix A has an inverse and, when it does, of computing A−1.

10.5 Show that the set

K =
§�

a b
−b a

�

; a, b ∈ Z3

ª

is a subfield of the ring Mat2×2(Z3). Show that the multiplicative group of non-zero
elements of K is cyclic, of order 8, and generated by the element

�

1 2
1 1

�

.
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10.6 Let A1, . . . , An and B1, . . . , Bm be R-modules. For every R-morphism f :
n
⊕

i=1
Ai →

m
⊕

j=1
B j

define
f ji = prB

j ◦ f ◦ inA
i

where prB
j and inA

i are the obvious natural morphisms. If M is the set of m×n matrices
[ϑ ji] where each ϑ ji ∈MorR(Ai , B j), show that the mapping

ζ : MorR

� n
⊕

i=1
Ai ,

m
⊕

j=1
B j

�

→ M

described by ζ( f ) = [ f ji] is an abelian group isomorphism, so that f is uniquely deter-
mined by the m× n matrix [ f ji]. Show also that the composite R-morphism

n
⊕

i=1
Ai

f
−−−−−→

m
⊕

j=1
B j

g
−−−−−→

p
⊕

k=1
Ck

is represented by the matrix product [gk j] [ f ji].

Hence establish, for every R-module A, a ring isomorphism

MorR(A
n, An)'Matn×n[MorR(A, A)].

10.7 Consider the matrix

A=
�

1 2 3
0 3 2

�

whose entries are in the ring Z30. Show that the row rank of A is 2 whereas the column
rank of A is 1.

10.8 If A, B ∈ Matn×n(F) are similar, prove that so also are Am and Bm for every positive
integer m.

10.9 Let V be a vector space of dimension n over a field F that is not of characteristic 2.
Suppose that f : V → V is a linear transformation such that f 2 = idV . Prove that

V = Im(idV + f )⊕ Im(idV − f ).

Deduce that an n× n matrix A over F is such that A2 = In if and only if A is similar to a
matrix of the form

�

Ip 0

0 −In−p

�

.

[Hint. Use Theorem 7.8.]

Suppose now that F is of characteristic 2 and that f 2 = idV . If g = idV + f show that

x ∈ Ker g ⇐⇒ x = f (x).

Show also that g2 = 0.
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Deduce that an n× n matrix A over F is such that A2 = In if and only if A is similar to
a matrix of the form

























In−2p

1 1
0 1

1 1
0 1

...
1 1
0 1

























.

[Hint. Let f represent A relative to some fixed ordered basis of V and let g be as above.
Observe that Im g ⊆ Ker g. Let {g(c1), . . . , g(cp)} be a basis of Im g. Extend this to a
basis {b1, . . . , bn−2p, g(c1), . . . , g(cp)} of Ker g. Show that

{b1, . . . , bn−2p, g(c1), c1, g(c2), c2, . . . , g(cp), cp}

is a basis of V . Compute the matrix of f relative to this ordered basis.]

10.10 Let V be a vector space of dimension n over a field F and let f : V → V be a linear
transformation such that f 2 = 0. Show that if Im f is of dimension r then 2r ≤ n.
Suppose now that W is a subspace of V such that V = Ker f ⊕W . Show that W is of
dimension r and that if {w1, . . . , wr} is a basis of W then { f (w1), . . . , f (wr)} is a linearly
independent subset of Ker f . Deduce that n− 2r elements x1, . . . , xn−2r can be chosen
in Ker f such that

{w1, . . . , wr , f (w1), . . . , f (wr), x1, . . . , xn−2r}

is a basis of V . Deduce that a non-zero matrix A over F is such that A2 = 0 if and only
if A is similar to a matrix of the form





0r 0
Ir 0
0 0



 .

10.11 Let V be a vector space of dimension n over a field F . A linear transformation f :
V → V (respectively, an n × n matrix A over F) is said to be nilpotent of index p if
there is an integer p > 1 such that f p−1 6= 0 and f p = 0 (respectively, Ap−1 6= 0 and
Ap = 0). Show that if f is nilpotent of index p and if x 6= 0 is such that f p−1(x) 6= 0
then {x , f (x), . . . , f p−1(x)} is a linearly independent subset of V . Hence show that f is
nilpotent of index n if and only if there is an ordered basis (ai)n of V such that

Mat[ f , (ai)n, (ai)n] =
�

0 0
In−1 0

�

.

Deduce that an n× n matrix A over F is nilpotent of index n if and only if A is similar
to the above matrix.
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10.12 Let V be a finite-dimensional vector space over R and let f : V → V be a linear trans-
formation such that f 2 = − idV . Extend the action R× V → V to an action C× V → V
by defining, for all x ∈ V and all α+ iβ ∈ C,

(α+ iβ)x = αx − β f (x).

Show that in this way V becomes a vector space over C. Use the identity

r
∑

t=1
(λt − iµt)vt =

r
∑

t=1
λt vt +

r
∑

t=1
µt f (vt)

to show that if {v1, . . . , vr} is a linearly independent subset of the C-vector space V
then {v1, . . . , vr , f (v1), . . . , f (vr)} is a linearly independent subset of the R-vector space
V . Deduce that the dimension of V as a C-vector space is finite, n say, and that as an
R-vector space V has a basis of the form

{v1, . . . , vn, f (v1), . . . , f (vn)},

so that the dimension of V as an R-vector space is 2n. If (ai)2n is the ordered basis of
V given by ai = vi and an+i = f (vi) for i = 1, . . . , n show that

Mat[ f (ai)2n, (ai)2n] =
�

0 −In

In 0

�

.

Deduce that a 2n× 2n matrix A over R is such that A2 = −I2n if and only if A is similar
to the above matrix.

10.13 Let V be a vector space of dimension 4 over R. Let {b1, b2, b3, b4} be a basis of V and,
writing each x ∈ V as x = x1 b1 + x2 b2 + x3 b3 + x4 b4, let

V1 = {x ∈ V ; x3 = x2 and x4 = x1};
V2 = {x ∈ V ; x3 = −x2 and x4 = −x1}.

Show that

(1) V1 and V2 are subspaces of V ;

(2) {b1 + b4, b2 + b3} is a basis of V1 and {b1 − b4, b2 − b3} is a basis of V2;

(3) V = V1 ⊕ V2;

(4) with respect to the ordered bases B = (bi)1≤i≤4 and C = (ci)1≤i≤4 where c1 =
b1 + b4, c2 = b2 + b3, c3 = b2 − b3, .c4 = b1 − b4,

Mat[idV , C , B] =
1
2







1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1






.

A 4× 4 matrix M = [mi j] over R is called centro-symmetric if

(i, j = 1, . . . , 4) mi j = m5−i,5− j .
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If M is centro-symmetric, prove that M is similar to a matrix of the form







α β 0 0
γ δ 0 0
0 0 ε ζ

0 0 η ϑ






.

10.14 Show that when a, b, c, d are positive real numbers the following system of equations
has no solution :











x + y + z + t = a
x − y − z + t = b
− x − y + z + t = c
−3x + y − 3z − 7t = d.

10.15 If α,β ,γ ∈ R show that the system of equations







2x + y + z = −6β
αx + 3y + 2z = 2β
2x + y + (γ+ 1)z = 4

has a unique solution except when γ = 0 and γ = 6. If γ = 0 show that there is only
one value of β for which a solution exists and find the solution set in this case. Discuss
the situation when γ= 6.

10.16 Given the real matrices

A=





3 2 −1 5
1 −1 2 2
0 5 7 ϑ



 , B =





0 3
0 −1
0 6





prove that the matrix equation AX = B has a solution if and only if ϑ = −1. Find the
solution set in this case.



11
INNER PRODUCT SPACES

In our discussion of vector spaces the ground field F has been arbitrary and its prop-
erties have played no significant role. In the present section we shall restrict F to be
R or C, the results obtained depending heavily on the properties of these fields.

Definition 11.1 Let V be a vector space over C. By an inner product on V we shall
mean a mapping V × V → C, described by (x , y) 7→ 〈x | y〉, such that, α denoting
the complex conjugate of α ∈ C, the following identities hold :

(1) 〈x + x ′ | y〉= 〈x | y〉+ 〈x ′ | y〉;
(2) 〈x | y + y ′〉= 〈x | y〉+ 〈x | y ′〉;
(3) 〈αx | y〉= α〈x | y〉;
(4) 〈y | x〉= 〈x | y〉;
(5) 〈x | x〉 ≥ 0 with equality if and only if x = 0.

By a complex inner product space we mean a C-vector space V together with
an inner product on V . By a real inner product space we mean an R-vector space
together with an inner product (this being defined as in the above, but with the bars
denoting complex conjugates omitted). By an inner product space we shall mean
either a complex inner product space or a real inner product space.

• The notation 〈x | y〉 is not to be confused with the notation 〈x , y〉 used in
Section 9. We shall see the relationship between these notations later.

Note from the above definition that we have

(∀x ∈ V ) 〈x |0〉= 0= 〈0 | x〉.

In fact, this follows from (1), (2), (3) on taking x ′ = −x and y ′ = −y .

Note also that we have
〈x |αy〉= α〈x | y〉.

In fact, this follows from (3) and (4).

Finally, note that in a complex inner product space V we have 〈x | x〉 ∈ R for all
x ∈ V . This is immediate from (4).

Example 11.1 Cn is a complex inner product space under the standard inner product
defined by

〈(z1, . . . , zn) | (w1, . . . , wn)〉=
n
∑

i=1
ziwi .
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Example 11.2 Rn is a real inner product space under the standard inner product
defined by

〈(x1, . . . , xn) | (y1, . . . , yn)〉=
n
∑

i=1
x i yi .

In the cases where n = 2, 3 this inner product is often called the dot product, a
terminology that is popular when dealing with the geometric applications of vectors.

Example 11.3 Let a, b ∈ R be such that a < b and let V be the R-vector space of
continuous functions f : [a, b]→ R. Define a mapping V×V → R by the prescription

( f , g) 7→ 〈 f | g〉=
∫ b

a

f (x)g(x) d x .

Then this defines an inner product on V .

Definition 11.2 Let V be an inner product space. For every x ∈ V we define the
norm of x to be the non-negative real number

||x ||=
Æ

〈x | x〉.

Given x , y ∈ V we define the distance between x and y to be

d(x , y) = ||x − y||.

It is clear from the above that ||x ||= 0 if and only if x = 0.

• In the real inner product space R2, for x = (x1, x2) we have ||x ||2 = x2
1 + x2

2
so that ||x || is the distance from x to the origin. Likewise, for x = (x1, x2) and
y = (y1, y2) we have ||x − y||2 = (x1 − y1)2 + (x2 − y2)2, whence we see the
connection between the concept of distance and the theorem of Pythagoras.

Concerning norms, the following result is fundamental.

Theorem 11.1 Let V be an inner product space. Then, for all x , y ∈ V and every scalar
λ, we have
(1) ||λx ||= |λ| ||x ||;
(2) [Cauchy-Schwartz inequality] |〈x | y〉| ≤ ||x || ||y||;
(3) [Triangle inequality] ||x + y|| ≤ ||x ||+ ||y||.

Proof (1) ||λx ||2 = 〈λx |λx〉= λλ〈x | x〉= |λ|2||x ||2.
(2) The result is trivial if x = 0. Suppose then that x 6= 0 so that ||x || 6= 0. Let

z = y − 〈y | y〉||x ||2 x; then noting that 〈z | x〉= 0 we have

0≤ ||z||2 =
¬

y − 〈y | x〉||x ||2

�

�

� y − 〈y | x〉||x ||2 x
¶

= 〈y | y〉 − 〈y | x〉||x ||2 〈x | y〉

= 〈y | y〉 − |〈x | y〉|
2

||x ||2

from which (2) follows.
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(3) Using (2), we have

||x + y||2 = 〈x + y | x + y〉 = 〈x | x〉+ 〈x | y〉+ 〈y | x〉+ 〈y | y〉

= ||x ||2 + 〈x | y〉+ 〈x | y〉+ ||y||2

= ||x ||2 + 2Re〈x | y〉+ ||y||2

≤ ||x ||2 + 2|〈x | y〉|+ ||y||2

≤ ||x ||2 + 2||x || ||y||+ ||y||2

= (||x ||+ ||y||)2

from which (3) follows. �

Definition 11.3 Let V be an inner product space. Then x , y ∈ V are said to be
orthogonal if 〈x | x〉= 0. A non-empty subset S of V is called an orthogonal subset of
V if, for all x , y ∈ S with x 6= y , x and y are orthogonal. An orthogonal subset S in
which ||x ||= 1 for every x is called an orthonormal subset.

• In the real inner product space R2, if x = (x1, x2) and y = (y1, y2) then
〈x | y〉 = 0 if and only if x1 y1 + x2 y2 = 0. Geometrically, this is equivalent
to saying that the lines joining x and y to the origin are mutually perpen-
dicular. In a general inner product space it is often convenient to think of an
orthonormal set as a set of mutually perpendicular vectors each of length 1.

Example 11.4 Relative to the standard inner products, the natural bases of Rn and
Cn are orthonormal sets.

An important property of orthonormal subsets is the following.

Theorem 11.2 Orthonormal subsets are linearly independent.

Proof Let S be an orthonormal subset of the inner product space V . Suppose that

x1, . . . , xn are distinct elements of S and λ1, . . . ,λn are scalars such that
n
∑

i=1
λi x i = 0.

Then for each i we have

λi = λi1= λi〈x i | x i〉 =
n
∑

i=1
λk〈xk | x i〉

=
¬ n
∑

i=1
λk xk

�

�

� x i

¶

= 〈0 | x i〉
= 0. �

Theorem 11.3 If V is an inner product space and if {e1, . . . , en} is an orthonormal
subset of V then

[Bessel’s inequality] (∀x ∈ V )
n
∑

i=1
|〈x | ek〉|2 ≤ ||x ||2.

Moreover, if W is the subspace generated by {e1, . . . , en} then the following are equiv-
alent :



128 Module Theory

(1) x ∈W ;

(2)
n
∑

k=1
|〈x | ek〉|2 = ||x ||2;

(3) x =
n
∑

k=1
〈x | ek〉ek;

(4) (∀y ∈ V ) 〈x | y〉=
n
∑

k=1
〈x | ek〉 〈ek | y〉.

Proof For Bessel’s inequality let z = x −
n
∑

k=1
〈x | ek〉ek and observe that

0≤ 〈z | z〉= 〈x | x〉 −
n
∑

k=1
〈x | ek〉〈x | ek〉= ||x ||2 −

n
∑

k=1
|〈x | ek〉|2.

(2)⇒ (3) is now immediate.

(3)⇒ (4): If x =
n
∑

k=1
〈x | ek〉ek then for all y ∈ V we have

〈x | y〉=
¬ n
∑

k=1
〈x | ek〉ek

�

�

� y
¶

=
n
∑

k=1
〈x | ek〉 〈ek | y〉.

(4)⇒ (2): This follows on taking y = x .
(3)⇒ (1): This is obvious.

(1)⇒ (3): If x =
n
∑

k=1
λkek then for j = 1, . . . , n we hav

λ j =
n
∑

k=1
λk〈ek | e j〉=

¬ n
∑

k=1
λkek

�

�

� e j

¶

= 〈x | e j〉. �

Definition 11.4 An orthonormal basis is an orthonormal subset that is a basis.

We know that every vector space has a basis. We shall now show that every
finite-dimensional inner product space has an orthonormal basis. In so doing, we
shall obtain a practical procedure for constructing such a basis.

Theorem 11.4 Let V be an inner product space and for every x ∈ V let x? = x/||x ||.
If {x1, . . . , xn} is a linearly independent subset of V , define recursively

y1 = x?1;

y2 =
�

x2 − 〈x2 | y1〉y1

�?
;

...

yk =
�

xk −
k−1
∑

i=1
〈xk | yi〉yi

�?
.

Then {y1, . . . , yk} is orthonormal and generates the same subspace as {x1, . . . , xk}.

Proof It is readily seen that yi 6= 0 for every i and that yi is a linear combination
of x1, . . . , x i . It is also clear that x i is a linear combination of y1, . . . , yi for every i.
Thus {x1, . . . , xk} and {y1, . . . , yk} generate the same subspace. It now suffices to
prove that {y1, . . . , yk} is an orthogonal subset of V ; and this we do by induction.
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For k = 1 the result is trivial. Suppose by way of induction that {y1, . . . , yt−1} is
orthogonal where t > 1. Then, writing





x t −
t−1
∑

i=1
〈x t | yi〉yi





= αt

we see that

αt yt = x t −
t−1
∑

i=1
〈x t | yi〉yi

and so, for j < t,

αt〈yt | y j〉 = 〈x t | y j〉 −
t−1
∑

i=1
〈x t | yi〉 〈yi | y j〉

= 〈x t | y j〉 − 〈x t | y j〉
= 0.

As αt 6= 0 we deduce that 〈yt | y j〉= 0 for j < t. Thus {y1, . . . , yt} is orthogonal. �

Corollary 1 Every finite-dimensional inner product space has an orthonormal basis.

Proof Simply apply Theorem 11.4 to a basis. �

• The construction of {y1, . . . , yk} from {x1, . . . , xk} in Theorem 11.4 is often
called the Gram-Schmidt orthonormalisation process.

Theorem 11.5 If V is an inner product space and {e1, . . . , en} is an orthonormal basis
of V then

(1) (∀x ∈ V ) x =
n
∑

k=1
〈x | ek〉ek;

(2) (∀x ∈ V ) ||x ||2 =
n
∑

k=1
|〈x | ek〉|2;

(3) (∀x ∈ V ) 〈x | y〉=
n
∑

k=1
〈x | ek〉 〈ek | y〉.

Proof Since V is generated by the orthonormal subset {e1, . . . , en}, the result is
immediate from Theorem 11.3. �

• The identity (1) of Theorem 11.5 is often referred to as the Fourier expansion
of x relative to the orthonormal basis {e1, . . . , en}, the scalars 〈x | ek〉 being
called the Fourier coefficients of x . The identity (3) is called Parseval’s identity.

Just as a linearly independent subset of a vector space can be extended to form a
basis, so can an orthonormal subset (which by Theorem 11.2 is linearly independent)
be extended to form an orthonormal basis. This is the content of the following result.

Theorem 11.6 Let V be an inner product space of dimension n. If {x1, . . . , xk} is an
orthonormal subset of V then there exist xk+1, . . . , xn ∈ V such that

{x1, . . . , xk, xk+1, . . . , xn}

is an orthonormal basis of V .
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Proof Let W be the subspace generated by {x1, . . . , xk}. By Theorem 11.2, this set
is a basis for W and so can be extended to form a basis

{x1, . . . , xk, xk+1, . . . , xn}

of V . Applying the Gram-Schmidt orthonormalisation process to this basis we ob-
tain an orthonormal basis of V . The theorem now follows on noting that, since
{x1, . . . , xk} is orthonormal to start with, the first k terms of the new basis are pre-
cisely x1, . . . , xk; for, referring to the formulae of Theorem 11.4, we have

y1 = x?1 = x1;

y2 =
�

x2 − 〈x2 | x1〉x1

�?
= x?2 = x2;

...

yk =
�

xk −
k−1
∑

i=1
〈xk | x i〉x i

�?
= x?k = xk. �

An isomorphism from one vector space to another carries bases to bases. The cor-
responding situation for inner product spaces is described as follows.

Definition 11.5 Let V and W be inner product spaces over the same field. Then
f : V → W is an inner product isomorphism if it is a vector space isomorphism that
preserves inner products, in the sense that

(∀x , y ∈ V ) 〈 f (x) | f (y)〉= 〈x | y〉.

Theorem 11.7 Let V and W be finite-dimensional inner product spaces over the same
field. Let {e1, . . . , en} be an orthonormal basis of V . Then f : V →W is an inner product
isomorphism if and only if { f (e1), . . . , f (en)} is an orthonormal basis of W.

Proof ⇒: If f is an inner product isomorphism then clearly { f (e1), . . . , f (en)} is a
basis of W . It is also orthonormal since

〈 f (ei) | f (e j)〉= 〈ei | e j〉=
�

1 if i = j;

0 if i 6= j.

⇐: Suppose that { f (e1), . . . , f (en)} is an orthonormal basis of W . Then f carries
a basis to a basis and so is a vector space isomorphism. Now for all x ∈ V we have,
using the Fourier expansion of x relative to {e1, . . . , en},

〈 f (x) | f (e j)〉 =
¬

f
� n
∑

i=1
〈x | ei〉ei

�

�

�

� f (e j)
¶

=
¬ n
∑

i=1
〈x | ei〉 f (ei)

�

�

� f (e j)
¶

=
n
∑

i=1
〈x | ei〉, 〈 f (ei) | f (e j)〉

= 〈x | e j〉
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and similarly 〈 f (e j) | f (x)〉= 〈e j | x〉. It now follows by Parseval’s identity applied to
both V and W that

〈 f (x) | f (y)〉 =
n
∑

i=1
〈 f (x) | f (e j)〉 〈 f (e j) | f (y)〉

=
n
∑

i=1
〈x | e j〉 〈e j | y〉

= 〈x | y〉

and consequently f is an inner product isomorphism. �

We now pass to the consideration of the dual of an inner product space. For this
purpose, we require the following notion.

Definition 11.6 Let V and W be F -vector spaces where F is eitherR orC. A mapping
f : V →W is called a conjugate transformation if

(∀x , y ∈ V )(∀λ ∈ F) f (x + y) = f (x) + f (y), f (λx) = λ f (x).

If, furthermore, f is a bijection then we say that it is a conjugate isomorphism.

• Note that when F = R a conjugate transformation is just an ordinary linear
transformation.

Theorem 11.8 Let V be a finite-dimensional inner product space. Then there is a con-
jugate isomorphism ϑV : V → V d . This is given by ϑV (x) = xd where

(∀x ∈ V ) xd(x) = 〈x | xd〉.

Proof It is clear that for every y ∈ V the assignment x 7→ 〈x | y〉 is linear and so
defines an element of V d . We shall write this element of V d as yd , so that we have
yd(x) = 〈x | y〉. Recalling the notation 〈x , y〉 introduced in Section 9, we therefore
have the identities

〈x | y〉= yd(x) = 〈x , yd〉.

Consider now the mapping ϑV : V → V d given by ϑV (x) = xd . For all x , y, z ∈ V we
have

〈x , (y + z)d〉 = 〈x | y + z〉
= 〈x | y〉+ 〈x | x〉
= 〈x , yd〉+ 〈x , zd〉
= 〈x , yd + zd〉,

from which we deduce that (y + z)d = yd + zd and hence that ϑV (y + z) = ϑV (x) +
ϑV (z). Likewise,

〈x , (λy)d〉= 〈x |λy〉= λ〈x | x〉= λ〈x , yd〉= 〈x ,λyd〉,

so that (λy)d = λyd and consequently ϑV (λy) = λϑV (y). Thus we see that ϑV is a
conjugate transformation.
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That ϑV is injective follows from the fact that

x ∈ KerϑV =⇒ 〈x | x〉= 〈x , xd〉= 〈x , 0〉= 0

=⇒ x = 0.

To show that ϑV is also surjective, let f ∈ V d . Let {e1, . . . , en} be an orthonormal

basis of V and let x =
n
∑

i=1
f (ei)ei . Then for j = 1, . . . , n we have

xd(e j) = 〈e j | x〉=
¬

e j

�

�

�

n
∑

i=1
f (ei)ei

¶

=
n
∑

i=1
f (ei)〈e j | ei〉= f (e j).

Since xd and f thus coincide on the basis {e1, . . . , en} we conclude that f = xd =
ϑV (x), so that ϑV is surjective. �

• Note from the above that we have the identity

(∀x , y ∈ V ) 〈x | y〉= 〈x ,ϑV (y)〉.

Since ϑV is a bijection, we also have the following identity (obtained by writing
ϑ−1

V (y) in place of y) :

(∀x , y ∈ V ) 〈x |ϑ−1
V (y)〉= 〈x , y〉.

The above result gives rise to the important notion of the adjoint of a linear
transformation which we shall now describe.

Theorem 11.9 Let V and W be finite-dimensional inner product spaces over the same
field. If f : V →W is a linear transformation then there is a unique linear transforma-
tion f ? : W → V such that

(∀x ∈ V )(∀y ∈W ) 〈 f (x) | y〉= 〈x | f ?(y)〉.

Proof Using the above notations we have

〈 f (x) | y〉= 〈 f (x), yd〉 = 〈x , f t(yd)〉
= 〈x |ϑ−1

V [ f
t(yd)]〉

= 〈x | (ϑ−1
V ◦ f t ◦ ϑW )(y)〉.

It follows immediately that f ? = ϑ−1
V ◦ f t ◦ϑW is the only linear transformation with

the stated property. �

• Note that f ? can be alternatively characterised as the unique linear transfor-
mation from W to V such that the diagram

W
ϑW−−−−−→W d

f ?







y







y

f t

V −−−−−→
ϑV

V d

is commutative.
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Definition 11.7 The linear transformation f ? of Theorem 11.9 is called the adjoint
of f .

Immediate properties of adjoints are listed in the following result.

Theorem 11.10 Let V, W, X be finite-dimensional inner product spaces over the same
field. Let f , g : V →W and h : W → X be linear transformations. Then

(1) ( f + g)? = f ? + g?;

(2) (λ f )? = λ f ?;

(3) (h ◦ f )? = f ? ◦ h?;

(4) ( f ?)? = f .

Proof (1) is immediate from f ? = ϑ−1
V ◦ f t ◦ϑW and the fact that ( f + g)t = f t+ g t .

(2) Since 〈(λ f )(x) | y〉 = λ〈 f (x) | y〉 = λ〈x | f ?(y)〉 = 〈x |λ f ?(y)〉, we have, by
the uniqueness of adjoints, (λ f )? = λ f ?.
(3) Since 〈h[ f (x)] | y〉 = 〈 f (x) |h?(y)〉 = 〈x | f ?[h?(y)]〉 we have, again by the

uniqueness of adjoints, (h ◦ f )? = f ? ◦ h?.
(4) Taking complex conjugates in Theorem 11.9, we obtain

(∀y ∈W )(∀x ∈ V ) 〈 f ?(y) | x〉= 〈y | f (x)〉.

It follows by the uniqueness of adjoints that ( f ?)? = f . �

Theorem 11.11 Let V, W be inner product spaces over the same field and suppose
that dim V = dim W. Then if f : V → W ia linear transformation the following are
equivalent :

(1) f is an inner product isomorphism;

(2) f is a vector space isomorphism with f −1 = f ?;

(3) f ◦ f ? = idW ;

(4) f ? ◦ f = idV .

Proof (1)⇒ (2) : If (1) holds then f −1 exists and

〈 f (x) | y〉= 〈 f (x) | f [ f −1(y)]〉= 〈x | f −1(y)〉.

It follows by the uniqueness of adjoints that f ? = f −1.
(2)⇒ (3), (4) : these are obvious.
(3), (4)⇒ (1) : If, for example, (4) holds then f is injective whence it is bijective

(by Corollary 4 of Theorem 8.9) and so f −1 = f ?. Then

〈 f (x) | f (y)〉= 〈x | f ?[ f (y)]〉= 〈x | y〉

and so f is an inner product isomorphism. �

Definition 11.8 Let V be an inner product space. For every non-empty subset E of
V we define the orthogonal complement of E in V to be the set

E⊥ = {y ∈ V ; (∀x ∈ E) 〈x | y〉= 0}.
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It is clear that E⊥ is a subspace of V . The significance of this subspace is illustrated
in the following result.

Theorem 11.12 Let V be an inner product space. If W is a finite-dimensional subspace
of V then

V =W ⊕W⊥.

Proof Let {e1, . . . , em} be an orthonormal basis of W , noting that this exists since

W is of finite dimension. Given x ∈ V , let x ′ =
m
∑

i=1
〈x | ei〉ei and define x ′′ = x − x ′.

Then x ′ ∈W and for j = 1, . . . , m we have

〈x ′′ | e j〉= 〈x − x ′ | e j〉 = 〈x | e j〉 − 〈x ′ | e j〉

= 〈x | e j〉 −
n
∑

i=1
〈x | ei〉 〈ei | e j〉

= 〈x | e j〉 − 〈x | e j〉
= 0.

It follows from this that x ′′ ∈ W⊥. Consequently x = x ′ + x ′′ ∈ W +W⊥ and so
V = W +W⊥. Now if x ∈ W ∩W⊥ then 〈x | x〉 = 0 whence ||x || = 0 and so x = 0.
Thus we have V =W ⊕W⊥. �

Corollary 1 If V is a finite-dimensional inner product space and W is a subspace of V
thenW =W⊥⊥ and

dim W⊥ = dim W − dim W.

Proof Since V = W ⊕W⊥ it is clear from Theorem 7.8 that dim V = dim W −
dim W⊥. It is also clear that W ⊆W⊥⊥. Since

dim W⊥⊥ = dim V − dim W⊥ = dim V − (dim V − dim W ) = dim W,

it follows by Corollary 3 of Theorem 8.9 that W⊥⊥ =W . �

We end the present section by considering how the matrices of f and f ? are
related.

Definition 11.9 If A = [ai j]m×n is an m × n matrix over C then by its adjoint (or
conjugate transpose) we mean the n×m matrix A? the (i, j)-th entry of which is a ji .

Theorem 11.13 Let V and W be finite-dimensional inner product spaces over the same
field. Let (di)n, (ei)m be ordered orthonormal bases of V, W respectively. If f : V →W is
a linear transformation with Mat[ f , (ei)m, (di)n] = A then Mat[ f ?, (di)n, (ei)m] = A?.

Proof For j = 1, . . . , n we have f (d j) =
m
∑

i=1
〈 f (d j) | ei〉ei and so if A= [ai j] we have

ai j = 〈 f (d j) | ei〉. Since likewise f ?(e j) =
n
∑

i=1
〈 f ?(e j) | di〉di and since

ai j = 〈 f (d j) | ei〉= 〈ei | f (d j)〉= 〈 f ?(ei) | d j〉,

it follows that the matrix representing f ? is A?. �
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Definition 11.10 If V is a finite-dimensional inner product space and f : V → V is
a linear transformation then we say that f is self-adjoint if f = f ?. Likewise, an n×n
matrix A will be called self-adjoint if A= A?.

• In the case where the ground field isC the term hermitian is often used instead
of self-adjoint; and when the ground field isR the term symmetric is often used.

Definition 11.11 If V is a finite-dimensional inner product space then an inner
product isomorphism f : V → V is called a unitary transformation. An n× n matrix
A is unitary if, relative to some ordered orthonormal basis, it represents a unitary
transformation.

• When the ground field isR the term orthogonal is often used instead of unitary.
• Note by Theorem 11.11 that f : V → V is unitary if and only if f −1 exists and

is f ?; and that A is unitary if and only if A−1 exists and is A?. In particular, when
the ground field is R, A is orthogonal if and only if A−1 exists and is At .

If V is an inner product space of dimension n let (di)n and (ei)n be ordered
orthonormal bases of V . If U is an n× n matrix over the ground field of V then it is
clear that U is unitary if and only if, relative to (di)n and (ei)n, U represents a unitary
transformation (inner product isomorphism) f : V → V . It is readily seen that if A, B
are n × n matrices over the ground field of V then A, B represent the same linear
transformation with respect to different ordered orthonormal bases of V if and only
if there is a unitary matrix U such that B = U?AU = U−1AU . We describe this by
saying that A and B are unitarily similar. When the ground field is R, in which case
we have B = U tAU = U−1AU , we often use the term orthogonally similar.

It is clear that the relation of being unitarily (respectively, orthogonally) similar
is an equivalence relation on the set of n× n matrices over C (respectively, R). Just
as with ordinary similarity, the problem of locating canonical forms is important. We
shall consider this in the final section.

EXERCISES
11.1 If V is a real inner product space prove that

(∀x , y ∈ V ) ||x + y||2 = ||x ||2 + ||y||2 + 2〈x | y〉

and interpret this geometrically when V = R2.

11.2 If V is an inner product space, establish the parallelogram identity

(∀x , y ∈ V ) ||x + y||2 + ||x − y||2 = 2||x ||2 + 2||y||2

and interpret it geometrically when V = R2.

11.3 Write down the Cauchy-Schwartz inequality for the inner product spaces of Examples
11.1, 11.2, 11.3.

11.4 Show that equality holds in the Cauchy-Schwartz inequality if and only if {x , y} is
linearly dependent.
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11.5 Let x , y be non-zero elements of the real inner product space R3. If ϑ is the angle x0y ,
prove that

cosϑ =
〈x | y〉
||x || ||y||

.

11.6 Show that, in the real inner product space R3, Parseval’s identity reduces to

cos(ϑ1 − ϑ2) = cosϑ1cosϑ2 + sinϑ1sinϑ2.

11.7 Show that V = Matn×n(C) is an inner product space under the definition 〈A |B〉 =

tr(AB?) where tr A =
n
∑

i=1
aii is the trace of A. Interpret the Cauchy-Schwartz inequality

in this inner product space. Show further that if Ep,q ∈ V is the n×n matrix whose (p, q)-
th entry is 1 and all other entries are 0 then {Ep,q ; p, q = 1, . . . , n} is an orthonormal
basis of V .

11.8 Use the Gram-Schmidt orthonormalisation process to construct an orthonormal basis
for the subspace of R4 generated by

{(1,1, 0,1), (1,−2,0, 0), (1, 0,−1,2)}.

11.9 Consider the inner product space of Example 11.3 with a = 0, b = 1. Find an orthonor-
mal basis for the subspace generated by { f1, f2} where f1 : x 7→ 1 and f2 : x 7→ x .

11.10 Let V be the complex inner product space of Exercise 11.7. For every M ∈ V let fM :
V → V be given by fM (A) = MA. Show that the adjoint of fM is fM? .

11.11 Let V be a finite-dimensional inner product space. If f : V → V is linear, prove that f
is self-adjoint if and only if 〈 f (x) | x〉 is real for all x ∈ V .

11.12 Let V and W be finite-dimensional inner product spaces over the same field and suppose
that dim V = dim W . If f : V →W is linear, prove that the following are equivalent :

(1) f is an inner product isomorphism;

(2) f preserves inner products [〈 f (x) | f (y)〉= 〈x | y〉];

(3) f preserves norms [|| f (x)||= ||x ||];

(4) f preserves distances [d
�

f (x), f (y)
�

= d(x , y)].

11.13 Let V and W be subspaces of a finite-dimensional inner product space. Prove that

(V ∩W )⊥ = V⊥ +W⊥, (V +W )⊥ = V⊥ ∩W⊥.

11.14 If V is a finite-dimensional inner product space and f : V → V is a linear transforma-
tion, prove that

Im f ? = (Ker f )⊥, Ker f ? = (Im f )⊥.
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11.15 Let V be a complex inner product space. For all x , y ∈ V let fx ,y : V → V be given by

fx ,y(z) = 〈z | y〉x .

Prove that fx ,y is linear and that

(a) (∀x , y, z ∈ V ) fx ,y ◦ f y,z = ||y||2 fx ,z;

(b) the adjoint of fx ,y is f y,x .

11.16 If V is an inner product space then a linear transformation f : V → V is said to be
normal if f ◦ f ? = f ? ◦ f . Prove that if x 6= 0 and y 6= 0 then the linear transformation
fx ,y of Exercise 11.5 is

(a) normal if and only if there exists λ ∈ C such that x = λy;

(b) self-adjoint if and only if there exists λ ∈ R such that x = λy .

11.17 Let V be a real inner product space and let W be a finite-dimensional subspace of
V . Given x ∈ V , let x = x1 + x2 where x1 ∈ W and x2 ∈ W⊥. Show that ||x ||2 =
||x1||2 + ||x2||2. Show also that if y ∈W then

||x − y||2 = ||x − x1||2 + ||x1 − y||2.

Deduce that x1 is the element of W that is ‘nearest’ to x .

[Hint. Observe that if y ∈W then ||x − y||2 ≥ ||x − x1||2.]

If {e1, . . . , en} is an orthonormal subset of V prove that




x−
n
∑

i=1
λi ei





 attains its small-

est value when λi = 〈x | ei〉 for i = 1, . . . , n.

11.18 Let V be the real vector space of continuous functions f : [−π,π]→ R. Show that V
is an inner product space with respect to the definition

〈 f | g〉= 1
π

∫ π

−π
f (x)g(x) d x .

Prove that

B = {x 7→ 1p
2
, x 7→ sin nx , x 7→ cos nx ; n= 1, 2,3, . . . }

is an orthonormal subset of V .

If Wn is the subspace of dimension 2n+ 1 generated by

{x 7→ 1p
2
, x 7→ sin kx , x 7→ cos kx ; k = 1, . . . , n},

prove that the element fn of Wn that is nearest a given element f of V is given by

fn(x) =
1
2 a0 +

n
∑

k=1
(ak cos kx + bk sin kx)

where

a0 =
1
π

∫ π

−π
f (x) d x , ak =

1
π

∫ π

−π
f (x) cos kx d x , bk =

1
π

∫ π

−π
f (x) sin kx d x .
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INJECTIVE MODULES

In this Chapter our principal concern will be the relationship between modules and
rings. Our motivation lies in questions such as: do rings R exist with the property
that every R-module is projective? If so, what do they look like?

Before considering such questions, we deal with the notion that is dual to that
of a projective module.

Definition 12.1 An R-module M is said to be injective if, for every short exact se-
quence

0−−−−−→A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

of R-modules and R-morphisms, the induced Z-morphism

MorR(A
′, M)

f ?
←−−−−MorR(A, M)

is surjective.

The following characterisation of injective modules is dual to that for projective
modules.

Theorem 12.1 An R-module I is injective if and only if every diagram of the form

0−−−−−→A′
f

−−−−−→A (exact)

ϑ′







y

I
can be extended to a commutative diagram

0−−−−−→A′
f

−−−−−→A (exact)

ϑ′







y

I
�
�	

�
�
ϑ

Proof I is injective if and only if, for every monomorphism f the induced morphism
f ? is surjective; in other words, if and only if for every ϑ′ ∈MorR(A′, I) there exists
ϑ ∈MorR(A, I) such that ϑ′ = f ?(ϑ) = ϑ ◦ f . �

We shall now find some examples of injective modules and derive a character-
isation that is dual to Theorem 8.8. We warn the reader, however, that the proofs
involved are somewhat harder.

We first establish the following useful result.
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Theorem 12.2 An R-module I is injective if and only if, for every left ideal L of R and
every R-morphism f : L→ I , there is an R-morphism ϑ : R→ I such that the diagram

L
ιL−−−−−→R

f







y

I
�
�	

�
�
ϑ

is commutative, where ιL is the natural inclusion.

Proof Necessity follows immediately from the definition of an injective module. To
establish sufficiency, suppose that we have the situation

0−−−−−→A
ιA−−−−−→B (exact)

f







y

I
where, for convenience and without loss of generality, we assume that A is a sub-
module of B with ιA the natural inclusion. Let F be the set of all pairs (A′, f ′) where
A′ is a submodule of B with A⊆ A′ ⊆ B and f ′ : A′ → I extends f , in the sense that
f ′ ◦ j = f where j : A→ A′ is the natural inclusion. It is clear that (A, f ) ∈ F , so
that F 6= ;. Now order F by writing (A′, f ′) ≤ (A′′, f ′′) if and only if A′ ⊆ A′′ and f ′′

extends f ′. It is readily seen that F is inductively ordered, so we can apply Zorn’s
axiom and thereby choose a maximal element (A0, f0) in F . Now if A0 = B it is clear
that there is nothing more to prove : I will be injective by Theorem 12.1. We shall
now show that in fact A0 = B.

Suppose, by way of obtaining a contradiction, that A0 6= B and let x ∈ B \ A0. If
we let L = {r ∈ R ; r x ∈ A0} then it is readily seen that L is a left ideal of R. Now let
h : L → I be given by h(r) = f0(r x). Then clearly h is an R-morphism and, by the
hypothesis, there is an R-morphism t : R→ I that extends h. Let A1 = A0 + Rx and
define f1 : A1→ I by the prescription

f1(a0 + r x) = f0(a0) + r t(1).

[Note that f is well-defined; for if a0 + r x = a′0 + r ′x then we have (r − r ′)x =
a′0 − a0 ∈ A0 and so, applying f0,

f0(a
′
0 − a0) = f0[(r − r ′)x] = h(r − r ′) = t(r − r ′) = (r − r ′)t(1),

whence f0(a′0) + r ′ t(1) = f0(a0) + r t(1).] Now it is clear that f1 is an R-morphism
and, on taking r = 0 in its definition, we have f1(a0) = f0(a0) for every a0 ∈ A0,
so that f1 extends f0. The pair (A1, f1) therefore belongs to F , contradicting the
maximality of (A0, f0). This contradiction shows that A0 = B as asserted. �

Corollary 1 An R-module I is injective if and only if, for every left ideal L of R, the
induced Z-morphism

MorR(L, I)
ι?

←−−−−MorR(R, I)

is surjective. �
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We shall now determine precisely when a Z-module is injective.

Definition 12.2 An additive abelian group A is said to be divisible if, for every posi-
tive integer m, we have mA= A; in other words, if for every x ∈ A and every positive
integer m there exists x ′ ∈ A such that x = mx ′.

Example 12.1 The group Q/Z is divisible. In fact, given any positive integer m we
have q+Z= m( q

m +Z).

Theorem 12.3 A Z-module is injective if and only if it is divisible.

Proof ⇒: Suppose that the Z-module A is injective. Let A ∈ A and let m be a pos-
itive integer. Define f : mZ → A by the prescription f (mz) = za. Clearly, f is a
Z-morphism. By Theorem 12.2, there exists b ∈ A such that f (x) = x b for every
x ∈ mZ. In particular (taking z = 1 in the above) we have a = f (m) = mb. Thus we
see that A is divisible.
⇐: Suppose that the Z-module A is divisible and let L be a left ideal of Z with

f : L→ A a Z-morphism. Then L is necessarily of the form mZ for some non-negative
m ∈ Z. If m 6= 0 then, since A is divisible, there exists a ∈ A such that f (m) = ma;
and if m = 0 (in which case L = {0}) we have f (m) = f (0) = 0 = m0. Thus, in
either case, there exists a ∈ A such that f (m) = ma. For every x ∈ L we then have,
for some z ∈ Z, f (x) = f (mz) = z f (m) = zma = xa. The Z-morphism ta : Z→ A
given by ta(r) = ra therefore extends f and so A is injective by Theorem 12.2. �

It is immediate from Theorem 12.3 and Example 12.1 that the Z-module Q/Z is
injective. This module will play an important rôle in what follows and we note the
following properties that it enjoys:

(α) if C is a non-zero cyclic group then MorZ(C ,Q/Z) 6= 0.

In fact, suppose that C is generated by {x}. We can define a non-zero Z-morphism
f : C → Q/Z as follows : if C is infinite then we let f (x) be any non-zero element
of Q/Z, and if C is finite, say with x of order m, then we define f (x) = 1

m +Z.

(β) if G is a non-zero abelian group then for every non-zero x ∈ G there is a
Z-morphism g : G→Q/Z such that g(x) 6= 0.

In fact, if C is the subgroup generated by {x} then, as we have just seen, there is
a Z-morphism f : C → Q/Z with f (x) 6= o; and since Q/Z is injective f can be
extended to a Z-morphism g : G→Q/Z.

(γ) if G is a non-zero abelian group and if H is a proper subgroup of G then for
every a ∈ G \ H there is a Z-morphism h : G → Q/Z such that h→(H) = {0} and
h(a) 6= 0.

In fact, by (β) there is a Z-morphism g : G/H →Q/Z such that g(a+H) 6= 0+Z so
it suffices to consider h= g ◦ \H .

We have seen earlier (Theorem 8.7) that for every R-module M there is a free,
hence projective, R-module P and an R-epimorphism f : P → M . Our aim now
is to establish the dual of this, namely that there is an injective R-module I and
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an R-monomorphism g : M → I ; in other words, that every R-module M can be
‘embedded’ in an injective R-module I .

For this purpose, we require the assistance of a particular right R-module that is
associated with M .

Definition 12.3 Given an R-module M , the character group M+ of M is defined by

M+ =MorZ(M ,Q/Z).

We can make M+ into a right R-module by defining an action M+ × R→ M+ as
follows : with every f ∈ M+ and every r ∈ R associate the mapping f r : M → Q/Z
given by the prescription ( f r)(x) = f (r x). It is readily seen that every f r so defined
is a Z-morphism and that M+ thus has the structure of a right R-module.

We call this right R-module the character module of M and denote it also by M+.

We can, of course, repeat the above process on M+ and form its character module,
which we denote by M++. Note that M++ so constructed is a left R-module, the action
being (r, f +) 7→ e f + where (r f +)(g) = f +(gr).

Consider now the mapping ιM : M → M++ defined as follows : for every x ∈ M
let ιM (x) : M+→Q/Z be given by

[ιM (x)]( f ) = f (x).

It is clear that ιM so defined is a Z-morphism. That it is an R-morphism follows from
the identities

[rιM (x)])( f ) = [ιM (x)]( f r) = ( f r)(x) = f (r x) = [ιM (r x)]( f ).

We now show that ιM is in fact an R-monomorphism. Suppose, by way of obtaining
a contradiction, that x ∈ M \ {0} is such that ιM (x) is the zero of M++. Then for
every f ∈ M+ we have f (x) = [ιM (x)]( f ) = 0. But, by the observation (β) above,
there exists f ∈ M+ such that f (x) 6= 0. This contradiction shows that Ker ιM = {0}
and so ιM is a monomorphism which we shall call the canonical R-monomorphism
from M to M++.

Using the above notion of character module we can establish the following im-
portant result, which serves the purpose of providing an abundance of examples of
injective modules.

Theorem 12.4 If F is a free R-module then its character module F+ is injective.

Proof Suppose that we have a diagram

0−−−−−→ A′
i

−−−−−→A (exact)

ϑ







y

F+

Using the fact that Q/Z is injective, we can construct the diagram
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F






y

ιF

MorZ(F+,Q/Z) = F++






y

ϑ?

MorZ(A,Q/Z)
i?

−−−−−→MorZ(A′,Q/Z)−−−−−→0 (exact)
















A+ (A′)+

in which ϑ? is the R-morphism induced by ϑ, and i? is that induced by i. Now since F
is free it is projective and so there is an R-morphism ζ : F → A+ in the above diagram
such that i? ◦ ζ = ϑ? ◦ ιF . We now let ζ? : A++→ F+ be the R-morphism induced by
ζ and consider the diagram

0−−−−−→ A′
i

−−−−−→ A

ϑ







y







y

ιA

F+ ←−−−−
ζ?

A++

Our objective now is to show that this diagram is commutative; the R-morphism
ζ? ◦ ιA will then be a completing morphism for the original diagram and F+ will be
injective as required.

To show that this latter diagram is commutative, we have to show that, for every
x ∈ A′,

(ζ? ◦ ιA ◦ i)(x) = ϑ(x).

Now each side of this equality is an element of F+, so let t be an element of F . Then
we have

[(ζ? ◦ ιA ◦ i)(x)](t) = [(ιA ◦ i)(x) ◦ ζ](t) [definition of ζ?]
= [(ιA ◦ i)(x)][ζ(t)]
= [ζ(t)][i(x)] [definition of ιA]
= [ζ(t) ◦ i](x)
= [(i? ◦ ζ)(t)](x)
= [(ϑ? ◦ ιF )(t)](x)
= [ιF (t) ◦ ϑ](x) [definition of ϑ?]
= [ιF (t)][ϑ(x)]
= [ϑ(x)](t) [definition of ιF ]

from which the required equality follows immediately. �
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Corollary 1 Every R-module can be embedded in an injective R-module.

Proof We begin by observing that by Theorem 8.7 (for right modules) there is an
exact sequence

F
π

−−−−−→M+−−−−−→0

where F is a free right R-module. Then by Theorem 8.3 there is the induced exact
sequence

MorZ(F,Q/Z)
π?

←−−−−MorZ(M+,Q/Z)←−−−− 0.
















F+ M++

Thus π?◦ιM : M → F+ is a monomorphism. Since the (left) R-module F+ is injective,
the result follows. �

We can now establish the analogue of Theorem 8.8.

Theorem 12.5 For an R-module I the following are equivalent :

(1) I is injective;

(2) every exact sequence 0−−→X −−→ I splits;

(3) if α : I → X is a monomorphism then Imα is a direct summand of X .

Proof (1)⇒ (2): If I is injective then for every diagram

0−−−−−→ I
i

−−−−−→X (exact)

idI







y

I

there is an R-morphism f : X → I such that f ◦ i = idI . Such an R-morphism f is
then a splitting morphism.
(2) ⇒ (3): Let X be an R-module and α : I → X an R-monomorphism. By the

hypothesis, the short exact sequence

0−−−−−→ I
α

−−−−−→X
\

−−−−−→X/ Imα−−−−−→0

splits. It follows by Theorem 6.11 that Imα is a direct summand of X .
(3) ⇒ (1): By Theorem 12.4 there is an injective module Q and a monomor-

phism α : I →Q. By the hypothesis, Imα is a direct summand of Q, say Q = Imα⊕J .
We show that Imα is injective.
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For this purpose, consider the diagram

0−−−−−→ X
i

−−−−−→Y

ϑ







y

Imα

in1







y

x







pr1

Q = Imα⊕ J

Since Q is injective, there is an R-morphism f : Y →Q such that f ◦ i = in1 ◦ϑ. Then
pr1 ◦ f : Y → Imα is such that

pr1 ◦ f ◦ i = pr1 ◦ in1 ◦ ϑ = idImα ◦ϑ = ϑ.

This we see that Imα is injective. It now follows by Theorem 12.1 and the fact that
Imα' I that I is also injective. �

We end our discussion of injective modules with the following connection be-
tween character modules and short exact sequences.

Theorem 12.6 A sequence of R-modules and R-morphisms

0−−−−−→A
α

−−−−−→B
β

−−−−−→C −−−−−→0

is short exact if and only if the corresponding sequence of character modules

0←−−−−A+
α?

←−−−−B+
β?

←−−−−C+←−−−−0

is short exact.

Proof The necessity follows from the fact that Q/Z is injective. As for sufficiency,
it is enough to show that the sequence

M
f

−−−−−→N
g

−−−−−→ P

is exact whenever the corresponding sequence of character modules

M+ f ?
←−−−−N+

g?
←−−−− P+

is exact. Suppose then that Im g? = Ker f ?. Given m ∈ M , suppose that f (m) /∈ Ker g,
so that (g ◦ f )(m) 6= 0. By the observation (β) following Theorem 12.3, there exists
α ∈ P+ such that α[(g ◦ f )(m)] 6= 0. But we have α◦ g ◦ f = f ?[g?(α)] = 0 since the
character sequence is exact. This contradiction shows that Im f ⊆ Ker g. To obtain
the reverse inclusion suppose, again by way of obtaining a contradiction, that there
exists n ∈ N such that n ∈ Ker g and n /∈ Im f . By the observation (γ) following
Theorem 12.3, there exists β ∈ N+ such that β→(Im f ) = {0} and β(n) 6= 0. Now
β→(Im f ) = Im(β ◦ f ) = Im f ?(β), so we obtain f ?(β) = 0 whence β ∈ Ker f ? =
Im g? and thus β = g?(t) = t ◦ g for some t ∈ P+. In particular, β(n) = t[g(n)] = 0
since n ∈ Ker g. This contradiction yields the reverse inclusion Ker g ⊆ Im f . �
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EXERCISES
12.1 Consider the diagram of R-modules and R-morphisms

0 −−−−−→ A′
f

−−−−−→ A
g

−−−−−→ A′′ −−−−−→ 0

α







y

Q

in which the row is exact and α is a monomorphism. Show that this diagram can be
extended to a commutative diagram

0 −−−−−→ A′
f

−−−−−→ A−−
g

−−−−−→A”−−−−−−−−−→ 0

α







y







y

β

Q −−→
\

Q/ Im(α ◦ f ) −−−−−→ 0

Use this result to prove that an R-module P is projective if and only if, given the diagram

P






y

ζ

Q−−−−−→
π

Q′′−−−−−→0

in which Q is injective and the row is exact, there is an R-morphism ϑ : P → Q such
that π ◦ ϑ = ζ.

12.2 If (Mi)i∈I is a family of injective modules prove that ∧∨
i∈I

Mi is injective.

12.3 Let R be a commutative integral domain and let Q be its field of quotients. Prove that
Q is an injective R-module.

[Hint. If L is an ideal of R let f : L→ Q be an R-morphism. Show that if a, b ∈ L \ {0}
then f (a)/a = f (b)/b. Deduce that the assignment r 7→ r f (a)/a extends f .]

12.4 An R-module N is said to be an extension of an R-module M if there is a monomorphism
f : M → N . Such an extension is an essential extension if every non-zero submodule of
N has a non-zero intersection with Im f . If N is an essential extension of M and if I is
an injective module containing M , prove that the inclusion ι : M → I can be extended
to a monomorphism from N to I .

12.5 Prove that an R-module M is injective if and only if it has no essential extension.

[Hint.⇒ : Suppose that N is an essential extension of M . Then, by Theorem 12.5(3),
M is a direct summand of N .

⇐ : Let I be an injective module that contains M and let M ′ be a submodule of I that
is maximal with respect to M ∩M ′ = {0}. Prove that I/M ′ is an essential extension of
(M ⊕M ′)/M ′ ' M .]



13
SIMPLE AND SEMISIMPLE MODULES

In Section 5, in connection with Jordan-Hölder towers, we met with the notion of a
simple module. We shall now consider this notion more closely. As we shall see, it
turns out to be one of the basic ‘building blocks’ .

We recall that an R-module M is simple if it has no submodules other than M
itself and the zero submodule. Equivalently, by Theorem 5.5, M is simple if and only
if is generated by each of its non-zero elements.

Example 13.1 Consider a unitary ring R as an R-module. Then every minimal left
ideal of R, when such exists, is a simple submodule of R.

• Note that not all modules contain simple submodules. For example, the Z-
module Z has no simple submodules since the ring Z has no minimal (left)
ideals.

Example 13.2 The R-module R is simple if and only if R is a division ring. In fact,
if R is simple then R= Rx for every x 6= 0. In particular, 1R = x ′x for some x ′, i.e. x
has a left inverse x ′. Similarly, x ′ has a left inverse x ′′. Then x ′′ = x ′′1R = x ′′x ′x =
1R x = x and consequently x ′ is a two-sided inverse of x . Thus R is a division ring.
Conversely, if R is a division ring and L is a left ideal of R then for every x ∈ L \ {0}
we have 1R = x−1 x ∈ L whence L = R. Thus the R-module R is simple.

Example 13.3 If L is a left ideal of R then R/L is simple if and only if L is maximal.
Indeed, all simple modules arise in this way. For, if M is simple then M = Rx for every
x 6= 0 in M , and f : R → M given by f (r) = r x is an epimorphism, whence M '
R/Ker f . The fact that M is simple then implies, by the correspondence theorem,
that Ker f is a maximal left ideal of R.

A further example is provided by the following result.

Theorem 13.1 Let V be a non-zero finite-dimensional ∆-vector space. Then V is a
simple End∆V-module.

Proof Define an action End∆V × V → V by ( f , v) 7→ f · v = f (v). Then it is readily
seen that V is an End∆V -module.

Now let x be any non-zero element of V . Since ∆ is a division ring the set {x} is
linearly independent and so can be extended to a basis {x , x1, . . . , xn−1} of V . Given
any y ∈ V , consider the mapping f y : V → V given by

f (d0 x + d1 x1 + · · ·+ dn−1 xn−1) = d0 y.

Clearly, f y is a ∆-morphism. Moreover, y = f y(x) = f y · x and so it follows that
V = End∆V · x and therefore, by Theorem 5.5, V is a simple End∆V -module. �
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By way of considering simple modules as building blocks, we now consider mod-
ules that are sums of simple modules.

Theorem 13.2 For an R-module M the following are equivalent :

(1) M is a sum of a family of simple modules;

(2) M is a direct sum of a family of simple modules;

(3) every submodule of M is a direct summand.

Proof (1)⇒ (2), (3): We shall prove that if (Mi)i∈I is a family of simple submodules
of M such that M =

∑

i∈I
Mi then for every submodule N of M there is a subset J of I

such that M = N ⊕
⊕

i∈J
Mi .

If N = M then clearly J = ; suffices. Suppose then that N ⊂ M , so that for some
k ∈ I we have Mk 6⊂ N . Since Mk is simple we deduce that N ∩Mk = {0} and so the
sum N + Mk is direct. Now let C be the set of those subsets H of I for which the
sum N +

∑

i∈H
Mi is direct. We have just shown that C 6= ;. We now show that C is

inductively ordered. For this purpose let T be a totally ordered subset of C and let
K? =

⋃

{K ; K ∈ T}; we claim that K? ∈ C . To see this, we observe that if x ∈
∑

i∈K?
Mi

then x = mi1 + · · ·+ x in . Since each i j belongs to some subset IJ of T , and since T
is totally ordered, all the sets I1, . . . , In are contained in one of them, say Ip. Then,
since Ip ∈ C ,

N ∩
∑

i∈K?
Mi ⊆ N ∩

∑

i∈Ip

Mi = {0}

whence the sum N +
∑

i∈K?
Mi is direct. This shows that K? ∈ C , and so C is induc-

tively ordered. It follows by Zorn’s axiom that C has maximal elements. Let J be a
maximal element of C . We show that N ⊕

⊕

i∈J
Mi = M . Suppose, by way of obtaining

a contradiction, that N ⊕
⊕

i∈J
Mi ⊂ M . Then for some j ∈ I we have M j 6⊆ N ⊕

⊕

i∈J
Mi

and, since M j is simple, we deduce that M j ∩
�

N ⊕
⊕

i∈J
Mi

�

= {0}, whence the sum

M j + N ⊕
⊕

i∈J
Mi is direct. But then J ∪ { j} belongs to C , and this contradicts the

maximality of J . Hence we have M = N ⊕
⊕

i∈J
Mi .

(2)⇒ (1): This is clear.

(3)⇒ (1): Suppose now that (3) holds. Then we observe that

(a) if N is a submodule of M then every submodule of N is a direct summand of N .

In fact, let P be a submodule of N . Since P is also a submodule of M there is, by (3),
a submodule Q of M such that M = P ⊕Q. Then

N = N ∩M = N ∩ (P ⊕Q) = P ⊕ (N ∩Q),

the last equality following by the modular law.

(b) every non-zero submodule of M has a simple submodule.
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In fact, if N is a non-zero submodule of M and x is a non-zero element of N , con-
sider the submodule Rx . We show that Rx has a simple submodule, whence so does
N . For this purpose, let E be the set of submodules of Rx that do not contain x .
Clearly, the zero submodule belongs to E and so E 6= ;. Moreover, E is inductively
ordered; for if F is a totally ordered subset of E then the sum of all the submodules
of Rx contained in F is also a submodule which clearly does not contain x . We can
therefore apply Zorn’s axiom to obtain a maximal element L of E . Then by (a) we
deduce the existence of a submodule P of Rx such that Rx = L ⊕ P. We claim that
P is simple. In fact, L is a maximal submodule of Rx and so Rx/L is simple; and
Rx/L = (L ⊕ P)/L ' P.

To conclude the proof of (3)⇒ (1), we proceed as follows. Let Σ be the sum of
all the simple submodules of M . Then M = Σ⊕Q for some submodule Q of M . If
Q 6= {0} then by (b) it contains simple submodules; and this is impossible since all
the simple submodules of M are contained in Σ with Σ ∩Q = {0}. We deduce that
Q = {0} whence M = Σ. �

Definition 13.1 An R-module M that satisfies any of the equivalent properties of
Theorem 13.2 is said to be semisimple.

Theorem 13.3 Every submodule and every quotient module of a semisimple module is
semisimple.

Proof Let M be semisimple, let N be a submodule of M and let P be a submodule
of N . By Theorem 13.2 there is a submodule Q of M such that M = P ⊕Q. Then
N = N ∩ M = N ∩ (P ⊕ Q) = P ⊕ (N ∩ Q) by Theorem 2.4 and so P is a direct
summand of N . By Theorem 13.2 again, N is therefore semisimple.

Suppose now that M is the sum of the family (Mi)i∈I of simple submodules and
let N be a submodule of M . Consider the natural epimorphism \N : M → M/N . By
Theorem 5.6(1), for each index i, the submodule \→N (Mi) of M/N is either zero or is
simple. Let J be the set of indices i for which \→N (Mi) is non-zero. Then

M/N = Im \N = \
→
N

�

∑

i∈I
Mi

�

=
∑

i∈J
\→N (Mi)

and so M/N is semisimple by Theorem 13.2. �

Definition 13.2 A unitary ring R will be called semisimple if R, considered as an
R-module, is semisimple.

• The reader should note that the term ‘semisimple ring’ is used in differing
senses in the literature.

• Note that here we do not use the term left semisimple for a ring that is a
semisimple module. The reason for this is that a left semisimple ring is also
right semisimple; see Exercise 13.12.

We are now in a position to answer the question concerning which rings R have
the property that every R-module is projective. In fact, we obtain a lot more.
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Theorem 13.4 For a unitary ring R the following are equivalent :
(1) R is semisimple;
(2) every non-zero R-module is semisimple;
(3) every R-module is projective;
(4) every R-module is injective.

Proof (1)⇒ (2): If R is semisimple then it is clear that every free R-module, being
a direct sum of copies of R (Corollary to Theorem 7.6), is semisimple. Since every
module is isomorphic to a quotient module of a free module (Theorem 8.7), it follows
from Theorem 13.3 that every non-zero R-module M is also semisimple.
(2)⇒ (1): This is clear.
(2)⇒ (3): Let M be an R-module and consider a short exact sequence

0−−−−−→A−−−−−→B−−−−−→M −−−−−→0.

By (2), B is semisimple and so every submodule of B is a direct summand. The above
sequence therefore splits and consequently M is projective.
(3) ⇒ (2): Let N be a submodule of M . By (3), M/N is projective and so the

short exact sequence

0−−−−−→N −−−−−→M −−−−−→M/N −−−−−→0

splits. Then N is a direct summand of M and consequently M is semisimple.
(2)⇔ (4): This is dual to the proof of (2)⇔ (3) by virtue of Theorem 12.5. �

As to the structure of semisimple rings, we shall use the following result.

Theorem 13.5 If M is a semisimple R-module then the following are equivalent:
(1) M is both noetherian and artinian;
(2) M is finitely generated.

Proof (1)⇒ (2): If (1) holds then, by Theorem 5.9, M has a Jordan-Hölder tower
of submodules. If M =

⊕

i∈I
Ni where each Ni is simple then necessarily I is finite,

say I = {1, . . . , n}. Since Ni = Rx i for some non-zero x i it follows that M =
n
⊕

i=1
Rx i

whence (2) follows.

(2)⇒ (1): Let M =
⊕

i∈I
Ni where each Ni is simple and suppose that M =

n
∑

j=1
Rx j .

For j = 1, . . . , n there is a finite subset I j of I such that x j ∈
⊕

i∈I j

Ni . Thus if I? =
n
⋃

j=1
I j

we have M ⊆
⊕

i∈I?
Ni ⊆ M and from the resulting equality we see that M is a finite

direct sum of simple submodules, say M =
k
⊕

i=1
Ni . Thus M has a Jordan-Hölder tower

{0} ⊂ N1 ⊂ N1 ⊕ N2 ⊂ · · · ⊂ N1 ⊕ · · · ⊕ Nk = M ,

whence (1) follows. �
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Corollary 1 A unitary ring R is semisimple if and only if it is a finite direct sum of
minimal left ideals.

Proof It suffices to note that R is generated by {1R}. �

We thus see that if R is semisimple then R =
n
⊕

i=1
Li where each Li is a minimal

left ideal. Let us now group together those minimal left ideals that are isomorphic.
More precisely, if we define

Rt =
⊕

L j'Lt

L j

then we can write

R=
n
⊕

i=1
Li =

m
⊕

t=1
Rt .

In order to investigate these Rt we use the following observation.

Theorem 13.6 If L is a minimal left ideal of R and M is a simple R-module then either
L ' M or LM = {0}.

Proof LM is a submodule of M so either LM = M or LM = {0}. If LM = M let
x ∈ M be such that Lx 6= {0}. Then since M is simple we have Lx = M and the
mapping ϑ : L→ M given by ϑ(a) = ax is an isomorphism by Theorem 5.6. �

Corollary 1 If Li , L j are non-isomorphic minimal left ideals of R then Li L j = {0}. �

It follows immediately from this that, with the above notation, we have

RiR j = {0} (i 6= j).

Consequently, each R j being a left ideal, we see that

R j = R j1R ⊆ R jR= R jR j ⊆ R j

whence R jR= R j and therefore each R j is also a right ideal of R.

Now if R+ denotes the additive group of R and R+i that of Ri we have R+ =
m
⊕

t=1
R+i .

Since every x ∈ R+ can be written uniquely in the form x =
m
∑

t=1
x t where x t ∈ R+t we

deduce from

x y =
�

m
∑

t=1
x i

� �

m
∑

t=1
yi

�

=
m
∑

t=1
x t yt +

∑

i 6= j
x i y j =

m
∑

t=1
x t yt

that the mapping f :
m
⊕

t=1
Ri → R given by

f (x1, . . . , xm) =
m
∑

t=1
x i

is a ring isomorphism. Thus we have established the following result.
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Theorem 13.7 If R is a semisimple ring then R has finitely many minimal two-sided

ideals R1, . . . , Rm and R=
m
⊕

t=1
Rt . �

Corollary 1 The identity elements e1, . . . , em of R1, . . . , Rm form an orthogonal set of
idempotents in the sense that e1 + · · ·+ em = 1R and e je j = 0 for i 6= j.

Proof We can write 1R = e1 + · · ·+ em where ei ∈ Ri for i = 1, . . . , m. For any x ∈ R

write x =
m
∑

i=1
x i where x i ∈ Ri for i = 1, . . . , m. Then for each j we have, since

R jRi = {0} for j 6= i,

x j = x j1R = x je1 + · · ·+ x jem = x je j

and similarly e j x j = x j . Thus e j is the identity element of R j . �

The above results concerning the ideals Ri lead us to consider the following notion.

Definition 13.3 A ring R is said to be simple if it is semisimple and the only two-
sided ideals of R are R itself and the zero ideal.

With this terminology we can rephrase Theorem 13.7 as

A semisimple ring is a finite direct sum of simple rings.

Our interest in simple rings is highlighted by the following result.

Theorem 13.8 Let ∆ be a division ring and let V be a finite-dimensional ∆-vector
space. Then the ring End∆V is simple.

Proof We have shown in Theorem 13.1 that V is a simple End∆V -module. Let
{b1, . . . , bn} be a basis for V over D and consider the mapping f : End∆V → V n

given by
f (α) =

�

α(b1), . . . ,α(bn)
�

.

Clearly, f is an End∆V -morphism. Now α ∈ Ker f if and only if α(bi) = 0 for each
basis vector bi . Hence Ker f = {0} and f is injective. That f is also surjective follows
from the fact that for any z = (z1, . . . , zn) ∈ V n the mapping βz : V → V given by

βz

� n
∑

i=1
x i bi

�

=
n
∑

i=1
x izi

is a∆-endomorphism on V with f (βz) =
�

βz(b1), . . . ,βz(bn)
�

= (z1, . . . , zn). Thus we
see that f is an End∆V -isomorphism. Consequently End∆V is a semisimple End∆V -
module, i.e. the ring End∆V is semisimple. To show that it is simple, it therefore
suffices to show that it has no two-sided ideals other than itself and the zero ideal.
This we shall do using matrices, using the fact that if the dimension of V is n then the
rings End∆V and M =Matn×n(∆) are isomorphic (Corollary 2 to Theorem 10.2).

Suppose that J is a two-sided ideal of M with J 6= {0}. Let A= [ai j] ∈ J be such
that ars 6= 0. Let B = diag{a−1

rs , . . . , a−1
rs } and let Ei j denote the matrix which has 1
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in the (i, j)-th position and 0 elsewhere. Then since J is a two-sided ideal we have
Er r BAEss ∈ J where BA has a 1 in the (r, s)-th position. Observing that Er r X retains
the r-th row of X and reduces all other rows to zero, and that X Ess retains the s-th
column of X and reduces all other columns to zero, we deduce that Er r BAEss = Ers
and hence that Ers ∈ J for all r, s. Consequently,

In = E11 + · · ·+ Enn ∈ J
and hence J is the whole of M . �

Our objective now is to prove that every simple ring arises as the endomorphism
ring of a finite-dimensional vector space over a division ring. For this purpose, we
consider the following notion.

Definition 13.4 If M is an R-module and S is a subset of EndZM then the centraliser
of S is the set C(S) of those Z-endomorphisms on M that commute with every Z-
endomorphism in S.

It is readily verified that C(S) is a subring of EndZM .

Example 13.4 Let M be an R-module and for each a ∈ R consider the homothety
ha ∈ EndZM given by ha(m) = am. Let HR(M)) be the ring of homotheties on M .
Then we have ϕ ∈ C

�

HR(M)
�

if and only if

(∀a ∈ R)(∀x ∈ M) ϕ(ax) = (ϕ ◦ ha)(x) = (ha ◦ϕ)(x) = aϕ(x),

which is the case if and only if ϕ ∈ EndRM . Thus we have C
�

HR(M)
�

= EndRM .

Definition 13.5 The bicentraliser of S is defined to be B(S) = C
�

C(S)
�

.

For each S we clearly have S ⊆ B(S).
By abuse of language, we now define the centraliser of an R-module M to be

C(M) = C
�

HR(M)
�

= EndRM ; then B(M) = B
�

HR(M)
�

= C(EndRM).

Theorem 13.9 B(R) = HR(R)' R.

Proof On the one hand we have HR(R) ⊆ B
�

HR(R)
�

= B(R).
Suppose now that ϕ ∈ B(R) = C

�

EndR(R)
�

. For each a ∈ R the right translation
ρa : R → R defined by ρa(x) = xa is in EndR(R) and so commutes with ϕ, so
that ϕ(xa) = ϕ(x)a. For every t ∈ R we then have ϕ(t) = ϕ(1R t) = ϕ(1R)t and
consequently ϕ = hϕ(1R) ∈ HR(R). Hence HR(R) = B(R).

That HR(R) ' R follows from the fact that the mapping h : R→ HR(R) given by
h(r) = hr is a ring isomorphism. �

Theorem 13.10 Let (Mi)i∈I be a family of R-modules each of which is isomorphic to
a given R-module M. Then

B
�
⊕

i∈I
Mi

�

' B(M).

Proof For each k ∈ I let αk : M → Mk be an isomorphism and define ηk = ink ◦αk
and ϕk = α−1

k ◦ prk. Note that we then have ϕk ◦ ηk = id and that
∑

k∈I
(ηk ◦ ϕk) =

∑

k∈I
(ink ◦ prk) = id.
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Let k be a fixed index in I . Define f : B
�
⊕

i∈I
Mi

�

→ EndZM by f (β) = ϕk◦β ◦ηk. It

is clear that f is a ring morphism. Now if ϑ ∈ EndRM we have ηk◦ϑ◦ϕk ∈ EndR
⊕

i∈I
Mi

and so commutes with β . Consequently,

f (β) ◦ ϑ = ϕk ◦ β ◦ηk ◦ ϑ
= ϕk ◦ β ◦ηk ◦ ϑ ◦ϕk ◦ηk

= ϕk ◦ηk ◦ ϑ ◦ϕk ◦ β ◦ηk

= ϑ ◦ϕk ◦ β ◦ηk

= ϑ ◦ f (β)

and so we have that f (β) ∈ C
�

EndRM
�

= B(M). Thus we see that Im f ⊆ B(M).
In fact, as we shall now show, Im f = B(M). For this purpose, let δ ∈ B(M) and

consider the mapping gδ :
⊕

i∈I
Mi →

⊕

i∈I
Mi given by

gδ(x) =
∑

i∈I
(ηi ◦δ ◦ϕi)(x).

It is clear that gδ ∈ EndZ
⊕

i∈I
Mi . In fact we claim that gδ ∈ B

�

⊕

i∈I
Mi

�

. To see this,

let γ ∈ EndR
⊕

i∈I
Mi . Then for all i, j ∈ I we have ϕi ◦ γ ◦ η j ∈ EndR

⊕

i∈I
Mi and so

commutes with δ. Thus, for all x ∈ M ,

(gδ ◦ γ ◦η j)(x) =
∑

i∈I
(ηi ◦δ ◦ϕi ◦ γ ◦η j)(x)

=
∑

i∈I
(ηi ◦ϕi ◦ γ ◦η j ◦δ)(x)

= (γ ◦η j ◦δ)(x),

whereas

(γ ◦ gδ ◦η j)(x) = γ
�

∑

i∈I
(ηi ◦δ ◦ϕi ◦η j)(x)

�

= (γ ◦η j ◦δ)(x).

We therefore have gδ ◦ γ ◦η j = γ ◦ gδ ◦η j . If now y ∈
⊕

i∈I
Mi then

(gδ ◦ γ)(y) =
∑

i∈I
(gδ ◦ γ ◦ηi ◦ϕi)(y) =

∑

i∈I
(γ ◦ gδ ◦ηi ◦ϕi)(y) = (γ ◦ gδ)(y),

whence gδ ◦ γ = γ ◦ gδ and so gδ ∈ B
�

⊕

i∈I
Mi

�

. That Im f = B(M) now follows from

the observation that f (gδ) = ϕk ◦ gδ ◦ηk = δ.
To complete the proof, it suffices to show that f is injective. Suppose then that

β ∈ Ker f , so that ϕk ◦β ◦ηk = 0. Now for each index i we have ηk ◦ϕi ∈ EndR
⊕

i∈I
Mi

and so ηk ◦ϕi ◦ β = β ◦ ηk ◦ϕi whence, composing on the left with ϕk, we obtain
ϕi ◦ β = 0 for each i ∈ I . Hence β = 0 and f is injective. �

Theorem 13.11 [Wedderburn-Artin] Every simple ring is isomorphic to the ring of
endomorphisms of a finite-dimensional ∆-vector space.



154 Module Theory

Proof Let R be a simple ring. Then R is semisimple and has no two-sided ideals
other than R itself and {0}. It follows that R is a direct sum of miminal left ideals
all of which are isomorphic. Let V be one of these minimal left ideals. Since V is
simple as an R-module, EndRV is a division ring (Corollary to Theorem 5.6), and V
is a vector space over this division ring under the action EndRV × V → V given by
( f , v) 7→ f · v = f (v). By Theorems 13.9 and 13.10, we have

R' B(R)' B(V ).

Now B(V ) = C
�

EndRV
�

and so

α ∈ B(V )⇐⇒
�

∀ f ∈ EndRV
�

α ◦ f = f ◦α
⇐⇒

�

∀ f ∈ EndRV
�

(∀v ∈ V ) α( f · v) = α[ f (v)] = f [α(v)] = f ·α(v)
⇐⇒ α ∈ EndEndRV V.

Thus we see that R' End∆V where ∆= EndRV . �

Corollary 1 A ring R is semisimple if and only if there are finitely many division rings
∆1, . . . ,∆m and positive integers n1, . . . , nm such that

R'
m
⊕

i=1
Matni×ni

∆i . �

EXERCISES

13.1 Prove that for every R-module M the ring R/AnnRM is isomorphic to the ring HR(M)
of homotheties on M .

13.2 Let M be an R-module such that, for every x 6= 0 in M , the submodule Rx is simple.
Prove that either M is simple or the ring HR(M) of homotheties on M is a division ring.

[Hint. If M is not simple then Rx 6= M for some x 6= 0. Prove that if y /∈ Rx then
AnnR(x + y) = AnnR(x) + AnnR(y) and deduce that AnnR(M) = AnnR(x). Now use
Exercise 13.1.]

13.3 Let R be a unitary ring. Prove that a left ideal L of R is a direct summand of R if and
only if L is generated by an idempotent.

[Hint. ⇒ : If R = I ⊕ J write 1R = i + j where i ∈ I and j ∈ J . Show that I = Ri with
i2 = i.

⇐ : If I = Rx with x2 = x show that R= Rx ⊕ R(1R − x).]

Deduce that a minimal left ideal I if R is a direct summand of R if and only if I2 6= {0}.

[Hint.⇐ : Show that there exists x ∈ I with I x 6= {0} and R= I ⊕AnnR(x).]

13.4 If M is an R-module, prove that the following are equivalent :

(1) M is semisimple and of finite height;

(2) M is noetherian and every maximal submodule is a direct summand;
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(3) M is artinian and every simple submodule is a direct summand.

[Hint. (2)⇒ (1) : Show that M has simple (= quotient by maximal) submodules and
look at the sum of all the simple submodules.

(3) ⇒ (1) : If S is a simple submodule and M = S ⊕ T , show that T is maximal.
Now show that the intersection of all the maximal submodules of M is {0}. Let P
be a minimal element in the set of finite intersections of maximal submodules. Show
that P is contained in every maximal submodule N of M (consider N ∩ P). Deduce

that there exist maximal submodules N1, . . . , Nk such that
k
⋂

i=1
Ni = {0}. Now produce a

monomorphism f : M →
k

∧∨
i=1

M/Ni .]

13.5 [Chinese remainder theorem]

Let R be a unitary ring and suppose that I1, . . . , Ik are two-sided ideals of R such that,

for each j, R is generated by {I j ,
⋂

t 6= j
It}. Prove that the mapping f : R→

k

∧∨
j=1

R/I j given

by f (x) = (x + I1, . . . , x + Ik) is an R-epimorphism.

[Hint. Show that for k = 2 the problem reduces to a solution of the simultaneous
congruences x ≡ r1(I1), x ≡ r2(I2). Since R is generated by {I1, I2} write r1 = r11 +
r12, r2 = r21 + r22(ri j ∈ I j) and consider r12 + r21. Now use induction.]

13.6 Let R be a simple ring. Show that R has a finite number of maximal ideals I1, . . . , In and

that R'
n

∧∨
j=i

R/I j .

[Hint. Let I1, . . . , Ik be the maximal ideals which are such that
⋂

t 6= j
It 6⊆ I j . Construct f

as in Exercise 13.5. Show that, for k+1≤ p ≤ n,
k
⋂

t=1
It ⊆ Ip whence

k
⋂

t=1
It = {0} and f is

injective. Finally, observe that
k

∧∨
t=1

R/It has precisely k maximal ideals, whence k = n.]

13.7 An R-module is said to be faithful if AnnRM = {0}. A ring R is said to be quasi-simple if
its only two-sided ideals are {0} and R. Prove that a unitary ring is quasi-simple if and
only if every simple R-module is faithful.

[Hint. Let I be a maximal ideal and J a maximal left ideal containing I . Show that
AnnRR/J conntains I .]

13.8 Let M be an R-module and let x ∈ M be such that AnnR(x) is the intersection of a
finite number of maximal left ideals I1, . . . , In. By showing that Rx is isomorphic to a

submodule of
n

∧∨
j=1

R/I j , prove that Rx is semisimple.

Deduce that an R-module M is semisimple if and only if, for every x 6= 0 in M ,
AnnR(x) is the intersection of a finite number of maximal left ideals.

13.9 An R-module is said to be isotypic of type T if it is the direct sum of a family of simple
submodules each of which is isomorphic to the simple R-module T . Prove that if M is
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a semisimple R-module then there is a unique family (Mi)i∈I of submodules (called the
isotypic components of M) such that, for some family (Ti)i∈I of simple R-modules,

(1) (∀i ∈ I) Mi is isotypic of type Ti;

(2) Ti 6' T j for i 6= j;

(3) every simple submodule of M is contained in precisely one Mi;

(4) M =
⊕

i∈I
Mi .

13.10 Let N be a submodule of a semisimple R-module M . Prove that N is a sum of isotypic
components of M if and only if N is stable under every endomorphism f of M , in the
sense that f →(N) ⊆ N .

13.11 Let R be a semisimple ring. Prove that the isotypic components of the R-module R are
the minimal ideals of R.

[Hint. Use Exercise 13.10 to show that the left ideals that can be expressed as sums of
isotypic components are the two-sided ideals.]

13.12 If V is a finite-dimensional∆-vector space prove that the rings End∆V and End∆V d are
isomorphic.

[Hint. Associate with each α ∈ End∆V the mapping ϑ(α) : V d → V d which is defined
by [ϑ(α)](ξd) = ξd ◦α.]

Deduce that, if we had used the term left semisimple instead of just semisimple and
defined similarly a right semisimple ring, then a ring is left semisimple if and only if it
is right semisimple.



14
THE JACOBSON RADICAL

Definition 14.1 If M is an R-module then the Jacobson radical RadJ M of M is the
intersection of all the maximal submodules of M . If M has no maximal submodules
then we define RadJ M to be M .

A useful simple characterisation of the Jacobson radical is the following.

Theorem 14.1 RadJ M =
⋂

f
Ker f where each f is an R-morphism from M to a simple

R-module.

Proof Let f : M → S be an R-morphism where S is simple. Then by Theorem 5.6(2)
either f = 0 or f is an epimorphism. Now in the former case Ker f = M ; and in the
latter S = Im f ' M/Ker f in which case the simplicity of S implies that Ker f is a
maximal submodule. Conversely, every maximal submodule is such a kernel. �

Immediate properties of the Jacobson radical are given in the following results.

Theorem 14.2 If f ∈MorR(M , N) then f →(RadJ M) ⊆ RadJ N.

Proof Let S be a simple R-module and g ∈MorR(N , S). Then g◦ f ∈MorR(M , S) and
so, by Theorem 14.1, (g ◦ f )→(RadJ M) = {0}. It follows that f →(RadJ M) ⊆ Ker g
whence, by Theorem 14.1 again, f →(RadJ M) ⊆ RadJ N . �

Theorem 14.3 If N is a submodule of M then

(1) RadJ N ⊆ RadJ M ;

(2) (N +RadJ M)/N ⊆ RadJ (M/N);

(3) if N ⊆ RadJ M then (RadJ M)/N = RadJ (M/N).

Proof (1) Apply Theorem 14.2 to the natural monomorphism ιN : N → M .

(2) Apply Theorem 14.2 to the natural epimorphism \N : M → M/N to obtain

(N +RadJ M)/N = \→N (N +RadJ M) = \→N (RadJ M) ⊆ RadJ (M/N).

(3) There is a bijection between the maximal submodules of M/N and the max-
imal submodules of M that contain N , i.e. the maximal submodules of M since
N ⊆ RadJ M . �

Corollary 1 The Jacobson radical of M is the smallest submodule N of M with the
property that RadJ M/N = {0}.
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Proof First we note that, taking N = RadJ M in Theorem 14.3(3),

RadJ

�

M/RadJ M
�

= RadJ M/RadJ M = {0}.

Suppose now that N is a submodule of M such that RadJ M/N = {0}. Then by
Theorem 14.3(2) we have N +RadJ M = N whence RadJ M ⊆ N . �

Theorem 14.4 For every family (Mi)i∈I of R-modules

(1) RadJ

�

∧∨
i∈I

Mi

�

⊆ ∧∨
i∈I

RadJ Mi;

(2) RadJ

�
⊕

i∈I
Mi

�

=
⊕

i∈I
RadJ Mi .

Proof (1) Let Ni be a maximal submodule of Mi . Then Ni × ∧∨
j 6=i

M j is a maximal

submodule of ∧∨
i∈I

Mi . Hence

RadJ ∧∨
i∈I

Mi ⊆
⋂

i

�

RadJ Mi × ∧∨
j 6=i

M j

�

= ∧∨
i∈I

RadJ Mi .

(2) Similarly, if Ni is a maximal submodule of Mi then Ni ⊕
⊕

j 6=i
M j is a maximal

submodule of
⊕

i∈I
Mi and

RadJ
⊕

i∈I
Mi ⊆

⊕

i∈I
RadJ Mi .

On the other hand, by Theorem 14.3(1), RadJ M j ⊆ RadJ
⊕

i∈I
Mi , whence we have

equality. �

We can use Theorem 14.4 to investigate those R-modules for which the Jacobson
radical is as small as possible.

Theorem 14.5 An R-module M has zero Jacobson radical if and only if M is isomor-
phic to a submodule of a cartesian product of simple modules.

Proof If M is simple then clearly RadJ M = {0}. Consequently, for a family (Mi)i∈I
of simple modules we have, by Theorem 14.4(1),

RadJ ∧∨
i∈I

Mi ⊆ ∧∨
i∈I

RadJ Mi = {0}.

Thus, if M is a submodule of ∧∨
i∈I

Mi we have, by Theorem 14.3(1), RadJ M = {0}.

Conversely, suppose that RadJ M = {0}. Let (Ni)i∈I be the family of maximal
submodules of M . Then each quotient module M/Ni is simple. Define f : M →
∧∨

i∈I
M/Ni by f (x) =

�

\i(x)
�

i∈I . Then f is an R-morphism with

Ker f =
⋂

i∈I
Ker \i =

⋂

i∈I
Ni = RadJ M = 0.

Thus f is a monomorphism and M ' Im f . �

Corollary 1 Every simple and every semisimple module has zero Jacobson radical.

Proof Direct sums are submodules of cartesian products. �
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If M is a finitely generated non-zero module then every submodule N of M is
contained in a maximal submodule. This can readily be seen by showing that the
set of submodules that contain N is inductively ordered and so we can apply Zorn’s
axiom to produce a maximal such submodule. It follows that RadJ M is properly
contained in M .

Theorem 14.6 [Nakayama] If M is a finitely generated module and N is a submod-
ule of M such that N +RadJ M = M then necessarily N = M.

Proof Suppose, by way of obtaining a contradiction, that N ⊂ M . Then since M/N
is non-zero and also finitely generated we have, from the above observation, that
RadJ M/N ⊂ M/N . But since by hypothesis N + RadJ M = M we have, by Theorem
14.3(2), the contradiction M/N = RadJ M/N . �

Corollary 1 If M = Rx then y ∈ RadJ M if and only if M = R(x+ r y) for every r ∈ R.

Proof ⇒: If y ∈ RadJ M then for every z ∈ M = Rx we have

z = λx = λ(x + r y)−λr y ∈ R(x + r y) +RadJ M

whence M = R(x + r y) +RadJ M . It follows by Theorem 14.6 that R(x + r y) = M .
⇐: If y /∈ RadJ M then there is a maximal submodule N such that y /∈ N . Then

N + Ry = M = Rx so that x + r y ∈ N for every r ∈ R whence R(x + r y) 6= M . �

We now consider the Jacobson radical of a unitary ring R. This is defined as
the Jacobson radical of the R-module R and therefore is the intersection of all the
maximal left ideals of R. Since R is finitely generated, namely by {1R}, it follows that
RadJ R ⊂ R.

We can characterise RadJ R in a manner similar to Theorem 14.1.

Theorem 14.7 If R is a unitary ring then RadJ R is the intersection of the annihilators
of all the simple R-modules, and therefore is a two-sided ideal of R.

Proof If S is a simple R-module and x is a non-zero element of S then the mapping
ρx : R→ S given by ρx(r) = r x is a non-zero R-morphism. By Theorem 5.6(2) we
have Imρx = S and so

R/AnnR(x) = R/Kerρx ' Imρx = S.

Since S is simple, AnnR(x) is then a maximal left ideal of R. Thus, on the one hand,
RadJ R ⊆

⋂

x∈S
AnnR(x) = AnnRS. On the other hand, suppose that r ∈ AnnRS for every

simple R-module S and let L be a maximal left ideal of R. Since the R-module R/L
is simple we have in particular that r ∈ AnnRR/I and so r + L = r(1R + L) = 0+ L
whence r ∈ L. Thus we conclude that RadJ R= AnnRS.

Now for every R-module S, if r ∈ R annihilates S then r annihilates λx for every
x ∈ S and so rλ annihilates S. Thus the left ideal AnnRS is also a right ideal. It
follows that RadJ R is a two-sided ideal of R. �

Theorem 14.8 If R is a unitary ring and x ∈ R then the following are equivalent :

(1) x ∈ RadJ R;

(2) (∀r ∈ R) 1R − r x has a left inverse in R.
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Proof This is immediate from the Corollary to Theorem 14.6 since the R-module R
is generated by {1R}, and {1R − r x} generates R if and only if 1R = λ(1R − r x) for
some λ ∈ R. �

Corollary 1 RadJ R is the biggest two-sided ideal I of R such that 1R−x has a two-sided
inverse for all x ∈ I .

Proof If x ∈ RadJ R then 1R − x has a left inverse by Theorem 14.8. Let y ∈ R be
such that y(1R − x) = 1R. Then 1R − y = −y x ∈ RadJ R and so, by Theorem 14.8
again, there exists z ∈ R such that 1R = z[1R − (1R − y)] = z y . Hence y has both a
left and a right inverse. Now z = z1R = z y(1R− x) = 1R− x , and so y is also a right
inverse of 1R − x .

Suppose now that I is a two-sided ideal of R such that 1R − x is invertible for all
x ∈ I . Then clearly 1R − r x is invertible for all r ∈ R and so x ∈ RadJ R. �

For a unitary ring R we define the opposite ring Rop to be the ring obtained by
defining on the abelian group of R the multiplication (x , y) 7→ y x . We then have

Corollary 2 RadJ R= RadJ Rop.

Proof This is immediate from Corollary 1. �

Corollary 3 RadJ R is also the intersection of all the maximal right ideals of R.

Proof This follows immediately from Corollary 2 since a right ideal of R is a left
ideal of Rop. �

We now investigate the connection between semisimplicity and the Jacobson
radical.

Theorem 14.9 If M is an R-module then the following are equivalent:

(1) M is semisimple and of finite length;

(2) M is artinian and has zero Jacobson radical.

Proof (1)⇒ (2): This is immediate from the Corollary to Theorem 14.5.
(2) ⇒ (1): Let P be a minimal element in the set of all finite intersections of

maximal submodules of M . For every maximal submodule N of M we have N∩P ⊆ P
whence N ∩ P = P and so P ⊆ N . Since RadJ M = {0} it follows that P = {0}. Thus

there is a finite family (Ni)1≤i≤n of maximal submodules of M such that
n
⋂

i=1
Ni = {0}.

Then f : M →
n

∧∨
i=1

M/Ni given by f (x) =
�

\i(x)
�

i is an R-morphism with Ker f =
n
⋂

i=1
Ni = {0} and so is injective. Since

n

∧∨
i=1

M/Ni is semisimple and of finite length, so

is every submodule by Theorem 13.3, whence so is M . �

Corollary 1 A unitary ring is semisimple if and only if it is artinian and has zero
Jacobson radical.

Proof If R is semisimple then the R-module R, being generated by {1R}, has finite
length by Theorem 13.5. �
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Corollary 2 The quotient of an artinian module by its Jacobson radical is a semisimple
module of finite length.

Proof The quotient is artinian, and has zero Jacobson radical since, by Theorem
14.3(3),

RadJ

�

M/RadJ M
�

= RadJ M/RadJ M = {0}. �

Corollary 3 3 The quotient of an artinian ring by its Jacobson radical is a semisimple
ring. �

In order to characterise the Jacobson radical of an artinian ring, we consider the
following notions. For this, we recall that the product of two ideals I , J of a ring R is
the set I J of all finite sums of the form

∑

<∞
ai b j where ai ∈ I , b j ∈ J .

Definition 14.2 If R is a ring then a ∈ R is said to be nilpotent if an = 0 for some
positive integer n. An ideal I is called a nil ideal if every element of I is nilpotent,
and a nilpotent ideal if In = {0} for some positive integer n.

Suppose now that I is a nilpotent ideal with, say, In = {0}. Given any r ∈ I we
have rn ∈ In = {0} and so r is nilpotent. Thus we see that every nilpotent ideal is a
nil ideal.

Theorem 14.10 Every nil ideal of R is contained in RadJ R.

Proof Let N be a nil left ideal and let x ∈ N . For every r ∈ R we have r x ∈ N and
so r x is nilpotent, say (r x)n = 0. Since then

1R = [1R + r x + (r x)2 + · · ·+ (r x)n−1](1R − r x)
we see that 1R − r x has a left inverse. It follows by Theorem 14.8 that x ∈ RadJ R.
Similarly we can show that every nil right ideal is contained in RadJ R. �

Theorem 14.11 The Jacobson radical of an artinian ring R is the biggest nilpotent
two-sided ideal of R.

Proof By Theorem 14.10 and the observation preceding it, RadJ R contains all the
nilpotent two-sided ideals of R. It therefore suffices to show that RadJ R is nilpotent.
For this purpose, let RadJ R= I .

Since I is a two-sided ideal of R we have I2 ⊆ RI ⊆ I , and this gives rise to a
descending chain of ideals

I ⊇ I2 ⊇ · · · ⊇ I p ⊇ I p+1 ⊇ . . . .

Since R is artinian, there is a positive integer n such that In = In+1 = · · · . Let K = In;
we shall prove that K = {0} whence the result will follow.

Suppose, by way of obtaining a contradiction, that K 6= {0}. Since K2 = K 6= 0
the set E of left ideals J of R with J ⊆ K and KJ 6= {0} is not empty. Since R satisfies
the minimum condition on left ideals, E has a minimal element J0. Then KJ0 6= {0}
and so there exists x0 ∈ J0 such that K x0 6= {0}. Now K x0 is also a left ideal of R
and is such that K x0 ⊆ J0. Since K2 x0 = K x0 6= {0} we see that K x0 ∈ E. Since J0 is
minimal in E, we deduce that K x0 = J0 and so, for some k ∈ K , we have kx0 = x0.
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But k ∈ RadJ R and so 1R − k is invertible; so from (1R − k)x0 = {0} we deduce that
x0 = 0, which contradicts the fact that K x0 6= {0}. We therefore deduce that K = {0}
whence I = RadJ R is nilpotent. �

Corollary 1 In an artinian ring every nil ideal is nilpotent.

Proof If N is nil then by Theorem 14.10 we have N ⊆ RadJ R. But by Theorem 14.11
we have

�

RadJ R
�n
= {0} for some positive integer n. Hence N n = {0} and so N is

nilpotent. �

We end our discussion of artinian rings with the following remarkable result.

Theorem 14.12 [Hopkins] Every artinian ring is noetherian.

Proof Suppose that R is artinian and let RadJ R = I . Since, by Theorem 14.11, R is
nilpotent there is a positive integer n such that

R ⊃ I ⊃ I2 ⊃ · · · ⊃ In = {0}.

We consider two cases:

(1) n = 1, in which case I = {0} : in this case R is semisimple by Corollary 1 of
Theorem 14.9. Thus R is also noetherian, by the Corollary to Theorem 13.5.

(2) n 6= 1, in which case I 6= {0} : in this case we shall establish, for each t, a
chain

I t = Ki0 ⊃ · · · ⊃ Kiti
= I t+1

of left ideals such that Ki j
/Ki j+1

is simple for j = 0, . . . , mt−1. It will then follow that
R has a Jordan-Hölder tower and so is noetherian.

Now R/I is an artinian ring with zero Jacobson radical, and so is semisimple.
Every non-zero R/I -module is therefore semisimple. Now every R-module M can be
regarded as an R/AnnRM -module; to see this, observe that an action R/AnnRM ×
M → M is defined by (r + AnnRM , m) 7→ rm. Thus, since each quotient module
I t/I t+1 has annihilator I , it can be regarded as an R/I -module, and as such is simple.
We therefore have

I t/I t+1 =
⊕

k
Jk/I

t+1

where each Jk is a left ideal of R such that I t+1 ⊆ Jk ⊆ I t , and since R is artinian this
direct sum is finite. Hence I t/I t+1 has a Jordan-Hölder tower

I t/I t+1 = Ki0/I
t+1 ⊃ · · · ⊃ Kiti

/I t+1 = {0}.

The left ideals Ki j
then give the chain

I t = Ki0 ⊃ · · · ⊃ Kiti
= I t+1

in which each quotient Ki j
/Ki j+1

is simple. �
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EXERCISES
14.1 Let p be a fixed prime and let S be the set of all sequences (an)n≥1 with an ∈ Zpn for

each n. Show that S is a ring under the laws given by (an) + (bn) = (an + bn) and
(an)(bn) = (an bn). Now let R be the subset of S consisting of those sequences which
become zero after a certain point. Show that R is a two-sided ideal of S. Let I be the
set of sequences in R of the form (pt1, . . . , ptn, 0, 0, . . . ) where each t i ∈ Zpi . Show that
I is a two-sided nil ideal of R that is not nilpotent.

14.2 Let R be a principal ideal domain. Prove that

(1) R has zero Jacobson radical if and only if either R is a field or the set of maximal
ideals of R is infinite;

(2) a quotient ring R/Rx has zero Jacobson radical if and only if x has no prime factors
of multiplicity greater than 1.

14.3 Determine the Jacobson radical of each of the following rings :

(1) Z/4Z;

(2) Z/6Z;

(3) Z/pqZ (p, q distinct primes);

(4) Z/pαqβZ (p, q distinct primes, α,β ≥ 1).

14.4 Prove that the ring F[X ] of polynomials over a field F has zero Jacobson radical.

14.5 Determine the Jacobson radical of the ring of upper triangular n × n matrices over a
field.

14.6 Let R be a unitary ring. Define a law of composition ⊕ on R by (x , y) 7→ x ⊕ y =
x + y − x y . Show that (R,⊕) is a semigroup with an identity.

We say that x ∈ R is left quasi-regular if x has a left inverse with respect to ⊕. A left
ideal L of R is called left quasi-regular if every element of L is left quasi-regular. Show
that x is left quasi-regular if and only if 1R − x has a left inverse in R and deduce that

RadJ R= {x ∈ R ; (∀r ∈ R) r x is left quasi-regular}.

If P is a left quasi-regular left ideal of R and M is a simple R-module, prove (via a
contradiction) that PM = {0}. Deduce that RadJ R is a left quasi-regular left ideal of R
that contains every left quasi-regular left ideal of R.

Let S be the ring of rationals of the form m/n with n odd. Determine the (left) quasi-
regular elements of S and show that RadJ S = 〈2〉.

14.7 Consider the ring of all 2× 2 upper triangular matrices

�

a b
0 c

�

in the cases (1) a ∈ Z and b, c ∈ Q; (2) a ∈ Q and b, c ∈ R. Show that in case (1) the
ring is right noetherian but not left noetherian, and in case (2) it is right artinian but
not left artinian.



15
TENSOR PRODUCTS; FLAT MODULES; REGULAR RINGS

We shall now develop more machinery, thereby laying a foundation for a study of
what is often called multilinear algebra. Whilst this term will take on a more sig-
nificant meaning in the next section, we begin with the following type of mapping
which involves a mixture of left and right modules.

Definition 15.1 Let M be a right R-module and N a left R-module. If G is aZ-module
then a mapping f : M × N → G is said to be balanced if

(∀m1, m2 ∈ M)(∀n ∈ N) f (m1 +m2, n) = f (m1, n) + f (m2, n);
(∀m ∈ M)(∀n1, n2 ∈ N) f (m, n1 + n2) = f (m, n1) + f (m, n2);
(∀m ∈ M)(∀n ∈ N)(∀λ ∈ R) f (mλ, n) = f (m,λn).

Example 15.1 If R is a commutative ring and M is a left R-module then the mapping
f : M d ×M → R given by f (md , n) = md(n) = 〈n, md〉 is balanced.

Given a balanced mapping f : M × N → G, we shall now consider how to con-
struct a Z-module T with the property that, roughly speaking, f can be ‘lifted’ to a
Z-morphism h : T → G. This construction, together with a similar one that we shall
meet with later, gives rise to another important way of constructing new modules
from old. Such a ‘trading in’ of a balanced map for a Z-morphism is, as we shall see,
a useful device.

Definition 15.2 If M is a right R-module and N is a left R-module. then by a tensor
product of M and N we shall mean a Z-module T together with a balanced mapping
f : M × N → T such that, for every Z-module G and every balanced mapping g :
M × N → G, there is a unique Z-morphism h : T → G such that the diagram

M × N
g

−−−−−→G

f







y

T

�
�
�3

��
h

is commutative. We denote such a tensor product by (T, f ).

Theorem 15.1 If (T, f ) is a tensor product of the right R-module M and the left R-
module N then Im f generates T .

Proof This is essentially as that of the second part of Theorem 7.1. �

• In contrast to the first part of Theorem 7.1, note that if (T, f ) is a tensor product
of M and N then f is not injective. In fact, since f is balanced we have the
identity f (mλ, n) = f (m,λn). On taking λ = 0, we obtain f (0, n) = f (m, 0)
for all m ∈ M and all n ∈ N .
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Theorem 15.2 [Uniqueness] Let (T, f ) be a tensor product of M and N. Then
(T ′, f ′) is also a tensor product of M and N if and only if there is a Z-isomorphism
j : T → T ′ such that j ◦ f = f ′.

Proof This is essentially as that of Theorem 7.2. �

We shall now settle the question of the existence of tensor products. For this
purpose, let M be a right R-module and let N be a left R-module. Let (F, i) be the
free Z-module on M × N and let H be the subgroup of F that is generated by the
elements of the following types:

i(m1 +m2, n)− i(m1, n)− i(m2, n);
i(m, n1 + n2)− i(m, n1)− i(m, n2);
i(mλ, n)− i(m,λn).

We shall denote the quotient group F/H by M ⊗R N and the mapping \H ◦ i by ⊗R.

Theorem 15.3 [Existence] If M is a right R-module and N is a left R-module then
(M ⊗R N ,⊗R) is a tensor product of M and N.

Proof Let G be a Z-module and g : M ×N → G a balanced mapping. If (F, i) is the
free Z-module on M × N we shall first show how to obtain Z-morphisms j, h such
that the following diagram is commutative:

M × N
g

−−−−−→G

i







y

F

\H







y

M ⊗R N

�
��3

�
��

j









�








h

In fact, the existence of a unique Z-morphism j : F → G such that j ◦ i = g results
from the fact that (F, i) is free on M×N . It now follows easily from the definition of H
and the fact that g is balanced that H ⊆ Ker j. Applying Theorem 3.3, we deduce the
existence of a unique Z-morphism h : F/H → G such that h ◦ \H = j. The resulting
commutative diagram yields h ◦ ⊗H = h ◦ \H ◦ i = j ◦ i = g.

We now have to establish the uniqueness of h with respect to this property. For
this purpose, suppose that k : M⊗R N → G is also a Z-morphism such that k◦⊗R = g.
Then we have k ◦ \H ◦ i = g and so, by the uniqueness of j, we deduce that k ◦ \H =
j = h ◦ \H . Since \H is surjective, hence right cancellable, it follows that k = h. �

By the above results there is, to within abelian group isomorphism, a unique
tensor product of M and N . By the tensor product of M and N we shall mean M⊗R N
as constructed above. The mapping ⊗R will be called the associated tensor map.
Given (m, n) ∈ M ×N we shall write ⊗R(m, n) as m⊗R n and, by abuse of language,
call this the tensor product of the elements m and n. When no confusion can arise over
R, we shall often omit the subscript R in the symbol ⊗R.
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• It is clear from the above that in M ⊗ N we have the identities

(m1 +m2)⊗ n= m1 ⊗ n+m2 ⊗ n;
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2;
mλ⊗ n= m⊗λn.

It is immediate from these identities that

0⊗ n= 0= m⊗ 0

and that, by induction for N then extended to Z,

(∀k ∈ Z) km⊗ n= k(m⊗ n) = m⊗ kn.

In what follows these identities will be used without further reference.

• Note that since Im⊗ generates M⊗N , every element of M⊗N can be expressed

as a linear combination
t
∑

i=1
pi(mi ⊗ ni) where each pi ∈ Z. It follows by the

preceding remark that every element of M ⊗ N can be written in the form
t
∑

i=1
(ai ⊗ bi) with ai ∈ M and bi ∈ N for every i. However, it should be noted

that, despite the notation, not every element of M ⊗N is of the form m⊗ n with
m ∈ M and n ∈ N .

It is important to note that M ⊗R N as defined above is an abelian group and is
not in general an R-module. In certain circumstances, however, we can give M ⊗R N
the structure of a left R-module or that of a right R-module. To see this, we require
the following notion.

Definition 15.3 Let R and S be unitary rings. By an (R, S)-bimodule we shall mean
a module M which is both a left R-module and a right S-module, the actions being
linked by the identity

(∀m ∈ M)(∀r ∈ R)(∀s ∈ S) (rm)s = r(ms).

Example 15.2 Every unitary ring R is an (R, R)-bimodule.

Example 15.3 If M is a right R-module then M is a (Z, R)-bimodule.

Example 15.4 If R is a commutative unitary ring then every left R-module M can
be given the structure of an (R, R)-bimodule. In fact, it is clear that we can define an
action M×R→ M by (m, s) 7→ m·s = sm and thereby make M into a right R-module.
The multiplication in R being commutative, we also have

(rm) · s = s(rm) = (sr)m= (rs)m= r(sm) = r(m · s).

• When the ground ring R is commutative we shall take it as understood that
each left (respectively right) R-module is endowed with the (R, R)-bimodule
structure described in Example 15.4.
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Theorem 15.4 If M is an (R, S)-bimodule and N is a left R-module then MorR(M , N)
is a left S-module relative to the action (s, f ) 7→ s f where (s f )(m) = f (ms) for all
m ∈ M.

Proof This requires simply a routine verification of the identities s( f + g) = s f +sg,
(s+ s′) f = s f + s′ f , s′(s f ) = (s′s) f and 1S f = f , each of which follows easily from
the definition of s f . �

Theorem 15.5 Let M be an (R, S)-bimodule and N a left S-module. Then M ⊗S N is
a left R-module relative to the action defined by

�

r,
t
∑

i=1
(mi ⊗S ni)

�

7→
t
∑

i=1
(rmi ⊗S ni).

Proof Given r ∈ R consider the mapping ϑr : M × N → M ⊗S N described by
ϑr(m, n) = rm⊗S n. It is readily verified that ϑr is a balanced mapping and so there
exists a unique Z-morphism fr : M ⊗S N → M ⊗S N such that

(∀m ∈ M)(∀n ∈ N) fr(m⊗S n) = rm⊗S n.

Since every element of M ⊗S N can be written as
t
∑

i=1
(mi ⊗S ni) we can define an

action R× (M ⊗S N)→ M ⊗S N by the prescription
�

r,
t
∑

i=1
(mi ⊗S ni)

�

7→ fr

�

t
∑

i=1
(mi ⊗S ni)

�

=
t
∑

i=1
(rmi ⊗S ni).

It is now readily verified that M ⊗S N is a left R-module. �

• There is, of course, a result that is dual to Theorem 15.5, namely that if M
is a right R-module and N is an (R, S)-bimodule then M ⊗R N can be given the
structure of a right S-module.

By way of applying Theorems 15.4 and 15.5, we now establish the following
result which shows how tensor products may be used to simplify certain morphism
groups.

Theorem 15.6 Let M be a left R-module, N an (S, R)-bimodule and P a left S-module.
Then there is a Z-isomorphism

MorR

�

M ,MorS(N , P)
�

'MorS(N ⊗R M , P).

Proof We note first that, by Theorem 15.4, MorS(N , P) is a left R-module and that,
by Theorem 15.5, N ⊗R M is a left S-module.

Given an R-morphism f : M →MorS(N , P), consider the mapping α f : N ×M →
P given by α f (n, m) = [ f (m)](n). It is readily verified that α f is a balanced mapping
and so there is a unique Z-morphism ϑ f : N ⊗R M → P such that

(∀n ∈ N)(∀m ∈ M) ϑ f (n⊗R m) = [ f (m)](n).

Now ϑ f is an S-morphism; for, by the action defined in Theorem 15.5,
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ϑ f [s(n⊗R m)] = ϑ f (sn⊗R m) = [ f (m)](sn) = s · [ f (m)](n) = sϑ f (n⊗R m)

and N⊗R M is generated by the elements of the form n⊗R m. We can therefore define
a mapping

ϑ : MorR

�

M ,MorS(N , P)
�

→MorS(N ⊗R M , P)

by the prescription ϑ( f ) = ϑ f . It is clear that ϑ is a Z-morphism. Our objective is to
show that it is a Z-isomorphism.

For this purpose, let g : N ⊗R M → P be an S-morphism and define a mapping
βg : M →MorS(N , P) by assigning to every m ∈ M the S-morphism βg(m) : N → P
given by [βg(m)](n) = g(n ⊗R m). That each βg(m) is an S-morphism follows by
Theorem 15.5. We can now define a mapping

β : MorS(N ⊗R M , P)→MorR

�

M , MorS(N , P)
�

by the prescription β(g) = βg . Clearly, β is a Z-morphism. We shall show that ϑ and
β are mutually inverse Z-isomorphisms whence the result will follow.

Since (β ◦ ϑ)( f ) = βϑ f
with [βϑ f

(m)](n) = ϑ f (n⊗m) = [ f (m)](n), we see that
βϑ f
= f and so β ◦ ϑ is the appropriate identity map. Likewise, (ϑ ◦ β)(g) = ϑβg

with ϑβg
(n ⊗ m) = [βg(m)](n) = g(n ⊗ m) and so ϑβg

and g coincide on a set of
generators of N ⊗M . It follows that ϑβg

= g whence ϑ◦β is the appropriate identity
map. Thus ϑ and β are mutually inverse Z-isomorphisms. �

Corollary 1 If M is a left R-module and N is a right R-module then

MorR(M , N+)' (N ⊗R M)+.

Proof Take S = Z and P =Q/Z in the above and use Example 15.3. �

A less involved consequence of Theorem 15.5 is the following.

Theorem 15.7 If M is a left R-module then there is a unique R-isomorphism

ϑ : R⊗M → M

such that ϑ(r ⊗m) = rm.

Proof By Theorem 15.5, R ⊗ M is a left R-module. The mapping f : R × M → M
given by f (r, m) = rm is clearly balanced. There is therefore a unique Z-morphism
ϑ : R⊗ M → M such that ϑ ◦ ⊗ = f . This Z-morphism ϑ is in fact an R-morphism.
For, given r, s ∈ R and m ∈ M we have, relative to the action defined in Theorem
15.5,

ϑ[s(r ⊗m)] = ϑ(sr ⊗m) = srm= sϑ(r ⊗m),

from which it follows that ϑ(tn) = tϑ(n) for all t ∈ R and all n ∈ R⊗M , since every
such n is a linear combination of elements of the form r ⊗m.

To show that ϑ is an R-isomorphism, we shall construct an inverse for ϑ. For this
purpose, consider the R-morphism ξ : M → R⊗M given by ξ(m) = 1R⊗m. For every
m ∈ M we have
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(ϑ ◦ ξ)(m) = ϑ(1R ⊗m) = m

and so ϑ ◦ ξ= idM . On the other hand, for every r ∈ R and every m ∈ M we have

(ξ ◦ ϑ)(r ⊗m) = ξ(rm) = 1R ⊗ rm= r ⊗m

and so, since R⊗M is generated by the elements of the form r⊗m, we see that ξ◦ϑ
is the identity map on R⊗M . Thus ϑ and ξ are mutually inverse R-isomorphisms. �

Corollary 1 R⊗ R' R. �

There is, of course, a dual result to the above, namely:

Theorem 15.8 If M is a right R-module then there is a unique R-isomorphism

ϑ : M ⊗ R→ M

such that ϑ(m⊗ r) = mr. �

We shall now investigate how tensor products behave with respect to exact se-
quences. For this purpose, we require the following notions. Given morphisms f :
M1→ M2 and g : N1→ N2, consider the diagram

M1 × N1
⊗1−−−−−→M1 ⊗ N1

f ×g







y

M2 × N2−−−−−→⊗2

M2 ⊗ N2

in which f × g is the cartesian product morphism given by

( f × g)(m1, n1) =
�

f (m1), g(n1)
�

.

It is readily seen that ⊗2 ◦ ( f × g) is a balanced mapping and so there is a unique Z-
morphism h : M1⊗N1→ M2⊗N2 that completes the above diagram in a commutative
manner. We call this Z-morphism the tensor product of f and g and denote it by f ⊗g.

• Although the notation f ⊗g for the tensor product of the R-morphisms f and g
is quite standard, it really constitutes an indefensible abuse; for if f : M → N
and g : P → Q are R-morphisms then, by our previously agreed conventions,
f ⊗ g ought to denote an element of

MorR(M , N)⊗R MorR(P,Q).

Since we shall rarely require this latter (and proper) interpretation of f ⊗ g,
we shall adhere to the standard practice of using f ⊗ g for the tensor product
of f and g as defined above. The reader should remain fully aware of this
convention.

The principal properties of the tensor product of R-morphisms are summarised
in the following result.
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Theorem 15.9 If M is a right R-module and N is a left R-module then

idM ⊗ idN = idM⊗N .

Moreover, given the diagram M
f
−−→M ′

f ′
−−→M ′′ of right R-modules and the diagram

N
g
−−→N ′

g ′
−−→N ′′ of left R-modules, we have

( f ′ ◦ f )⊗ (g ′ ◦ g) = ( f ′ ⊗ g ′) ◦ ( f ⊗ g).

Proof It suffices to consider the diagrams

M × N
⊗

−−−−−→M ⊗ N

idM×idN







y







y

idM⊗N

M × N−−−−−→
⊗

M ⊗ N

M × N
⊗

−−−−−→ M ⊗ N

f ×g







y







y

f ⊗g

M ′ × N ′
⊗

−−−−−→ M ′ ⊗ N ′

f ′×g ′







y







y

f ′⊗g ′

M ′′ × N ′′−−−−−→
⊗

M ′′ ⊗ N ′′

and observe that each is commutative. The result therefore follows by the definition
of the tensor product of two morphisms. �

We shall use the following notation. If f : A→ B is an R-morphism then for any
given R-module M the induced Z-morphism idM ⊗ f : M⊗A→ M⊗B will be denoted
by ⊗ f and the induced Z-morphism f ⊗ idM : A⊗M → B⊗M will be denoted by f ⊗.
This notation will be used only when there is no confusion over the R-module M .

Theorem 15.10 Let M be a right R-module and let

A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

be an exact sequence of left R-modules and R-morphisms. Then there is the induced exact
sequence of Z-modules and Z-morphisms

M ⊗ A′
⊗ f

−−−−−→M ⊗ A
⊗ g

−−−−−→M ⊗ A′′−−−−−→0.

Proof Since g ◦ f = 0 we deduce from Theorem 15.9 that ⊗g ◦ ⊗ f = 0 so that
Im⊗ f ⊆ Ker⊗g. Now let \ : M ⊗A→ (M ⊗A)/ Im⊗ f be the natural Z-morphism. By
Theorem 3.3, there is a unique Z-morphism ϑ : (M ⊗A)/ Im⊗ f → M ⊗A′′ such that
ϑ◦\= ⊗g. Again by Theorem 3.3, to show that Im⊗ f = Ker⊗g it suffices to show that
ϑ is injective; and for this it suffices to find aZ-morphism ξ : M⊗A′′→ (M⊗A)/ Im⊗ f
such that ξ ◦ ϑ is the identity map on (M ⊗ A)/ Im⊗ f .
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We construct such a Z-morphism ξ as follows. Given a, b ∈ A we have

g(a) = g(b) ⇒ a− b ∈ Ker g = Im f

⇒ (∃a′ ∈ A′) a− b = f (a′)
⇒ (∀m ∈ M) m⊗ a−m⊗ b = m⊗ f (a′) ∈ Im⊗ f .

Since g is surjective, it follows that we can define a mapping

α : M × A′′→ (M ⊗ A)/ Im⊗ f

by the prescription
α(m, a′′) = m⊗ a+ Im⊗ f

where a ∈ A is such that g(a) = a′′. It is readily verified that α is a balanced mapping
and so there is a unique Z-morphism

ξ : M ⊗ A′′→ (M ⊗ A)/ Im⊗ f

such that ξ ◦ ⊗= α. Now for every m ∈ M and every a ∈ A we have

(ξ ◦ ϑ)
�

m⊗ a+ Im⊗ f
�

= ξ[⊗g(m⊗ a)]
= ξ[m⊗ g(a)]

= (ξ ◦ ⊗)
�

m, g(a)
�

= α
�

m, g(a)
�

= m⊗ a+ Im⊗ f .

Thus ξ ◦ϑ coincides with the identity map on a set of generators of (M ⊗ A)/ Im⊗ f
whence we have that ξ ◦ ϑ is the identity map.

To complete the proof, it remains to show that ⊗g is surjective. Now, given a′′ ∈
A′′ there exists a ∈ A such that g(a) = a′′ whence, for every m ∈ M ,

m⊗ a′′ = m⊗ g(a) = ⊗g(m⊗ a) ∈ Im⊗g.

Since then Im⊗g contains a set of generators of M ⊗ A′′, we conclude that Im⊗g =
M ⊗ A′′ and so ⊗g is surjective. �

There is of course a dual to Theorem 15.10 which we state without proof.

Theorem 15.11 Let M be a left R-module and let

A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

be an exact sequence of right R-modules and R-morphisms. Then there is the induced
exact sequence of Z-modules and Z-morphisms

A′ ⊗M
f ⊗

−−−−−→A⊗M
g⊗

−−−−−→A′′ ⊗M −−−−−→0. �
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• By Theorems 15.10 and 15.11 we see that «tensoring by M» preserves a certain
amount of exactness. We note here, however, that it does not go as far as
preserving short exact sequences in general. For example, consider the short
exact sequence

0−−−−−→Z
f

−−−−−→Z
\

−−−−−→Z/2Z−−−−−→0

in which f is given by f (n) = 2n. Consider now the induced exact sequence

Z/2Z⊗Z
⊗ f

−−−−−→Z/2Z⊗Z
⊗\

−−−−−→Z/2Z⊗Z/2Z−−−−−→0.

Since
⊗ f (n+ 2Z ⊗ m) = n+ 2Z ⊗ f (m) = n+ 2Z ⊗ 2m

= 2(n+ 2Z) ⊗ m

= 0+ 2Z ⊗ m

= 0,

it follows that ⊗ f is the zero map. Its kernel is therefore Z/2Z ⊗ Z which,
by Theorem 15.8, is Z-isomorphic to Z/2Z and so cannot be a zero module.
Thus ⊗ f is not a monomorphism and the induced sequence is not short exact.
Despite this, however, we do have the following preservation of split exact
sequences.

Theorem 15.12 Let M be a right R-module and let

0−−−−−→A′
f

−−−−−→A
g

−−−−−→A′′−−−−−→0

be a split short exact sequence of left R-modules and R-morphisms. Then there is the
induced split short exact sequence

0−−−−−→M ⊗ A′
⊗ f

−−−−−→M ⊗ A
⊗ g

−−−−−→M ⊗ A′′−−−−−→0

of Z-modules and Z-morphisms.

Proof By virtue of Theorem 15.10 it suffices to shoe, using the fact that the given
sequence splits, that ⊗ f is injective. For this purpose, let f 0 be a splitting morphism
for f and define a mapping α : M × A → M ⊗ A′ by α(m, a) = m ⊗ f 0(a). It is
readily verified that α is a balanced mapping and so there is a unique Z-morphism
ϑ : M ⊗ A→ M ⊗ A′ such that ϑ(m⊗ a) = m⊗ f 0(a) for all m ∈ M and all a ∈ A.
Now given any m ∈ M and any a′ ∈ A′ we have

(ϑ ◦ ⊗ f )(m⊗ a′) = ϑ
�

m⊗ f (a′)
�

= m⊗ f 0[ f (a′)] = m⊗ a′

and so, since M⊗A′ is generated by the elements of the form m⊗a′, we deduce that
ϑ ◦ ⊗ f is the identity map on M ⊗ A′, whence ⊗ f is injective. �

There is, of course, a dual result to Theorem 15.12.
Before proceeding to discuss those R-modules M which, when tensored into a

short exact sequence, induce a short exact sequence, we derive some useful conse-
quences of Theorems 15.10 and 15.11.
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Theorem 15.13 Let E′
α
−−→ E

β
−−→ E′′−−→0 be an exact sequence of right R-modules

and let F ′
γ
−−→ F

δ
−−→ F ′′−−→0 be an exact sequence of left R-modules. Then there is

a short exact sequence

0−−→ Im(idE ⊗γ) + Im(α⊗ idF )
i

−−−−−→ E ⊗ F
β⊗δ

−−−−−→ E′′ ⊗ F ′′−−→0

of Z-modules and Z-morphisms, in which i is the natural inclusion.

Proof Consider the diagram

E′ ⊗ F ′ E ⊗ F ′ E′′ ⊗ F ′

idE′⊗γ







y

idE⊗γ







y







y

idE′′⊗γ

E′ ⊗ F
α⊗idF−−−−−→ E ⊗ F

β⊗idF−−−−−→ E′′ ⊗ F −−−−−→0

idE′⊗δ







y

idE⊗δ







y







y

idE′′⊗δ

E′ ⊗ F ′′−−−−−→
α⊗idF ′′

E ⊗ F ′′−−−−−→
β⊗idF ′′

E′′ ⊗ F ′′−−−−−→0






y







y







y

0 0 0

H
HHj

HH
H

β ⊗δ

By Theorems 15.10 and 15.11, both rows and all three columns are exact; moreover,
by Theorem 15.9, the diagram is commutative. The result will follow, therefore, if
we can show via a diagram chase that

Ker(β ⊗δ) = Im(idE ⊗γ) + Im(α⊗ idF ).

Now by the exactness of the middle column we see that (β ⊗δ) ◦ (idE ⊗γ) = 0; and
likewise, by the exactness of the top row, that (β ⊗δ) ◦ (α⊗ idF ) = 0. It follows that

Im(idE ⊗γ) + Im(α⊗ idF ) ⊆ Ker(β ⊗δ).

To obtain the reverse inclusion, let z ∈ Ker(β ⊗δ); then

(idE ⊗δ)(z) ∈ Ker(β ⊗ idF ′′) = Im(α⊗ idF ′′)

and so there exists x ∈ E′ ⊗ F ′′ such that (idE ⊗δ)(z) = (α⊗ idF ′′)(x). Since idE′ ⊗δ
is surjective there then exists y ∈ E′ ⊗ F such that

(idE ⊗δ)(z) = (α⊗ idF ′′)[(idE′ ⊗δ)(y)].

Now let z′ = z − (α⊗ idF )(y). Then z′ ∈ Ker(idE ⊗δ) = Im(idE ⊗γ) and so

z = z′ + (α⊗ idF )(y) ∈ Im(idE ⊗γ) + Im(α⊗ idF ),

whence the reverse inclusion follows. �

Corollary 1 If, in the above, E′ and F ′ are submodules of E and F respectively and if
ιE′ , ιF ′ are the corresponding natural inclusions, then there is a Z-isomorphism

E/E′ ⊗ F/F ′ ' (E ⊗ F)/
�

Im(idE ⊗ιF ′) + Im(ιE′ ⊗ idF )
�

.
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Proof It suffices to apply the above to the canonical exact sequences in which E′′ =
E/E′ and F ′′ = F/F ′. �

Corollary 2 Let I be a right ideal of R and let M be a left R-module. Then there is a
Z-isomorphism

R/I ⊗M ' M/I M .

Proof Taking E = R, E′ = I , F = M , F ′ = {0} in Corollary 1, we obtain

R/I ⊗M ' (R⊗M)/ Im(ιI ⊗ idM ).

The result now follows by Theorem 15.7. �

• Note that the isomorphism of Corollary 2 can be described by the assignment
(r + I)⊗M 7→ rm/I M .

We now give consideration to those modules which, on tensoring into a short
exact sequence, induce a short exact sequence. More explicitly, recalling Theorem
15.10, we introduce the following notion.

Definition 15.4 A right R-module M is said to be flat if, for every monomorphism
f : A→ A′ of left R-modules, the induced Z-morphism

M ⊗ A′
⊗ f

−−−−−→M ⊗ A

is a monomorphism. Flat left modules are defined similarly.

An immediate example of a flat module is provided by the following.

Theorem 15.14 The right (respectively left ) R-module R is flat.

Proof From the proof of Theorem 15.7 there is an isomorphism ξA : A→ R⊗A given
by a 7→ 1R ⊗ a. For any R-morphism f : A′ → A we therefore have the commutative
diagram

A′−−−
f

−−−−−→A

ξA′







y







y

ξA

R⊗ A′−−−−−→
⊗ f

R⊗ A

which yields ⊗ f = ξA ◦ f ◦ ξ−1
A′ . Thus we see that ⊗ f is a monomorphism whenever

f is a monomorphism. Consequently, R is flat. �

In order to obtain an abundant supply of flat modules, we shall now investigate
how tensor products behave in relation to direct sums.

Theorem 15.15 If (Mi)i∈I is a family of left R-modules and if M is a right R-module
then

�

M ⊗
⊕

i∈I
Mi , (idM ⊗ini)i∈I

�

is a coproduct of the family (M ⊗Mi)i∈I .
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Proof We shall use the fact that the natural epimorphisms pr⊕j and the natural
monomorphisms in j satisfy the properties given in Theorem 6.7.

For every j ∈ I consider the Z-morphisms

α j = idM ⊗pr⊕j : M ⊗
⊕

i∈I
Mi → M ⊗M j;

β j = idM ⊗in j : M ⊗M j → M ⊗
⊕

i∈I
Mi .

It is immediate from Theorem 15.9 that

αk ◦ β j =

�

idM⊗M j
if k = j;

0 if k 6= j.

Now if m ∈ M and (mi)i∈I ∈
⊕

i∈I
Mi then from

α j

�

m⊗ (mi)i∈I

�

= m⊗ pr⊕j
�

(mi)i∈I

�

and the fact that pr⊕j
�

(mi)i∈I

�

is zero for all but finitely many j ∈ I , we see that

α j

�

m⊗ (mi)i∈I

�

is zero for all but finitely many j ∈ I . Moreover,
∑

j∈I
(β j ◦α j)

�

m⊗ (mi)i∈I

�

= m⊗
∑

j∈I
(in j ◦ pr⊕j )

�

(mi)i∈I

�

= m⊗ (mi)i∈I .

The result now follows on appealing to Theorem 6.7. �

Corollary 1 If (Mi)i∈I is a family of left R-modules and M is a right R-module then
there is a Z-isomorphism

M ⊗
⊕

i∈I
Mi '

⊕

i∈I
(M ⊗Mi).

Proof This is immediate by Theorem 6.5. �

Theorem 15.16 If (Mi)i∈I is a family of left R-modules then
⊕

i∈I
Mi is flat if and only

if every Mi is flat.

Proof Let f : M ′ → M be a monomorphism of right R-modules and consider the
diagram

M ′ ⊗
⊕

j∈I
M j M ⊗

⊕

j∈I
M j

M ′ ⊗M j−−−−−→
f ⊗id j

M ⊗M j

⊕

j∈I
(M ′ ⊗M j)

⊕

j∈I
(M ⊗M j)

? ?

α β

-
f ⊗ id⊕

-
ϑ

����
��

H
HHY

HH

HHHj
HH

�
��*

��

in which id⊕ denotes the identity map on
⊕

j∈I
M j , id j denotes the identity map on M j ,

the non-horizontal and non-vertical maps are the obvious monomorphisms, α and
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β are the unique isomorphisms that make the left and right triangles commutative
(Theorems 15.15 and 6.5), and ϑ is the unique morphism that makes the lower
trapezium commutative (definition of coproduct). We leave the reader to check that
α is such that

α
�

m′ ⊗ (m j) j∈I

�

= (m′ ⊗m j) j∈I ,

that β satisfies a similar identity, that

ϑ
�

(m′ ⊗m j) j∈I

�

= (m⊗m j) j∈I ,

and that the entire diagram is commutative. Now since α and β are isomorphisms
we see that f ⊗ id⊕ is injective if and only if ϑ is injective; and clearly ϑ is injective
if and only if every f ⊗ id j is injective. It therefore follows that

⊕

i∈I
Mi is flat if and

only if every Mi is flat. �

Corollary 1 Every projective module is flat.

Proof Suppose that P is a projective R-module. By Theorem 8.8, P is a direct sum-
mand of a free R-module F . By the Corollary to Theorem 7.6, F is isomorphic to a
direct sum of copies of R and so, by Theorems 15.14 and 15.16, F is flat. By Theorem
15.16 again, it follows that P is flat. �

We now consider the following interesting connection between flat modules and
injective modules.

Theorem 15.17 A right R-module M is flat if and only if its character module M+ is
injective.

Proof ⇒: Suppose that M is flat and let f : A′ → A be a monomorphism of left
R-modules. Then we have the exact sequence

0−−−−−→M ⊗ A′
⊗ f

−−−−−→M ⊗ A.

Since the Z-module Q/Z is injective, we can construct the diagram

0←−−−−−−−(M ⊗ A′)+
(⊗ f )?

←−−−−−−−−−(M ⊗ A)+

ϑ1

x







x







ϑ2

MorR(A′, M+)←−−−−
f ?

MorR(A, M+)

in which the top row is exact and ϑ1,ϑ2 are the isomorphisms of the Corollary to
Theorem 15.6. We note in fact from the proof of Theorem 15.6 that, for example,
ϑ1 is such that

[ϑ1( f )](m⊗ a′) = [ f (a′)](m).

We now verify that the above diagram is commutative. Given α ∈MorR(A, M+), we
have on the one hand

(ϑ1 ◦ f ?)(α) = ϑ1[ f
?(α)] = ϑ1(α ◦ f ?)

where
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(?) [ϑ1(α ◦ f )](m⊗ a′) = [(α ◦ f )(a′)](m).

On the other hand,
[(⊗ f )? ◦ ϑ2](α) = (

⊗ f )?[ϑ2(α)]

where

(??) (⊗ f )?[ϑ2(α)](m⊗ a′) = ϑ2(α)[m⊗ f (a′)] = [(α ◦ f )(a′)](m).

The commutativity now follows from (?) and (??). It follows by this commutativity
that f ? is an epimorphism, whence we see that M+ is injective.
⇐: Conversely, suppose that M+ is injective. Then we can construct a diagram

similar to the above in which f ? is an epimorphism. The commutativity of such a
diagram shows that (⊗ f )? is also an epimorphism whence, by Theorem 12.6, we
have the exact sequence

0−−−−−→M ⊗ A′
⊗ f

−−−−−→M ⊗ A.

Consequently, M is flat. �

The above result gives the following criterion for flatness.

Theorem 15.18 A right R-module is flat if and only if, for every left ideal I of R, the
induced sequence

0−−−−−→M ⊗ I
⊗ι

−−−−−→M ⊗ R

is exact, where ι : I → R is the natural inclusion.

Proof Since the necessity is clear from the definition of flatness, we need establish
only sufficiency.

Suppose then that every induced sequence of the above form is exact. Then, just
as in the proof of the necessity in Theorem 15.17, we can show that every sequence

0←−−−−MorR(I , M+)
ι?

←−−−−MorR(R, M+)

is exact. By the Corollary to Theorem 12.2, it follows that M+ is injective and so, by
Theorem 15.17, M is flat. �

If I is a left ideal of R then for every right R-module M the map α : M × I → M I
given by α(m, r) = mr is clearly balanced and so there is a unique Z-morphism
ϑI : M ⊗ I → M I such that ϑI (m⊗ r) = mr. It is clear that ϑI is an epimorphism.

The above result therefore yields the following

Corollary 1 A right R-module M is flat if and only if, for every left ideal I of R, the
map ϑI is a Z-isomorphism.

Proof For every left ideal I and natural inclusion ιI : I → R consider the diagram
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M ⊗ I
⊗ι

−−−−−→M ⊗ R

ϑI







y







y

ϑ

M I−−−−−−−−→
j

MR

in which ϑ is the isomorphism of Theorem 15.8 and j is the natural inclusion. This
diagram is clearly commutative and so ⊗ι = ϑ−1 ◦ j ◦ϑI . Since ϑI is an epimorphism
and ϑ−1◦ j is a monomorphism, we deduce from Theorem 3.4 that KerϑI = Ker⊗ι. It
follows that every ϑI is aZ-isomorphism if and only if every ⊗ι is aZ-monomorphism,
which is the case if and only if M is flat. �

• Note that in the above Corollary we can restrict I to be a finitely generated left
ideal. In fact, if for every such ideal I the morphism ϑI is injective then so is
the corresponding morphism ϑJ for every left ideal J of R. To see this, suppose

that
n
∑

i=1
(mi ⊗ ai) ∈ KerϑJ , i.e. that

n
∑

i=1
miai = 0. Then

n
∑

i=1
(mi ⊗ ai) ∈ KerϑI

where I =
n
∑

i=1
Rai is finitely generated. By hypothesis,

n
∑

i=1
(mi ⊗ ai) = 0 as an

element of M ⊗ I and hence of M ⊗ J .

Yet another useful criterion for flatness is given in the following result.

Theorem 15.19 Let M be a right R-module, F a free right R-module, and π : F → M
an R-epimorphism. Then M is flat if and only if, for every (finitely generated) left ideal
I of R,

F I ∩ Kerπ= (Kerπ)I .

Proof We have the exact sequence

0−−−−−→Kerπ
ι

−−−−−→ F
π

−−−−−→M −−−−−→0

in which F , being free and therefore projective, is flat by the Corollary to Theo-
rem 15.6. For every left ideal I of R we then have the commutative diagram of
Z-morphisms

Kerπ⊗ I
i⊗I

−−−−−→ F ⊗ I
π⊗I

−−−−−→ M ⊗ I −−−−−→ 0

α







y







y

ϑI







y

γ







y

Kerπ∩ F I −−−−−→
⊆

F I −−−−−→
π|F I

M I −−−−−→ 0

in which the rows are exact, and both α and γ are of the form x ⊗ i 7→ x i with γ an
epimorphism. Moreover, M is flat if and only if γ is a monomorphism.

Now a simple diagram chase (which we leave as an exercise to the reader) shows
that if γ is a monomorphism then α is an epimorphism; and the converse is a con-
sequence of the Four Lemma (Theorem 3.9). Thus M is flat if and only if α is an
epimorphism. The result then follows from the fact that Imα= (Kerπ)I . �
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We can apply the above result to determine precisely which Z-modules are flat.
For this purpose, we require the following notion.

Definition 15.5 A Z-module M is said to be torsion-free if

(∀x ∈ M)(∀n ∈ Z) nx = 0=⇒ x = 0.

Example 15.5 The Z-module Z is torsion-free; but the Z-modules Z/nZ are not
torsion-free when n 6= 0.

Theorem 15.20 A Z-module is flat if and only if it is torsion-free.

Proof Let M be a Z-module and π : F → M an epimorphism with F a free Z-
module. By Theorem 15.19 and the fact that every ideal of Z is of the form nZ for
some n ∈ Z, we see that M is flat if and only if

(∀n ∈ Z) F(nZ)∩ Kerπ ⊆ (Kerπ)nZ;

in other words, if and only if

(∀n ∈ Z)(∀ f ∈ F) nf ∈ Kerπ=⇒ f ∈ Kerπ.

On passing to quotients, we see that this is equivalent to

(∀n ∈ Z)(∀m ∈ M ' F/Kerπ) nm= 0=⇒ n= 0,

which is precisely the condition that M be torsion-free. �

• We shall consider later the notion of a torsion-free module over a more general
ring, when we shall generalise Theorem 15.20.

• By Theorem 15.20 we can assert that the Z-module Q, for example, is flat.
Although Q is an injective Z-module (see Exercise 12.3 for the details), it is
not a projective Z-module (this will be established later). Thus the class of flat
modules is wider than that of projective modules.

• Later, we shall be concerned with a particular type of module for which the
notions of free, projective, and flat coincide.

Do there exist rings R such that every R-module is flat? We shall answer this
question in the affirmative, and for this we consider the following type of ring.

Definition 15.6 A unitary ring R is said to be regular (or to be a von Neumann ring)
if for every a ∈ R there exists x ∈ R such that axa = a.

Example 15.6 If R is a unitary ring then the set of idempotents of R forms a regular
ring under the multiplication of R and the addition x ⊕ y = x + y − x y .

Theorem 15.21 If R is a unitary ring the the following are equivalent :
(1) R is a regular ring;
(2) every principal left ideal of R is generated by an idempotent;
(3) for every principal left ideal Ra of R there exists b ∈ R such that R= Ra⊕ Rb;
(4) every principal left ideal of R is a direct summand of R;
(5) similar statements concerning right ideals.
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Proof We give a proof for left ideals; the symmetry of (1) shows that we can replace
‘left’ by ‘right’ throughout.
(1) ⇒ (2): Given a ∈ R let x ∈ R be such that a = axa. Then xa = xaxa =

(xa)2. Moreover, it is clear that Rxa ⊆ Ra and Ra = Raxa ⊆ Rxa, so that Ra = Raxa
from which (2) follows.
(2)⇒ (3): Let e ∈ R be an idempotent such that Ra = Re. Since 1R = e+(1R− e)

we see that R= Re+R(1R−e). Moreover, if x ∈ Re∩R(1R−e) then x = ye = z(1R−e)
for some y, z ∈ R whence

x = ye = ye2 = z(1R − e)e = z(e− e2) = z0= 0.

Thus we see that R= Re⊕ R(1R − e).
(3)⇒ (4): This is trivial.
(4)⇒ (1): Given any a ∈ R, there exists by the hypothesis a left ideal J such that

R= Ra⊕J . Then 1R = xa+b where x ∈ R and b ∈ J , and consequently a = axa+ab.
Since then

ab = a− axa ∈ Ra ∩ J = {0},

we conclude that a = axa. �

Corollary 1 If R is a regular ring then every finitely generated left/right ideal of R is
principal.

Proof Suppose that the left ideal I is generated by {x1, . . . , xn}. Then by Theorem
15.21(2) there exist idempotents e1, . . . , en such that

I = Rx1 + · · ·+ Rxn = Re1 + · · ·+ Ren.

We show by induction that Re1+ · · ·+Ren is principal. The result is trivial for n= 1.
It holds for n= 2 as follows. First we observe that

a1e1 + a2e2 = (a1 + a2e2)e1 + a2(e2 − e2e1),

from which we deduce that Re1 + Re2 = Re1 + R(e2 − e2e1). Now since R is regular
there exists x ∈ R such that (e2−e2e1)x(e2−e2e1) = e2−e2e1, and e?2 = x(e2−e2e1) is
idempotent. Moreover, we see that Re1+Re2 = Re1+Re?2 with e?2e1 = x(e2−e2e1)e1 =
0. But since

a1e1 + a2e?2 = (a1e1 + a2e?2)(e1 + e?2 − e1e?2),

we also have Re1+Re?2 = R(e1+ e?2− e1e?2) where e1+ e?2− e1e?2 is idempotent. Hence
we have Re1+Re2 = Re3 where e3 = e2+ e?2− e1e?2. The inductive step readily follows
from this observation. �

Corollary 2 A unitary ring is regular if and only if every finitely generated left/right
ideal of R is a direct summand of R. �

Example 15.7 If D is a division ring and V is a vector space over D then the ring
EndDV is regular. To see this, it suffices to show that every principal right ideal of
EndDV is generated by an idempotent. Given f ∈ EndDV , let p project onto Im f .
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Then p is an idempotent and V = Im p⊕ Ker p with Im p = Im f . Let
�

f (vi)
�

i∈I be a
basis of Im p and define g ∈ EndDV by

�

g(x) = 0 if x ∈ Ker p = Ker f ;

g[ f (vi)] = vi for all i ∈ I .

Then for x ∈ Ker p we have ( f ◦ g)(x) = 0= p(x); and for all i ∈ I ,

( f ◦ g)[ f (vi)] = f (vi) = (p ◦ f )(vi).

Thus we have f ◦ g = p. But the restriction of p to Im p = Im f is the identity map,
and therefore we have f = p ◦ f . These observations show that the right ideals of
EndDV generated by f and by p coincide. Consequently, the ring EndDV is regular
by Theorem 15.21.

Theorem 15.22 For a unitary ring R the following are equivalent :

(1) R is regular;

(2) every left R-module is flat;

(3) every right R-module is flat.

Proof Since the concept of regularity is symmetric, it suffices to establish the equiv-
alence of (1) and (3).

(1)⇒ (3): Suppose that R is regular and let M be a right R-module. By Corollary
1 of Theorem 15.21, every finitely generated right ideal of R is principal and so, in
the notation of Theorem 15.19, it suffices to show that for every r ∈ R we have
F r ∩ Kerπ ⊆ (Kerπ)r. But if x ∈ F r ∩ Kerπ then we have x = f r where f ∈ Kerπ
and so, by the regularity of R,

x = f r = f r r ′r = x r ′r ∈ (Kerπ)r.

(3)⇒ (1): If r ∈ R then by (3) the right R-module R/rR is flat. By Theorem 15.19
with F = R and π= \rR, we see that for every left ideal A of R we have A∩ rR= rA.
In particular, taking A= Rr we obtain r ∈ Rr ∩ rR = rRr whence r = r r ′r for some
r ′ ∈ R. �

Finally, we have the following connection with semisimplicity.

Theorem 15.23 For a unitary ring R the following are equivalent :

(1) R is semisimple;

(2) R is noetherian and regular.

Proof If R is semisimple then it is clearly noetherian. Since every left ideal of R is
a direct summand, so in particular is every finitely generated left ideal whence R is
also regular.

Conversely, if R is noetherian then every left ideal is finitely generated, and if R
is regular then every left ideal is principal and a direct summand of R. Hence R is
semisimple. �
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EXERCISES

15.1 Let R be a unitary ring. If I is a right ideal of R and if M is a left R-module prove that
there is a Z-isomorphism

f : M ⊗ R/I → M/I M

such that f
�

m⊗(r+ I)
�

= rm+ I M . Deduce that if L is a left ideal of R then, as abelian
groups,

R/L ⊗ R/I ' R/(I + L).

[Hint. Use Corollary 1 of Theorem 15.13.]

15.2 Let G be an additive abelian group. For every positive integer n let nG = {ng ; g ∈ G}.
Establish a Z-module isomorphism

Z/nZ⊗Z G ' G/nG.

[Hint. Use Corollary 2 of Theorem 15.13.]

15.3 Prove that Z/nZ⊗Z Q= {0}.

15.4 If (Mi)i∈I is a family of right R-modules and if (N j) j∈J is a family of left R-modules,
establish a Z-isomorphism

⊕

i∈I
Mi ⊗

⊕

j∈J
N j '

⊕

(i, j)
(Mi ⊗ N j).

15.5 Given a short exact sequence

0−−−−−→M ′−−−−−→M −−−−−→M ′′−−−−−→0

of R-modules and R-morphisms in which M ′ and M ′′ are flat, prove that M is flat.

[Hint. Use the Corollary to Theorem 15.18.]

15.6 Prove that a regular ring has zero Jacobson radical.

15.7 Prove that the centre of a regular ring is regular.

15.8 Prove that a regular ring with no zero divisors is a division ring.

15.9 Suppose that R is a unitary ring with no non-zero nilpotent elements. Prove that every
idempotent of R is in the centre of R.

[Hint. For an idempotent e consider [(1R − e)ae]2 and [ea(1R − e)]2.]

If R is regular, deduce that every left ideal of R is two-sided.

15.10 Prove that in a regular ring the intersection of two principal left ideals is a principal
left ideal.

[Hint. Observe that if e is an idempotent then so is 1R−e, and that Re = AnnR(1R−e)R.]
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TENSOR ALGEBRAS

We shall now concentrate on tensor products in the case where the ground ring R is
commutative. In this case all the morphism groups in question may be regarded as
R-modules and we can generalise the notion of tensor product to an arbitrary family
of R-modules. The motivation for this is as follows.

Definition 16.1 Let M , N , P be R-modules. A mapping f : M × N → P is said to be
bilinear if the following identities hold:

f (m+m′, n) = f (m, n) + f (m′, n);
f (m, n+ n′) = f (m, n) + f (m, n′);
f (λm, n) = λ f (m, n) = f (m,λn).

Example 16.1 If R is a commutative unitary ring and M is an R-module then the
mapping f : M d × M → R given by f (xd , x) = xd(x) = 〈x , xd〉 is bilinear. This
follows from identities (α) to (δ) of Section 9 and the fact that R is commutative.

Theorem 16.1 Let R be a commutative unitary ring. If M and N are R-modules then
M ⊗R N is an R-module in which λm⊗R n= λ(m⊗R n) = m⊗R λn, and ⊗R is bilinear.

Proof Both M and N are (R, R)-bimodules and so M ⊗R N is an R-module by The-
orem 15.5 and the subsequent remark; in fact the action in question is given by

λ
�

t
∑

i=1
x i ⊗R yi

�

=
t
∑

i=1
λx i ⊗R yi =

t
∑

i=1
x i ⊗R λyi .

It is readily verified that ⊗R is bilinear. �

Theorem 16.2 Let R be a commutative unitary ring and let M and N be R-modules.
Then the R-module M ⊗R N satisfies the following property : if P is an R-module and if
g : M × N → P is a bilinear mapping there is a unique R-morphism h : M ⊗R N → P
such that the diagram

M × N
g

−−−−−→P

⊗R







y

M ⊗R N

�
��>

�
�

h

is commutative.

Proof We know that there is a unique Z-morphism h : M ⊗R N → P such that
h ◦ ⊗R = g. It therefore suffices to show that h is an R-morphism; and this follows
from the equalities



184 Module Theory

h[λ(x ⊗ y)] = h(λx ⊗ y) = g(λx , y) = λg(x , y) = λh(x ⊗ y)

and the fact that M ⊗R N is generated by Im⊗R. �

• As we shall soon see, when R is commmutative the R-module M⊗R N is charac-
terised by the property given in Theorem 16.2. In fact, the results of Theorems
16.1 and 16.2 give rise to the following general situation.

Definition 16.2 Let R be a commutative unitary ring and let (Mi)i∈I be a family of R-
modules. If N is an R-module then a mapping f : ∧∨

i∈I
Mi → N is said to be multilinear

if, whenever (x i)i∈I , (yi)i∈I , (zi)i∈I ∈ ∧∨
i∈I

Mi are such that, for some k, zk = xk + yk

and zi = x i = yi for i 6= k, then

f
�

(zi)i∈I

�

= f
�

(x i)i∈I

�

+ f
�

(yi)i∈I

�

;

and whenever (x i)i∈I , (yi)i∈I ∈ ∧∨
i∈I

Mi are such that, for some k ∈ I yk = λxk and

yi = x i for i 6= k, then

f
�

(yi)i∈I

�

= λ f
�

(x i)i∈I

�

.

• In the case where I = {1, . . . , n} we shall use the term n-linear instead of
multilinear; and in particular when n = 2,3 we shall use the terms bilinear,
trilinear.

Motivated by the desire to ‘trade in’ multilinear mappings for R-morphisms, we
now introduce the following concept.

Definition 16.3 Let R be a commutative unitary ring and let (Mi)i∈I be a family of R-
modules. Then by a tensor product of the family (Mi)i∈I we shall mean an R-module
T together with a multilinear mapping f : ∧∨

i∈I
Mi → T such that, for every R-module

N and every multilinear mapping g : ∧∨
i∈I

Mi → N , there is a unique R-morphism

h : T → N such that the diagram

∧∨
i∈I

Mi
g

−−−−−→N

f







y

T

�
��

�
��

h

is commutative. We denote such a tensor product by (T, f ).

Theorem 16.3 If (T, f ) is a tensor product of the family (Mi)i∈I of R-modules then
Im f generates T .

Proof This is as in the second part of Theorem 7.1. �

Theorem 16.4 [Uniqueness] Let (T, f ) be a tensor product of the family (MI )i∈I of
R-modules. Then (T ′, f ′) is also a tensor product of this family if and only if there is a
unique R-isomorphism j : T → T ′ such that j ◦ f = f ′.

Proof This is similar to that of Theorem 7.2. �
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• Because of this uniqueness up to isomorphism, we see that when R is com-
mutative M ⊗R N is characterised by the property stated in Theorem 16.2. In
other words, we can assert by these results the existence of tensor products
when the cardinality of I is 2.

To settle the question concerning the existence of tensor products for an arbitrary
family (Mi)i∈I of R-modules, let (F, i) be the free R-module on ∧∨

i∈I
Mi and let G be the

submodule of F generated by the elements of either of the forms

(1) i(x j) j∈I+ i(y j) j∈I− i(z j) j∈I where, for some k ∈ I , zk = xk+ yk and, for j 6= k,
z j = x j = y j;

(2) i(x j) j∈I −λi(y j) j∈I where, for some k ∈ I , xk = λyk and, for j 6= k, x j = y j .
We denote the quotient module F/G by

⊗

i∈I
Mi and the composite map \G ◦ i by

⊗R (or simply ⊗ if no confusion can arise).

Theorem 16.5 [Existence] If R is a commutative unitary ring and (Mi)i∈I is a family
of R-modules then

�
⊗

i∈I
Mi ,⊗R

�

is a tensor product of the family.

Proof This follows the same lines as that of Theorem 15.3 with all Z-morphisms
becoming R-morphisms; we leave the details to the reader. �

• By the above results, tensor products exist and are unique up to isomorphism.
By the tensor product of the family (Mi)i∈I we shall mean the R-module

⊗

i∈I
Mi

constructed above, together with the mapping ⊗ which we shall call the asso-
ciated tensor map . As noted previously, ⊗ is not injective.

• Whenever I = {1, . . . , n} we shall use the notation
n
⊗

i=1
Mi or M1 ⊗ · · · ⊗ Mn.

Also, given (m1, . . . , mn) ∈
n

∧∨
i=1

Mi we shall write ⊗(m1, . . . , mn) in the form

m1 ⊗ · · · ⊗ mn and, by abuse of language, call this the tensor product of the
elements m1, . . . , mn .

• Care should be taken to note that
n
⊗

i=1
Mi is generated by the elements of the

form m1⊗· · ·⊗mn and, despite the notation, not every element of M1⊗· · ·⊗Mn
is of this form.

We shall now establish some properties of tensor products in the case where R is
commutative.

Theorem 16.6 [Commutativity of ⊗] If R is a commutative unitary ring and M , N
are R-modules then there is a unique R-isomorphism ϑ : M ⊗ N → N ⊗M such that

(∀m ∈ M)(∀n ∈ N) ϑ(m⊗ n) = n⊗m.

Proof The mapping f : M×N → N⊗M given by f (m, n) = n⊗m is clearly bilinear.
There is therefore a unique R-morphism ϑ : M ⊗ N → N ⊗ M such that ϑ ◦ ⊗ = f ,
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i.e. such that ϑ(m ⊗ n) = n ⊗ m. In a similar way we have a unique R-morphism
ζ : N ⊗M → M ⊗ N such that ζ(n⊗m) = m⊗ n. We thus have

(ζ ◦ ϑ)(m⊗ n) = m⊗ n, (ϑ ◦ ζ)(n⊗m) = n⊗m.

Since M ⊗ N is generatde by the set of elements of the form m⊗ n, we deduce that
ζ ◦ ϑ = idM⊗N , and likewise that ϑ ◦ ζ = idN⊗M . It follows that ϑ,ζ are mutually
inverse R-isomorphisms. �

Theorem 16.7 [Associativity of ⊗] If R is a commutative unitary ring and M , N , P
are R-modules then there is a unique R-isomorphism ϑ : M ⊗ N ⊗ P → (M ⊗ N)⊗ P
such that

(∀m ∈ M)(∀n ∈ N)(∀p ∈ P) ϑ(m⊗ n⊗ p) = (m⊗ n)⊗ p.

Likewise, there is a unique R-isomorphism ζ : M ⊗ N ⊗ P → M ⊗ (N ⊗ P) such that

(∀m ∈ M)(∀n ∈ N)(∀p ∈ P) ζ(m⊗ n⊗ p) = m⊗ (n⊗ p).

Proof The mapping f : M × N × P → (M ⊗ N)⊗ P given by

f (m, n, p) = (m⊗ n)⊗ p

is trilinear and so there is a unique R-morphism ϑ : M ⊗N ⊗ P → (M ⊗N)⊗ P such
that ϑ(m⊗ n⊗ p) = (m⊗ n)⊗ p. We show that ϑ is an R-isomorphism by producing
an inverse for ϑ.

For every p ∈ P the mapping fp : M × N → M ⊗ N ⊗ P given by

fp(m, n) = m⊗ n⊗ p

is bilinear and so there is a unique R-morphism gp : M ⊗ N → M ⊗ N ⊗ P such that
gp(m⊗n) = m⊗n⊗ p. The mapping g : (M⊗N)×P → M⊗N⊗P given by g(t, p) =
gp(t) is now bilinear and so there is a unique R-morphism h : (M⊗N)⊗P → M⊗N⊗P
such that h(t ⊗ p) = g(t, p). We deduce that

h[(m⊗ n)⊗ p] = g(m⊗ n, p) = gp(m⊗ n) = m⊗ n⊗ p.

Since then

(h ◦ ϑ)(m⊗ n⊗ p) = m⊗ n⊗ p, (ϑ ◦ h)[(m⊗ n)⊗ p] = (m⊗ n)⊗ p,

it follows that h ◦ ϑ and idM⊗N⊗P coincide on a set of generators of M ⊗ N ⊗ P, and
likewise that ϑ ◦ h and id(M⊗N)⊗P coincide on a set of generators of (M ⊗ N)⊗ P. It
follows that ϑ and h are mutually inverse R-isomorphisms.

The second part of the theorem is established similarly. �

• We have already used several times the fact that Im⊗ generates M ⊗ N , so

that every t ∈ M ⊗ N can be written in the form t =
k
∑

i=1
λi(mi ⊗ ni) where

mi ∈ M , ni ∈ N and λi ∈ R for i = 1, . . . , k. Since ⊗ is bilinear, it follows that

every t ∈ M⊗N can be written in the form t =
k
∑

i=1
ai⊗bi where ai ∈ M , bi ∈ N .
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• It should be noted that some collapsing can occur with tensor products. For
example, Z/2Z⊗Z/3Z is generated by the elements of the form x ⊗ y where
x ∈ Z/2Z and y ∈ Z/3Z. But

x ⊗ y = 3(x ⊗ y)− 2(x ⊗ y) = (x ⊗ 3y)− (2x ⊗ y) = (x ⊗ 0)− (0⊗ y) = 0.

Thus we see that Z/2Z⊗Z/3Z= {0}.

The reader will have no difficulty in extending the Z-isomorphism of Theorem
15.15 to an R-isomorphism in the case where R is commutative. Using this, we can
now establish the following result.

Theorem 16.8 If M and N are free R-modules over a commutative unitary ring R then
so also is M ⊗ N. If {mi ; i ∈ I} is a basis of M and {n j ; j ∈ J} is a basis of N then
{mi ⊗ n j ; (i, j) ∈ I × J} is a basis of M ⊗ N.

Proof Given j ∈ J , consider the mapping f : M × Rn j → M given by f (m, rn j) =
rm. Clearly, f is bilinear and so there is a unique R-morphism ϑ : M ⊗ Rn j → M
such that ϑ ◦ ⊗ = f . Consider now the R-morphism ζ : M → M ⊗ Rn j given by
ζ(m) = m⊗ n j . We have

(ζ ◦ ϑ)(m⊗ rn j) = ζ(rm) = rm⊗ n j = m⊗ rn j

and so, since M ⊗Rn j is generated by the elements of the form m⊗ rn j , we deduce
that ζ ◦ ϑ is the identity map on M ⊗ Rn j . On the other hand, we also have

(ϑ ◦ ζ)(m) = ϑ(m⊗ n j) = m

and so ϑ ◦ ζ = idM . Thus ϑ,ζ are mutually inverse R-isomorphisms. Since an R-
isomorphism carries bases to bases, we deduce that {mi ⊗ n j ; i ∈ I} is a basis of
M ⊗ Rn j . Now by the analogue of Theorem 15.15 and the fact that we are dealing
with internal direct sums we have

M ⊗ N = M ⊗
⊕

j∈J
Rn j =

⊕

j∈J
(M ⊗ Rn j).

The result now follows by Theorem 7.8. �

It is clear that, the ground ring R being commutative, if M , N , P are R-modules
then the set BilR(M ×N , P) of bilinear mappings f : M ×N → P forms an R-module.
The most basic property that relates R-morphisms, bilinear mappings, and tensor
products is then the following.

Theorem 16.9 If R is a commutative unitary ring and M , N , P are R-modules then
there are R-isomorphisms

MorR

�

M ,MorR(N , P)
�

' BilR(M × N , P)'MorR(M ⊗ N , P).

Proof For every α ∈ BilR(M × N , P) and every m ∈ M let αm : N → P be given by
αm(n) = α(m, n). It is clear that α ∈ MorR(N , P). Now let ϑα : M → MorR(N , P) be
given by ϑα(m) = αm. Then it is clear that ϑα ∈ MorR

�

M ,MorR(N , P)
�

and that the
assignment α 7→ ϑα yields an R-morphism
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ϑ : BilR(M × N , P)→MorR

�

M , MorR(N , P)
�

.

Now let f ∈MorR

�

M , MorR(N , P)
�

and let ζ f : M × N → P be the bilinear mapping
given by ζ f (m, n) = [ f (m)](n). Then the assignment f 7→ ζ f yields an R-morphism

ζ : MorR

�

MorR(N , P)
�

→ BilR(M × N , P).

We leave to the reader the easy task of showing that ϑ and ζ are mutually inverse
R-isomorphisms.

Consider now the mapping

ξ : BilR(M × N , P)→MorR(M ⊗ N , P)

given by ξ( f ) = f? where f? : M ⊗ N → P is the unique R-morphism such that
f? ◦ ⊗ = f . It is readily verified that ξ is an R-morphism, and that f? = g? gives
f = g, so that ξ is injective. To see that ξ is also surjective, it suffices to observe that
if g ∈MorR(M ⊗ N , P) then g ◦ ⊗ ∈ BilR(M × N , P) with (g ◦ ⊗)? = g. �

We shall now investigate how tensor products behave in relation to duality. As
we are restricting our attention to a commutative ground ring R, we may take P = R
in Theorem 16.9 and obtain R-isomorphisms

MorR(M , N d)' BilR(M × N , R)' (M ⊗ N)d .

It is clear that we can interchange M and N in this to obtain an R-isomorphism

MorR(N , M d)' (M ⊗ N)d .

We also have the following result.

Theorem 16.10 Let R be a commutative unitary ring. If M and N are R-modules then
there is a unique R-morphism

ϑM ,N : M d ⊗ N →MorR(M , N)

such that ϑM ,N (md ⊗ n) : x 7→ 〈x , md〉n.
Moreover, ϑM ,N is a monomorphism whenever N is projective, and is an isomor-

phism whenever M or N is projective and finitely generated.

Proof Given md ∈ M d and n ∈ N , let fmd ,n : M → N be the R-morphism given
by fmd ,n(x) = 〈x , md〉n. Then it is readily seen that the mapping f : M d × N →
MorR(M , N) given by f (md , n) = fmd ,n is bilinear. The first statement now follows by
the definition of tensor product.

Suppose now that N is projective. Then by Theorem 8.8 there is a free R-module
F of which N is a direct summand, say F = N ⊕ P. Since P is then also projective,
the canonical short exact sequence

0−−−−−→N
i

−−−−−→ F
π

−−−−−→ P−−−−−→0

splits. Given any R-module M we can now construct the diagram



Tensor algebras 189

M d ⊗ N−−−−
⊗ i
−−−−−→M d ⊗ F

ϑM ,N







y







y

ϑM ,F

MorR(M , N)−−−−−→
i?

MorR(M , F)

in which, by Theorem 8.4 and the analogue of Theorem 15.12, ⊗i and i? are injective.
Moreover, this diagram is commutative; for, as is readily seen, we have fmd ,i(n) =
i◦ fmd ,n. We show first that ϑM ,F is a monomorphism (so that the result holds for free
R-modules); that ϑM ,N is a monomorphism will then follow from the commutativity
of the diagram. Suppose then that {bi ; i ∈ I} is a basis of F . Then every t ∈ M d ⊗ F
can be written as a finite sum

t =
∑

i∈I
(md

i ⊗ bi).

Now ϑM ,F (t) is the morphism from M to F described by

x 7→
∑

i∈I
〈x , md

i 〉bi .

Thus if ϑM ,F (t) is the zero morphism then 〈x , md
i 〉= 0 for all x ∈ M and all md

i ∈ M d ,
whence md

i = 0 for all md
i ∈ M d , and hence t = 0. Consequently, ϑM ,F is injective.

Suppose now that N is projective and finitely generated. Then by the remark
following Theorem 8.7 there is a finite-dimensional R-module F and an epimorphism
π : F → N . We therefore have the commutative diagram

M d ⊗ F−−−−
⊗π
−−−−−→M d ⊗ N

ϑM ,F







y







y

ϑM ,N

MorR(M , F)−−−−−→
π?

MorR(M , N)

in which both horizontal maps are epimorphisms. It is clear from this that ϑM ,N is
surjective whenever ϑM ,F is surjective. It therefore suffices to prove that ϑM ,F is an
isomorphism; in other words, that the result holds for finite-dimensional R-modules.
We achieve this by induction on the dimension of F . Suppose first that dim F = 1.
Then there is an R-isomorphism α : R→ F , namely that given by r 7→ r b where {b}
is a basis of F , and we have the commutative diagram

M d ⊗ R−−−−
⊗α
−−−−−→M d ⊗ F

ϑM ,R







y







y

ϑM ,F

M d =MorR(M , R)−−−−−→
α?

MorR(M , F)

in which ⊗α and α? are R-isomorphisms. Now it is readily seen that ϑM ,R coincides
with the R-isomorphism md ⊗ r 7→ md r of Theorem 15.8. Consequently, we see that
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ϑM ,F is also an R-isomorphism. Suppose now, by way of induction, that the result
holds for all free R-modules of dimension at most n − 1 where n > 2 and let F be

a free R-module of dimension n. If {b1, . . . , bn} is a basis of F , so that F =
n
⊕

i=1
Rbi ,

consider the submodules A=
n
⊕

i=2
Rbi and B = Rb1. Since there is an R-isomorphism

ϑ : F/A→ B, we have the split short exact sequence

0−−−−−→A
f

−−−−−→ F
g

−−−−−→B−−−−−→0

where f is the natural inclusion and g = ϑ ◦ \A. Moreover, A and B are free, of
dimensions n− 1 and 1 respectively. The commutative diagram

0−−−−−−−−−→M d ⊗ A−−−−
⊗ f
−−−−−→M d ⊗ F−−−−

⊗ g
−−−−−→M d ⊗ B−−−−−−−−−→0







y

ϑM ,A







y

ϑM ,F







y

ϑM ,B

0−−−−−→MorR(M , A)−−−−−→
f?

MorR(M , F)−−−−−→
g?

MorR(M , B)−−−−−→0

then has exact rows so, by the induction hypothesis, ϑM ,A,ϑM ,B are isomorphisms. It
follows by the Corollary to Theorem 3.10 that ϑM ,F is also an isomorphism.

Suppose now that M is projective and finitely generated. Then on the one hand
there is a free R-module F , of which M is a direct summand, and a commutative
diagram

F d ⊗ N−−−−
( f t )⊗
−−−−−→M d ⊗ N

ϑF,N







y







y

ϑM ,N

MorR(F, N)−−−−−→
f ?

MorR(M , N)

in which both horizontal maps are epimorphisms.
On the other hand, there is a finite-dimensional R-module (which we shall also

denote by F without confusion) and an epimorphism π : F → M that gives rise to a
commutative diagram

M d ⊗ N−−−−
(πt )⊗
−−−−−→F d ⊗ N

ϑM ,N







y







y

ϑF,N

MorR(M , N)−−−−−→
π?

MorR(F, N)

in which both horizontal maps are monomorphisms.
It follows immediately from these diagrams that if ϑF,N is an isomorphism then so

is ϑM ,N . It therefore suffices to show that ϑF,N is an isomorphism; in other words, that
the result holds for free R-modules of finite dimension. Suppose then that {b1, . . . , bt}
is a basis of F and let {bd

1 , . . . , bd
t } be the corresponding dual basis. To show that
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ϑF,N : F d ⊗ N → MorR(F, N) is an R-isomorphism, it suffices to produce an inverse
for it. For this purpose, consider the R-morphism γ : MorR(F, N)→ F d ⊗ N given by

γ( f ) =
t
∑

i=1

�

bd
i ⊗ f (bi)

�

.

Given x =
t
∑

j=1
x j b j ∈ F , we have

�

ϑF,N

�

bd
i ⊗ f (bi)

��

(x) = 〈x , bd
i 〉 f (bi) =




t
∑

j=1
x j b j , bd

i

�

f (bi)

=
t
∑

j=1
x j〈b j , bd

i 〉 f (bi)

= x i f (bi)
= f (x i bi)

and so
t
∑

i=1

�

ϑF,N

�

bd
i ⊗ f (bi)

��

(x) =
t
∑

i=1
f (x i bi) = f (x).

Consequently, we have

(ϑF,N ◦ γ)( f ) =
t
∑

i=1
ϑF,N

�

bd
i ⊗ f (bi)

�

= f

and so ϑF,N ◦ γ is the identity map on MorR(F, N). Also, given any n ∈ N and md ∈
t
∑

j=1
λ j b

d
j ∈ F d , we have

(γ ◦ ϑF,N )(md ⊗ n) = γ( fmd ,n) =
t
∑

i=1

�

bd
i ⊗ 〈bi , md〉n

�

=
t
∑

i=1

�

bd
i ⊗

t
∑

j=1
λ j〈bi , bd

j 〉n
�

=
t
∑

i=1

�

bd
i ⊗λin

�

=
�

t
∑

i=1
λi b

d
i

�

⊗ n

= md ⊗ n.

Since f d⊗N is generated by the elements of the form md⊗n, we deduce that γ◦ϑF,N

is the identity on M d ⊗ N . Thus ϑF,N and γ are mutually inverse R-isomorphisms. �

Corollary 1 Let R be a commutative unitary ring. If M and N are R-modules, at least
one of which is projective and finitely generated, then

(M ⊗ N)d ' M d ⊗ N d .

Proof This is immediate from Theorem 16.10 and the isomorphisms that immedi-
ately precede it. �
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We shall now describe an important application of Theorem 16.10. Let R be a
commutative unitary ring and let F be a free R-module of finite dimension. By The-
orem 16.10, there is an R-isomorphism

ϑF,F : F d ⊗ F →MorR(F, F).

In the proof of that theorem we constructed an inverse for ϑF,F in terms of a given
basis of F . The uniqueness of ϑF,F implies that the R-isomorphism ϑ−1

F,F is independent
of this choice of basis. We can therefore call ϑF,F the canonical R-isomorphism from
F d ⊗ F to MorR(F, F).

Observing that the mapping from F d × F to R described by (xd , x) 7→ 〈x , xd〉
is bilinear, and therefore induces a unique R-morphism αF : F d ⊗ F → R such that
αF (xd ⊗ x) = 〈x , xd〉, we consider the following notion.

Definition 16.4 If F is a free R-module of finite dimension then the R-morphism

αF ◦ ϑ−1
F,F : MorR(F, F)→ R

is called the trace form on MorR(F, F) and is denoted by trF (or simply tr if no con-
fusion can arise).

For every f ∈MorR(F, F) we call tr f the trace of f .

For a given f ∈MorR(F, F) the trace of f has a convenient interpretation in terms
of matrices. We shall now describe this. For this purpose, suppose that {b1, . . . , bn} is
a basis of F and that {bd

1 , . . . , bd
n} is the corresponding dual basis. Suppose also that

Mat[ f , (bi)n, (bi)n] = [ai j]n×n.

Then, using the formula for γ= ϑ−1
F,F given in the proof of Theorem 16.10, we have

tr f = (αF ◦ ϑ−1
F,F )( f ) =

n
∑

i=1
αF

�

bd
i ⊗ f (bi)

�

=
n
∑

i=1
〈 f (bi), bd

i 〉

=
n
∑

i=1

n
∑

j=1
a ji〈b j , bd

i 〉

=
n
∑

i=1
aii .

Because of this, we define the trace of an n × n matrix A over a commutative
unitary ring R to be the sum of the diagonal entries of A. Bearing in mind that ϑ−1

F,F is
independent of the choice of basis, we therefore deduce immediately the folowing
facts :

(1) the trace of an R-morphism f is the trace of any matrix that represents f ;

(2) similar matrices have the same trace.
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• The converse of (2) is not true. For example, in Mat2×2(R) the zero matrix and
the matrix

�

1 0
0−1

�

have the same trace but are not similar.

We also have the following result concerning trace forms.

Theorem 16.11 Let R be a commutative unitary ring and let F be a free R-module of
finite dimension. Then

�

∀ f , g ∈MorR(F, F)
�

tr( f ◦ g) = tr(g ◦ f ).

Moreover, if τ is any linear form on MorR(F, F) such that τ( f ◦ g) = τ(g ◦ f ) for all
f , g ∈MorR(F, F) then τ= λ tr for a unique λ ∈ R.

Proof To show that tr( f ◦ g) = tr(g ◦ f ) it suffices to show that if A, B are matrices
that represent f , g with respect to some fixed ordered bases then AB and BA have
the same trace; and, R being commutative, this follows from

tr(AB) =
n
∑

i=1

�

n
∑

j=1
ai j b ji

�

=
n
∑

j=1

�

n
∑

i=1
b jiai j

�

= tr(BA).

As for the second statement, it again suffices to establish a similar result for matrices.
Suppose then that τ : Matn×n(R) → R is such that τ(AB) = τ(BA) for all A, B ∈
Matn×n(R). The result is trivial for n = 1 so we shall assume that n ≥ 2. Let Ei j
denote the n× n matrix that has 1R in the (i, j)-th position and 0 elsewhere. Then it
is readily seen that

Ei j Epq =

�

Eiq if p = j;

0 if p 6= j.

Taking A= Ei j , B = E jk with i 6= k we obtain τ(Eik) = 0; and taking A= Ei j , B = E ji
with i 6= j we obtain τ(Eii) = τ(E j j). Observing that {Ei j ; i, j = 1, . . . , n} is a basis
for Matn×n(R), we have

τ(A) = τ
�∑

i, j
ai j Ei j

�

=
∑

i, j
ai jτ(Ei j) = λ

n
∑

i=1
aii

where λ= τ(Eii) = τ(E j j) for all i and j. �

We end the present section by considering the concept of the tensor algebra of
an R-module. Here we shall be primarily interested in existence and uniqueness; the
importance of such a concept will emerge in the discussion in the next section.

Definition 16.5 Let R be a commutative unitary ring. If M is an R-module then by a
tensor algebra over M we shall mean an associative unitary R-algebra T together with
an R-morphism f : M → T such that, for every associative unitary R-algebra X and
every R-morphism g : M → X , there is a unique 1-preserving R-algebra morphism
h : T → X such that the diagram
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M
g

−−−−−→X

f







y

T

�
��

�
�

h

is commutative. We denote such a tensor algebra by (T, f ).
We recall from Section 4 that a subalgebra of an R-algebra A is a submodule of

A that is also an R-algebra with respect to the multiplication of A. We say that an
R-algebra A is generated by a subset S of A if A is the smallest subalgebra of A that
contains S, i.e. the intersection of all the subalgebras that contain S.

Theorem 16.12 Let R be a commutative unitary ring. If M is an R-module and (T, f )
is a tensor algebra over M then Im f ∪ {1T } generates T .

Proof This is similar to that of Theorem 7.1. �

Theorem 16.13 [Uniqueness] Let (T, f ) be a tensor algebra over the R-module
M. Then (T ′, f ′) is also a tensor algebra over M if and only if there is an R-algebra
isomorphism j : T → T ′ such that j ◦ f = f ′.

Proof This is similar to that of Theorem 7.2. �

We shall now settle the question concerning the existence of tensor algebras. For
this purpose, let R be a commutative unitary ring and M an R-module. Suppose that
(Mi)1≤i≤n is a finite family of R-modules each of which is isomorphic to M . Then we

shall call
n
⊗

i=1
Mi the n-th tensor power of M and denote it henceforth by

⊗n M . For

convenience, we also define
⊗0 M to be R.

With this notation, consider the R-module
⊗

M =
⊕

n∈N

�
⊗n M

�

.

For every j ∈ N we shall identify
⊗ j M with the submodule in→j

�
⊗ j M

�

of
⊗

M ,
thereby regarding the above direct sum as an internal direct sum of submodules.

We shall now define a multiplication on
⊗

M such that it becomes an associative
unitary R-algebra. For this purpose, we note that the R-module

⊗

M is generated
by the set consisting of 1R ∈

⊗0 M and the elements x1 ⊗ · · · ⊗ xn ∈
⊗n M for each

n≥ 1. We can define products for these generators by setting
�

1R(x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xn = (x1 ⊗ · · · ⊗ xn)1R;

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym.

Now, given x ∈
⊗n M and y ∈

⊗m M expressed as linear combinations of genera-
tors, say x =

∑

i
λi x i and y =

∑

j
µ j y j where each x i ∈

⊗n M and each y j ∈
⊗m M ,

we define the product x y by

x y =
∑

i, j
λiµ j x i y j .

It is clear that this definition of x y is, by the above, independent of the linear
combinations representing x and y . Now every z ∈

⊗

M can be expressed uniquely
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in the form z =
∑

i
mi where mi ∈

⊗i M for each i with all but finitely many mi

equal to zero.
Given in this way z =

∑

i
mi and z′ =

∑

j
m′j , we now define the product zz′ by

zz′ =
∑

i, j
mim

′
j .

It is now readily verified that the multiplication so defined makes
⊗

M into an
associative algebra over R with identity element 1R.

• It is important to note from the above definition of multiplication in
⊗

M that
for all i, j ∈ N we have

⊗i M ·
⊗ j M ⊆

⊗i+ j M .

In particular, if m1, . . . , mn ∈ M =
⊗1 M then

n
∏

j=1
m j ∈

⊗n M .

Theorem 16.14 [Existence] If R is a commutative unitary ring and if M is an
R-module then (

⊗

M , ιM ) is a tensor algebra over M.

Proof Let N be an associative unitary algebra and g : M → N an R-morphism.
Define a family (gi)i∈I of R-morphisms gi :

⊗i M → N as follows. For i = 0 let
g0 : R → N be the unique R-morphism such that g0(1R) = 1N (recall that {1R} is
a basis for R). For i ≥ 1 let ∧∨

i M denote the cartesian product of i copies of the
R-module M and let g ′i : ∧∨

i M → N be the mapping described by

g ′i(m1, . . . , mi) =
i
∏

j=1
g(m j).

It is clear that each g ′i is i-linear and so yields a unique R-morphism gi :
⊗i M → N

such that

gi(m1 ⊗ · · · ⊗mi) =
i
∑

j=1
g(m j).

Now by the definition of
⊗

M there is a unique R-morphism h :
⊗

M → N such that
every diagram

⊗i M
gi−−−−−→N

ini







y

⊗

M =
⊕

i∈N

�
⊗i M

�

�
��

��
h

is commutative. The diagram corresponding to i = 0 yields h(1R) = 1N , so that h
is 1-preserving; and that corresponding to i = 1 yields h ◦ ιM = g1 = g. That h is
an R-algebra morphism follows immediately from the definition of multiplication in
⊗

M , the definition of gi , and the commutativity of each of the above diagrams.
Suppose now that t :

⊗

M → N is a 1-preserving R-algebra morphism such that
t ◦ ιM = g. We show that t = h by showing that t ◦ ini = gi for every i ∈ N and
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appealing to the uniqueness of h with respect to this property. For this purpose, we
note that if m1, . . . , mi ∈ M then in

⊗

M we have the equality
i
∏

j=1
ιM (m j) = ini

�
i
⊗

j=1
m j

�

.

In fact, the k-th component of the right-hand side is given by

�

ini

�
i
⊗

j=1
m j

��

k =







i
⊗

j=1
m j if k = i;

0 if k 6= i,

that of ιM (m j) is given by

�

ιM (m j)
�

k =

�

m j if k = 1;

0 if k 6= 1,

and the equality follows from the remark preceding the theorem and the definition
of multiplication in

⊗

M . Using this equality, we see that

gi(m1 ⊗ · · · ⊗mi) =
i
∏

j=1
g(m j) =

i
∏

j=1
(t ◦ ιM )(m j)

= t
�

i
∏

j=1
ιM (m j)

�

= (t ◦ ini)(m1 ⊗ · · · ⊗mi).

Consequently t◦ini and gi coincide on a set of generators of
⊗i M , whence it follows

that t ◦ ini = gi . Since this holds for every i ≥ 1, it remains to show that t ◦ in0 = g0;
and this follows from the fact that t is 1-preserving, so that these morphisms coincide
on the basis {1R} of R. �

The above results establish the existence and, up to isomorphism, the uniqueness
of a tensor algebra over a given R-module M . By the tensor algebra over M we shall
mean that constructed in Theorem 16.14.

EXERCISES

16.1 Deduce from Theorem 16.10 the existence of a natural R-morphism

α : M ⊗ N →MorR(M
d , N)

that is injective whenever M and N are projective.

[Hint. Use Theorem 9.5.]

16.2 Let R be a commutative unitary ring and let M1, M2 be R-modules of finite dimension.
Given md

1 ∈ M d
1 and md

2 ∈ M d
2 , show that there is a unique R-morphism f : M1⊗M2→ R

such that f (m1, m2) = md
1(m1)md

2(m2). Hence show that the assignment md
1 ⊗md

2 7→ f
yields an R-isomorphism

M d
1 ⊗M d

2 ' (M1 ⊗M2)
d .
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16.3 Identifying M d
1 ⊗M d

2 and (M1 ⊗M2)d under the isomorphism of the previous exercise,
establish the identity

〈m1 ⊗m2, md
1 ⊗md

2〉= 〈m1, md
1〉 〈m2, md

2〉.

16.4 Let M1, M2 be finite-dimensional R-modules where R is a commutative unitary ring. If
f1 ∈MorR(M1, M1) and f2 ∈MorR(M2, M2) prove that

tr( f1 ⊗ f2) = tr f1 tr f2.

16.5 Let M1, M2, N1, N2 be finite-dimensional R-modules where R is a commutative unitary
ring. If f1 ∈MorR(M1, N1) and f2 ∈MorR(M2, N2) prove that

( f1 ⊗ f2)
t = f t

1 ⊗ f t
2 .

16.6 Let R be a commutative unitary ring and let M be an R-module of finite dimension n.
Show that the trace form tr : MorR(M , M)→ R is surjective. Show also that Ker tr is a
direct summand of MorR(M , M) and that it is of dimension n2 − 1.

[Hint. Use matrices; consider the submodule of Matn×n(R) that is generated by the set
{Ei j ; i 6= j} ∪ {Eii − E11 ; 2≤ i ≤ n}.]

16.7 Let R be a commutative unitary ring. If M and N are projective R-modules prove that
so also is M ⊗ N .

[Hint. Use Theorems 8.8, 15.9 and 16.8.]

16.8 Let R be a commutative integral domain. If M and N are free R-modules and if m ∈
M , n ∈ N are such that m⊗ n= 0, prove that either m= 0 or n= 0.

[Hint. Use Theorem 16.8.]

16.9 Let R be a commutative unitary ring and let M be an R-module of finite dimension. If
{mi ; i ∈ I} is a basis of M and if, for all i, i′ ∈ I , the R-morphism fi,i′ : M → M is
defined by

fi,i′(mt) =
§

mi′ if t = i;
0 if t 6= i,

prove that { fi,i′ ; i, i′ ∈ I} is a basis of EndRM .

Deduce that there is a unique R-isomorphism

ϑ : EndRM ⊗ EndRN → EndR(M ⊗ N)

such that ϑ( f ⊗ g) = f ⊗R g.

[Note : here f ⊗ g denotes a generator of EndRM ⊗ EndRN !]

Identifying EndRM ⊗ EndRN and EndR(M ⊗ N) for all such R-modules M and N ,
deduce that

⊗

EndRM =
⊕

n∈N
EndR

�
⊗n M

�

.
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EXTERIOR ALGEBRAS; DETERMINANTS

We shall now turn our attention to that part of linear algebra that is often called
exterior algebra. Since we shall be dealing with expressions of the form

xσ(1) ⊗ · · · ⊗ xσ(n)

where σ is a permutation (=bijection) on {1, . . . , n}, we begin by mentioning some
properties of permutations. We shall denote by Pn the group of permutations on
{1, . . . , n}. The basic properties that we shall require are the following :

(1) If n≥ 2 then every σ ∈ Pn is a composite of transpositions;

(2) (∀σϑ ∈ Pn) εσ◦ϑ = εσεϑ where εσ denotes the signum of σ.

For the convenience of the reader, we give brief proofs of these results.

• (1) f ∈ Pn is called a transposition of there exist i, j ∈ {1, . . . , n} such that
i 6= j, f (i) = j, f ( j) = i and f (x) = x for all x 6= i, j. Roughly speaking then,
a transposition swaps two elements and leaves the others fixed. We establish
the first result by induction on the number t of elements that are not fixed by
σ. Clearly, the result holds when t = 2. Suppose, by way of induction, that the
result holds for t = m − 1 with 2 < m ≤ n. Let A be the subset of {1, . . . , n}
consisting of those elements that are not fixed by σ and let |A| = m. Then
given i ∈ A we have σ(i) ∈ A; for otherwise σ[σ(i)] = σ(i) and consequently
σ(i) = i, a contradiction. Now let τ be the transposition such that τ(i) = σ(i)
and τ[σ(i)] = i. Then the set of elements not fixed under τ◦σ is A\{i} which
is of cardinal m− 1. Thus, by the induction hypothesis, τ ◦σ is a composite
of transpositions, say τ ◦σ = τ1 ◦ · · · ◦τk. It follows that so also is σ, for then
σ = τ−1 ◦τ1 ◦ · · · ◦τk.

• (2) For every σ ∈ Pn the signum of σ is defined to be

εσ =
∏

i< j
[σ( j)−σ(i)]

À

∏

i< j
( j − i).

It is readily seen that if τ ∈ Pn is a transposition then ετ = −1. Suppose now
that τ swaps a and b with, say, a < b. Then clearly if i < j we have

τ( j)< τ(i) ⇐⇒ i = a, j = b.

Equivalently, if i < j we have

τ(i)< τ( j) ⇐⇒ (i 6= a or j 6= b).
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Consequently, for every σ ∈ Pn,
∏

i< j
[(σ ◦τ)( j)− (σ ◦τ)(i)]

= [σ ◦τ)(b)− (σ ◦τ)(a)
∏

i< j
τ(i)<τ( j)

[(σ ◦τ)( j)− (σ ◦τ)(i)]

= [σ(a)−σ(b)]
∏

τ(i)<τ( j)
i< j

[σ( j)−σ(i)]

= −
∏

i< j
[σ( j)−σ(i)]

and so it follows that εσ◦τ = −εσ = εσετ. A simple induction now shows that
if τ1, . . . ,τk are transpositions then

εσ◦τ1◦···◦τk
= εσετ1

· · ·ετk
.

Using (1) we now see that εσ◦ϑ = εσεϑ for all σ,ϑ ∈ Pn.
• Note that, by (1) and (2), εσ is either 1 or −1 for every σ ∈ Pn. We say that
σ is an even permutation if εσ = 1 and an odd permutation if εσ = −1. It is
clear from (2) that the even permutations form a subgroup An of Pn. Since, by
(2), σ 7→ εσ describes a morphism with kernel An, we see that An is a normal
subgroup of Pn. This is called the alternating subgroup of Pn; it can be shown
that |An|=

1
2 n!.

If M and N are R-modules then for every σ ∈ Pn and every n-linear mapping
f : ∧∨

n M → N we shall denote by σ f : ∧∨
n M → N the n-linear mapping given by

(σ f )(x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

If g :
⊗n M → N is the unique R-morphism such that g ◦⊗= f , we shall denote by

σg :
⊗n M → N the unique R-morphism such that σg ◦⊗= σ f . We therefore have

(1) (σg)(x1 ⊗ · · · ⊗ xn) = g(xσ(1) ⊗ · · · ⊗ xσ(n)).

Given σ ∈ Pn, consider now the mapping from ∧∨
n M to

⊗n M described by

(x1, . . . , xn) 7→ xσ−1(1) ⊗ · · · ⊗ xσ−1(n).

This mapping is clearly n-linear and consequently there is a unique R-morphism
σ? :

⊗n M →
⊗n M such that

(2) σ?(x1 ⊗ · · · ⊗ xn) = xσ−1(1) ⊗ · · · ⊗ xσ−1(n).

• The reason for σ−1 appearing here will become clear in a moment. Note in
particular that if τ is the transposition described by i↔ j then

τ?(x1 ⊗ · · · ⊗ x i ⊗ · · · ⊗ x j ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ x j ⊗ · · · ⊗ x i ⊗ · · · ⊗ xn.
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With the above notation, it is clear from (1) and (2) that

σ−1 g = g ◦σ?.

Theorem 17.1 (∀ϑ,σ ∈ Pn) (ϑ ◦σ)? = ϑ? ◦σ?.

Proof This follows from the equalities

(ϑ? ◦σ?)(x1 ⊗ · · · ⊗ xn) = ϑ?
�

xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

�

= ϑ?(y1 ⊗ · · · ⊗ yn) where yi = xσ−1(i)

= yϑ−1(1) ⊗ · · · ⊗ yϑ−1(n)

= xσ−1[ϑ−1(1)] ⊗ · · · ⊗ xσ−1[ϑ−1(n)]

= x(ϑ◦σ)−1(1) ⊗ · · · ⊗ x(ϑ◦σ)−1(n)

= (ϑ ◦σ)?(x1 ⊗ · · · ⊗ xn). �

Let us now consider the submodule A
�
⊗n M

�

of
⊗n M that is generated by the

elements of the form m1 ⊗ · · · ⊗mn where mi = m j for some i, j with i 6= j; in other
words, the submodule generated by the elements x such that τ?(x) = x for some
transposition τ. An important property of this submodule is the following.

Theorem 17.2 For every σ ∈ Pn and every x ∈
⊗n M,

x − εσσ?(x) ∈ A
�
⊗n M

�

.

Proof Suppose first that τ is a transposition. To show that the result holds for τ we
have to show that, for every x ∈

⊗n M ,

x +τ?(x) ∈ A
�
⊗n M

�

.

Suppose then that τ swaps i and j with i < j. We have

x +τ?(x)
= (x1 ⊗ · · · ⊗ x i ⊗ · · · ⊗ x j ⊗ · · · ⊗ xn) + (x1 ⊗ · · · ⊗ x j ⊗ · · · ⊗ x i ⊗ · · · ⊗ xn)

= (x1 ⊗ · · · ⊗ (x i + x j)⊗ · · · ⊗ (x i + x j)⊗ · · · ⊗ xn) −
(x1 ⊗ · · · ⊗ x i ⊗ · · · ⊗ x i ⊗ · · · ⊗ xn)− (x1 ⊗ · · · ⊗ x j ⊗ · · · ⊗ x j ⊗ · · · ⊗ xn)

∈ A
�
⊗n M

�

Now since every σ ∈ Pn is a composite of transpositions, we can proceed to
establish the result by induction. Suppose then that the result holds for all composites
ϑ of m transpositions where m ≥ 1. We shall show that it is also true for σ = τ ◦ ϑ
where τ is a transposition. By the hypothesis we have, for every x ∈

⊗n M ,

x − εϑϑ?(x) ∈ A
�
⊗n M

�

.

Since A
�
⊗n M

�

is clearly stable under τ? we deduce that
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τ?(x)− εϑ(τ? ◦ ϑ?)(x) ∈ A
�
⊗n M

�

.

Now by the first part of the proof we have

x − εττ?(x) ∈ A
�
⊗n M

�

.

Since A
�
⊗n M

�

is a submodule, it follows that

x − εσσ?(x) = x − ετ◦ϑ(τ ◦ ϑ)?(x) ∈ A
�
⊗n M

�

. �

Definition 17.1 An n-linear mapping f : ∧∨
n M → N is said to be alternating if

f (x1, . . . , xn) = 0 whenever x i = x j for some i, j with i 6= j; and an R-morphism
g :
⊗n M → N is said to be alternating if the corresponding n-linear mapping

(x1, . . . , xn) 7→ g(x1 ⊗ · · · ⊗ xn)

is alternating.

Example 17.1 The maping f : Z2 ×Z2→ Z given by

f
�

(m, n), (p, q)
�

= mq− np

is bilinear and alternating.

Example 17.2 It is clear that an R-morphism g :
⊗n M → N is alternating if and

only if A
�
⊗n M

�

⊆ Ker g. In particular, therefore, the natural map

\ :
⊗

M →
⊗

M
�

A
�
⊗n M

�

is alternating.

Theorem 17.3 If f :
⊗n M → N is an alternating R-morphism then

(∀σ ∈ Pn) σ f = εσ f .

Proof For every x ∈
⊗n M and every σ ∈ Pn we have, by Theorem 17.2,

f
�

x − εσσ?(x)
�

= 0.

The result now follows from the fact that

(σ f )(x1 ⊗ · · · ⊗ xn)= f (xσ(1) ⊗ · · · ⊗ xσ(n))
= f [εσσ?(xσ(1) ⊗ · · · ⊗ xσ(n))]
= f [εσ(x1 ⊗ · · · ⊗ xn)]
=(ε f )(x1 ⊗ · · · ⊗ xn). �

We shall see the significance of Theorem 17.3 in due course. For the present, we
proceed to consider the following notion.
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Definition 17.2 Let R be a commutative unitary ring, let M be an R-module, and
let n be an integer with n ≥ 2. By an n-th exterior power of M we shall mean an
R-module P together with an n-linear alternating mapping f : ∧∨

n M → P such that,
for every R-module N and every n-linear alternating mapping g : ∧∨

n M → N , there
is a unique R-morphism h : P → N such that the diagram

∧∨
n M

g
−−−−−→N

f







y

P

�
�>

�
�

h

is commutative.

The following two results are immediate.

Theorem 17.4 If (P, f ) is an n-th exterior power of M then Im f generates P. �

Theorem 17.5 [Uniqueness] Let (P, f ) b an n-th exterior power of M. Then (P ′, f ′)
is also an n-th exterior power of M if and only if there is a unique R-isomorphism
j : P → P ′ such that j ◦ f = f ′. �

As to the existence of n-th exterior powers, consider the quotient module
∧n M =

⊗n M
�

A
�
⊗n M

�

.

We denote the composite R-morphism

∧∨
n M

⊗
−−−−−→

⊗n M
\

−−−−−→
∧n M

by ∧. It is clear that ∧ is n-linear and alternating, and that the R-morphism \ is
alternating (Example 17.2).

Theorem 17.6 [Existence] Let R be a commutative unitary ring, let M be an R-
module, and let n be an integer with n ≥ 2. Then

�∧n M ,∧
�

is an n-th exterior power
of M.

Proof Consider the diagram

∧∨
n M

g
−−−−−→N

⊗







y

⊗n M

\







y

∧n M

�
�>

�
�

t







�









h

in which N is an arbitrary R-module and g is an n-linear alternating map. By the
definition of

⊗n M there is a unique R-morphism t :
⊗n M → N such that t ◦⊗= g,

Since g is alternating, it is clear that
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Ker t ⊇ A
�
⊗n M

�

= Ker \

and so, by Theorem 3.4, there is a unique R-morphism h :
∧n M → N such that

h ◦ \= t. It follows that

h ◦ ∧= h ◦ \ ◦ ⊗= t ◦ ⊗= g.

To show that h is unique with respect to this property, suppose that k :
∧n M → N is

also an R-morphism such that k◦∧= g. Then k◦\◦⊗= g and so, by the uniqueness
of t, we have k◦\= t = h◦\. Since \ is surjective, hence right cancellable, we deduce
that k = h. �

• The above results show that there is, to within R-isomorphism, a unique n-th
exterior power of M . We shall call

∧n M the n-th exterior power of M . For
every (x1, . . . , xn) ∈ ∧∨

n M we write ∧(x1, . . . , xn) as x1 ∧ · · · ∧ xn and call this
the exterior product of the elements x1, . . . , xn.

• Note that Im∧ generates
∧n M and that, despite the notation, not every ele-

ment of
∧n M is of the form x1 ∧ · · · ∧ xn.

We shall now use exterior powers to construct the exterior algebra of a given
R-module M . For this purpose, we shall agree to define

∧0 M = R and
∧1 M = M .

Definition 17.3 Let R be a commutative unitary ring and let M be an R-module. By
an exterior algebra of M we mean an associative unitary R-algebra A together with
an R-morphism f : M → A such that

(1) (∀x ∈ M) [ f (x)]2 = 0;

(2) for every associative unitary R-algebra X and every R-morphism g : M → X
such that [g(x)]2 = 0 for every x ∈ M , there is a unique 1-preserving R-algebra
morphism h : X → A such that the diagram

M
g

−−−−−→X

f







y

A

�
��

�
�

h

is commutative.

The following results are immediate.

Theorem 17.7 If (A, f ) is an exterior algebra of the R-module M then Im f ∪ {1A}
generates A. �

Theorem 17.8 [Uniqueness] Let (A, f ) be an exterior algebra of the R-module M.
Then (A′, f ′) is also an exterior algebra of M if and only if there is a unique R-algebra
isomorphism j : A→ A′ such that j ◦ f = f ′. �
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In order to construct an exterior algebra of M we shall use the tensor algebra
⊗

M . We recall that
⊗

M =
⊕

i∈N

�
⊗i M

�

.

Now
⊕

i∈N
A
�
⊗i M

�

is a submodule of
⊗

M . It is in fact an ideal of the R-algebra
⊗

M ; this follows from the definition of multiplication in
⊗

M and the fact that if
x1⊗· · ·⊗ x r ∈ A

�
⊗r M

�

with say x j = xk for some j 6= k, then for all y1⊗· · ·⊗ yp ∈
⊗p M we have both

x1 ⊗ · · · ⊗ x r ⊗ y1 ⊗ · · · ⊗ yp ∈ A
�
⊗r+p M

�

and
y1 ⊗ · · · ⊗ yp ⊗ x1 ⊗ · · · ⊗ x r ∈ A

�
⊗r+p M

�

.

We can therefore form the quotient algebra
⊗

M
À

⊕

i∈N
A
�
⊗i M

�

.

Consider now the R-morphism
⊗

M =
⊕

i∈N

�
⊗i M

� ϑ
−−−−−→

⊕

i∈N

�

⊗i M
�

A
�
⊗i M

�

�

=
⊕

i∈N

∧i M

described by
(x i)i∈N 7→

�

\i(x i)
�

i∈N,

where \i :
⊗i M →

∧i M is the natural epimorphism. It is clear that ϑ is an R-
epimorphism with Kerϑ =

⊕

i∈N
A
�
⊗i M

�

. We therefore have an R-isomorphism

⊗

M
À

⊕

i∈N
A
�
⊗i M

� f
−−−−−→

⊕

i∈N

∧i M .

Appealing to Theorem 4.8, we see that there is then a unique multiplication on
⊕

i∈N

∧i M such that
⊕

i∈N

∧i M is an R-algebra (which is then associative and unitary)

with f an R-algebra isomorphism.
For peace of mind, we shall make the following identifications and conventions.

We shall henceforth agree to identify the R-algebras
⊗

M
À

⊕

i∈N
A
�
⊗i M

�

and
⊕

i∈N

∧i M

and denote each by simply
∧

M . We also identify each
∧ j M with the submodule

in→j
�∧ j M

�

of
∧

M , thereby regarding
∧

M as an internal direct sum of the sub-

modules
∧ j M . In this way,

∧

M is generated by 1R ∈
∧0 M and the elements

x1 ∧ · · · ∧ x r ∈
∧r M . Now since in this R-algebra x1 ∧ · · · ∧ x r is the equivalence

class of x1 ⊗ · · · ⊗ x r modulo the ideal
⊕

i∈N
A
�
⊗i M

�

, we see that the multiplication

in
∧

M is inherited from that of
⊗

M in such a way that
�

(x1 ∧ · · · ∧ x r)(y1 ∧ · · · ∧ yt) = x1 ∧ · · · ∧ x r ∧ y1 ∧ · · · ∧ yt ;

1R(x1 ∧ · · · ∧ x r) = x1 ∧ · · · ∧ x r = (x1 ∧ · · · ∧ x r)1R.
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• Note from the above that
∧p M ·

∧q M ⊆
∧p+q M .

Theorem 17.9 [Existence] Let R be a commutative unitary ring and let M be an
R-module. Then

�∧

M , ιM
�

is an exterior algebra of M.

Proof Given x ∈ M =
∧1 M we have

x ⊗ x ∈ A
�
⊗2 M

�

⊆
⊕

i∈N
A
�
⊗i M

�

and so, on passing to quotients, we obtain x2 = x ∧ x = 0 for all x ∈ M ; in other
words, [ιM (x)]2 = 0 in the R-algebra

∧

M .
Suppose now that N is an associative unitary R-algebra and that g : M → N is

an R-morphism such that [g(x)]2 = 0 for every x ∈ M . Define a family (gi)i∈I of
R-morphisms gi :

∧i M → N as follows. For i ≥ 1 let g ′i : ∧∨
i M → N be the mapping

described by

(m1, . . . , mi) 7→
i
∏

j=1
g(m j).

Since [g(m j)]2 = 0 for every m j , we see that each g ′i is i-linear and alternating. For

every i ≥ 1 there is therefore a unique R-morphism gi :
∧i M → N such that

gi(m1 ∧ · · · ∧mi) =
i
∏

j=1
g(m j).

Now by the definition of
∧

M there is a unique R-morphism h :
∧

M → N such that
the diagram

∧i M
gi−−−−−→N

ini







y

∧

M =
⊕

i∈N

∧i M

�
��

�
�

h

is commutative. The rest of the proof is now an exact replica of the corresponding
part of the proof of Theorem 16.14 with ⊗ replaced at each stage by ∧. We leave the
details to the reader. �

The above results show that, to within isomorphism, there is a unique exterior
algebra over a given R-module M . We shall call that constructed in Theorem 17.9
the exterior algebra over M .

We have seen in the above that x ∧ x = 0 for all x ∈ M =
∧1 M . We also have

the following property in
∧

M .

Theorem 17.10 For every x1 ∧ · · · ∧ xn ∈
∧n M and every σ ∈ Pn,

xσ(1) ∧ · · · ∧ xσ(n) = εσ(x1 ∧ · · · ∧ xn).

Proof This is immediate from Theorem 15.3 since \ :
⊗n M →

∧n M is an alter-
nating R-morphism (see Example 17.2). �
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Corollary 1 If x ∈
∧p M and y ∈

∧q M then y ∧ x = (−1)pq(x ∧ y).

Proof Let x = x1∧· · ·∧ xp and y = y1∧· · ·∧ yq. For convenience, we shall write yi
as xp+i for i = 1, . . . , q. Also, without loss of generality, we shall assume that q ≤ p.
Consider the permutation on {1, . . . , p+ q} described by

1 2 . . . q q+ 1 . . . p p+ 1 . . . p+ q






y







y







y







y







y







y







y

p+ 1 p+ 2 . . . p+ q 1 . . . p− q p− q+ 1 . . . p

Alternatively, σ can be described by the prescription

σ(n) =
§

n+ p if n≤ q;
n− q if n> q.

For i = 1, . . . , p consider also the transpositions described by

τi,1 : p+ q↔ i
τi,2 : p+ q− 1↔ i

...
τi,q : p+ 1↔ i.

It is readily seen that

τp,q ◦ · · · ◦τp,1 ◦τp−1,q ◦ · · · ◦τp−1,1 ◦ · · · ◦τ1,q ◦ · · · ◦τ1,1 ◦σ = id,

from which we deduce that (−1)pqεσ = 1 and consequently that εσ = (−1)pq. By
Theorem 17.10 (with n= p+ q) we then have

y ∧ x = xp+1 ∧ · · · ∧ xp+q ∧ x1 ∧ · · · ∧ xp

= xσ(1) ∧ · · · ∧ xσ(q) ∧ xσ(q+1) ∧ · · · ∧ xσ(p+q)

= εσ(x1 ∧ · · · ∧ xq ∧ xq+1 ∧ · · · ∧ xp+q)

= (−1)pq(x ∧ y). �

Corollary 2 If x , y ∈
∧p M then y ∧ x = (−1)p(x ∧ y).

Proof Take q = p in Corollary 1 and observe that p2 has the same parity as p. �

We shall now apply the above results to a study of
∧r M in the case where M is

free and of finite dimension.

Theorem 17.11 Let R be a commutative unitary ring and let M be a free R-module of
finite dimension. Then for r = 0, . . . , n the r-th exterior power

∧r M is free with

dim
∧r M =

�

n
r

�

.

Moreover, for r > n,
∧r M = 0.
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Proof If r = 0 then
∧0 M = R is free of dimension 1. Thus the result holds for

r = 0. We shall now show that it holds for r = n. For this purpose, let {b1, . . . , bn} be
a basis of M . Then by Theorem 16.8 and induction,

⊗n M is of dimension nn with
basis

{bi1 ⊗ · · · ⊗ bin ; i j ∈ {1, . . . , n}}.

Now all of these basis vectors belong to A
�
⊗n M

�

except those of the form bσ(1) ⊗
· · · ⊗ bσ(n) for every σ ∈ Pn. Moreover, by Theorem 17.10,

bσ(1) ∧ · · · ∧ bσ(n) = εσ(b1 ∧ · · · ∧ bn).

It follows, therefore, that the singleton {b1 ∧ · · · ∧ bn} is a basis of
∧n M and so

dim
∧n M = 1.

Suppose now that 1 < r < n. Since
∧r M is generated by exterior products of

r elements of M , it is generated by exterior products of r of the basis elements. We
thus see by Theorem 17.10 that

∧r M is generated by the set of elements of the form

bi1 ∧ · · · ∧ bir
where 1≤ i1 < · · ·< ir ≤ n.

For convenience, we shall denote a typical element of this form by bi where
i : {1, . . . , r} → {1, . . . , n} is an increasing mapping, in the sense that if j < k then
i j = i( j) < i(k) = ik. Our aim is to show that these elements constitute a linearly
independent set.

For this purpose, suppose that
∑

λibi = 0 in
∧r M where the sum is over all

such increasing sequences i of r elements of {1, . . . , n}, and suppose that λk 6= 0.
The n − r indices that do not belong to Imk may be arranged in increasing order,
say

k′1 < · · ·< k′n−r .

Let bk′ denote the corresponding element bk′1
∧ · · · ∧ bk′n−r

of
∧n−r M . It is clear by

Theorem 17.10 that

bk′ bk = bk′ ∧ bk = (±)(b1 ∧ · · · ∧ bn).

On the other hand, if i 6= k then bi and bk′ have at least one x j in common, whence

bk′ bi = bk′ ∧ bi = 0,

by Theorem 17.10 and the fact that x j ∧ x j = 0. We therefore deduce that, in
∧

M ,

0= bk′ ∧ 0= bk′ ∧
∑

λk(bk′ ∧ bk) = λk(±)(b1 ∧ · · · ∧ bn).

Since {b1 ∧ · · · ∧ bn} is a basis of
∧n M , we have b1 ∧ · · · ∧ bn 6= 0, and consequently

we have the contradiction λk = 0.
We thus see that the elements bi constitute a linearly independent set. Since this

is also a generating set for
∧r M , it is therefore a basis. The result now follows from

the fact that there are
�n

r

�

subsets of {1, . . . , n} that consist of precisely r elements.
Consider now the case where r > n. Since

∧r M is generated by products of r
of the n basis elements, it follows from the fact that r > n that every such product



208 Module Theory

must contain a repeated factor, whence it must be zero since x ∧ x = 0 for every
x ∈ M . Thus we see that when r > n= dim M we have

∧r M = {0}. �

Corollary 1 If R is a commutative unitary ring and if M is a free R-module of dimen-
sion n then

∧

M is free and of dimension 2n.

Proof This is immediate from Theorem 7.8 and the fact that
n
∑

r=0

�n
r

�

= 2n. �

Corollary 2 If M is of dimension n then for every r such that 0≤ r ≤ n the R-modules
∧r M and

∧n−r M are isomorphic. �

Our next task will be to illustrate the importance of Theorem 17.11. In fact,
we shall show that it surprisingly leads in a very natural way to the notion of the
determinant of an R-morphism (and hence that of a square matrix). For this purpose,
we require the following notion.

Let R be a commutative unitary ring and let M , N be R-modules. If f : M → N is
an R-morphism then the assignment

(x1, . . . , xp) 7→ f (x1)∧ · · · ∧ f (xp)

yields a p-linear alternating mapping from ∧∨
p M to

∧p N . There is therefore a unique
R-morphism, which we shall denote by

∧p f :
∧p M →

∧p N

such that
�∧p f

�

(x1 ∧ · · · ∧ xp) = f (x1)∧ · · · ∧ f (xp).

We call
∧p f the p-th exterior power of the R-morphism f .

• Note that here we perpetrate an abuse of notation that is similar to that in the
use of f ⊗ g.

Theorem 17.12 If f : M → N and g : N → P are R-morphisms then, for every positive
integer p,

∧p(g ◦ f ) =
�∧p g

�

◦
�∧p f

�

.

Proof It is clear that
�∧p g

�

◦
�∧p f

�

:
∧p M →

∧p P

is an R-morphism. Since

��∧p g
�

◦
�∧p f

��

(x1 ∧ · · · ∧ xp) =
�∧p g

�

[ f (x1)∧ · · · ∧ f (xp)]
= (g ◦ f )(x1)∧ · · · ∧ (g ◦ f )(xp),

it follows by the uniqueness that
�∧p g

�

◦
�∧p f

�

coincides with
∧p(g ◦ f ). �
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Definition 17.4 If M is an R-module and f : M → M is an endomorphism on M
then we say that f is a homothety if there exists r ∈ R such that f (x) = r x for every
x ∈ M .

Example 17.3 If R is commutative then every R-endomorphism f : R→ R is a ho-
mothety. In fact, we have

(∀r ∈ R) f (r) = f (1Rr) = f (1R)r.

Suppose now that, R being commutative, M is a free R-module of dimension
n. Then, by Theorem 17.11,

∧n M is free and of dimension 1. It is therefore R-
isomorphic to R. If f : M → M is an R-endomorphism, it follows by this isomorphism
and Example 17.3 that the R-endomorphism

∧n f :
∧n M →

∧n M

is a homothety. Describing this homothety by the assignment x 7→ λx , we define the
determinant of f to be the scalar λ. We shall write the determinant of f as det f .

It is clear from the definition of
∧n f that, for all x1, . . . , xn ∈ M ,

f (x1)∧ · · · ∧ f (xn) = (det f )(x1 ∧ · · · ∧ xn).

It is also clear that det idM = 1R. We also have the following result.

Theorem 17.13 If f , g : M → M are R-morphisms where M is free and of finite
dimension, then

det (g ◦ f ) = (det g) (det f ).

Proof Let dim M = n; then the result is an immediate consequence of Theorem
17.12 (with p = n). �

To see that the above notion of a determinant yields (in a simple way, moreover)
the corresponding familiar notion and properties of determinants, suppose that R is
a commutative unitary ring and let A be an n× n matrix over R. Let {ei ; 1≤ i ≤ n}
be the natural ordered basis of the R-module Matn×1(R) and let

fA : Matn×1(R)→Matn×1(R)

be the R-morphism such that A is the matrix of fA relative to the natural ordered
basis. Then we define the determinant of the n × n matrix A to be det fA. We thus
have

fA(e1)∧ fA(en) = (det A)(e1 ∧ · · · ∧ en).

Example 17.4 Consider the case n= 2. Given the matrix

A=
�

a11 a12
a21 a22

�

the associated R-morphism fA is given by
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fA(e1) =
�

a11
a21

�

= a11e1 + a21e2;

fA(e2) =
�

a12
a22

�

= a12e1 + a22e2.

Since e1 ∧ e1 = 0 = e2 ∧ e2 and since, by Theorem 17.10, e2 ∧ e1 = −(e1 ∧ e2), we
deduce that

fA(e1)∧ fA(e2) = (a11e1 + a21e2)∧ (a12e1 + a22e2)
= (a11a22 − a21a12)(e1 ∧ e2),

whence we see that det A= a11a22 − a21a12.

Theorem 17.14 If A and B are n × n matrices over the commutative unitary ring R
then

det (AB) = det A det B.

Proof This is immediate from the definition of the determinant of a matrix and
Theorem 17.13. �

Corollary 1 If A is an invertible n× n matrix over a commutative unitary ring R then
det A is an invertible element of R, and

(det A)−1 = det A−1.

Proof Simply take B = A−1 in Corollary 1 and use the fact that the determinant of
the n× n identity matrix is 1R. �

Corollary 2 Similar matrices have the same determinant.

Proof If A and B are similar n× n matrices then there is an invertible n× n matrix
P such that B = PAP−1. By Theorem 17.14 and the fact that R is commutative, we
see that det B = det A. �

In Example 17.4 above we obtained a formula for det A when A is of size 2× 2.
In the general n× n case we have

(det A)(e1 ∧ . . .en) = fA(e1)∧ · · · ∧ fA(en)

=





a11
...

an1



∧ · · · ∧





a1n
...

ann





=
n
∑

i=1
ai1ei ∧ · · · ∧

n
∑

i=1
ainei

=
∑

σ∈Pn

aσ(1),1 · · · aσ(n),n(eσ(1) ∧ · · · ∧ eσ(n))

=
∑

σ∈Pn

εσaσ(1),1 · · · aσ(n),n(e1 ∧ · · · ∧ en)

whence we have the general formula
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det A=
∑

σ∈Pn

εσaσ(1),1 · · · aσ(n),n.

We also note from the above string of equalities that if A has two identical columns
then det A = 0; and that if B is obtained from A by interchanging two columns then
det B = −det A.

If now σ,ϑ ∈ Pn then for every index i there is a unique index j such that

aσ(i),i = aσ[ϑ( j)],ϑ( j)
and so, since R is commutative, we have

aσ(1),1 · · · aσ(n),n = aσ[ϑ(1)],ϑ(1) · · · aσ[ϑ(n)],ϑ(n).

Taking in particular ϑ = σ−1 and using the fact that εσ−1 = εσ, we deduce that

det A=
∑

σ∈Pn

εσa1,σ(1) · · · an,σ(n).

Comparing this with the previous expression for det A, we deduce immediately that

det A= det At .

It follows that if A has two identical rows then det A= 0; and that if B is obtained from
A by interchanging two rows then det B = −det A.

Suppose now that A is an n× n matrix over R. In what follows we shall denote
by Ai j the (n− 1)× (n− 1) matrix obtained from A by deleting the i-th row and the
j-th column of A. Denoting by {e1, . . . ,en} the natural basis of Matn×1(R), we let

fi j :
⊕

k 6=i
Rek →

⊕

k 6= j
Rek

be the R-morphism whose matrix, relative to the ordered bases (ek)k 6=i , (ek)k 6= j is Ai j .
Then we have

(det A)(e1 ∧ · · · ∧ en)
= fA(e1)∧ · · · ∧ fA(en)
= fA(e1)∧ · · · ∧

∑

j
ai je j ∧ · · · ∧ fA(en)

=
∑

j

�

fA(e1)∧ · · · ∧ ai je j ∧ · · · ∧ fA(en)
�

=
∑

j

�

∑

t
a1tet ∧ · · · ∧ ai je j ∧ · · · ∧

∑

t
antet

�

=
∑

j

�

∑

t 6= j
a1tet ∧ · · · ∧ ai je j ∧ · · · ∧

∑

t 6= j
antet

�

=
∑

j

�

(−1)i−1ai je j ∧ fi j(e1)∧ · · · ∧ fi j(ei−1)∧ fi j(ei+1)∧ · · · ∧ fi j(en)
�

=
∑

j

�

(−1)i−1ai je j ∧ (det Ai j)(e1 ∧ · · · ∧ e j−1 ∧ e j+1 ∧ · · · ∧ en

�

=
∑

j
(−1)i+ jai jdet Ai j(e1 ∧ · · · ∧ en),

from which we deduce that
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(i = 1, . . . , n) det A=
∑

j
(−1)i+ jai jdet Ai j .

This is called the Laplace expansion of det A by the i-th row of A. Note from the
above that this is independent of the row chosen.

Since det A= det At we deduce that also

( j = 1, . . . , n) det A=
∑

i
(−1)i+ ja jidet A ji =

∑

j
(−1)i+ jai jdet Ai j ,

which is called the Laplace expansion of det A by the j-th column of A.
We call (−1)i+ jdet Ai j the cofactor of the element ai j . The adjugate of A is defined

to be the n× n matrix Adj A given by

[Adj A]i j = (−1)i+ jdet Ai j .

With this terminology, we have the following result.

Theorem 17.15 If A is an n× n matrix over a commutative unitary ring R then

A ·Adj A= (det A) In.

Proof The (i, j)-th element of A ·Adj A is given by

[A ·Adj A]i j =
n
∑

k=1
aik(−1)k+ jdet Ak j =

§

det A if j = i;
0 if j 6= i,

for, when j 6= i, the sum represents the determinant of an n× n matrix whose i-th
row and j-th row are equal, whence it is 0. Thus A·Adj A is the diagonal matrix every
diagonal entry of which is det A. �

Corollary 1 An n× n matrix A is invertible if and only if det A= 0, in which case

A−1 =
1

det A
Adj A.

Proof This is immediate from the above and Corollary 1 of Theorem 17.14. �

We end our discussion of determinants with the following useful result.

Theorem 17.16 Let A be an n × n matrix over a commutative unitary ring R and
suppose that A has the partitioned form

A=
�

X Z
0 Y

�

where X is of size p× p, Y is of size (n− p)× (n− p), and the matrix in the south-west
corner is a zero matrix. Then

det A= det X · det Y.
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Proof If (ei)1≤i≤n is the natural ordered basis of Matn×1(R), we let

fX :
p
⊕

i=1
Rei →

p
⊕

i=1
Rei

be the R-morphism whose matrix relative to the ordered basis (ei)1≤i≤n is X and

fY :
n
⊕

i=p+1
Rei →

n
⊕

i=p+1
Rei

the R-morphism whose matrix relative to the ordered basis (ei)1≤i≤n is Y . Then we
have

(det A)(e1 ∧ · · · ∧ en)

= fA(e1)∧ · · · ∧ fA(en)

=
∑

i
a1iei ∧ · · · ∧

∑

i
aniei

=
∑

i≤p
x1iei ∧ · · · ∧

∑

i≤p
xpiei ∧

∑

i
ap+1,iei ∧ · · · ∧

∑

i
aniei

= fX (e1)∧ · · · ∧ fX (ep)∧
∑

i
ap+1,iei ∧ · · · ∧

∑

i
aniei

= (det X )
�

e1 ∧ · · · ∧ ep ∧
∑

i
ap+1,iei ∧ · · · ∧

∑

i
aniei

�

= (det X )
�

e1 ∧ · · · ∧ ep ∧
∑

i>p
ap+1,iei ∧ · · · ∧

∑

i>p
aniei

�

= (det X )
�

e1 ∧ · · · ∧ ep ∧ fY (ep+1)∧ · · · ∧ fY (en)
�

= (det X )
�

e1 ∧ · · · ∧ ep ∧ (det Y )(ep+1 ∧ · · · ∧ en)
�

= (det X ) (det Y ) (e1 ∧ · · · ∧ en),

whence the result follows. �

We conclude this section with some results on exterior algebras that will be useful
to us later.

Theorem 17.17 Let R be a commutative unitary ring and let f : M → N be an R-
epimorphism. If f ∧ :

∧

M →
∧

N is the unique R-algebra morphism such that the
diagram

M−−
f

−−−−−→N

ιM







y







y

ιN

∧

M−−−−−→
f ∧

∧

N

is commutative then Ker f ∧ is the ideal of
∧

M that is generated by Ker f .

Proof Given any positive integer n, consider the following diagram in which the
notation is as follows:

I denotes the ideal of
∧

M generated by Ker f ;
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In = I ∩
∧n M ;

the unmarked arrows are the natural ones;
∧∨

n f is the cartesian product morphism, given by
�

∧∨
n f
�

(x1, . . . , xn) =
�

f (x1), . . . , f (xn)
�

;

ϑn is the unique R-morphism that makes the top rectangle commutative (defini-
tion of

∧n M);
t is the unique R-algebra morphism that makes the parallelogram commutative

(definition of
∧

M);
αn is the unique R-morphism that makes the diamond commutative (Theorem

4.3).

Ignore for the moment the three arrows g, gn, hn.

∧∨
n M

×n f
−−−−−→ ∧∨

n N






y







y

∧n M
ϑn−−−−−→

∧n N

∧n M
�

In

∧

M−−
t

−−−−−→
∧

N

∧

M/I

@
@@R

αn
�

��	��
��

��
�1

g

�
��	

@
@@R

@
@@R��

��
��

��1gn ��������) hn

We show first that in fact t = f ∧. For this purpose, we note that since
∧

M =
⊕

n∈N

∧n M

it follows from the defining property of direct sums that the R-morphism t is the
same for every n. In particular, taking n = 1 and recalling that

∧1 M = M , we see
that ϑ1 = f and consequently that t = f ∧.

We now establish the existence of a unique R-morphism

g :
∧

M/I →
∧

N

such that the diagram ∧

M
f ∧

−−−−−→
∧

N

\I







y

∧

M/I

��>
�
�

g

is commutative. Since clearly ( f ∧)→(Ker f ) = {0} it follows that ( f ∧)→(I) = {0} and
so I ⊆ Ker f ∧. The existence and uniqueness of g now follow by Theorem 3.4. Now,
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also by Theorem 3.4, we have that I = Ker f ∧ if and only if g is injective. The result
will follow, therefore, if we can show that g is injective.

For this purpose, some preliminaries are required. Note first that since I ⊆ Ker f ∧,
and since t = f ∧ implies that

ϑ→n
�

Ker f ∧ ∩
∧n M

�

= {0},

we have ϑ→n (In) = {0} and so, by Theorem 3.4, there is a unique R-morphism

gn :
∧n M/In→

∧n N

such that the diagram
∧n M

ϑn−−−−−→
∧n N

\







y

∧n M/In

��>
�
�

gn

is commutative. We now construct an R-morphism

hn :
∧n N →

∧n M/In

such that gn ◦hn is the identity map on
∧n M/In, whence it will follow immediately

that each gn is injective.

For every x ∈ N denote by f ?(x) any y ∈ M such that f (y) = x (recall that f is
surjective by hypothesis). Then the reader will readily verify that the assignment

(x1, . . . , xn) 7→
�

f ?(x1)∧ · · · ∧ f ?(xn)
�

/In

yields an n-linear alternating mapping from ∧∨
n N to

∧n M/In. To see that it is well
defined, observe that if x i = x ′i for i = 1, . . . , n and if yi , y ′i ∈ M are such that
f (yi) = x i and f (y ′i ) = x ′i then f (yi − y ′i ) = x i − x ′i = 0 so that f (yi) = f (y ′i ) and
consequently

f ∧(y1 ∧ · · · ∧ yn) = f (y1)∧ · · · ∧ f (yn) = f (y ′1)∧ · · · ∧ f (y ′n) = f ∧(y ′1 ∧ · · · ∧ y ′n),

thus showing that

(y1 ∧ · · · ∧ yn)− (y ′1 ∧ · · · ∧ y ′n) ∈
∧n M ∩ Ker f ∧ ⊆ In.

There is therefore a unique R-morphism

hn :
∧n N →

∧n M/In

such that

hn(x1 ∧ · · · ∧ xn) =
�

f ?(x1)∧ · · · ∧ f ?(xn)
�

/In.

It is now readily seen that hn ◦ gn coincides with the identity map on a set of gener-
ators of

∧n M/In whence hn ◦ gn is the identity map and so gn is injective.
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We shall now show that g is injective. For this purpose, we observe that every
element of I is a sum of elements of the form a ∧ x ∧ b where x ∈ Ker f and a, b ∈
∧

M . Since
∧

M =
⊕

n∈N

∧n M , it is clear that I =
⊕

n∈N
(I ∩

∧n M). The R-morphism

ζ :
⊕

n∈N

∧n M →
⊕

n∈N

∧n M/In

given by the prescription

ζ
�

(x i)i∈N
�

= (x i + In)i∈N

is clearly surjective with kernel
⊕

n∈N
In. Thus we have

∧

M/I =
⊕

n∈N

∧n M
�
⊕

n∈N
In '

⊕

n∈N

∧n M/In,

and consequently
�∧

M/I , (αn)n∈N
�

is a coproduct of the family
�∧n M/In

�

n∈N. Writ-
ing An =

∧n M/In and Bn =
∧n N , we therefore have a family of commutative dia-

grams

0−−−−−→An−−−
gn−−−−−→Bn

iA
n







y







y

iB
n

⊕

n∈N
An−−−−−→g

⊕

n∈N
Bn

in which the top row is split exact (a splitting morphism being hn), and iA
n , iB

n are the
natural inclusions. By the definition of

⊕

n∈N
Bn there is a unique R-morphism

h :
⊕

n∈N
Bn→

⊕

n∈N
An

such that h ◦ iB
n = iA

n ◦ hn for every n ∈ N. Consequently,

(∀n ∈ N) h ◦ g ◦ iA
n = h ◦ iB

n ◦ gn = iA
n ◦ hn ◦ gn = iA

n .

For every x ∈
⊕

n∈N
An we then have

(h ◦ g)(x) =
�

h ◦ g ◦
∑

n∈N
(iA

n ◦ pr⊕n )
�

(x)

=
�

∑

n∈N
(h ◦ g ◦ iA

n ◦ pr⊕n )
�

(x)

=
∑

n∈N
(iA

n ◦ pr⊕n )(x)

= x ,

and so h ◦ g is the identity map on
⊕

n∈N
An. Thus g is injective as required. �

• Note that since f is surjective in the above, so also are ϑn and f ∧. It follows
that gn and g are also surjective, whence they are R-isomorphisms; moreover,
so is hn with hn = g−1

n .
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Theorem 17.18 Let R be a commutative unitary ring and let I1, . . . , In be ideals of R.
For every p ∈ {1, . . . , n} let Sp denote the collection of all subsets of {1, . . . , n} consisting
of p elements and for every J ∈ Sp let IJ =

∑

k∈J
Ik. Then

∧p
� n
⊕

k=1
R/Ik

�

'
⊕

J∈Sp

R/IJ .

Proof Let M be a free R-module of dimension n and let {ei ; 1 ≤ r ≤ n} be a

basis of M . Let f : M →
n
⊕

k=1
R/Ik be the R-epimorphism such that f (ek) = 1+ Ik for

k = 1, . . . , n, and let

f ∧ :
∧

M →
∧

� n
⊕

k=1
R/Ik

�

be the induced epimorphism. Since f is described by

λ1e1 + · · ·+λnen 7→ (λ1 + I1, . . . ,λn + In)

it is clear that Ker f =
n
⊕

k=1
Ikek. By Theorem 17.17, Ker f ∧ is the ideal of

∧

M that is

generated by
n
⊕

k=1
Ikek. Every element of Ker f ∧ is therefore a sum of elements of the

form a∧ x∧ b where a, b ∈
∧

M and x =
n
∑

k=1
xkek with xk ∈ Ik for each k. Since

∧

M

is free and of finite dimension (by Corollary 1 of Theorem 17.11), we can express
a, b in terms of the natural basis of

∧

M . It follows that every element of Ker f ∧

can be expressed uniquely as a sum of elements of the form α(ek1
∧ · · · ∧ ekm

) where

α ∈
m
∑

j=1
Ik j

. We thus see that

Ker f ∧ =
⊕

J∈Sp

IJ eJ

where {eJ ; J ∈ Sp} denotes the natural basis of
∧p M .

Consider now the complex diagram in the proof of Theorem 17.17. In this, take

N =
n
⊕

k=1
R/Ik,

∧p M =
⊕

J∈Sp

ReJ , I = Ker f ∧.

Then since hp is an isomorphism (see the remark following Theorem 17.17), we
have

∧p
� n
⊕

k=1
R/Ik

�

'
⊕

J∈Sp

ReJ

À�

⊕

J∈Sp

ReJ ∩
⊕

J∈Sp

IJ eJ

�

.

Applying the third isomorphism theorem (Corollary to Theorem 4.6) to the right-
hand side, we see that this becomes

'
�

⊕

J∈Sp

ReJ +
⊕

J∈Sp

IJ eJ

�À

⊕

J∈Sp

IJ eJ

=
⊕

J∈Sp

ReJ

À

⊕

J∈Sp

IJ eJ .
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Now the mapping

ϑ :
⊕

J∈Sp

ReJ →
⊕

J∈Sp

(ReJ/IJ eJ )

given by

ϑ
�

∑

J∈Sp

reJ

�

=
∑

J∈Sp

(reJ + IJ eJ )

is clearly an R-epimorphism with Kerϑ =
⊕

J∈Sp

IJ eJ . By the first isomorphism theorem

(Theorem 4.4), the above quotient of direct sums is therefore

'
⊕

J∈Sp

(ReJ/IJ eJ ).

Now the mapping ζJ : ReJ → R/IJ given by ζJ (reJ ) = r+ IJ is also an R-epimorphism
with KerζJ = IJ eJ . We therefore deduce, again by the first isomorphism theorem,
that the above direct sum is

'
⊕

J∈Sp

R/IJ .

In conclusion, therefore, we see that
∧p
� n
⊕

k=1
R/Ik

�

'
⊕

J∈Sp

R/IJ . �

EXERCISES

In each of the following exercises, R is a given commutative unitary ring and M is an
R-module.

17.1 If n≥ 2 consider the alternator

αn =
1
n!

∑

σ∈Pn

εσσ
? :
⊗n M →

⊗n M ,

Prove that Kerαn ⊆ A
�
⊗n M

�

.

[Hint. For every x ∈
⊗n M consider αn(x)− x and use Theorem 17.2.]

Show also that
(∀ϑ ∈ Pn) αn ◦ ϑ? = εϑαn

and deduce that if R is not of characteristic 2 then Kerαn = A
�
⊗n M

�

.

[Hint. Take ϑ to be a transposition.]

Show further that αn is idempotent and deduce that

⊗n M = A
�
⊗n M

�

⊕ Imαn.

[Hint. Use Exercise 6.11.]
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17.2 If n ≥ 2 let S
�
⊗n M

�

be the submodule of
⊗n M generated by the set of elements of

the form x−τ?(x) where x ∈
⊗n M and τ ∈ Pn is a transposition. Show that S

�
⊗n M

�

is ϑ?-stable for every transposition ϑ ∈ Pn.

[Hint. Use the equality

ϑ?
�

x −τ?(x)
�

=
�

x −τ?(x)
�

−
�

x − ϑ?(x)
�

+
�

τ?(x)− (ϑ ◦τ)?(x)
�

.]

Deduce that
�

∀x ∈
⊗n M

�

(∀σ ∈ Pn) x −σ?(x) ∈ S
�
⊗n M

�

.

[Hint. Argue by induction as in Theorem 17.2.]

Consider now the symmetriser

βn =
1
n!

∑

σ∈Pn

σ? :
⊗n M →

⊗n M .

Show that Kerβn ⊆ S
�
⊗n M

�

.

[Hint. For every x ∈
⊗n M consider βn(x)− x .]

Show also that, for every x ∈
⊗n M and every transposition τ ∈ Pn,

βn[x −τ?(x)] = 0

and deduce that S
�
⊗n M

�

⊆ Kerβn. Show finally that βn is idempotent and deduce
that

⊗n M = S
�
⊗n M

�

⊕ Imβn.

17.3 Let I
�
⊗

M
�

be the ideal of
⊗

M that is generated by {x ⊗ x ; x ∈ M}. Show that the
quotient algebra

⊗

M
�

I
�
⊗

M
�

is isomorphic to
∧

M .

17.4 Let N be a submodule of M and let ∆ be the submodule of
∧n M that is generated by

{x1 ∧ · · · ∧ xn ; (∃i) x i ∈ N}.

Show that the assignment

(m1, . . . , mn) 7→ m1 + N ∧ · · · ∧mn + N

defines an n-linear alternating mapping. Using Theorem 3.4, produce an R-morphism

α :
∧n M/∆→

∧n(M/N).

Now show that the assignment

(x1 + N , . . . , xn + N) 7→ (x1 ∧ · · · ∧ xn) +∆

defines an n-linear alternating mapping. Hence produce an R-morphism

β :
∧n(M/N)→

∧n M/∆.

Show that α and β are mutually inverse R-isomorphisms.

17.5 Show that the Z-module
∧2Q is zero.

17.6 Let V be a vector space of dimension n over a field F . Show that x1, . . . , xp are linearly
independent in V if and only if x1 ∧ · · · ∧ xp 6= 0.
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17.7 Let M be a free R-module of dimension n. Identifying
�
⊗p M

�d
with

⊗p M d for every
p ∈ N (see Exercises 16.2 and 16.3), prove that

∧p M d '
�∧p M

�d

under the R-isomorphism which to every x d
1 ∧ · · · ∧ x d

p in
∧p M d assigns the element f

of
�∧p M

�d
such that

f (x1 ∧ · · · ∧ xp) = det[〈x i , x d
j 〉],

where the right-hand side is the determinant of the n× n matrix whose (i, j)-th entry
is 〈x i , x d

j 〉.

[Hint. Using Exercise 16.3, write det[〈x i , x d
j 〉] in terms of the alternator αp on

⊗p md .]

17.8 Identifying
∧p M d with

�∧p M
�d

under the isomorphism of the previous exercise, ob-
serve that we have

〈x1 ∧ · · · ∧ xp, x d
1 ∧ · · · ∧ x d

p 〉= det[〈x i , x d
j 〉].

Use this identity to prove that if M , N are free R-modules of finite dimensions then, for
every R-morphism f : M → N ,

�∧p f
�t
=
∧p f t .

17.9 Show that
⊕

k∈N

∧2k M is a commutative subalgebra of
∧

M .

17.10 Let A be an R-algebra. An R-morphism f : A→ A is called a derivation if

(∀a, b ∈ A) f (ab) = f (a) b+ a f (b).

[The terminology comes from the standard example of the differentiation map D :
R[X ]→ R[X ].]

Prove that for every R-morphism f : M → M there is a unique derivation D f :
∧

M →
∧

M such that the diagram

M−−
f

−−−−−→M

ιM







y







y

ιM

∧

M−−−−−→
D f

∧

M

is commutative.

[Hint. Consider the family (ϑp)p∈N of mappings ϑp : ∧∨
p

M →
∧p M given by ϑ0 = 0,

ϑ1 = f and, for p ≥ 2,

ϑp(x1, . . . , xp) =
p
∑

i=1

�

x1 ∧ · · · ∧ f (x i)∧ · · · ∧ xp

�

.

Show that each ϑp (p ≥ 2) is p-linear and alternating. Now construct D f in the obvious
way from (ϑp)p∈N.]

17.11 If M is a cyclic R-module prove that
∧

M = R⊕M .
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17.12 If x ∈Matn×1(R) prove that

det(In + xxt) = 1+ xtx.

17.13 [Pivotal condensation] Let A = [ai j] ∈ Matn×n(R) and suppose that apq 6= 0. Let
B = [bi j] ∈Mat(n−1)×(n−1)(R) be defined as follows:

bi j =































































det

�

ai j aiq

ap j apq

�

if 1≤ i ≤ p− 1, 1≤ j ≤ q− 1;

det

�

aiq ai j

apq ap j

�

if 1≤ i ≤ p− 1, q+ 1≤ j ≤ n;

det

�

ap j apq

ai j aiq

�

if p+ 1≤ i ≤ n, 1≤ j ≤ q− 1;

det

�

apq ap j

aiq ai j

�

if p+ 1≤ i ≤ n, q+ 1≤ j ≤ n.

Prove that

det A=
1

an−2
pq

det B.

[B is called the matrix obtained from A by pivotal condensation using apq as pivot. This
is a particularly useful result for computing determinants of matrices having integer
entries, calculations being made easier by choosing a 1 as a pivot whenever possible.]

17.14 If A and B are square matrices of the same order prove that

det
�

A B
B A

�

= det(A+ B)det(A− B).

17.15 Given a matrix M of the form

M =
�

P Q
R S

�

where P,Q, R, S are square matrices of the same order with P invertible, find a matrix
N of the form

N =
�

A 0
B C

�

such that

N M =
�

I P−1Q
0 S − RP−1Q

�

.

Hence show that if PR = RP then det M = det(PS − RQ), and that if PQ = QP then
det M = det(SP − RQ).



18
MODULES OVER A PRINCIPAL IDEAL DOMAIN;

FINITELY GENERATED ABELIAN GROUPS

We shall now turn our attention to modules over a particular type of ring, namely a
principal ideal domain. Our aim will be to establish a structure theorem for finitely
generated modules over such a ring. At the end of this section we shall apply this
structure theorem to obtain a description of all finitely generated abelian groups
(and hence all finite abelian groups). In the section that follows, we shall apply the
structure theorem to obtain some vector space decomposition theorems that lead to
a fundamental study of canonical forms for matrices.

Definition 18.1 An R-module M is said to be cyclic if it is generated by a singleton
subset; in other words, if there exists x ∈ M such that M = Rx .

Example 18.1 Every simple R-module is cyclic. This follows immediately from The-
orem 5.5.

Example 18.2 Let I be an ideal of R. Then the R-module R/I is cyclic, for it is gen-
erated by 1+ I .

Definition 18.2 By a principal ideal domain we shall mean a commutative integral
domain every ideal I of which is principal in the sense that I = Ra for some a ∈ R;
in other words, every ideal is a cyclic R-module.

Theorem 18.1 A commutative unitary ring R is a principal ideal domain if and only
if, whenever M is a cyclic R-module, every submodule of M is cyclic.

Proof Suppose that R is a principal ideal domain and that M = Rx is a cyclic R-
module. If N is a submodule of M then the mapping ϑ : R→ M given by ϑ(r) = r x
is clearly an R-epimorphism and so, by Theorem 3.1, ϑ←(N) is a submodule of R
whence ϑ←(N) = Ra for some a ∈ R. Now since ϑ is surjective we have, by the
Corollary to Theorem 3.2,

N = ϑ→[ϑ←(N)] = ϑ→(Ra) = Rϑ(a) = Rax ,

whence we see that N is cyclic.
The converse is clear from the fact that R itself is a cyclic R-module, being gen-

erated by {1R}. �

Definition 18.3 For every non-empty subset X of an R-module M we define the
annihilator of X in R by

AnnRX = {r ∈ R ; (∀x ∈ X ) r x = 0}.
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In the case where X = {x} we write AnnRX as AnnR x and, by abuse of language,
call this the annihilator of x in R. We say that x is a torsion element of M when
AnnR x 6= {0}; and that x is torsion-free when AnnR x = {0}. We say that M is a
torsion module if every element of M is a torsion element; and that M is a torsion-
free module if every non-zero element of M is torsion-free.

Example 18.3 If V is a vector space over a field F then V is torsion-free. In fact, if
λ ∈ AnnR x then from λx = 0 we deduce, since λ−1 exists, that x = λ−1λx = λ−10=
0.

Example 18.4 The R-module R is torsion-free if and only if R is an integral domain.
In fact, AnnR x = 0 for every non-zero x ∈ R if and only if R has no zero divisors.

Example 18.5 Every finite abelian group G is a torsion Z-module. In fact, every
element x of G is of finite order and so there is a positive integer n such that nx = 0
whence AnnZx 6= {0}.

We begin our discussion of modules over a principal ideal domain by considering
torsion-free modules. The first result that we establish is the following generalisation
of Theorem 15.20.

Theorem 18.2 If R is a principal ideal domain then an R-module M is flat if and only
if it is torsion-free.

Proof Let F be a free R-module and π : F → M an epimorphism. Then, by the
left/right analogue of Theorem 15.19, M is flat if and only if

(∀a ∈ R) Ra · F ∩ Kerπ ⊆ Ra · Kerπ;

in other words, if and only if

(∀a ∈ R)(∀x ∈ F) ax ∈ Kerπ⇒ ax ∈ a(Kerπ).

Since R has no zero divisors, we see that this is equivalent to the condition

(∀a ∈ R)(∀x ∈ F) ax ∈ Kerπ⇒ x ∈ Kerπ.

On passing to quotients modulo Kerπ, we see that this condition is equivalent to the
condition

(∀a ∈ R)(∀x ∈ M ' F/Kerπ) am= 0⇒ m= 0,

which is precisely the condition that M be torsion-free. �

Since every free module is projective (Theorem 8.6) and every projective module
is flat (Corollary to Theorem 15.16), it follows from the above result that every free
module over a principal ideal domain is torsion-free. Our objective now is to establish
the converse of this for finitely generated modules. For this purpose, we require the
following result.

Theorem 18.3 Let R be a principal ideal domain and let M be a free R-module. Then
every submodule N of M is free with dim N ¶ dim M.



224 Module Theory

Proof Let {x i ; i ∈ I} be a basis of M . Then for every subset J of I we can define a
submodule NJ of N by

NJ = N ∩
⊕

j∈J
Rx j .

Let Γ denote the set of all pairs (J , BJ ) where J ⊆ I and BJ is a basis for NJ with
|BJ |¶ |J |.

We note first that Γ 6= ;. In fact, consider a singleton subset {i} of I . Here we
have

N{i} = N ∩ Rx i .

Now {r ∈ R ; r x i ∈ N} is clearly an ideal of R and so is generated by a singleton
subset, {ri} say, of R. If ri = 0 then clearly N{i} = {0} and ; is a basis for N{i} with

0= |;|< |{i}|= 1.

On the other hand, if ri 6= 0 then N{i} = Rri x i 6= {0} and B{i} = {ri x i} is a basis of
N{i} with |Bi |= 1= |{i}|. Thus we see that Γ 6= ;.

Let us now order Γ by setting

(J , BJ )v (K , BK) ⇐⇒ J ⊆ K , BJ ⊆ BK .

We show as follows that Γ is inductively ordered.
Let {(Jα, BJα) ; α ∈ A} be a totally ordered subset of Γ and let J? =

⋃

α∈A
Jα and

B? =
⋃

α∈A
BJα . Then we observe that (J?, B?) ∈ Γ . In fact, since {Jα ; α ∈ A} is totally

ordered so also is {
⊕

j∈Jα
Rx j ; α ∈ A} and hence so is {NJα ; α ∈ A}. Now for a totally

ordered set {Xα ; α ∈ A} of submodules it is readily seen that
⋃

α∈A
Xα is an R-module,

whence it coincides with
∑

α∈A
Xα. We therefore have

∑

α∈A
NJα =

⋃

α∈A
NJα =

⋃

α∈A

�

N ∩
⊕

j∈Jα
Rx j

�

= N ∩
⋃

α∈A

⊕

j∈Jα
Rx j

= N ∩
∑

α∈A

⊕

j∈Jα
Rx j

= N ∩
⊕

j∈J?
Rx j = NJ? .

Now, since BJα is a basis for NJα for every α ∈ A, we see that B? is a linearly inde-
pendent subset of

⋃

α∈A
NJα = NJ? . To see that B? is in fact a basis of NJ? , we observe

that if x ∈ NJ? then x ∈ NJα for some α ∈ A whence x ∈ LC(Bα) ⊆ LC(B?). Thus
NJ? ⊆ LC(B?), whence we have equality. To show that (J?, B?) ∈ Γ it remains to show
that |B?|¶ |J?|; and this is clear from the fact that, for every α ∈ A, |BJα |¶ |Jα|.

We can now apply Zorn’s axiom to the inductively ordered set Γ to deduce that
Γ contains a maximal element, say (K , BK). Our objective now is to show that K = I .
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Suppose, by way of obtaining a contradiction, that K ⊂ I and let j ∈ I \K . Defin-
ing L = K ∪{ j}, we have NK ⊆ NL . If NK = NL then clearly (L, BK) ∈ Γ , contradicting
the maximality of (K , BK). Thus we have NK ⊂ NL and so, for every y ∈ NL \ NK ,
there exists a non-zero a ∈ R such that y − ax j ∈ NK . It follows that

I(NL) = {a ∈ R ; (∃y ∈ NL) y − ax j ∈ NK}

is a non-zero ideal of R, whence it is of the form Ra j for some non-zero a j ∈ R. Since
a j ∈ I(NL) there exists y1 ∈ NL such that y1−a j x j ∈ NK . We shall show that BK∪{y1}
is a basis for NL .

Given y ∈ NL , there exists r ∈ R such that y− r x j ∈ NK . Since r ∈ I(NL) we have
r = sa j for some s ∈ R. Then y − s y1 ∈ NK and so

y ∈ LC(NK ∪ {y1}) = LC(BK ∪ {y1}),

and consequently BK ∪ {y1} generates NL . This set is also linearly independent; for
y1 − a j x j ∈ LC(BK) with a j 6= 0, so that no non-zero multiple of y1 can belong to
LC(BK). Thus we see that BK ∪ {y1} is a basis of NL .

Now since |BK | ¶ |K | it is clear that |BK ∪ {y1}| ¶ |L| so that (L, BK ∪ {y1}) ∈ Γ ,
contradicting the maximality of (K , BK).

The sum-total of these observations is that K = I .
It now follows that

NK = NI = N ∩
⊕

i∈I
Rx i = N ∩M = N

and so BK is a basis of N . Thus N is free with dim N = |BK |¶ |I |= dim M . �

Corollary 1 The flat Z-module Q is not projective.

Proof If Q were projective it would be a direct summand of a free Z-module and
so, by the above result, Q would be free; and this is not the case (see the remark
that follows Theorem 7.10). �

Theorem 18.4 Let R be a principal ideal domain. Then every finitely generated torsion-
free R-module M is free and of finite dimension.

Proof Let G = {x1, . . . , xm} be a set of generators of M and let H = {y1, . . . , yn} be
a maximal linearly independent subset of G. For each x j ∈ G \H, it follows from the
fact that {x j} ∪ H is not linearly independent that there exist α j ,β1, . . . ,βn ∈ R, not
all of which are zero, such that

α j x j + β1 y1 + · · ·+ βn yn = 0.

Moreover, α j 6= 0 since otherwise H is not linearly independent. We thus have

α j x j ∈
n
⊕

i=1
Ryi .
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It now follows that there exist non-zero α1, . . . ,αm ∈ R such that

( j = 1, . . . , m) α j x j ∈
n
⊕

i=1
Ryi .

Now let r =
m
∏

j=1
α j . Then clearly r 6= 0 and rM ⊆

n
⊕

i=1
Ryi . The mapping

ϑ : M →
n
⊕

i=1
Ryi

given by ϑ(m) = rm is then an R-monomorphism with Imϑ a submodule of the free

R-module
n
⊕

i=1
Ryi . By Theorem 18.3, Imϑ is free and of dimension less than or equal

to n, whence so also is M . �

Corollary 1 For a finitely generated module over a principal ideal domain, the condi-
tions of being free, projective, flat, torsion-free are equivalent. �

• Note that the restriction that M be finitely generated is essential in Theorem
18.4. For example, Q is a non-finitely generated torsion-free Z-module that is
not free.

Theorem 18.5 Let R be a principal ideal domain. Then an R-module is finitely gener-
ated if and only if it is noetherian.

Proof ⇐ : By Theorem 5.1, every noetherian module is finitely generated.
⇒ : Suppose that M is a finitely generated R-module, R being a principal ideal

domain. In order to prove that M is noetherian, we note first that R itself is noethe-
rian; this follows by Theorem 5.1 and the fact that every ideal of R is generated by
a singleton.

We establish the result by induction on the number of generators of M . If M is
cyclic, say M = Rx , then f : R→ M given by f (r) = r x is an R-epimorphism and so

M ' R/Ker f = R/AnnR(x).

It follows from this that M is noetherian; for, by Theorem 5.3, every quotient mod-
ule of a noetherian module is noetherian. Suppose, by way of induction, that the
result holds for all R-modules with less than or equal to k generators. Let M have
k + 1 generators x1, . . . , xk+1 and consider the submodule N that is generated by
{x1, . . . , xk}. By the induction hypothesis, N is noetherian; and so also is M/N since
it is generated by {xk+1+N}. It now follows by Theorem 5.4 that M is noetherian.�

Corollary 1 If R is a principal ideal domain then every submodule of a finitely gener-
ated R-module is finitely generated. �

For every non-zero module M over a principal ideal domain R we shall denote
by T (M) the subset of M consisting of the torsion elements of M . It is readily seen
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that T (M) is a submodule of M . In fact, if x , y ∈ T (M) then r x = 0 = s y for some
non-zero r, s ∈ R whence, since R is commutative,

rs(x − y) = rsx − rs y = rsx − sr y = 0− 0= 0

with rs 6= 0, and so x − y ∈ T (M); and for every p ∈ R we have

rpx = pr x = p0= 0

so that px ∈ T (M). We call T (M) the torsion submodule of M .

We shall now show that, in the case where M is finitely generated, T (M) is a
direct summand of M .

Theorem 18.6 Let M be a non-zero finitely generated module over a principal ideal
domain R. Then M/T (M) is free, and there is a free submodule F of M such that

M = T (M)⊕ F.

Moreover, the dimension of such a submodule F is uniquely determined.

Proof We note first that M/T (M) is torsion-free. In fact, if a ∈ R is such that a 6= 0
and a

�

x + T (M)
�

= 0+ T (M) then ax ∈ T (M) and so bax = 0 for some non-zero
b ∈ R whence, since ba 6= 0, we have x ∈ T (M) and so x + T (M) = 0+ T (M).

Since M is finitely generated, it is clear that so also is every quotient module of
M ; and in particular so is M/T (M).

It now follows by Theorem 18.4 that M/T (M) is free and of finite dimension.
Since in particular M/T (M) is projective, the natural short exact sequence

0−−−−−→ T (M)
ι

−−−−−→M
\

−−−−−→M/T (M)−−−−−→0

splits and so we have that
M = T (M)⊕ F

where F is a submodule of M that is isomorphic to M/T (M), whence it is free; in
fact, F = Imϑ where ϑ is a splitting morphism associated with \.

The final statement is now clear from the fact that dim F = dim M/T (M). �

• The dimension of the free R-module F in the above decomposition is often
called the rank of M .

Since we know, by the Corollary to Theorem 7.6, that every free R-module is
isomorphic to a direct sum of copies of R, we shall now concentrate on torsion R-
modules. Once we know their structure, we can use Theorem 18.6 to determine that
of all finitely generated modules over a principal ideal domain. Theorem 18.6 repre-
sents the first blow struck in this direction; we shall require two others to complete
our task.

In order to carry out this investigation, we mention some basic facts concerning
principal ideal domains. The reader who is unfamiliar with these should consult a
standard algebra text.
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• Every principal ideal domain R is a unique factorisation domain. Every a ∈ R
that is neither zero nor a unit can be expressed in the form

a = u
t
∏

i=1
pαi

i

where u is a unit and p1, . . . , pt are non-associated primes in R with each αi a
positive integer. Such a decomposition is unique to within association.

• If a1, . . . , an ∈ R then d ∈ R is a greatest common divisor of a1, . . . , an if and
only if

Rd =
n
∑

i=1
Rai .

In particular, a1, . . . , an are relatively prime, in the sense that 1R is a greatest
common divisor of a1, . . . , an if and only if there exist x1, . . . , xn ∈ R such that

a1 x1 + · · ·+ an xn = 1R.

Suppose now that M is an R-module. Given x ∈ M and r ∈ R, we shall say that
x is annihilated by r if r ∈ AnnR x . We shall denote by M(r) the set of elements x in
M that are annihilated by r. It is clear that M(r) forms a submodule of M for every
r ∈ R.

Suppose now that r, s ∈ R are such that r|s (i.e. s = t r for some t ∈ R). Then
clearly we have M(r) ⊆ M(s). In particular, for every r ∈ R we have the ascending
chain

M(r) ⊆ M(r2) ⊆ · · · ⊆ M(rn) ⊆ M(rn+1) ⊆ . . .

of submodules of M . It is clear that

Mr =
⋃

n≥1
M(rn)

is also a submodule of M , and consists of those elements of M that are annihilated
by some power of r. Moreover, for every submodule N of M we have

Nr = N ∩Mr .

Definition 18.4 Let R be a principal ideal domain and let p ∈ R be prime. An R-
module M is said to be a p-module (or to be p-primary) if M = Mp.

• Note that since M is a p-module if and only if, for every x ∈ M , there is an
integer n¾ 1 such that pn x = 0, every p-module is a torsion module.

Example 18.6 If p ∈ R is prime and n¾ 1 then R/Rpn is a cyclic p-module.

Theorem 18.7 If R is a principal ideal domain and a1, . . . , an ∈ R are pairwise prime
then, for every torsion R-module M,

M
� n
∏

i=1
ai

�

=
n
⊕

i=1
M(ai).
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Proof There being nothing to prove when n = 1, consider the case n = 2. There
exist x1, x2 ∈ R such that a1 x1+a2 x2 = 1. For every y ∈ M(a1a2) we therefore have

y = a1 x1 y + a2 x2 y

with a1 x1 y ∈ M(a2) since a2a1 x1 y = x1a1a2 y = x10 = 0; and likewise a2 x2 y ∈
M(a1). Thus we see that M(a1a2) = M(a1)+M(a2). Now if z ∈ M(a1)∩M(a2) then

z = a1 x1z + a2 x2z = x1a1z + x2a2z = x10+ x20= 0.

Consequently we have M(a1a2) = M(a1)⊕M(a2).

The result is now immediate by induction; for an and
n−1
∏

i=1
ai are relatively prime,

so that M
� n
∏

i=1
ai

�

= M
�n−1
∏

i=1
ai

�

⊕M(an). �

Corollary 1 Let a ∈ R have the prime factorisation a = u
n
∏

i=1
pαi

i where u is a unit.

Then for i = 1, . . . , n we have

[M(a)]pi
= M

�

pαi
i

�

.

Proof For each i, pαi
i is relatively prime to

∏

j 6=i
p
α j

j and so, by the above, we have

M(a) = M
�

pαi
i

�

⊕M
�

∏

j 6=i
p
α j

j

�

.

Using the fact that M
�

pαi
i

�

⊆ Mpi
we have, using the modular law (Theorem 2.4),

[M(a)]pi
= M(a)∩Mpi

=
�

M
�

pαi
i

�

⊕
�

∏

j 6=i
p
α j

j

��

∩Mpi

=
�

Mpi
∩M

�

∏

j 6=i
p
α j

j

��

+M
�

pαi
i

�

.

We shall now show that
Mpi
∩M

�

∏

j 6=i
p
α j

j

�

= {0},

whence the result will follow.
It is readily seen that, for every positive integer β , pβi is relatively prime to

∏

j 6=i
p
α j

j

and so there exist r, t ∈ R such that

rpβi + t
∏

j 6=i
p
α j

j = 1.

For every y ∈ Mpi
∩M

�

∏

j 6=i
p
α j

j

�

we then have, using a sufficiently large β ,

y = 1R y = rpβi y + t
∏

j 6=i
p
α j

j y = r0+ t0= 0. �
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We are now ready to strike the second blow.

Theorem 18.8 Let R be a principal ideal domain and let M be a non-zero finitely
generated torsion R-module. Then there are primes p1, . . . , pn ∈ R, determined uniquely
to within association, such that Mpi

6= {0} for each i and

M =
n
⊕

i=1
Mpi

.

Proof Consider AnnRM . This is an ideal of R. It is not the whole of R since M is
non-zero; and it is not zero since if {x1, . . . , xn} is a set of generators of M then there
are non-zero elements r1, . . . , rn of R such that ri x i = 0 for each i and consequently

r =
n
∏

i=1
ri is a non-zero element of AnnRM . We thus have AnnRM = Rg where g is

neither zero nor a unit. Let

g = u
m
∏

i=1
pαi

i

be a factorisation of g. Since M = M(g) it follows from Theorem 18.7 that

M = M(g) =
m
⊕

i=1
M
�

pαi
i

�

.

By the Corollary to Theorem 18.7 we deduce that, for every i,

Mpi
= [M(g)]pi

= M
�

pαi
i

�

.

We thus have M =
m
⊕

i=1
Mpi

.

We now observe that each Mpi
is non-zero. In fact, suppose that we had Mp j

= {0}
for some j. Then we would have

M =
⊕

i 6= j
Mpi
=
⊕

i 6= j
M
�

pαi
i

�

= M
�

∏

i 6= j
pαi

i

�

from which it would follow that
∏

i 6= j
pαi

i ∈ AnnRM = Rg whence g, and in particular

p j , would divide
∏

i 6= j
pαi

i , a contradiction.

That each Mpi
is finitely generated follows immediately from the Corollary to

Theorem 18.5.
As for uniqueness, suppose that Mq 6= {0}where q is a prime. Let x be a non-zero

element of Mq so that AnnR x = Rd for some d ∈ R with d not a unit (for otherwise
AnnR x = R and we have the contradiction x = 0). Now this ideal Rd clearly contains
qβ for some β > 0 and also contains g. Thus d|qβ and so d = qγ where 1 ¶ γ ¶ β .
Since d|g we deduce that q|g. Thus q is an associate of a unique prime divisor pi of
g; in other words, we have Mq = Mpi

. �

The above result reduces our problem to a study of non-zero finitely generated
p-modules over a principal ideal domain. In order to tackle this, we require some
preliminary results.
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Theorem 18.9 Let R be a principal ideal domain, let M be a free R-module, and let
N be a non-zero submodule of M. Let f ∈ M d be such that f →(N) is maximal in the
subset {ϑ→(N) ; ϑ ∈ M d} of ideals of R. Then there exists d ∈ R and x ∈ M such that
d 6= 0, f (x) = 1 and
(1) M = Rx ⊕ Ker f ;
(2) N = Rd x ⊕ (N ∩ Ker f ).

Proof We note first that R is noetherian and therefore satisfies the maximum con-
dition on ideals (Theorem 5.1); such a choice of f ∈ M d is therefore possible.

Since f →(N) is a principal ideal of R, there exists d ∈ R such that f →(N) =
Rd. We note first that d 6= 0; for otherwise we would have f →(N) = {0} and the
maximality of f →(N) would then imply that ϑ→(N) = {0} for every ϑ ∈ M d , which
is nonsense. [For example, if {ei ; i ∈ I} is a basis of M and x is a non-zero element
of N then for some coordinate form ed

j on M we have ed
j (x) 6= 0; see the Corollary

of Theorem 9.1.]
Now let y ∈ N be such that f (y) = d. Then we note that there exists x ∈ M such

that y = d x . [In fact, for every g ∈ M d we have g(y) ∈ Rd. For, the ideal Rd+Rg(y)
is principal, say Rd + Rg(y) = Ra, so that rd + sg(y) = a for some r, s ∈ R, whence

(r f + sg)(y) = r f (y) + sg(y) = rd + sg(y) = a,

giving a ∈ (r f + sg)→(N) and therefore

Rd ⊆ Ra ⊆ (r f + sg)→(N).

The maximality of Rd = f →(N) now yields Rd = Ra whence we obtain

g(y) ∈ Rg(y) ⊆ Rd.

It follows from this observation that the coordinates of y relative to any basis of M
all belong to Rd (see Corollary 1 to Theorem 9.1) whence y = d x for some x ∈ M .]
Furthermore, since d = f (y) = f (d x) = d f (x) and d 6= 0, we have f (x) = 1.

We now establish (1). Since f (x) = 1 we have Rx ∩ Ker f = {0}; for f (r x) = 0
implies that r = r1= r f (x) = f (r x) = 0. Also, given m ∈ M , we have

f [m− f (m)x] = f (m)− f (m) f (x) = f (m)− f (m) = 0

and so m− f (m)x ∈ Ker f , showing that M = Rx + Ker f whence (1) follows.
As for (2), we note that

Rd x ∩ N ∩ Ker f ⊆ Rx ∩ Ker f = {0}.

Moreover, if n ∈ N then f (n) = rd for some r ∈ R, so that

f (n− rd x) = f (n)− rd f (x) = rd − rd = 0

whence
n= rd x + (n− rd x) ∈ Rd x + (N ∩ Ker f ).

Thus we have N ⊆ Rd x +(N ∩Ker f ); and since the reverse inclusion is obvious, (2)
follows. �
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Corollary 1 For all g ∈ M d we have g→(N) ⊆ f →(N); in other words, f →(N) is the
biggest element of the subset {ϑ→(N) ; ϑ ∈ M d} of ideals of R.

Proof We note first that, for every g ∈ M d ,

g→(N ∩ Ker f ) ⊆ f →(N).

In fact, suppose that that g→(N ∩ Ker f ) 6⊆ f →(N). Since M = Rx ⊕ Ker f we can
define h ∈ M d by the following prescription : given z = z1 + z2 with z1 ∈ Rx and
z2 ∈ Ker f , let h(z) = f (z1) + f (z2). Then from

N = Rd x ⊕ (N ∩ Ker f )

we have
h→(N) = h→(Rd x) + h→(N ∩ Ker f )

= f →(Rd x) + g→(N ∩ Ker f )
= f →(N) + g→(N ∩ Ker f )
⊃ f →(N),

which contradicts the maximality of f →(N).
It follows immediately from this that

g→(N) = g→(Rd x) + g→(N ∩ Ker f )
⊆ Rg(d x) + f →(N)
= Rg(y) + f →(N)
⊆ Rd + f →(N)
= f →(N). �

Theorem 18.10 Let R be a principal ideal domain. If M is a free R-module and N is a
submodule of M of finite dimension n then there is a basis B of M, a subset {x1, . . . , xn}
of B, and non-zero elements d1, . . . , dn of R such that

(1) {d1 x1, . . . , dn xn} is a basis of N ;

(2) (i = 1, . . . , n) di+1|di .

Moreover, the principal ideals Rd1, . . . , Rdn are uniquely determined by these conditions.

Proof We proceed by induction. If n= 0 then N = {0} and ; is a basis for N . There
is therefore nothing to prove in this case. Suppose then that the result holds for
submodules of dimension n− 1 and let N be of dimension n. By Theorem 18.9 and
its Corollary, there exist dn ∈ R and xn ∈ M such that

dn 6= 0, f (xn) = 1, M = Rxn ⊕ Ker f , N = Rdn xn ⊕ (N ∩ Ker f ),

where f ∈ M d is such that f →(N) = Rdn is the biggest element of the subset
{ϑ→(N) ; ϑ ∈ M d} of ideals of R.



Modules over a principal ideal domain; finitely generated abelian groups 233

Since f (xn) = 1 and dn 6= 0, we see that {dn xn} is linearly independent and so,
by Theorem 7.8 applied to the direct sum

Rdn xn ⊕ (N ∩ Ker f ),

we see that the submodule N ∩Ker f of Ker f has dimension n−1. By the induction
hypothesis, there is therefore a basis B1 of Ker f , a subset {x1, . . . , xn−1} of B1, and
non-zero elements d1, . . . , dn−1 of R such that {d1 x1, . . . , dn−1 xn−1} is a basis of N ∩
Ker f with di+1|di for 1¶ i ¶ n−2. The direct sum decomposition M = Rxn⊕Ker f
now shows that B = {xn} ∪ B1 is a basis of M ; and N = Rdn xn ⊕ (N ∩ Ker f ) shows
that {d1 x1, . . . , dn−1 xn−1, dn xn} is a basis of N . We have to show that dn|dn−1.

For this purpose, define ϑ ∈ M d by

ϑ(z) =

�

1 if z = xn−1;

0 if z ∈ B \ {xn−1}.

Then we have Rdn−1 = ϑ→(N) ⊆ f →(N) = Rdn and so dn|dn−1.
As for the last statement, we note from (2) that the ideals Rdi form the ascending

chain
{0} ⊂ Rd1 ⊆ Rd2 ⊆ · · · ⊆ Rdn ⊆ R.

If now any di is a unit then so is every d j with j > i. Suppose then that d1, . . . , dk are
the non-units in the list of di , so that we have the chain

{0} ⊂ Rd1 ⊆ Rd2 ⊆ · · · ⊆ Rdk ⊂ R.

Clearly, we have
n
⊕

i=1
R/Rdi =

k
⊕

i=1
R/Rdi . (18.1)

Moreover, since the assignment

(r1 x1, . . . , rn xn) 7→ (r1 + Rd1, . . . , rn + Rdn)

defines an R-epimorphism ζ :
n
⊕

i=1
Rx i →

n
⊕

i=1
R/Rdi with kernel

n
⊕

i=1
Rdi x i , we have

n
⊕

i=1
Rx i/N =

n
⊕

i=1
Rx i

À n
⊕

i=1
Rdi x i '

n
⊕

i=1
R/Rdi . (18.2)

To establish uniqueness, we shall invoke Theorem 17.18. By that result, for q =

1, . . . , k the q-th exterior power of
k
⊕

i=1
R/Rdi is such that

∧q
� k
⊕

i=1
R/Rdi

�

'
⊕

J∈Sq

R/IJ (18.3)

where Sq denotes the collection of all subsets of {1, . . . , k} that consist of q elements
and, for J ∈ Sq, IJ =

∑

i∈J
Rdi .
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Now in the case under consideration, the ideals in question form an ascending
chain. For every J ∈ Sq we therefore have IJ = Rdq(J) where q(J) denotes the greatest
integer in J . Since q(J)≥ q with q(J) = q only when J = {1, . . . , q}, it follows that

(q = 1, . . . , k) Rdq =
⋂

J∈Sq

Rdq(J) =
⋂

J∈Sq

IJ .

We therefore conclude from (18.1), (18.2), (18.3) that, for each q,

Rdq =
⋂

J∈Sq

IJ = AnnR
⊕

J∈Sq

R/IJ

= AnnR

∧q
� k
⊕

i=1
R/Rdi

�

= AnnR

∧q
� n
⊕

i=1
Rx i/N

�

,

which establishes the required uniqueness. �

We are now ready to strike the third blow.

Theorem 18.11 Let Mp be a non-zero finitely generated p-module over a principal
ideal domain R with p a prime in R. Then Mp is a coproduct of a finite number of
uniquely determined non-zero cyclic p-modules.

More precisely, there are uniquely determined ideals Rpα1 , . . . , Rpαk of R such that

{0} ⊂ Rpα1 ⊆ Rpα2 ⊆ · · · ⊆ Rpαk ⊂ R

and an isomorphism

Mp '
k
⊕

j=1
R/Rpα j .

Proof Let F be a free R-module of dimension n such that there is an epimorphism
π : F → Mp. By Theorem 18.3, Kerπ is free and of dimension m where m ¶ n. By
Theorem 18.10, there is a basis B = {x1, . . . , xn} of F , a subset {x1, . . . , xm} of B, and
d1, . . . , dm ∈ R such that

(1) {d1 x1, . . . , dm xm} is a basis of Kerπ;
(2) (i = 1, . . . , m− 1) di+1|di .

We note from (1) that, for each i,

Rdi = AnnRπ(x i).

In fact, if r ∈ AnnRπ(x i) then π(r x i) = rπ(x i) = 0 gives r x i ∈ Kerπ whence, by
(1), there exists λi ∈ R such that r x i = λidi x i . It follows that r = λidi ∈ Rdi and so
AnnRπ(x i) ⊆ Rdi . On the other hand, diπ(x i) = π(di x i) = 0 so di ∈ AnnRπ(x i) and
we have the reverse inclusion.

We also note that some of the di may be units; this will happen when x i ∈ Kerπ,
for then Rdi = AnnR{0}= R.
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We note further that if d j is not a unit then Rd j = Rpα j for some α j ≥ 1. For,
since Mp is a p-module, AnnRπ(x i) contains a power of p, say pβ j , whence Rpβ j ⊆
AnnRπ(x j) and consequently AnnRπ(x j) = Rpα j where α j ¶ β j; and α j ≥ 1 since
otherwise α j = 0 and Rd j = AnnRπ(x j) = R which contradicts the assumption that
d j is not a unit.

We shall now show that in fact m= n. Suppose, by way of obtaining a contradic-
tion, that m< n and let

⊕n−m R denote a direct sum of n−m copies of R. Consider
the R-morphism

ϑ :
n
⊕

i=1
Rx i →

m
⊕

i=1
R/Rdi ⊕

⊕n−m R

given by the prescription

ϑ(r1 x1, . . . , rn xn) = (r1 + Rd1, . . . , rn + Rdn, rm+1, . . . , rn).

This is clearly an R-epimorphism with kernel
m
⊕

i=1
Rdi x i = Kerπ. Consequently,

m
⊕

i=1
R/Rdi ⊕

⊕n−m R' F/Kerπ' Mp.

But Mp is a p-module and so is a torsion module; and in the above isomorphisms the

module on the left has torsion submodule
m
⊕

i=1
R/Rdi . This contradiction shows that

we must have m= n.
Since m= n, we deduce from the above that

Mp '
n
⊕

i=1
R/Rdi .

On deleting any units in the list d1, . . . , dn we obtain a chain of ideals

{0} ⊂ Rd1 ⊆ Rd2 ⊆ · · · ⊆ Rdk ⊂ R

with R/Rdi 6= {0} for i = 1, . . . , k and

Mp '
n
⊕

i=1
R/Rdi =

k
⊕

i=1
R/Rdi =

k
⊕

i=1
R/Rpαi .

The uniqueness statement is immediate from Theorem 18.10. �

Combining Theorems 18.6, 18.8 and 18.11, we can now state the fundamental
structure theorem for finitely generated modules over a principal ideal domain.

Theorem 18.12 Every non-zero finitely generated module M over a principal ideal
domain R is a coproduct of a finite number of cyclic modules :

M '
n
⊕

i=1

ki
⊕

j=1
R/Rp

αi j

i ⊕
⊕m R.

Moreover, such a direct sum representation is unique in the sense that the number m
(the rank of M) of torsion-free cyclic modules (copies of R) is the same for all such rep-
resentations, and the cyclic pi-modules R/Rp

αi j

i are determined to within isomorphism.
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Proof Let T be the torsion submodule of M . Then by Theorem 18.6 we have

M ' T ⊕
⊕m R

where m is the torsion-free rank of M . Now let g be a generator of AnnRT with a

prime factorisation g = u
n
∏

i=1
pαi

i . Then, by Theorem 18.8, T =
n
⊕

i=1
Tpi

where each

Tpi
is a pi-module. By Theorem 18.11, we have Tpi

'
ki
⊕

j=1
R/Rp

αi j

i whence the result,

together with the various uniqueness properties, follows. �

Our objective now is to show that the above result allows no further refinement
of the direct summands involved. For this purpose, consider the following notion.

Definition 18.5 An R-module is said to be indecomposable if it cannot be expressed
as a direct sum of two non-zero submodules.

For a principal ideal domain R the finitely generated R-modules that are inde-
composable are completely determined by the following result.

Theorem 18.13 A non-zero finitely generated module M over a principal ideal do-
main R is indecomposable if and only if M is either a torsion-free cyclic module (hence
isomorphic to R) or a cyclic p-module (hence isomorphic to R/Rpn for some prime p
and some n> 0).

Proof The necessity follows immediately from Theorem18.12.
As for sufficiency, suppose that M is cyclic and that M = N ⊕Q. If m generates

M , let n ∈ N and q ∈ Q be such that m = n+ q. Since M = Rm there exist α,β ∈ R
such that n = αm and q = βm. Consequently we have αβm ∈ N ∩Q = {0} and so
αβm= 0.

Suppose first that M is torsion-free. In this case αβ = 0 so either α= 0 or β = 0.
If α = 0 then n = 0 and m = q ∈ Q whence M = Q; and if β = 0 then q = 0 and
m= n ∈ N whence M = N . Thus M is indecomposable.

Suppose now that M is a p-module. In this case AnnRm = Rpr for some r ≥
1. Since αβm = 0 we therefore have pr |αβ . Thus there exist s, t ∈ N such that
s + t = r, ps|α, and pt |β . Let α′,β ′ be such that α = psα′ and β = ptβ ′, and let
a = r −min{s, t}. Then we have

pam= pa(n+ q) = pa(αm+ βm) = pa(psα′m+ ptβ ′m) = 0;

for a+ s ≥ r and a+ t ≥ r so that

pa+s, pa+t ∈ Rpr = AnnRm.

We thus have pa ∈ AnnRm= Rpr . It follows from the definition of a that min{s, t}=
0. Thus either s = 0 in which case t = r, βm = 0, q = 0 and m = n ∈ B; or t = 0
in which case s = r, αm = 0, n = 0 and m = q ∈ Q. Thus in this case M is again
indecomposable. �
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It is clear from Theorem 18.13 that no further refinement of the direct sum de-
composition of Theorem 18.12 is possible. An important consequence of this is the
following cancellation property.

Theorem 18.14 Suppose that M , N , P are finitely generated modules over a principal
ideal domain R. Then

M ⊕ N ' M ⊕ P =⇒ N ' P.

Proof It clearly suffices to consider only the case where M is indecomposable. Ex-
pressing M ⊕N and M ⊕ P as coproducts of indecomposables as in Theorem 18.12,
we obtain the result from the uniqueness up to isomorphism of the summands. �

• It should be noted that Theorem 18.14 does not hold when M is not finitely
generated. For example, consider the mapping

ϑ : ZN ⊕Z→ ZN

described by ( f , m) 7→ ϑ f ,m where

ϑ f ,m(n) =

�

m if n= 0;

f (n− 1) if n 6= 0.

Put less formally, ϑ f ,m is the sequence whose first term is m and whose other
terms are those of f . We leave to the reader the task of showing that ϑ is
a Z-isomorphism. We therefore have ZN ⊕ Z ' ZN ' ZN ⊕ {0}, and so the
cancellation property of Theorem 18.14 fails for M = ZN.

Suppose now that M is a finitely generated torsion module over a principal ideal
domain R. By the structure theorem we have

M '
n
⊕

i=1

ki
⊕

j=1
R/Rp

αi j

i .

The unique ideals Rp
αi j

i appearing in this decomposition are called the elementary
divisor ideals associated with M . Our aim now is to rearrange the above direct sum in
a way that is essentially the same as inverting the order of summation. In so doing,
we shall bring to light other important ideals of R.

For this, we require the following properties of a principal ideal domain R.

• If a, b ∈ R let d be a greatest common divisor of a, b and let m be a least
common multiple of a, b. Then md and ab are associates. In particular, if a and
b are relatively prime then ab is a least common multiple. A simple inductive

proof shows that if a1, . . . , an are pairwise prime then
n
∏

i=1
ai is a least common

multiple of a1, . . . , an. Since m is a least common multiple of a, b if and only if
Rm= Ra ∩ Rb, it follows that if a1, . . . , an are pairwise prime then

R
� n
∏

i=1
ai

�

=
n
⋂

i=1
Rai .
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• We also have, for a and b relatively prime,

R/(Ra ∩ Rb)' R/Ra× R/Rb.

In fact, consider the R-morphism f : R→ R/Ra× R/Rb given by

f (r) = (r + Ra, r + Rb).

It is clear that Ker f = Ra∩Rb. Now since a, b are relatively prime, there exist
x , y ∈ R such that xa+ y b = 1. Consequently,

f (t xa+ s y b) = (t xa+ s y b+ Ra, t xa+ s y b+ Rb)
= (s y b+ Ra, t xa+ Rb)
= (s− sxa+ Ra, t − t y b+ Rb)
= (s+ Ra, t + Rb),

and so f is surjective. It follows that R/(Ra ∩ Rb) = R/Ker f ' R/Ra × R/Rb.
A simple inductive proof now shows that if a1, . . . , an are pairwise prime then

R
�

n
⋂

i=1
Rai '

n
⊕

i=1
R/Rai .

Let us now return to our consideration of the elementary divisor ideals of a given
torsion R-module M .

By Theorem 18.11 we have the chains

{0} ⊂ Rpα11
1 ⊆ Rpα12

1 ⊆ · · · ⊆ Rp
α1k1
1 ⊂ R;

{0} ⊂ Rpα21
2 ⊆ Rpα22

2 ⊆ · · · ⊆ Rp
α2k2
2 ⊂ R;

...

{0} ⊂ Rpαn1
n ⊆ Rpαn2

n ⊆ · · · ⊆ Rp
αnkn
n ⊂ R.

Let t = max{ki ; 1 ¶ i ¶ n} and for each i define αi j = 0 for j = ki + 1, . . . , t.
[This is simply a convenient device whereby the above array may be regarded as
having n rows and t columns of ideals Rp

αi j

i some of which are equal to R.] Now, for
j = 1, . . . , t define

q j =
n
∏

i=1
p
αi j

i .

In other words, q j is formed by taking the product of the entries in the j-th column
of the array. Since for each j the elements p

α1 j

1 , . . . , p
αn j
n are pairwise prime, their

product q j is a least common multiple and so

Rq j = R
� n
∏

i=1
p
αi j

i

�

=
n
⋂

i=1
Rp

αi j

i .



Modules over a principal ideal domain; finitely generated abelian groups 239

The various inclusions in the above array now show that we have the chain

{0} ⊂ Rq1 ⊆ Rq2 ⊆ · · · ⊆ Rqt ⊂ R.

Now since p
α1 j

1 , . . . , p
αn j
n are pairwise prime, it follows from the second of the above

observations concerning principal ideal domains that

( j = 1, . . . , t) R/Rq j = R
�

n
⋂

i=1
Rp

αi j

i '
n
⊕

i=1
R/Rp

αi j

i .

We therefore see, by Theorem 18.12 and the associativity and commutativity of co-
products, that

M '
t
⊕

j=1
R/Rq j .

These observations lead to the following result which can be regarded as a gen-
eralisation of Theorem 18.11.

Theorem 18.15 Let M be a finitely generated torsion module over a principal ideal
domain R. Then there are uniquely determined ideals Rq1, . . . , Rqt of R such that

{0} ⊂ AnnRM = Rq1 ⊆ Rq2 ⊆ · · · ⊆ Rqt ⊂ R

and an isomorphism

M '
t
⊕

i=1
R/Rqi .

Proof In view of the preceding observations and the fact that

AnnRM = AnnR

t
⊕

i=1
R/Rqi =

t
⋂

i=1
Rqi = Rq1,

it suffices to establish uniqueness.
Suppose then that Ra1, . . . , Ram are ideals of R such that

{0} ⊂ Ra1 ⊆ Ra2 ⊆ · · · ⊆ Ram ⊂ R

and M '
m
⊕

i=1
R/Rai . Then AnnRM =

m
⋂

i=1
Rai = Ra1 and so Ra1 = Rq1. We thus have

R/Rq1 ⊕
t
⊕

i=2
R/Rqi ' M ' R/Rq1 ⊕

m
⊕

i=2
R/Rai .

It follows by Theorem 18.14 that
t
⊕

i=2
R/Rqi '

m
⊕

i=2
R/Rai .

Now the annihilator of the module on the left is
t
⋂

i=2
Rqi = Rq2, whereas that of the

module on the right is
m
⋂

i=2
Rai = Ra2. Consequently Ra2 = Rq2 and we can repeat the

above argument. The outcome is that m = t and Rai = Rqi for i = 1, . . . , t and this
establishes the uniqueness. �
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Definition 18.6 The uniquely determined ideals Rq1, . . . , Rqt in Theorem 18.15 are
called the invariant factor ideals associated with M .

We shall now rephrase some of the above results in terms of submodules. If R is
a principal ideal domain and M is an R-module then a finite sequence (Mi)1¶i¶n of
submodules of M is called a normal sequence for M if each Mi is a non-zero cyclic

submodule such that M =
n
⊕

i=1
Mi and

AnnRM1 ⊆ AnnRM2 ⊆ · · · ⊆ AnnRMn.

If M is finitely generated then it follows from the above results that there is a normal
sequence for M that is unique in the sense that the elements of any such sequence are
determined to within R-isomorphism. In fact, let M = T (M)⊕ F where T (M) is the
torsion submodule of M and F is free (see Theorem 18.6). If {a1, . . . , an} is a basis
of F and if

ϑ : T (M)→
t
⊕

i=1
R/Rqi

is an R-isomorphism (Theorem 18.15), then for i = 1, . . . , t we see that

ϑ←(R/Rqi) = Mi

is a non-zero cyclic submodule of T (M) with AnnRMi = Rqi , from which it follows
that (Mi)1¶i¶t is a normal sequence for T (M) and hence that

Ra1, . . . , Ran, M1, . . . , Mn

is a normal sequence for M . The uniqueness up to isomorphism of these submodules
is assured by the previous results.

We end this section by considering the particular case where the principal ideal
domain in question is Z.

Now it is clear that an abelian group is a torsion Z-module when every element
is of finite order (Example 18.5), and is a torsion-free Z-module when every non-
zero element is of infinite order. The general structure theorem therefore yields the
following particular case.

Theorem 18.16 Every finitely generated abelian group G is a coproduct of a finite
number of cyclic groups :

G '
n
⊕

i=1

ki
⊕

j=1
Z/Zp

αi j
i
⊕
⊕mZ.

Moreover, such a direct sum decomposition is unique in the sense that the number m
(the rank of G) of torsion-free cyclic groups (copies of Z) is the same for all such de-
compositions, and the cyclic pi-groups Z/Zp

αi j
i

are unique to within isomorphism. �
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Corollary 1 Every finite abelian group G is a coproduct of a finite number of uniquely
determined cyclic groups :

G '
n
⊕

i=1

ki
⊕

j=1
Z/Zp

αi j

i . �

Of course, every finitely generated abelian group also has a normal sequence
(Gi)1¶i¶n of subgroups of which it is the direct sum. Note that in this particular case,
if AnnZGk = Zqk then qk is precisely the order of Gk.

Recalling how the elementary divisor ideals were obtained, we can also establish
the following result.

Theorem 18.17 Let n be a positive integer with the prime factorisation n =
m
∏

i=1
pαi

i .

For each of the exponents αi , let S(αi) denote the set of all decreasing chains of integers

βi1 ≥ βi2 ≥ · · · ≥ βini
> 0 such that

ni
∑

j=1
βi j = αi . Then the number of pairwise non-

isomorphic abelian groups of order n is
m
∏

i=1
|S(αi)|.

Proof Every element of
m

∧∨
i=1

S(αi) gives rise to an abelian group of order n, namely

m
⊕

i=1

ni
⊕

j=1
Z/Zp

βi j

i .

Moreover, by the preceding results and the various uniqueness properties, every
abelian group of order n is isomorphic to such a coproduct; and distinct elements of
m

∧∨
i=1

S(αi) yield non-isomorphic groups. �

EXERCISES
18.1 If R is a commutative unitary ring and N is a cyclic R-module prove that a mapping

f : N → N is an R-morphism if and only if f is a homothety.

18.2 Let M be a finitely generated module over a principal ideal domain R and let the fi-
nite sequence (Rai)1¶i¶n of cyclic modules be a normal sequence for M . Given i, j ∈
{1, . . . , t} with i ¶ j, prove that there is a unique R-morphism fi j : Rai → Ra j such that
fi j(ai) = a j .

[Hint. Let αi : R → Rai be the epimorphism r 7→ rai . Let ζi : R/AnnRai → Rai be
the isomorphism induced by αi and let f : R/AnnRai → R/AnnRa j be the morphism
induced by idR. Consider fi j = ζ j ◦ f ◦ ζ−1

i .]

Deduce that there is a unique R-morphism αi j : M → M such that

αi j(ak) =

�

a j if k = i;
0 if k 6= i.

[Hint. Try αi j = in j ◦ fi j ◦ pri .]
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Hence show that the ring
�

MorR(M , M),+,◦
�

is commutative if and only if M is cyclic.

[Hint.⇒ : Show that t ¾ 2 is impossible by considering (α12 ◦α21)(a).

⇐ : Use Exerise 18.1.]

18.3 Let M be a finitely generated p-module over a principal ideal domain R so that, by

Theorem 18.11, M '
k
⊕

j=1
R/Rpα j . Prove that M(p) '

k
⊕

j=1
Rpα j−1/Rpα j '

⊕k R/Rp and

deduce that M(p) is a vector space of dimension k over the field R/Rp. Observing
that every submodule of M is also a finitely generated p-module, deduce that if H is a

submodule of M then H '
h
⊕

j=1
R/Rpβ j where h¶ k and β j ¶ α j for j = 1, . . . , h.

[Hint. Observe that H(p) is also a vector space over R/Rp, of dimension h. Suppose, by
way of obtaining a contradiction, that there is a smallest j such that α j < β j . Consider

M ′
j−1 = {p

α j x ; x ∈ M} and H ′ = {pα j x ; x ∈ H}; show that M ′ '
j−1
⊕

i=1
Rpα j/Rpαi , a

direct sum of j − 1 non-zero cyclic modules, and likewise for H ′.]

18.4 If M is a non-zero torsion module over a principal ideal domain R, prove that M is
cyclic if and only if there are pairwise non-associated primes p1, . . . , pk ∈ R and positive

integers α1, . . . ,αk such that M '
k
⊕

i=1
R/Rpαi

i .

18.5 Let G be an abelian group of order pn where p is a prime, and let its chain of elementary
divisor ideals be

Zpα1 ⊆ Zpα2 ⊆ · · · ⊆ Zpαk .

Show that G is generated by {g1, . . . , gk} where the order of gi is pαi .

[Hint. Use Theorem18.11.]

For r = 0, . . . , n define Gr = {x ∈ G ; pr x = 0}. Show that Gr is a subgroup of G and
that it is generated by {pα1−r g1, . . . , pαi−r gi , gi+1, . . . , gk} where i is the integer such
that αi+1 < r ¶ αi , with the convention that α0 = n and αk+1 = 0.

[Hint. Show that
k
∑

j=1
m j g j ∈ Gr if and only if pα j−r |m j for j = 1, . . . , i.]

Deduce that the order of Gr is pri+αi+1+···+αk . Hence show that the number of elements
of order pr in G is pri+αi+1+···+αk − p(r−1) j+α j+1+···+αk where i, j are given by αi+1 < r ¶ αi

and α j+1 < r − 1¶ α j .

[Hint. x ∈ G has order pr when x ∈ Gr and x /∈ Gr−1.]

Conclude that the number of elements of order p in G is pk − 1.

18.6 Determine the number of pairwise non-isomorphic abelian groups of order

(a) 1,000; (b) 1,001; (c) 1, 000,000.
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VECTOR SPACE DECOMPOSITION THEOREMS;

CANONICAL FORMS UNDER SIMILARITY

In the previous section we saw how the structure theorem for finitely generated
modules over a principal ideal domain could be applied to obtain the structure of
all finitely generated abelian groups. We shall now show how this structure theorem
can be applied to study of the decomposition of a vector space modulo a given linear
transformation, and to the problem of determining canonical forms for matrices.

We begin by describing a generalisation of Theorem 10.6.

Theorem 19.1 Let R be a principal ideal domain and let M , N be free R-modules of
dimensions m, n respectively. If f : M → N is an R-morphism then there are bases
{a1, . . . , am} of M and {b1, . . . , bn} of N, and non-zero elements d1, . . . , dr of R, unique
to within association, such that di+1|di and

(i = 1, . . . , m) f (ai) =

�

di bi if 1≤ i ≤ r;

0 if r + 1≤ i ≤ m.

Proof By Theorem 18.3, Im f is free of dimension r ≤ n. By Theorem 18.10, there
is a basis B of N , a subset b1, . . . , br} of B, and non-zero elements d1, . . . , dr of R,
unique to within association, such that
(1) {d1 b1, . . . , dr br} is a basis of Im f ;
(2) di+1|di .

Let a1, . . . , ar ∈ M be such that f (ai) = di bi for each i. Then {ai ; 1 ¶ i ¶ r} is

linearly independent; for if
r
∑

i=1
λiai = 0 then

0= f
� r
∑

i=1
λiai

�

=
r
∑

i=1
λi f (ai) =

r
∑

i=1
λidi bi

whence λidi = 0 for each i, and consequently every λi = 0 since di 6= 0. Let M ′ =
LC{ai ; 1 ≤ i ≤ r} and note that, since the restriction of f to M ′ carries a basis
of M ′ to a basis of Im f , we have M ′ ' Im f ' M/Ker f . Since Im f is free, hence
projective, the canonical exact sequence

0−−−−−→Ker f −−−−−→M −−−−−→M/Ker f −−−−−→0

splits, and consequently we have

M = Ker f ⊕M ′.

Now let {ai ; r + 1 ≤ i ≤ m} be a basis of Ker f ; then clearly a basis of M is
{ai ; 1¶ i ¶ m} and the result follows. �
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Corollary 1 If A is a non-zero n×m matrix over a principal ideal domain R then A is
equivalent to an n×m matrix of the form

�

X 0
0 0

�

where X is the diagonal matrix








d1
d2

. . .
dr









where each di 6= 0 and di+1|di . Moreover, d1, . . . , dr are unique to within association.�

• The non-zero ideals Rd1, . . . , Rdr of R are called the invariant factor ideals of
the matrix A or of the R-morphism f . Using this terminology, we have the
following criterion for matrices to be equivalent.

Corollary 2 If R is a principal ideal domain and if A, B are n×m matrices over R then
A and B are equivalent if and only if they have the same invariant factor ideals. �

We now turn our attention to what is by far the most surprising application of
the structure theorem of the previous section, namely to a study of what some au-
thors call ‘the theory of a single linear transformation’. More precisely, we shall be
concerned with the decomposition of a finite-dimensional vector space as a direct
sum of particular subspaces related to a given linear transformation. The results we
shall obtain may be interpreted in terms of matrices and lead naturally to a study of
canonical forms.

Our immediate aim, therefore, is to express a vector space over a field F in some
way as a module over a principal ideal domain. We shall in fact be concerned with
the ring F[X ] of polynomials with coefficients in F . It is well known that F[X ] is
a euclidean domain and so is a principal ideal domain. As we shall see, the key to
the entire theory will be the simple, yet very profound, observation that relative to
a given non-zero linear transformation f : V → V , a vector space V can be given the
structure of a finitely generated torsion F[X ]-module. Before proceeding to establish
this, we require some additional notation.

If A is a unitary associative algebra over a commutative unitary ring R then for
every a ∈ A we shall denote by R[a] the subalgebra of A that is generated by {1R, a}.
It is clear that the elements of R[a] are those of the form

r0 + r1a+ · · ·+ rnan

where each ri ∈ R. Given

p = r0 + r1X + · · ·+ rnX n ∈ R[X ]

and a ∈ A, we define
p(a) = r0 + r1a+ · · ·+ rnan

and say that p(a) is obtained from p by substituting a for X in p.
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Theorem 19.2 Let A be a unitary associative R-algebra over a commutative unitary
ring R. Given a ∈ A, the mapping ζa : R[X ]→ R[a] described by ζa(p) = p(a) is an
R-algebra epimorphism.

Proof Let p =
n
∑

i=0
αiX

i and q =
m
∑

i=1
βiX

i . Then we have pq =
n+m
∑

k=0

� k
∑

j=0
α jβk− j

�

X k and

so

ζa(pq) =
n+m
∑

k=0

� k
∑

j=0
α jβk− j

�

ak = p(a)q(a).

Likewise we can show that

ζa(p+ q) = p(a) + q(a), ζa(λp) = λp(a).

Since ζa(X ) = a and ζa(X 0) = 1A, it follows that ζa is an R-algebra morphism.
Moreover, Imζa is a subalgebra of R[a] containing both a and 1A and so Imζa = R[a]
whence ζa is an epimorphism. �

• The R-algebra morphism ζa is called the substitution morphism associated with
a ∈ A.

Throughout what follows we shall be concerned with the case where A is the
unitary associative algebra MorF (V, V ) where V is a finite-dimensional vector space
over a field F .

Suppose then that V is a non-zero vector space over a field F and let f : V → V
be a non-zero linear transformation. Let Vf denote the algebraic structure (V,+, · f )
where + denotes the usual addition on V and · f : F[X ]× V → V is the action given
by

(p, x) 7→ p · f x = [p( f )](x).

It is readily verified that Vf is an F[X ]-module. Now the module obtained from Vf by
restricting the action · f to the subset F × V of F[X ]× V is simply the F -vector space
V ; for, the elements of F regarded as elements of F[X ] are the constant polynomials.
It follows that if B is a basis of V then B is a set of generators of Vf ; for, every linear
combination with coefficients in F is a linear combination with coefficients in F[X ].
In particular, if V is a vector space of finite dimension over F then Vf is a finitely
generated F[X ]-module.

We now consider some elementary properties of the F[X ]-module Vf .

Definition 19.1 If M , N are R-modules then f ∈ MorR(M , M) and g ∈ MorR(N , N)
are said to be similar if there is an R-isomorphism ϑ : M → N such that the diagram

M
f

−−−−−→M

ϑ







y







y

ϑ

N−−−−−→
g

N

is commutative.
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Theorem 19.3 Let V and W be non-zero finite-dimensional vector spaces over a field
F and let f : V → V, g : W →W be linear transformations. Then f and g are similar
if and only if the F[X ]-modules Vf , Wg are isomorphic.

Proof ⇒ : Suppose that f , g are similar and let ϑ : V → W be an F -isomorphism
such that ϑ ◦ f = g ◦ ϑ. Then if, for some n ≥ 1, we have ϑ ◦ f n = gn ◦ ϑ it follows
that

ϑ ◦ f n+1 = ϑ ◦ f n ◦ f = gn ◦ ϑ ◦ f = gn ◦ g ◦ ϑ = gn+1 ◦ ϑ.

Thus we see by induction that

(∀n≥ 1) ϑ ◦ f n = gn ◦ ϑ.

To show that ϑ is an isomorphism from Vf onto Wg , it suffices to show that ϑ is
F[X ]-linear. This we can establish using the above observation and the fact that, for

any
m
∑

i=0
αiX

i ∈ F[X ],

ϑ
� m
∑

i=0
αiX

i · f x
�

= ϑ
� m
∑

i=0
αi f i(x)

�

=
m
∑

i=0
αi(ϑ ◦ f i)(x)

=
m
∑

i=0
αi(g i ◦ ϑ)(x)

=
m
∑

i=0
αiX

i · f ϑ(x).

⇐ : Conversely, suppose that ϑ : Vf →Wg is an F[X ]-isomorphism. Then

(∀x ∈ V )(∀λ ∈ F) ϑ(λx) = ϑ(λX 0 · f x) = λX 0 ·g ϑ(x) = λϑ(x),

so that ϑ is an F -isomorphism from V onto W . Moreover,

(∀x ∈ V ) ϑ[ f (x)] = ϑ(X · f x) = X ·g ϑ(x) = g[ϑ(x)]

and so ϑ ◦ f = g ◦ ϑ. Hence f and g are similar. �

Definition 19.2 Let M be an R-module and let f : M → M be an R-morphism. Then
a submodule N of M is said to be f -stable, or invariant under f , if f →(N) ⊆ N .

Theorem 19.4 Let V be a non-zero vector space over a field F and let f : V → V be a
linear transformation. Then a subset M of V is a submodule of the F[X ]-module Vf if
and only if M is an f -stable subspace of V .

Proof ⇒ : Suppose that M is a submodule of Vf . Since F ⊆ F[X ] it is clear that M
is a subspace of V . Now for every x ∈ M we have

f (x) = X · f x ∈ M

and so M is f -stable.
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⇐ : Suppose conversely that M is an f -stable subspace of V . Then clearly, for
every x ∈ M and every positive integer k, a simple inductive argument yields f k(x) ∈

M . It follows that, for every p =
n
∑

k=0
αkX k ∈ F[X ] and every x ∈ M ,

p · f x = [p( f )](x) =
� n
∑

k=0
αk f k

�

(x) =
n
∑

k=0
f k(x) ∈ M ,

whence M is a submodule of Vf . �

Theorem 19.5 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then the finitely generated F[X ]-module Vf
is a torsion module.

Proof Suppose, by way of obtaining a contradiction, that Vf is not a torsion F[X ]-
module. Then by the fundamental structure theorem (Theorem 18.12) we see that Vf
contains a submodule W that is F[X ]-isomorphic to F[X ]. Since W is then a subspace
of V that is F -isomorphic to the F -vector space F[X ], we obtain a contradiction to
the finite dimensionality of V on noting that F[X ] is an infinite-dimensional F -space.

�

Since, as we have just seen, Vf is a torsion F[X ]-module, we can consider the
annihilator of Vf in F[X ], namely the principal ideal

{p ∈ F[X ] ; (∀x ∈ V ) [p( f )](x) = 0}

of F[X ]. The unique monic generator g of this ideal is called the minimum polynomial
of f .

• The reason for the terminology minimum polynomial is that g is the monic
polynomial of least degree such that g( f ) is the zero of MorF (V, V ). Roughly
speaking, g is the monic polynomial of least degree that is satisfied by f , in
the sense that g( f ) = 0.

• That f is thus a root of a polynomial equation is really quite remarkable.
Equally remarkable, of course, is the fact that if V is of dimension n then every
n× n matrix that represents f is also a root of a polynomial equation.

We shall now translate some of the results of the previous section into the lan-
guage of the present section. With the above dictionary of terms, the reader will
have no trouble in verifying that Theorem 18.8 applied to Vf yields the following
fundamental result.

Theorem 19.6 [Primary Decomposition Theorem] Let V be a non-zero finite-
dimensional vector space over a field F and let f : V → V be a linear transforma-

tion with minimum polynomial g =
n
∏

i=1
pαi

i where p1, . . . , pn are distinct irreducible

polynomials and α1, . . . ,αn are positive integers. For i = 1, . . . , n let

Mpi
= {x ∈ V ; (∃k ≥ 1) [pi( f )]

k(x) = 0}.

Then every Mpi
is an F-stable subspace of V , pαi

i is the minimum polynomial of the

F-morphism induced on Mpi
by f , and V =

n
⊕

i=1
Mpi

.
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• Note that since pαi
i is the minimum polynomial of the F -morphism induced by

f on Mpi
, we have x ∈ Ker pαi

i for every x ∈ Mpi
whence Mpi

= Ker pαi
i . We

call Mpi
the i-th primary component of M .

Definition 19.3 We shall say that a linear transformation f : V → V is cyclic if the
F[X ]-module Vf is cyclic.

With this terminology, the reader can easily verify that Theorem 18.15 yields the
following fundamental result.

Theorem 19.7 [Rational Decomposition Theorem] Let V be a non-zero finite-
dimensional vector space over a field F and let f : V → V be a linear transformation.
Then there is a unique sequence ( fi)1≤i≤n of monic polynomials over F such that

(i = 1, . . . , n− 1) fi+1| fi ,

and a sequence (Wk)1≤k≤n of f -stable subspaces of V such that V =
n
⊕

k=1
Wk and, for

every k, the F-morphism induced by f on Wk is cyclic with minimum polynomial fk.
Moreover, the minimum polynomial of f is f1. �

Definition 19.4 In the case where Vf is a cyclic F[X ]-module, generated by {c} say,
we shall call such an element c of V a cyclic vector for f .

• If c is a cyclic vector for f then we have

Vf = {p · f c ; p ∈ F[X ]}; V = {[p( f )](c) ; p ∈ F[ f ]}.

Our objective now is to use the above two decomposition theorems to obtain
canonical forms under similarity for square matrices over a field. Their description
hinges on the following basic result.

Theorem 19.8 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a cyclic linear transformation with cyclic vector c. Then the mapping

ϑc : F[ f ]→ V

given by ϑc(p) = [p( f )](c) is an F-isomorphism. Moreover, if

g = α0 +α1X + · · ·+αn−1X n−1 + X n

is the minimum polynomial of f then deg g = dim V , and {c, f (c), f 2(c), . . . , f n−1(c)}
is a basis of V . Furthermore, the matrix of f relative to the ordered basis (ai)n where
ai = f i−1(c) is

















0 0 0 . . . 0 −α0
1 0 0 . . . 0 −α1
0 1 0 . . . 0 −α2
0 0 1 . . . 0 −α3
...

...
...

...
...

0 0 0 . . . 1 −αn−1

















.
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Proof Since c is a cyclic vector for f , it is clear that ϑc is an F -epimorphism. Suppose
now that p ∈ Ker fc . Then

0= [p( f )](c) = p · f c

and so, since
AnnF[X ]Vf = AnnF[X ](c) = F[X ]g,

we see that p = qg for some q ∈ F[X ]. Applying the substitution morphism ζ f , we
deduce that, in F[ f ],

p( f ) = q( f )g( f ) = q( f )0= 0.

Thus Kerϑc = {0} and so ϑc is an F -isomorphism.
Since the F[X ]-module Vf is generated by {c}, every x ∈ Vf can be written in

the form x = p · f c for some p =
m
∑

i=0
βiX

i ∈ F[X ]. Then every x ∈ V can be written

as

x =
� m
∑

i=0
βi f i

�

(c) =
m
∑

i=0
βi f i(c)

and so { f i(c) ; i ∈ N} generates V . But [g( f )](c) = 0 and so we deduce that V is
generated by

{c, f (c), f 2(c), . . . , f n−1(c)}

where n= deg g.

Suppose now that
n−1
∑

i=0
λi f i(c) = 0. Then clearly we have [h( f )](c) = 0 where h=

n−1
∑

i=0
λiX

i . Suppose that λn−1 6= 0 and let h1 =
n−1
∑

i=0
λiλ

−1
n−1X i . Then clearly [h1( f )](c) =

0, which contradicts the fact that g is the monic polynomial of least degree such
that [g( f )](c) = 0. We thus have λn−1 = 0, and clearly a repetition of this argument
shows that every λi = 0. This then shows that {c, f (c), . . . , f n−1(c)} is linearly inde-
pendent, whence it is a basis for V , the dimension of which is then n = deg g. The
final statement is clear. �

Definition 19.5 The matrix which is displayed in Theorem 19.8 is called the com-
panion matrix of the monic polynomial

α0 +α1X + · · ·+αn−1X n−1 + X n.

• Note that when V is of dimension 1 the minimum polynomial of f has degree
1, say g = α0 + X . In this case g( f ) = α0 idV + f and so

0= [g( f )](c) = α0c + f (c).

Since {c} is a basis of V , it follows that the companion matrix of f in this case
is the 1× 1 matrix [−α0].

The converse of Theorem 19.8 is the following.
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Theorem 19.9 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Suppose that there is an ordered basis (ai)n
of V relative to which the matrix of f is of the form

















0 0 0 . . . 0 −α0
1 0 0 . . . 0 −α1
0 1 0 . . . 0 −α2
0 0 1 . . . 0 −α3
...

...
...

...
...

0 0 0 . . . 1 −αn−1

















.

Then a1 is a cyclic vector for f , and the minimum polynomial of f is

g = α0 +α1X + · · ·+αn−1X n−1 + X n.

Proof It is clear that f k−1(a1) = ak for k = 1, . . . , n. Thus the f -stable subspace gen-
erated by {a1} contains the basis {a1, . . . , an} and so coincides with V . Consequently,
a1 is a cyclic vector for f . Now

f n(a1) = f [ f n−1(a1)] = f (an) =
n−1
∑

i=0
−αiai+1 =

n−1
∑

i=0
−αi f i(a1),

and so we see that [g( f )](a1) = 0. Since {a1} generates Vf , it follows that g( f ) = 0.
But a1 is a cyclic vector for f and so, by Theorem 19.8, the degree of the minimum
polynomial of f is the dimension of V . The minimum polynomial of f therefore has
the same degree as the monic polynomial g and, since it divides g, must coincide
with g. �

Using the above results, we can translate directly in terms of matrices the rational
decomposition theorem and derive some useful consequences.

For this purpose, we make the simple observation that, if V =
n
⊕

i=1
Mi where each

Mi is an f -stable subspace of V and if Bi is an ordered basis of Mi for each i, then

the matrix of f relative to the basis
n
⋃

i=1
Bi (ordered in the obvious way) is of the form









A1
A2

. . .
An









in which Ai is the matrix relative to Bi of the F -morphism induced on Mi by f .
It follows from the rational decomposition theorem that we therefore have the

following result.

Theorem 19.10 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then there is a unique sequence ( fi)1≤i≤n of
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monic polynomials over F such that fi+1| fi , and such that there is an ordered basis of
V with respect to which the matrix of f is of the form









[ f1]
[ f2]

. . .
[ fn]









in which [ fi] denotes the companion matrix of fi . �

Definition 19.6 The monic polynomials fi of Theorems 19.7 and 19.10 are called
the invariant factors of f . A matrix of the form exhibited in Theorem 19.10 (in which
fi+1| fi for each i) will be called a rational (invariant factor) canonical matrix

• A rational (invariant factor) canonical matrix is often described as a direct sum
of the companion matrices associated with the invariant factors.

Corollary 1 If V is a non-zero finite-dimensional vector space over a field F and if
f : V → V is a linear transformation then there is a unique rational (invariant factor)
canonical matrix of f .

Proof Suppose that








[g1]
[g2]

. . .
[gm]









is also a rational (invariant factor) canonical matrix of f . For i = 1, . . . , m let Vi be
the f -stable subspace of V associated with the companion matrix [gi]. Since gi+1|gi
with AnnF[X ](Vi) f = F[X ]gi , it is clear that (Vi)1≤i≤m is a normal sequence for Vf . By
Theorem 19.9, gi is the minimum polynomial of the F -morphism induced on Vi by
f . The result now follows by the uniqueness up to F -isomorphism of the subspaces
in a normal sequence. �

Corollary 2 Two F-morphisms f , g : V → V are similar if and only if they have the
same invariant factors.

Proof By Theorem 19.3, f and g are similar if and only if the F[X ]-modules Vf and
Vg are isomorphic. Now by the uniqueness of normal sequences it is clear that Vf
and Vg are isomorphic if and only if, in these normal sequences, corresponding terms
are isomorphic; and this is the case if and only if f and g have the same invariant
factors. �

• Because of the above result, we can define the invariant factors of a square
matrix A over F to be the invariant factors of any F -morphism f : V → V that
is represented by A relative to some ordered basis. Then Corollary 2 may be
rephrased as follows.
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Corollary 3 Two n× n matrices over a field F are similar if and only if they have the
same invariant factors. �

Corollary 4 If f1, . . . , fn ∈ F[X ] are the invariant factors of a square matrix A over a
field F then these are also the invariant factors of A when A is considered as a matrix
over any field K with F ⊆ K.

Proof To say that f1, . . . , fn are the invariant factors of A over F is equivalent to
saying that there is an invertible matrix P over F such that PAP−1 is a direct sum
of companion matrices associated with the fi . The result therefore follows from the
fact that the elements of P and the coefficients of the fi belong to every extension
field K . �

Corollary 5 Let F and K be fields with F ⊆ K, and let A, B be n× n matrices over F.
Then if A and B are similar over K they are similar over F.

Proof This is immediate from Corollaries 3 and 4. �

From the discussion in Section 18, the building blocks in the general structure
theorem are the indecomposable modules. In the case under consideration, these
are the cyclic pi-modules where pi ∈ F[X ] is prime.

Definition 19.7 We shall say that an F -morphism f : V → V is p-linear for some
prime polynomial p if the corresponding F[X ]-module Vf is a p-module.

For such mappings, we have the following particular case of the rational decom-
position theorem.

Theorem 19.11 Let V be a non-zero finite-dimensional vector space over a field F, let
p ∈ F[X ] be prime, and let f : V → V be p-linear. Then there is a unique sequence
(mi)1≤i≤n of integers such that

0< m1 ≤ m2 ≤ · · · ≤ mn,

and a sequence (Wk)1≤k≤n od f -stable subspaces of V such that

V =
n
⊕

k=1
Wk

and, for each k, the F-morphism induced on Wk is cyclic with minimum polynomial
pmk . Moreover, the minimum polynomial of f is pm1 . �

• Recall that the ideals F[X ]pmi are simply the elementary divisor ideals associ-
ated with the p-module Vf . In what follows, we shall refer to the polynomials
pmi as the elementary divisors of the p-linear mapping f . We shall denote the
companion matrix of pmk by [p]mk . By Theorem 19.8, the induced F -morphism
on Wk may be represented by [p]mk and so there is an ordered basis of V with
respect to which the matrix of f is









[p]m1

[p]m2

. . .
[p]mk









.
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Definition 19.8 Let F be a field and let p ∈ F[X ] be prime. By a rational p-matrix
over F we shall mean a matrix A such that, for some sequence (mi)1≤i≤n of integers
with 0< m1 ≤ m2 ≤ · · · ≤ mn,

A=









[p]m1

[p]m2

. . .
[p]mk









.

It is immediate from Theorems 19.8, 19.9 and 19.11 that if f : V → V is p-linear
where p ∈ F[X ] is prime then there is a unique rational p-matrix of f .

Definition 19.9 By a rational (elementary divisor) canonical matrix over a field F we
shall mean a square matrix of the form









A1
A2

. . .
An









in which, for distinct prime polynomials p1, . . . , pn over F , Ai is a rational pi-matrix.

Now since, in the primary decomposition theorem (Theorem 19.6), each Mpi
is a

pi-submodule of Vf , we observe that the morphism induced on Mpi
by f is pi-linear.

We therefore deduce the following result.

Theorem 19.12 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then there is a rational (elementary divisor)
canonical matrix of f . Moreover, if

A=









A1
A2

. . .
An









, B =









B1
B2

. . .
Bn









are rational (elementary divisor) canonical matrices of f then n = m and there is a
permutation σ on {1, . . . , n} such that Ai = Bσ(i) for each i.

Proof The existence is clear from what has gone before. The uniqueness, up to a
rearrangement of the pi-matrices down the diagonal, follows from the uniqueness
of the pi-modules in the direct sum representation. �

• A rational (elementary divisor) canonical matrix of f is often described as a
direct sum of the companion matrices associated with the elementary divisors
of f .
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In the above discussion we had occasion to deal with cyclic morphisms whose
minimal polynomials are of the form pmk for some prime p ∈ F[X ]. We shall now
show that we can also represent such morphisms by a matrix that is constructed from
the companion matrix of p rather than the companion matrix of pmk . This leads to
yet another canonical form. The fundamental result in this direction is the following.

Theorem 19.13 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a cyclic F-morphism with cyclic vector c. Suppose that the minimum
polynomial of f is g r where

g = α0 +α1X + · · ·+αn−1X n−1 + X n.

Then the rn elements

c f (c) f 2(c) . . . f n−1(c)

[g( f )](c) [g( f )][ f (c)] [g( f )][ f 2(c)] . . . [g( f )][ f n−1(c)]

...
...

...
...

[g( f )]r−1(c) [g( f )]r−1[ f (c)] [g( f )]r−1[ f 2(c)] . . . [g( f )]r−1[ f n−1(c)]

constitute an ordered basis of V with respect to which the matrix of f is the rn × rn
matrix













[g]
A [g]

A [g]
. . .

. . .
A [g]













in which [g] is the n× n companion matrix of g and A is the n× n matrix







1





.

Proof By Theorem 19.8, the dimension of V is the degree of the minimum polyno-
mial of f , namely rn. To show that the given set of elements is a basis, it therefore
suffices to show that that this set is linearly independent. Suppose, by way of ob-
taining a contradiction, that this is not so. Then some linear combination of these
elements is zero with not all the coefficients zero. This implies that there is a poly-
nomial h with [h( f )](c) = 0 and deg h < rn = deg g r , contradicting the fact that
g r is the minimum polynomial of f . Thus the given set constitutes a basis of V . We
order this basis by taking the elements in the order in which we normally read them,
namely the elements in the first row, then those in the second row, and so on.
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Now we observe that f maps each basis vector onto the next one in the same
row in the above array, except for those at the end of a row; for, f commutes with
every power of g. As for the elements at the end of a row, we observe that

f [ f n−1(c)] = f n(c) = −α0c −α1 f (c)− · · · −αn−1 f n−1(c) + [g( f )](c)

and similarly

f [g( f )]r−m[ f n−1(c)]

= [g( f )]r−m[ f n(c)]

= [g( f )]r−m
�

−α0c − · · · −αn−1 f n−1(c) + [g( f )](c)
�

= −α0[g( f )]r−m(c)− · · · −αn−1[g( f )]r−m[ f n−1(c)] + [g( f )]r−m+1(c).

It follows immediately from this that the matrix of f relative to the above ordered
basis is of the form stated. �

• Note that in the matrix of Theorem 19.13 every entry immediately below a
diagonal entry is 1.

The converse of Theorem 19.13 is the following.

Theorem 19.14 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Suppose that there is a monic polynomial g of
degree n and an ordered basis (ai)1¶i¶rn relative to which the matrix of f has the form
given in Theorem 19.13. Then a1 is a cyclic vector for f and the minimum polynomial
of f is g r .

Proof Write the basis elements in the array

a1 a2 . . . an

an+1 an+2 . . . a2n

...
...

...

a(r−1)n+1 a(r−1)n+2 . . . arn

and observe that, in any given row, each element except the first is the image under
f of the previous element. Observe also that

f n(a1) = f [ f n−1(a1)]
= f (an)
= −α0a1 −α1a2 − · · · −αnan + an+1

= −α0a1 −α1 f (a1)− · · · −αn−1 f n−1(a1) + an+1

whence we obtain
an+1 = [g( f )](a1);
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and that, for 1≤ k ≤ r − 2,

f n(akn+1) = f (a(k+1)n)
= −α0akn+1 −α1akn+2 − · · · −αn−1a(k+1)n + a(k+1)n+1

= −α0akn+1 −α1 f (akn+1)− · · · −αn−1 f n−1(akn+1) + a(k+1)n+1

whence we obtain
a(k+1)n+1 = [g( f )](akn+1).

It now follows easily by induction that

(k = 1, . . . , r − 1) akn+1 = [g( f )]
k(a1).

We thus see that the f -stable subspace generated by {a1} contains the basis elements
a1, . . . , arn whence it coincides with V . Thus a1 is a cyclic vector for f .

We next observe that [g( f )]r(a1) = 0. In fact,

[g( f )]r(a1) = [g( f )]
�

[g( f )]r−1(a1)
�

= [g( f )](a(r−1)n+1)

=
n−1
∑

k=0
αk f k(a(r−1)n+1) + f n(a(r−1)n+1)

=
n−1
∑

k=0
αka(r−1)n+k+1 + f (arn)

= 0.

Since {a1} generates Vf , it follows that g r belongs to AnnF[X ]Vf whence it is divisible
by the minimum polynomial of f . Now by Theorem 19.8 the degree of the minimum
polynomial of f is the dimension of V , which is the degree of g r . Since each of these
polynomials is monic, it follows that g r is the minimum polynomial of f . �

In what follows we shall denote a matrix of the form exhibited in Theorem 19.13
by [g]r . With this notation, we note that in Theorem 19.11 the F -morphism induced
on Wk by f may be represented by [p]mk

and so there is a basis of V with respect to
which the matrix of f is









[p]m1

[p]m2

. . .
[p]mn









.

Definition 19.10 Let F be a field and let p ∈ F[X ] be a prime. By a classical p-matrix
we shall mean a matrix A of the form

A=









[p]m1

[p]m2

. . .
[p]mn









in which 0< m1 ¶ m2 ¶ · · ·¶ mn.
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It is immediate from Theorems 19.11, 19.13, and 19.14 that if f : V → V is
p-linear where p is prime then there is a unique classical p-matrix of f .

Definition 19.11 By a classical canonical matrix over a field F we shall mean a
square matrix of the form









A1
A2

. . .
An









in which, for distinct prime polynomials p1, . . . , pn over F , Ai is a classical pi-matrix.

The following analogue of Theorem 19.12 is now immediate.

Theorem 19.15 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then there is a classical canonical matrix of
f . Moreover, if

A=









A1
A2

. . .
An









, B =









B1
B2

. . .
Bn









are classical canonical matrices of f then n = m and there is a permutation σ on
{1, . . . , n} such that Ai = Bσ(i) for each i. �

A particularly important special case of classical canonical matrices arises when
the corresponding prime polynomials pi are linear, say pi = X −λi where λi ∈ F . In
this case, the matrix exhibited in Theorem 19.13 is the r × r matrix













λ
1 λ

1 λ
. . .

. . .
1 λ













.

We shall denote this matrix by [λ]r and call it the elementary r × r Jordan matrix
determined by λ.

Definition 19.12 By a Jordan (X −λ)-matrix we shall mean a matrix of the form









[λ]m1

[λ]m2

. . .
[λ]mn









where 0< m1 ¶ m2 ¶ · · ·¶ mn.
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Finally, by a Jordan canonical matrix we shall mean a square matrix of the form








A1
A2

. . .
An









in which, for distinct scalars λ1, . . .λn ∈ F , Ai is a Jordan (X −λi)-matrix.

Definition 19.13 We shall say that an F -morphism f : V → V is a Jordan morphism
if its minimum polynomial factorises into a product of linear polynomials.

In the case where the ground field F is algebraically closed (i.e. every non-zero
polynomial over F factorises into a product of linear polynomials; for example, when
F is the field C of complex numbers), it is clear that every linear transformation
f : V → V is a Jordan morphism and consequently that every square matrix over F
is similar to a Jordan canonical matrix (which, by Theorem 19.15, is unique up to
the arrangement of the (X −λi)-matrices down the diagonal).

• It can be shown that if F is a field then there is a smallest algebraically closed
field F? that contains F as a subfield. This algebraically closed field F? is called
the algebraic closure of F . For example, the algebraic closure of R is C. In a
very loose sense, therefore, every F -morphism can be regarded as a Jordan
morphism; more precisely, as a Jordan F?-morphism.

At this juncture it is both appropriate and instructive to consider some examples
to illustrate the above results.

Example 19.1 Let V be a real vector space of dimension 10 and suppose that f :
V → V is a linear transformation whose sequence of invariant factors is

(X 3 + 1)2, X 3 + 1, X + 1.

Recalling that the rational (invariant factor) canonical matrix of f is the direct sum
of the companion matrices associated with the invariant factors, we see that this
matrix is































0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 −2
0 0 0 1 0 0
0 0 0 0 1 0

0 0 −1
1 0 0
0 1 0

−1































.

In order to determine a rational (elementary divisor) canonical matrix of f we
must first determine the elementary divisors. We recall that these are of the form pmi

i
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where pi is a prime polynomial and mi is a positive integer. These may be arranged
in rows, a typical row being

p
mi1
i p

mi2
i . . . p

min
i

where mi1 ¾ mi2 ¾ · · · ¾ min > 0. Allowing some exponents to be zero, we can
form a rectangular array in which the invariant factors are the column products (see
Section 18). Since the invariant fcators and the elementary divisors are uniquely
determined, it is readily seen that in the example under consideration such an array
is

(X 2 − X + 1)2 X 2 − X + 1 1

(X + 1)2 X + 1 X + 1

Now the rational (X 2 − X + 1)-matrix associated with the top row is the direct sum
of the associated companion matrices, as is the rational (X + 1)-matrix associated
with the bottom row. Hence a rational (elementary divisor) canonical matrix of f is































0 0 0 −1
1 0 0 2
0 1 0 −3
0 0 1 2

0 −1
1 1

0 −1
1 −2

−1
−1































.

Let us now determine a classical canonical matrix of f . This is easily derived from
the above rational (elementary divisor) canonical matrix by replacing the rational
p-matrices involved by the corresponding classical p-matrices. It is therefore clear
that a classical canonical matrix of f is































0 −1 0 0
1 1 0 0
0 1 0 −1
0 0 1 1

0 −1
1 1

−1 0
1 −1

−1
−1































.

Since the minimum polynomial of f is the first invariant factor, namely (X 3 + 1)2,
we see that f is not a Jordan morphism.
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Example 19.2 Consider the same situation as in Example 19.1 but now let V be a
vector space over C. Then the rational (invariant factor) canonical matrix of f is
the same as before. Different rational (elementary divisor) canonical matrices arise,
however, since over the field C the polynomial X 2 − X + 1 is not prime; in fact we
have

X 2 − X + 1= (X −α)(X − β)

where α = 1
2 (1 + i

p
3) and β = 1

2 (1 − i
p

3). In this case the array of elementary
divisors is readily seen to be

(X −α)2 X −α 1

(X − β)2 X − β 1

(X + 1)2 X + 1 X + 1

A rational (elementary divisor) canonical matrix of f is therefore






























0 −α2

1 2α
α

0 −β2

1 2β
β

0 −1
1 −2

−1
−1































.

A classical canonical matrix of f is then






























α 0
1 α

α
β 0
1 β

β
−1 0

1 −1
−1

−1































.

Since C is algebraically closed, the above classical canonical matrix is a Jordan
canonical matrix.

Example 19.3 Let V be a real vector space of dimension 6 and let f : V → V be
a linear transformation with elementary divisors X + 2 of multiplicity 3, X − 2 of
multiplicity 2, and X + 3. Arranging these in the usual way, we obtain the array
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X + 2 X + 2 X + 2

X − 2 X − 2 1

X + 3 1 1

whence the sequence of invariant factors of f is

(X + 2)(X − 2)(X + 3), (X + 2)(X − 2), X + 2.

The rational (invariant factor) canonical matrix of f is then














0 0 12
1 0 4
0 1 −3

0 4
1 0

−2















.

A rational (elementary divisor) canonical matrix of f is then














−2
−2

−2
2

2
−3















.

This is clearly also a classical canonical matrix and a Jordan canonical matrix.

Our aim now is to bring to light another important polynomial associated with
a linear transformation f : V → V . For this purpose, we note the following result.

Theorem 19.16 If g is a monic polynomial of degree n over a field F and if [g] denotes
the companion matrix of g then

g = det(X In − [g]).

Proof We note first that if n = 1, so that g = α0 + X , then [g] is the 1× 1 matrix
[−α0] and the result is trivial. Suppose, by way of induction, that the result holds
for monic polynomials of degree n− 1 and let

g = α0 +α1X + · · ·+αn−1X n−1 + X n.

Then we have

det(X In − [g]) = det













X α0
−1 X α1
−1 X α2

. . .
. . .

...
−1 X +αn−1













.
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Now let h be the monic polynomial of degree n− 1 given by

h= α1 +α2X + · · ·+αn−1X n−2 + X n−1.

Considering the Laplace expansion of the above determinant by the first column, we
see that det(X In − [g]) can be written as

Xdet













X α1
−1 X α2
−1 X α3

. . .
. . .

...
−1 X +αn−1













+ det













0 0 α0
−1 X α2
−1 X α3

. . .
. . .

...
−1 X +αn−1













.

Now by the induction hypothesis the first of these determinants is h; and considering
the Laplace expansion of the second via the first row, and using the fact that the
determinant of a triangular matrix is simply the product of its diagonal entries, we
see that the second determinant is

(−1)nα0(−1)n−2 = α0.

Thus we se that det(X In − [g]) = Xh+α+ 0= g. �

Definition 19.14 Let V be a non-zero finite-dimensional vector space over a field F .
Let f : V → V be a linear transformation with elementary divisors q1, . . . , qn. Then
by the characteristic polynomial of f we mean the polynomial

χ f =
n
∏

i=1
qi .

We define also the characteristic polynomial χA of a square matrix A over a field F
to be that of any linear transformation which is represented by A relative to some
ordered basis.

Theorem 19.17 If A is an n× n matrix over a field F then

χA = det(X In − A).

Proof Since similar matrices have the same invariant factors they have the same
characteristic polynomials. It suffices, therefore, by Corollary 1 of Theorem 19.10, to
consider the case where A is a rational (invariant factor) canonical matrix. The result
then follows from Theorems 19.16 and 17.16, the latter implying via an inductive
argument that the determinant of a direct sum of square matrices is the product of
their determinants. �

Corollary 1 Let g be a monic polynomial over a field F. Then the characteristic poly-
nomial of the companion matrix of g is g.

Proof This is simply a restatement of Theorem 19.16. �
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Corollary 2 The constant term in the characteristic polynomial of an n× n matrix A
is (−1)ndet A.

Proof χA(0) = det(−A) = (−1)ndet A. �

Corollary 3 A square matrix is invertible if and only if the constant term in its char-
acteristic polynomial is non-zero. �

The basic connection between minimum polynomials and characteristic polyno-
mials is the following.

Theorem 19.18 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Let m be the number of invariant factors of
f , let χ f be the characteristic polynomial of f , and let m f be the minimum polynomial
of f . Then

m f |χ f |mm
f .

Proof Since m f is the first invariant factor of f and χ f is the product of the invariant
factors of f , it is clear that m f |χ f . Moreover, since each invariant factor of f divides
the first invariant factor m f , their product χ f divides mm

f . �

Corollary 1 χ f ( f ) = 0.

Proof We know that m f ( f ) = 0; and by the above χ f = pm f for some p ∈ F[X ]. �

• The above Corollary is often known as the Cayley-Hamilton Theorem. Although
the proof that we have given is very simple, the result itself is very deep. In
terms of matrices, it says that every n × n matrix over a field is a zero of its
characteristic polynomial (which, by Theorem 19.17, is of degree n).

Corollary 2 m f and χ f have the same zeros in F.

Proof This is immediate from Theorem 19.18. �

Example 19.4 It is readily seen that the characteristic and minimum polynomials
of the real matrix

A=





1 2 2
2 1 2
2 2 1





are χA = (X + 1)2(X − 5) and mA = (X + 1)(X − 5). Since χA is the product of the
invariant factors, the first of which is mA, we see that the invariant factors of A are

(X + 1)(X − 5), X + 1.

A rational (invariant factor) canonical matrix of A is then




0 5 0
1 4 0
0 0 −1



 .



264 Module Theory

Since the array of elementary divisors is

X + 1 X + 1

X − 5 1

it follows that a rational (elementary divisor) canonical matrix of A is




−1 0 0
0 −1 0
0 0 5



 ,

this also being a classical canonical matrix and a Jordan canonical matrix.

Example 19.5 Let f : R7→ R7 be a linear transformation whose characteristic and
minimum polynomials are

χ f = (X − 1)3(X − 2)4, m f = (X − 1)2(X − 2)3.

The sequence of invariant factors of f is

(X − 1)2(X − 2)3 (X − 1)(X − 2).

A rational (invariant factor) canonical matrix for f is then


















8
1 −28

1 38
1 −25

1 8
1

2



















.

The array of elementary divisors is

(X − 1)2 X − 1

(X − 2)3 X − 2

and so a rational (elementary divisor) canonical matrix is


















0 1
1 2

1
8

1 −12
1 6

2



















.
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Finally, a classical canonical matrix, which is also a Jordan canonical matrix, is


















1
1 1

1
2
1 2

1 2
2



















.

EXERCISES
19.1 For each of the following matrices over R determine

(a) the characteristic polynomial;

(b) the minimum polynomial;

(c) the invariant factors;

(d) the elementary divisors;

(e) the rational (invariant factor) canonical matrix;

( f ) a rational (elementary divisor) canonical matrix;

(g) a classical canonical matrix.





1 1 3
5 2 6
−2 −1 −3



 ;





2 2 1
2 2 1
2 2 1



 ;







0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0






.

19.2 Prove that the F[X ]-module Vf is cyclic if and only if the minimum polynomial of f
coincides with the characteristic polynomial of f .

19.3 Let C3[X ] be the complex vector space of polynomials of degree less than or equal to
3. Let D : C3[X ] → C3[X ] be the differentiation map. Determine a Jordan canonical
matrix of D.

19.4 Let A be a 7× 7 matrix over R with minimum polynomial

mA = (X
2 + 2)(X + 3)3.

Find all possible rational (elementary divisor) canonical forms of A.

[Hint. Argue that the sequence of invariant factors is one of

(a) (X 2 + 2)(X + 3)3, X 2 + 2;

(b) (X 2 + 2)(X + 3)3, (X + 3)2;

(c) (X 2 + 2)(X + 3)3, X + 3, X + 3.]
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19.5 Determine all possible Jordan forms of the matrices whose characteristic and minimum
polynomials are

(a) χA = (X − 7)5, mA = (X − 7)2;

(b) χA = (X − 3)4(X − 5)4, mA = (X − 3)2(X − 5)2.

19.6 If V is a non-zero finite-dimensional vector space over a field F and if f : V → V is a
cyclic transformation, prove that the set of f -stable subspaces of V is equipotent to the
set of monic divisors of the minimum polynomial of f .

[Hint. Use the correspondence theorem.]

19.7 Prove that every square matrix is similar to its transpose.

[Hint. Recall Corollary 5 of Theorem 19.10. By using the algebraic closure of F , re-
duce the problem to showing that it holds for Jordan (and hence elementary Jordan)
matrices.]

19.8 If V is a non-zero finite-dimensional vector space over a field F and if f , g : V → V are
linear transformations such that, for some prime p ∈ F[X ],

m f = p = mg ,

prove that f and g are similar.

[Hint. Use the rational decomposition theorem; what are the rational (invariant factor)
canonical matrices of f , g?]

19.9 Let A be a square matrix over C and let P,Q be rectangular matrices over C such that
A= PQ and B =QP exist. Given h ∈ C[X ], prove that Ah(A) = Ph(B)Q.

[Hint. Argue by induction on deg h.]

Deduce that one of the following holds :

mA = mB; mA = X mB; mB = X mA.

Express the matrix








1 1 . . . 1
2 2 . . . 2
...

...
...

r r . . . r









as a product of a column matrix and a row matrix. Hence determine its minimum
polynomial.
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DIAGONALISATION; NORMAL TRANSFORMATIONS

We shall now concentrate on the common zeros of the characteristic and minimum
polynomials. These are called the eigenvalues of f . The set of eigenvalues of f is
called the spectrum of f . Associated with the eigenvalues is the following important
notion.

Definition 20.1 Let V be a vector space of dimension n over a field F . Then a linear
transformation f : V → V is said to be diagonalisable if there is an ordered basis
(ei)n of V with respect to which the matrix of f is









λ1
λ2

. . .
λn









for some λ1, . . . ,λn ∈ F .

We can characterise diagonalisable transformations as follows.

Theorem 20.1 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then f is diagonalisable if and only if the
minimum polynomial of f is of the form

m f = (X −λ1)(X −λ2) · · · (X −λm)

where λ1, . . . ,λm are distinct elements of F.

Proof ⇒ : If f is diagonalisable then there is an ordered basis relative to which the
matrix of f is the diagonal matrix

M = diag{λ1, . . . ,λn}.

Now M has the same invariant factors as f and hence the same minimum polynomial
as f . Let the distinct λi in the above list be λ1, . . . ,λm. Then it is clear that the
minimum polynomial of M, and hence that of f , is

(X −λ1)(X −λ2) · · · (X −λm).

⇐ : Suppose that the minimum polynomial m f of f is of the stated form. Since
m f is the first invariant factor of f , and since all the invariant factors of f divide
m f , it is clear that every elementary divisor of f is of the form X −λi . Consequently,
every rational (elementary divisor) canonical matrix of f is diagonal and so f is
diagonalisable. �

267
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Applying the primary decomposition theorem (Theorem 19.6) to a diagonalis-
able transformation, we obtain the following result.

Theorem 20.2 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a diagonalisable transformation. Let λ1, . . . ,λm be the distinct eigen-
values of f and for i = 1, . . . , m let

Vλi
= {x ∈ V ; f (x) = λi x}.

Then each Vλi
is an f -stable subspace of V and

V =
m
⊕

i=1
Vλi

.

Proof It suffices to observe that the prime polynomials pi of Theorem 19.6 are the
polynomials X −λi . �

With the notation of Theorem 20.2, the non-zero elements of Vλi
are called the

eigenvectors associated with the eigenvalue λi . The f -stable subspace vλi
is called

the corresponding eigenspace.

• Note that Vλi
= Ker( f −λi idV ).

The following result is now immediate; indeed it is often taken as a definition of
a diagonalisable transformation.

Theorem 20.3 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then f is diagonalisable if and only if V has
a basis consisting of eigenvectors of f . �

A useful criterion for diagonalisability is the following.

Theorem 20.4 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V → V be a linear transformation. Then f is diagonalisable if and only if there
are non-zero projections p1, . . . , pk : V → V and distinct scalars λ1, . . . ,λk ∈ F such
that

(1) f =
k
∑

i=1
λi pi (2)

k
∑

i=1
pi = idV ; (3) (i 6= j) pi ◦ p j = 0.

Proof ⇒ : If f is diagonalisable then by Theorem 20.2 we have V =
k
⊕

i=1
Vλi

where

λ1, . . . ,λk are the distinct eigenvalues of f , and Vλi
= Ker( f −λi idV ) is the eigenspace

associated with λi . If pi : V → V denotes the associated projection then (2) and (3)
follow immediately from Theorem 6.14. Since Im pi = Vλi

we also have, for every
x ∈ V ,

f (x) = f
� k
∑

i=1
pi(x)

�

=
k
∑

i=1
f [pi(x)] =

k
∑

i=1
λi pi(x) =

� k
∑

i=1
λi pi

�

(x),

whence (1) follows.
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⇐ : Conversely, suppose that the conditions hold. Then by Theorem 6.14 we have

V =
k
⊕

i=1
Im pi . Now the λi appearing in (1) are precisely the distinct eigenvalues of

f . For, on the one hand, for every j,

f ◦ p j =
� k
∑

i=1
λi pi

�

◦ p j =
k
∑

i=1
λi(pi ◦ p j) = λ j(p j ◦ p j) = λ j p j

so that ( f −λ j idV ) ◦ p j = 0 whence

{0} 6= Im p j ⊆ Ker( f −λ j idV ),

showing that each λ j is indeed an eigenvalue of f . On the other hand, for every
λ ∈ F we have

f −λ idV =
k
∑

i=1
λi pi −

k
∑

i=1
λpi =

k
∑

i=1
(λi −λ)pi

so that if x is an eigenvector of f we have
k
∑

i=1
(λi − λ)pi(x) = 0 whence, since

V =
k
⊕

i=1
Im pi , we deduce that (λi−λ)pi(x) = 0 for i = 1, . . . , k. If now λ 6= λi for any

i then we have pi(x) = 0 for every i and hence the contradiction x =
k
∑

i=1
pi(x) = 0.

Thus λ = λi for some i and consequently λ1, . . . ,λk are indeed the distinct eigen-
values of f .

We now observe that in fact

Im p j = Ker( f −λ j idV ).

For, suppose that f (x) = λ j x; then 0=
k
∑

i=1
(λi −λ j)pi(x) whence (λi −λ j)pi(x) = 0

for all i and so pi(x) = 0 for i 6= j. Thus x =
k
∑

i=1
pi(x) = p j(x) ∈ Im p j .

Thus V =
k
⊕

i=1
Ker( f − λi idV ) and it follows by Theorem 7.8 that V has a basis

consisting of eigenvalues of f . We therefore conclude by Theorem 20.3 that f is
diagonalisable. �

Definition 20.2 For a diagonalisable transformation f the equality

f =
k
∑

i=1
λi pi

of Theorem 20.4 is called the spectral resolution of f .

We shall now consider the problem of deciding when two diagonalisable trans-
formations f , g : V → V are simultaneously diagonalisable, in the sense that there
is a basis of V that consists of eigenvectors of both f and g.
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Theorem 20.5 Let V be a non-zero finite-dimensional vector space over a field F and
let f , g : V → V be diagonalisable transformations. Then f and g are simultaneously
diagonalisable if and only if f ◦ g = g ◦ f .

Proof ⇒ : Suppose that there is a basis {e1, . . . , en} of V that consists of eigenvectors
of both f and g. If, for each i, we have f (ei) = λiei and g(ei) = µiei then

( f ◦ g)(ei) = f (µiei) = µi f (ei) = µiλiei;

(g ◦ f )(ei) = g(λiei) = λi g(ei) = λiµiei ,

whence we see that f ◦ g and g ◦ f agree on a basis of V . It follows that f ◦ g = g ◦ f .
⇐ : Conversely, suppose hat f ◦ g = g ◦ f . Since f is diagonalisable, its minimum

polynomial is of the form

m f = (X −λ1)(X −λ2) · · · (X −λm).

Now, by Theorem 20.2,

V =
m
⊕

i=1
Ker( f −λi idV ).

Since f and g commute, we have, for vi ∈ Vi = Ker( f −λi idV ),

f [g(vi)] = g[ f (vi)] = g(λi vi) = λi g(vi)

from which it follows that

g(vi) ∈ Ker( f −λi idV ) = Vi ,

so that each Vi is g-stable. Let gi : Vi → Vi be the F -morphism induced by g. Since g
is diagonalisable, so also is each gi; for, the minimum polynomial of gi divides that
of g. Thus, by Theorem 20.3, we can find a basis Bi of Vi consisting of eigenvectors
of gi . Since every eigenvector of gi is trivially an eigenvector of g and since every

element of Vi is an eigenvector of f , it follows that
m
⋃

i=1
Bi is a basis of V that consists

of eigenvectors of both f and g. �

As we shall see, the above result yields an important property of Jordan mor-
phisms that is useful in applications.

We note that if f : V → V is a Jordan morphism then clearly every Jordan
canonical matrix of f can be written as the sum of a diagonal matrix and a matrix
of the form

N =













0
1 0

1 0
...

. . .
1 0













.

If N is of size n×n then it is readily seen that N n = 0. This gives rise to the following
notion.
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Definition 20.3 A linear transformation f : V → V (or a square matrix A) is said to
be nilpotent if, for some positive integer n, f n = 0 (or An = 0).

Theorem 20.6 [Jordan decomposition theorem] Let V be a non-zero finite-
dimensional vector space over a field F and let f : V → V be a Jordan transformation.
Then there is a diagonalisable transformation δ : V → V and a nilpotent transforma-
tion η : V → V such that f = δ+η and δ◦η= η◦δ. Moreover, there exist p, q ∈ F[X ]
such that δ = p( f ) and η = q( f ). Furthermore, δ and η are uniquely determined, in
the sense that if δ′,η′ : V → V are respectively diagonalisable and nilpotent transfor-
mations such that f = δ′ +η′ and δ′ ◦η′ = η′ ◦δ′ then δ′ = δ and η′ = η.

Proof Since f is a Jordan transformation its minimum polynomial is of the form

m f = (X −λ1)
m1(X −λ2)

m2 · · · (X −λn)
mn

and, by Theorem 20.2, V =
n
⊕

i=1
Vi where Vi = Ker ( f − λi idV )mi . Let δ : V → V be

the linear transformation given by δ =
n
∑

i=1
λi pi where pi : V → V is the projection

on Vi parallel to
∑

j 6=i
Vj . Since, for vi ∈ Vi ,

δ(vi) =
� n
∑

j=1
λ j p j

�

(vi) = λi vi ,

it follows by Theorem 7.8 that V has a basis consisting of eigenvectors of δ and so,
by Theorem 20.3, δ is diagonalisable.

Now letη= f −δ. Then for vi ∈ Vi we haveη(vi) = f (vi)−δ(vi) = ( f −λi idV )(vi)
and consequently

ηmi (vi) = ( f −λi idV )
mi (vi) = 0.

It follows that, for some k, Kerηk contains a basis of V whence we have that ηk = 0
and so η is nilpotent.

Since V =
n
⊕

i=1
Vi , every v ∈ V can be written uniquely in the form

v = v1 + · · ·+ vn

with vi ∈ Vi for each i. Since each Vi is f -stable, we deduce that

(pi ◦ f )(v) = pi[ f (v1) + · · ·+ f (vn)] = f (vi) = ( f ◦ pi)(v).

Consequently pi ◦ f = f ◦ pi for i = 1, . . . , n and so’

δ ◦ f =
� n
∑

i=1
λi pi

�

◦ f =
n
∑

i=1
λi(pI ◦ f )

=
n
∑

i=1
λi( f ◦ pi)

= f ◦
� n
∑

i=1
λi pi

�

= f ◦δ.
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It follows from this that

δ ◦η= δ ◦ ( f −δ) = (δ ◦ f )−δ2 = ( f ◦δ)−δ2 = ( f −δ) ◦δ = η ◦δ.

We now show that there are polynomials p, q such that δ = p( f ) and η = q( f ).
For this purpose, define

(i = 1, . . . , n) t i =
m f

(X −λi)mi
.

Since t1, . . . , tn are relatively prime, there exist polynomials a1, . . . , an such that

t1a1 + · · ·+ tnan = 1. (20.1)

Now let bi = t iai for i = 1, . . . , n and let v = v1 + · · ·+ vn be an arbitrary element of
V , with of course vi ∈ Vi for each i. Observing that if j 6= i then b j is a multiple of
(X −λi)mi , we deduce that

( j 6= i) [b j( f )](vi) = 0.

It now follows from (20.1) that

(i = 1, . . . , n) [bi( f )](vi) = vi .

Consequently, we have

(i = 1, . . . , n) [bi( f )](v) = vi = pi(v)

and so bi( f ) = pi . It now follows from the definition of δ that δ = p( f ) where

p =
n
∑

i=1
λi bi . SInce η= f −δ there is then a polynomial q with η= q( f ).

As for uniqueness, suppose that δ′,η′ : V → V are respectively diagonalisable
and nilpotent transformations such that

f = δ′ +η′, δ′ ◦η′ = η′ ◦δ′.

We note first that these conditions give f ◦ δ′ = δ′ ◦ f and f ◦ η′ = η′ ◦ f . Now, as
we have just seen, there are polynomials p, q such that δ = p( f ) and η = q( f ). It
follows, therefore, that δ ◦δ′ = δ′ ◦δ and η◦η′ = η′ ◦η. Consider now the equality

δ−δ′ = η′ −η.

Since η,η′ commute we can use the binomial theorem to deduce from the fact that
η,η′ are nilpotent that η′ −η is nilpotent. On the other hand, since δ,δ′ commute,
it follows by Theorem 20.3 that there is a basis of V consisting of eigenvectors of
both δ and δ′. Each of these eigenvectors is then an eigenvector of δ − δ′; for if
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δ(v) = λv and δ′(v) = λ′v then (δ − δ′)(v) = (λ− λ′)v. Consequently, the matrix
of δ−δ′ with repect to this (suitably ordered) basis is diagonal, say

D = diag{d1, . . . , dn}.

Since δ − δ′ = η′ − η, this diagonal matrix is also nilpotent. It follows that some
power of each di is zero whence every di is zero and hence

δ−δ′ = η′ −η= 0,

from which the uniqueness follows. �

• In the above decomposition f = δ+η we call δ the diagonalisable part and η
the nilpotent part of the Jordan transformation f .

• Note from the above proof that for each projection pi we have pi = bi( f ). We
shall use this observation later.

At this stage we return to our discussion of inner product spaces.

Let V be a finite-dimensional inner product space and let f : V → V be a lin-
ear transformation. We shall now consider the question : under what conditions is
f ortho-diagonalisable, in the sense that there is an orthonormal basis consisting of
eigenvectors of f ? Put another way, under what conditions does there exist an or-
dered orthonormal basis of V relative to which the matrix of f is diagonal? Expressed
purely in terms of matrices, this question is equivalent to asking precisely when is a
given square matrix (over R or C) unitarily similar to a diagonal matrix?

In order to tackle this problem, we shal concentrate on direct sum decomposi-
tions and the associated projections (see Section 6). The first preparatory result that
we shall require is the following.

Theorem 20.7 If W, X are subspaces of a finite-dimensional inner product space V
such that V = W ⊕ X , then V = W⊥ ⊕ X⊥. Moreover, if p is the projection on W
parallel to X then the adjoint p? of p is the projection on X⊥ parallel to W⊥.

Proof We note first that if A, B are subspaces of V then

A⊆ B =⇒ B⊥ ⊆ A⊥.

To see this, it suffices to obseve that every element that is orthogonal to B is clearly
orthogonal to A. Next we note that

(A+ B)⊥ = A⊥ ∩ B⊥, (A∩ B)⊥ = A⊥ + B⊥.

In fact, since A, B ⊆ A+ B we have (A+ B)⊥ ⊆ A⊥ ∩ B⊥; and since A∩ B ⊆ A, B we
have A⊥ + B⊥ ⊆ (A∩ B)⊥. SInce then

A∩ B = (A∩ B)⊥⊥ ⊆ (A⊥ + B⊥)⊥ ⊆ A⊥⊥ ∩ B⊥⊥ = A∩ B,

we deduce that A∩ B = (A⊥+ B⊥)⊥, whence (A∩ B)⊥ = A⊥+ B⊥. The other equality
can be derived from this by replacing A, B by A⊥, B⊥.
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Using the above observations, we see that if V =W ⊕ X then

V⊥ = (W + X )⊥ =W⊥ ∩ X⊥;

V = {0}⊥ = (W ∩ X )⊥ =W⊥ + X⊥,

whence V =W⊥ ⊕ X⊥.
Suppose now that p is the projection on W parallel to X . Since, by Theorem

11.10(3),
p? ◦ p? = (p ◦ p)? = p?,

we see that p? is a projection. Now since Im p =W and since, from the definition of
adjoint, 〈p(x) | y〉= 〈x | p?(y)〉 we see that

y ∈ Ker p? ⇐⇒ y ∈W⊥,

so that Ker p? =W⊥. Now for all x , y ∈ V we have

〈x | y − p?(y)〉= 〈x | y〉 − 〈x | p?(y)〉
= 〈x | y〉 − 〈p(x) | y〉
= 〈x − p(x) | y〉.

Since, by Theorem 6.12, Im p = {x ∈ V ; x = p(x)} and Ker p = {x − p(x) ; x ∈ V},
it follows that

y ∈ Im p? ⇐⇒ y ∈ (Ker p)⊥,

so that Im p? = (Ker p)⊥ = X⊥. Thus we see that p? is the projection on X⊥ parallel
to W⊥. �

Definition 20.4 By an ortho-projection on an inner product space V we shall mean
a projection p : V → V such that Im p = (Ker p)⊥.

Theorem 20.8 Let V be a non-zero finite-dimensional inner product space. If p is a
projection on V then p is an ortho-projection if and only if p is self-adjoint.

Proof By Theorem 6.13, p is the projection on Im p parallel to Ker p; and, by The-
orem 20.7, p? is the projection on Im p? = (Ker p)⊥ parallel to Ker p? = (Im p)⊥. If
then p is self-adjoint we have p = p? and so Im p = Im p? = (Ker p)⊥; and conversely,
if Im p = (Ker p)⊥ then Im p = Im p? and

Ker p = (Ker p)⊥⊥ = (Im p)⊥ = Ker p?,

from which it follows by Theorem 6.12 that p = p?. �

Definition 20.5 Let V1, . . . , Vn be subspaces of the inner product space V . Then we
shall say that V is the ortho-direct sum of V1, . . . , Vn if

(1) V =
n
⊕

i=1
Vi;

(2) (i = 1, . . . , n) V⊥i =
∑

j 6=i
Vj .
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If V =
n
⊕

i=1
Vi and if pi denotes the projection on Vi parallel to

∑

j 6=i
Vj , then it is

clear that V is the ortho-direct sum of V1, . . . , Vn if and only if each pi is an ortho-

projection. It is also clear that if V =
n
⊕

i=1
Vi then V is the ortho-direct sum of V1, . . . , Vn

if and only if every element of Vi is orthogonal to every element of Vj for j 6= i; for
then

∑

j 6=i
Vj ⊆ V⊥i whence we have equality since

dim
∑

j 6=i
Vj = dim V − dim Vi = dim V⊥i .

The following result is now immediate from the above definitions and Theorem
20.4.

Theorem 20.9 Let V be a non-zero finite-dimensional inner product space. Then a
linear transformation f : V → V is ortho-diagonalisable if and only if there are ortho-
projections p1, . . . , pk : V → V and distinct scalars λ1, . . . ,λk such that

(1) f =
k
∑

i=1
λi pi;

(2)
k
∑

i=1
pI = idV ;

(3) (i 6= j) pi ◦ p j = 0. �

Suppose now that f : V → V is ortho-diagonalisable. Then, applying Theorem
11.10 to the conditions (1), (2), (3) of Theorem 20.9, we obtain, using Theorem
20.8,

(1?) f ? =
k
∑

i=1
λi p

?
i =

k
∑

i=1
λi pi; (2?) = (2), (3?) = (3).

We deduce from this that f ? is ortho-diagonalisable and that (1?) gives its spectral
resolution. Thus λ1, . . . ,λk are the distinct eigenvalues of f ?. A simple computation
now shows that

f ◦ f ? =
k
∑

i=1
|λi |2pi = f ? ◦ f ,

so that ortho-diagonalisable transformations commute with their adjoints.
This leads to the following important notion.

Definition 20.6 If V is a finite-dimensional inner product space and if f : V → V
is a linear transformation then we shall say that f is normal if it commutes with its
adjoint. Similarly, if A is a square matrix over the ground field of V then we say that
A is normal if AA? = A?A.

We have just observed that a necessary condition for a linear transformation f to
be ortho-diagonalisable is that it be normal. It is remarkable that, when the ground
field is C, this condition is also sufficient. In order to establish this, we require the
following properties of normal transformations.
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Theorem 20.10 Let V be a non-zero finite-dimensional inner product space and let
f : V → V be a normal transformation. Then

(1) (∀x ∈ V ) || f (x)||= || f ?(x)||;
(2) if p is a polynomial with coefficients in the ground field of V then the transfor-

mation p( f ) : V → V is also normal;

(3) Im f ∩ Ker f = {0}.

Proof (1) Since f commutes with f ? we have, for all x ∈ V ,

〈 f (x) | f (x)〉= 〈x | f ?[ f (x)]〉= 〈x | f [ f ?(x)]〉= 〈 f ? | f ?(x)〉,

from which (1) follows.
(2) If p = a0X 0 + a1X 1 + · · ·+ anX n then

p( f ) = a0 idV +a1 f + · · ·+ an f

and so, by Theorem 11.10,

[p( f )]? = a0 idV +a1 f ? + · · ·+ an( f
?)n.

Since f and f ? commute, it is clear that so do p( f ) and [p( f )]?. Hence p( f ) is
normal.
(3) If x ∈ Im f ∩Ker f then there exists y ∈ V such that x = f (y) and f (x) = 0.

By (1) we have f ?(x) = 0 and so

0= 〈 f ?(x) | y〉= 〈x | f (y)〉= 〈x | x〉

whence we see that x = 0. �

Theorem 20.11 Let V be a non-zero finite-dimensional inner product space. If p is a
projection on V then p is normal if and only if it is self-adjoint.

Proof Clearly, if p is self-adjoint then p is normal. Suppose, conversely, that p is
normal. By Theorem 20.10(1), we then have ||p(x)|| = ||p?(x)|| and so p(x) = 0 if
and only if p?(x) = 0. Given x ∈ V let y = x − p(x). Then

p(y) = p(x)− p[p(x)] = p(x)− p(x) = 0

and so 0 = p?(y) = p?(x)− p?[p(x)]. Consequently we see that p? = p? ◦ p. It now
follows that

p = p?? = (p? ◦ p)? = p? ◦ p?? = p? ◦ p = p?. �

Theorem 20.12 Let V be a non-zero finite-dimensional complex inner product space.
If f : V → V is a linear transformation then the following are equivalent :

(1) f is ortho-diagonalisable;

(2) f is normal.
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Proof We have already seen that (1) ⇒ (2). As for (2) ⇒ (1), suppose that f is
normal. To show that f is diagonalisable it suffices, by Theorem 20.1, to show that
the minimum polynomial m f of f is a product of distinct linear polynomials. Since
C is algebraically closed, m f is certainly a product of linear polynomials. Suppose,
by way of obtaining a contradiction, that c ∈ C is a multiple root of m f , so that

m f = (X − c)2 g

for some polynomial g. Then

(∀x ∈ V ) 0= m f (x) = [( f − c idV )
2 ◦ g( f )](x)

and consequently [( f − c idV )◦ g( f )](x) belongs to both the image and the kernel of
f − c idV . Since, by Theorem 20.10(2), f − c idV is normal, we deduce by Theorem
20.10(3) that

(∀x ∈ V ) [( f − c idV ) ◦ g( f )](x) = 0.

Consequently ( f − c idV )◦ g( f ) is the zero transformation on V . This contradicts the
fact that (X − c)2 g is the minimum polynomial of f . Thus we see that f is diagonal-
isable.

To show that f is ortho-diagonalisable, it is enough to show that the projections
pi corresponding to Theorem 20.4 are ortho-projections; and by Theorem 20.8 it is
enough to show that these projections are self-adjoint.

Now since f is diagonalisable it is a Jordan transformation and clearly coincides
with its diagonal part as described in Theorem 20.6. In the proof of that result, we
observed that there existed a polynomial bi such that bi( f ) = pi . We thus see by
Theorem 20.10(2) that the projections pi are normal. It now follows by Theorem
20.11 that each pi is self-adjoint. �

Corollary 1 If A is a square matrix over C then A is unitarily similar to a diagonal
matrix if and only if A is normal. �

• It should be noted that in the proof of Theorem 20.12 we used the fact that C
is algebraically closed. This is not so for R and we might expect that the corre-
sponding result in the case where the ground field is R is false in general. This
is indeed the case : there exist normal transformations on a real inner prod-
uct space that are not diagonalisable. One way in which this can happen, of
course, is when the transformation in question has all its eigenvalues complex.
For example, the reader will verify that the matrix

�

− 1
2 −

p
3

2p
3

2 − 1
2

�

=

�

cos 2π
3 −sin 2π

3

sin 2π
3 cos 2π

3

�

has minimum polynomial X 2 + X + 1, which is irreducible over R. In order to
obtain an analogue for Theorem 20.12 in the case where the ground field is R,
we asre therefore led to consider normal transformations whose eigenvalues
are all real.
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Theorem 20.13 Let V be a non-zero finite-dimensional complex inner product space.
If f : V → V is a linear transformation then the following are equivalent :

(1) f is normal and every eigenvalue of f is real;

(2) f is self-adjoint.

Proof (1) ⇒ (2) : If f is normal then by Theorem 20.12 it is diagonalisable. Let

f =
k
∑

i=1
λi pi be its spectral resolution. We know that f ? is also normal with spectral

resolution f ? =
k
∑

i=1
λi pi . Since each λi is real by hypothesis, we deduce that f = f ?.

(2)⇒ (1) : If f = f ? then it is clear that f is normal. If the corresponding spectral

resolutions are f =
k
∑

i=1
λi pi and f ? =

k
∑

i=1
λi pi then f = f ? gives

k
∑

i=1
(λi − λi)pi = 0

and so

(∀x ∈ V )
k
∑

i=1
(λi −λi)pi(x) = 0,

whence (λi − λi)pi(x) = 0 for each i since V =
k
⊕

i=1
Im pi . Since no pi is zero, we

deduce that λi = λi for every i. Consequently every eigenvalue of f is real. �

Corollary 1 All eigenvalues of a hermitian matrix are real. �

We can now describe the ortho-diagonalisable transformations on a real inner
product space.

Theorem 20.14 Let V be a non-zero finite-dimensional real inner product space. If
f : V → V is a linear transformation then f is ortho-diagonalisable if and only if f is
self-adjoint.

Proof ⇒ : If f is ortho-diagonalisable then, as in Theorem 20.9, let f =
k
∑

i=1
λi pi .

Since the ground field isR, every λi is real and so, taking adjoints and using Theorem
20.8, we obtain f = f ?.
⇐ : Suppose conversely that f is self-adjoint and let A be the (n× n say) matrix

of f relative to some ordered orthonormal basis of V . Then A is symmetric. Now let
f ′ be the linear transformation on the complex inner product space Cn whose matrix
relative to the natural ordered orthonormal basis of Cn is A. Then f ′ is self-adjoint.
By Theorem 20.13, the eigenvalues of f ′ are all real and, since f ′ is diagonalisable,
the minimum polynomial of f ′ is a product of distinct linear polynomials over R.
Since this is then the minimum polynomial of A, it is also the minimum polynomial
of f . Thus we see that f is diagonalisable. That f is ortho-diagonalisable is shown
precisely as in Theorem 20.12. �

Corollary 1 If A is a square matrix over R then A is orthogonally similar to a diagonal
matrix if and only if A is symmetric. �
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We now turn our attention to a useful alternative characterisation of a self-adjoint
transformation on a complex inner product space. For this purpose, we observe the
following result.

Theorem 20.15 Let V be a complex inner product space. If f : V → V is linear and
such that 〈 f (x) | x〉= 0 for all x ∈ V then f = 0.

Proof For all z ∈ V we have

0= 〈 f (y + z) | y + z〉= 〈 f (y) | z〉+ 〈 f (z) | y〉;
0= 〈 f (i y + z) | i y + z〉= i〈 f (y) | z〉 − i〈 f (z) | y〉,

from which it follows that 〈 f (y) | z〉= 0. Then f (y) = 0 for all y ∈ V and so f = 0.
�

Theorem 20.16 Let V be a finite-dimensional complex inner product space. If f : V →
V is linear then the following are equivalent :

(1) f is self-adjoint;

(2) (∀x ∈ V ) 〈 f (x) | x〉 ∈ R.

Proof (1)⇒ (2) : If f is self-adjoint then, for every x ∈ V ,

〈 f (x) | x〉= 〈 f ?(x) | x〉= 〈x | f ?(x)〉= 〈 f (x) | x〉,

from which (2) follows.
(2)⇒ (1) : If (2) holds then

〈 f ?(x) | x〉= 〈x | f (x)〉= 〈 f (x) | x〉= 〈 f (x) | x〉

and consequently

〈( f ? − f )(x) | x〉= 〈 f ?(x) | x〉 − 〈 f (x) | x〉= 0.

Since this holds for all x ∈ V , it follows by Theorem 20.15 that f ? = f . �

These results lead to the following notion.

Definition 20.7 If V is an inner product space then a linear mapping f : V → V is
said to be positive (or semi-definite) if it is self-adjoint and such that 〈 f (x) | x〉 ¾ 0
for every x ∈ V ; and positive definite if it is self-adjoint and 〈 f (x) | x〉 > 0 for every
non-zero x ∈ V .

Theorem 20.17 If V is a non-zero finite-dimensional inner product space and f : V →
V is a linear transformation then the following are equivalent :

(1) f is positive;

(2) f is self-adjoint and every eigenvalue is real and ≥ 0;

(3) there is a self-adjoint g : V → V such that g2 = f ;

(4) there is a linear map h : V → V such that h? ◦ h= f .
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Proof (1)⇒ (2) : Let λ be an eigenvalue of f . By Theorem 20.13, λ is real. Then

0≤ 〈 f (x) | x〉= 〈λx | x〉= λ〈x | x〉

gives λ≥ 0 since 〈x | x〉> 0.
(2)⇒ (3) : Since f is self-adjoint it is normal and hence is ortho-diagonalisable.

Let its spectral resolution be f =
k
∑

i=1
λi pi and, using (2), define g : V → V by

g =
k
∑

i=1

Æ

λi pi .

Since the pi are ortho-projections and hence self-adjoint, we have that g is self-
adjoint. Also, since pi ◦ p j = 0 for i 6= j, it follows readily that g2 = f .
(3)⇒ (4) : Take h= g.
(4)⇒ (1) : Observe that (h? ◦ h)? = h? ◦ h?? = h? ◦ h and, for all x ∈ V ,

〈h?[h(x)] | x〉= 〈h(x) |h(x)〉 ≥ 0.

Thus we see that h? ◦ h is positive. �

It is immediate from Theorem 20.17 that every positive linear transformation
has a square root. That this square root is unique is shown as follows.

Theorem 20.18 Let f be a positive linear transformation on a finite-dimensional inner
product space V . Then there is a unique positive linear transformation g : V → V such
that g2 = f . Moreover, there is a polynomial q such that g = q( f ).

Proof Let f =
k
∑

i=1
λi pi be the spectral resolution of f and define g by g =

k
∑

i=1

p

λi pi .

Since this must be the spectral resolution of g, it follows that the eigenvalues of g
are

p

λi for i = 1, . . . , k and so, by Theorem 20.17, g is positive.
Suppose now that h : V → V is also positive and such that h2 = f . If the spectral

resolution of h is
m
∑

j=1
µiq j where the q j are orthogonal projections then we have

k
∑

i=1
λi pi = f = h2 =

m
∑

j=1
µ2

j q j .

Now the eigenspaces of f are Im pi for i = 1, . . . , k and also Im q j for j = 1, . . . , m. It
follows that m= k and that there is a permutationσ on {1, . . . , k} such that qσ(i) = pi

whence µ2
σ(i) = λi . Thus µσ(i) =

p

λi and we deduce that h= g.
The final assertion follows by considering the Lagrange polynomials

Pi =
∏

j 6=i

X −λ j

λi −λ j
.

Since Pi(λt) = δi t , the polynomial q =
k
∑

i=1

p

λi Pi is then such that q( f ) = g. �
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Corollary 1 The following are equivalent :
(1) f is positive definite;
(2) f is self-adjoint and all eigenvalues of f are real and > 0;
(3) there is an invertible self-adjoint g such that g2 = f ;
(4) there is an invertible h such that h? ◦ h= f .

Proof This is clear from the fact that g is invertible if and only if 0 is not one of its
eigenvalues. �

Corollary 2 If f is positive definite then f is invertible. �

Of course, the above results have matrix analogues. A square matrix that repre-
sents a positive transformation is called a Gram matrix. The following characterisa-
tion of such matrices is immediate from the above.

Theorem 20.19 A square matrix is a Gram matrix if and only if it is self-adjoint and
all its eigenvalues are real and greater than or equal to 0. �

By Theorem 20.12, the ortho-diagonalisable transformations on a complex in-
ner product space are precisely the normal transformations; and by Theorem 20.14
those on a real inner product space are precisely the self-adjoint transformations.
It is natural at this point to ask about the normal transformations on a real inner
product space; equivalently, to ask about real square matrices that commute with
their transposes. In particular, can we determine canonical forms for such matrices
under orthogonal similarity? The following sequence of results achieves this goal.
As a particular case, we shall be able to determine a canonical form for orthogonal
matrices.

Definition 20.8 If V is a finite-dimensional real inner product space and if f : V →
V is a linear transformation then we shall say that f is skew-adjoint if f ? = − f .
The corresponding terminology for real square matrices is skew-symmetric; for, the
entries of A being real, A? = −A becomes At = −A.

Theorem 20.20 If V is a non-zero finite-dimensional real inner product space and if
f : V → V is a linear transformation then there is a unique self-adjoint transformation
g : V → V and a unique skew-adjoint transformation h : V → V such that f = g + h.
Moreover, f is normal if and only if g and h commute.

Proof Clearly, we have f = 1
2 ( f + f ?) + 1

2 ( f − f ?) where 1
2 ( f + f ?) is self-adjoint

and 1
2 ( f − f ?) is skew-adjoint.

Suppose then that f = g + h where g is self-adjoint and h is skew-adjoint. Then
f ? = g?+h? = g−h and consequently we see that g = 1

2 ( f + f ?) and h= 1
2 ( f − f ?).

If now f is normal then f ◦ f ? = f ? ◦ f gives

(g + h) ◦ (g − h) = (g − h) ◦ (g + h),

which reduces to g ◦ h= h ◦ g. Conversely, if g ◦ h= h ◦ g then

f ◦ f ? = (g + h) ◦ (g − h) = g2 + h ◦ g − g ◦ h − h2 = g2 − h2

and likewise f ? ◦ f = g2 − h2. �
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• In the above expression for f we call g the self-adjoint part and h the skew-
adjoint part of f .

A useful characterisation of skew-adjoint transformations is the following.

Theorem 20.21 If V is a non-zero finite-dimensional real inner product space wnd if
f : V → V is a linear transformation then the following are equivalent :

(1) f is skew-adjoint;

(2) (∀x ∈ V ) 〈 f (x) | x〉= 0.

Proof (1)⇒ (2) : If f is skew-adjoint then, since we are dealing with a real inner
product space, given x ∈ V we have

〈 f (x) | x〉= 〈x | f ?(x)〉= 〈x | − f (x)〉= −〈x | f (x)〉= −〈 f (x) | x〉.

It follows that 〈 f (x) | x〉= 0.
(2)⇒ (1) : If (2) holds then for all x , y ∈ V we have

0= 〈 f (x + y) | x + y〉 = 〈 f (x) | x〉+ 〈 f (x) | y〉+ 〈 f (y) | x〉+ 〈 f (y) | y〉
= 〈 f (x) | y〉+ 〈 f (y) | x〉

whence we obtain

〈 f (x) | y〉= −〈 f (y) | x〉= −〈x | f (y)〉= 〈x | − f (y)〉.

It now follows by the uniqueness of adjoints that f ? = − f . �

Since the main results of our immediate discussion to follow stem from applica-
tions of the primary decomposition theorem (Theorem 19.6), the notion of minimum
polynomial will play an important rôle. Now as the ground field in question is R and
since R[X ] is a unique factorisation domain, every non-zero polynomial with real
coefficients can be expressed as a product of powers of distinct irreducible polyno-
mials. For our future work, we note that a monic polynomial over R is irreducible if
and only if it is of the form X − a or X 2 − (z + z)X + zz for some z ∈ C \R. In fact, if
z ∈ C \R, say z = a+ i b with b 6= 0, then the polynomial

X 2 − (z + z)X + zz = X 2 − 2aX + (a2 + b2)

is readily seen to be irreducible over R. Conversely, suppose that the monic polyno-
mial p is irreducible over R and that p 6= X − a. Since C is algebraically closed, we
can find z ∈ C that is a zero of p. Then since p(z) = p(z) we see that z is also a zero
of p. It follows that the polynomial

X 2 − (z + z)X + zz = (X − Z)(X − z)

is a divisor of p; moreover, we cannot have z ∈ R since otherwise X − z ∈ R[X ]
would be a divisor of p in R[X ], contradicting the fact that p is irreducible.
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Theorem 20.22 If V is a non-zero finite-dimensional real inner product space and if
f : V → V is a normal transformation then the minimum polynomial of f is of the

form
k
∏

i=1
pi where p1, . . . , pk are distinct irreducible polynomials.

Proof Since R[X ] is a unique factorisation domain, we can express the minimum

polynomial of f in the form m f =
k
∏

i=1
pmi

i where p1, . . . , pk are distinct irreducible

polynomials. We have to show that every mi = 1. Suppose, by way of obtaining
a contradiction, that for some i we have m1 ≥ 2. Let Mi = Ker[pi( f )]mi , so that
[pi( f )]mi (x) = 0 for every x i ∈ Mi . Then we have

(∀x ∈ Mi) [pi( f )]
mi−1(x) ∈ Im pi( f )∩ Ker pi( f ).

But since f is normal so is pi( f ) by Theorem 20.10(2). It now follows by Theorem
20.10(3) that the restriction of [pi( f )]mi to Mi is the zero transformation. But, by
the primary decomposition theorem, [pi( f )]mi is the minimum polynomial of the
transformation induced on Mi by f . From this contradiction we therefore deduce
that each mi must be 1. �

Concerning the minimum polynomial of a skew-adjoint transformation, we have
the following result.

Theorem 20.23 Let V be a non-zero finite-dimensional real inner product space and
let f : V → V be a skew-adjoint transformation. If p is an irreducible factor of the
minimum polynomial of f then either p = X or p = X 2 + c2 for some c 6= 0.

Proof Since skew-adjoint transformations are normal, it follows by Theorem 20.22

that the minimum polynomial of f is of the form
k
∏

i=1
pi where p1, . . . , pk are distinct

irreducible polynomials. We also know that either pi is linear or pi is of the form

X 2 − 2aiX + (a
2
i + b2

i )

where bi 6= 0.
Suppose that pi is not linear and let Mi = Ker pi( f ) be the corresponding pri-

mary component of f . If fi denotes the restriction of f to Mi then, by the primary
decomposition theorem, the minimum polynomial of fi is pi and so

0= pi( f ) = f 2
i − 2ai f + (a2

i + b2
i ) idMi

.

Since f is skew-symmetric, so also is fi and consequently we have

0= f 2
i − 2ai f ?i + (a

2
i + b2

i ) id= f 2
i + 2ai f + (a2

i + b2
i ) id .

These equalities give 4ai fi = 0 whence we deduce that ai = 0; for otherwise fi = 0
whence the minimum polynomial of fi is pi = X , contradicting the hypothesis. Thus
we see that pi reduces to

pi = X 2 + b2
i

where b2
i > 0 since bi 6= 0.



284 Module Theory

Suppose now that pi is linear, say pi = X − ai . Then we have fi = ai id and
consequently f ?i = ai id = fi . But fi is skew-adjoint, so f ?i = − fi . It follows that
0= fi = ai id whence ai = 0 and so pi = X . �

Corollary 1 If f is skew-adjoint then the minimum polynomial of f is given as follows :
(1) if f = 0 then m f = X ;
(2) if f is invertible then

m f = (X
2 + c2

1)(X
2 + c2

2) · · · (X
2 + c2

k)

for distinct real numbers c1, . . . , ck;
(3) if f is neither zero nor invertible then

m f = (X
2 + c2

1)(X
2 + c2

2) · · · (X
2 + c2

k)X

for distince real numbers c1, . . . , ck.

Proof This is immediate from Theorems 20.22, 20.23, and Corollary 3 of Theorem
19.17 on noting that, since the characteristic and minimum polynomials have the
same zeros, the constant term in the characteristic polynomial is non-zero if and
only if the constant term in the minimum polynomial is non-zero. �

Concerning the primary components of a skew-adjoint transformation, we shall
require the following result.

Theorem 20.24 If V is a non-zero finite-dimensional real inner product space and if
f : V → V is a skew-adjoint transformation then the primary components of f are
pairwise orthogonal.

Proof Let Mi , M j be primary components of f with i 6= j. If fi , f j are respectively
the transformations induced on Mi , M j by the restrictions of f to Mi , M j suppose
first that the minimum polynomials of fi , f j are X 2+ c2

i , X 2+ c2
j where ci , c j 6= 0 and

c2
i 6= c2

j . Then for all x i ∈ Mi and x j ∈ M j we have

0 = 〈( f 2
i + c2

i id)(x i) | x j〉
= 〈 f 2(x i) | x j〉 + c2

i 〈x i | x j〉

= 〈 f (x i) | − f (x j)〉 + c2
i 〈x i | x j〉

= 〈x i | f 2(x j)〉 + c2
i 〈x i | x j〉

= 〈x i | f 2
j (x j)〉 + c2

i 〈x i | x j〉

= 〈x i | − c2
j x j〉 + c2

i 〈x i | x j〉

= (c2
i − c2

j )〈x i | x j〉.

Since c2
i 6= c2

j we deduce that 〈x i | x j〉= 0.
Suppose now that the minimum polynomial of fi is X 2 + c2

i with ci 6= 0 and
that of f j is X . Replacing f 2

j (x j) by 0 in the above string of equalities, we obtain
0= c2

i 〈x i | x j〉 whence again 〈x i | x j〉= 0. �
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In order to establish our main result on skew-adjoint transformations, we require
the following general result.

Theorem 20.25 Let W be a subspace of a non-zero finite-dimensional inner product
space V and let f : V → V be a linear transformation. Then W is f -stable if and only
if W⊥ is f ?-stable.

Proof By Theorem 11.12 we have V =W ⊕W⊥. If W is f -stable then

(∀x ∈W )(∀y ∈W⊥) 〈x | f ?(y)〉= 〈 f (x) | y〉= 0

whence we see that f ?(y) ∈ W⊥ for all y ∈ W⊥, so that W⊥ is f ?-stable. Applying
this observation again, we obtain the converse; for if W⊥ is f ?-stable then W =W⊥⊥

is f ?? = f -stable. �

Theorem 20.26 Let V be a non-zero finite-dimensional real inner product space and
let f : V → V be a skew-adjoint transformation whose minimum polynomial is X 2+ b2

where b 6= 0. Then dim V is even and V is an ortho-direct sum of f -cyclic subspaces
each of dimension 2. Moreover, there is an ordered orthonormal basis of V with respect
to which the matrix of f is

M[b] =





















0 −b
b 0

0 −b
b 0

. . .
0 −b
b 0





















.

Proof Let y be a non-zero element of V . Observe first that f (y) 6= λy for any
λ; for otherwise, since f 2(y) = −b2 y , we would have λ2 = −b2 and hence the
contradiction b = 0. Let W1 be the smallest f -stable subspace containing y . Since
f 2(y) = −b2 y , we see that W1 is f -cyclic of dimension 2, a cyclic basis for W1
being {y, f (y)}. Consider now the decomposition V = W1 ⊕W⊥

1 . This direct sum
is orthogonal. By Theorem 20.25, W⊥

1 is f ?-stable and so, since f ? = − f , we se
that W⊥

1 is also f -stable, of dimension dim V − 2. Now let V1 =W⊥
1 and repeat the

argument to obtain an orthogonal direct sum V1 = W2 ⊕W⊥
2 of f -stable subspaces

with W2 f -cyclic of dimension 2. Continuing in this manner, we note that it is not
possible in the final such decomposition to have dim W⊥

k = 1. For, if this were so
then W⊥

k would have a singleton basis {z} whence f (z) /∈W⊥
k , a contradiction. Thus

W⊥
k is also of dimension 2. It follows that dim V is even.

We now construct an orthonormal basis for each of the f -cyclic subspaces Wi in

the ortho-direct sum representation V =
k
⊕

i=1
Wi . Consider the basis {yi , f (yi)} of Wi .
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Since 〈yi | f (yi)〉 = 0 we obtain, via the Gram-Schmidt orthonormalisation process,
an ordered orthonormal basis

Bi =
¦ yi

||yi ||
,

f (yi)
|| f (yi)||

©

for Wi . Now

|| f (yi)||2 = 〈 f (yi) | − f ?(yi)〉= −〈 f 2(yi) | yi〉= b2||yi ||2

and so this orthonormal basis is

Bi =
¦ yi

||yi ||
,

f (yi)
b||yi ||

©

.

Since now

f
� yi

||yi ||

�

= 0
yi

||yi ||
+ b

f (yi)
b||yi ||

;

f
� f (yi)

b||yi ||

�

= −b
yi

||yi ||
+ 0

f (yi)
b||yi ||

,

it follows that the matrix of f relative to Bi is

�

0 −b
b 0

�

.

It is now clear that
k
⋃

i=1
Bi is an ordered orthonormal basis of V with respect to which

the matrix of f is of the form stated. �

Corollary 1 If V is a non-zero finite-dimensional real inner product space an if f :
V → V is a skew-adjoint transformation then there is an ordered orthonormal basis of
V with respect to which the matrix of f is of the form









M[c1]
M[c2]

. . .
M[cn]









where c1, . . . , cn are distinct positive real numbers and M[ci] is either a zero matrix or
a matrix as illustrated in Theorem 20.26.

Proof It suffices to combine the Corollary to Theorem 20.23 with Theorems 20.24
and 20.26. �

Corollary 2 A real square matrix is skew-symmetric if and only if it is orthogonally
similar to a matrix of the form given in Corollary 1. �
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Let us now turn to the general problem of a normal transformation on a real
inner product space. Recall by Theorem 20.20 that such a transformation f can
be expressed uniquely as f = g + h where g is self-adjoint and h is skew-adjoint.
Moreover, by Theorem 20.14, g is ortho-diagonalisable.

Theorem 20.27 Let V be a non-zero finite-dimensional real inner product space and
let f : V → V be a normal transformation whose minimum polynomial is the irre-
ducible quadratic

m f = X 2 − 2aX + (a2 + b2) (b 6= 0).

If g, h are respectively the self-adjoint and skew-adjoint parts of f then

(1) h is invertible;

(2) mg = X − a;

(3) mh = X 2 + b2.

Proof (1) Suppose, by way of obtaining a contradiction, that Ker h 6= {0}. Since f
is normal, we have g ◦ h = h ◦ g by Theorem 20.20. It follows from this that Ker h
is g-stable. Since f = g + h, the restriction of f to Ker h coincides with that of g. As
Ker h is g-stable, we can therefore define a linear transformation f ′ : Ker h→ Ker h
by the prescription

f ′(x) = f (x) = g(x).

Since g is self-adjoint, so is f ′. By Theorem 20.14, f ′ is then ortho-diagonalisable
and so its minimum polynomial is a product of distinct linear factors. But m f ′ must
divide m f which, by the hypothesis, is irreducible. This contradiction therefore gives
Ker h= {0} whence h is invertible.
(2) Since f = g + h with g? = g and h? = −h we have f ? = g − h, whence

f 2− 2a f +(a2+ b2) idV = 0 and ( f ?)2− 2a f ?+(a2+ b2) idV = 0 and consequently
f 2 − ( f ?)2 = 2a( f − f ?) = 4ah. Thus, since f commutes wuith f ?, we see that

g ◦ h= 1
2 ( f + f ?) ◦ 1

2 ( f − f ?) = 1
4 [ f

2 − ( f ?)2] = ah

and so (g−a idV )◦h= 0. Since h is invertible by (1), we then have that g−a idV = 0
whence mg = X − a.
(3) Since f − h= g = a idV we have f = h+ a idV and so

0 = f 2 − 2a f + (a2 + b2) idV
= (h+ a idV )2 − 2a(h+ a idV ) + (a2 + b2) idV
= h2 + b2 idV .

Now h is skew-adjoint and by (1) is invertible. It therefore follows by the Corollary
to Theorem 20.23 that mh = X 2 + b2. �

We now extend Theorem 20.24 to normal transformations.

Theorem 20.28 If V is a non-zero finite-dimensional real inner product space and if
f : V → V is a normal transformation then the primary components of f are pairwise
orthogonal.
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Proof By Theorem 20.22, the minimum polynomial of f has the general form

m f = (X − a0)
k
∏

i=1
(X 2 − 2aiX + a2

i + b2
i )

where each bi 6= 0. By Theorem 19.6, the primary components of f are

M0 = Ker( f − a0 idV ),
(i = 1, . . . , k) Mi = Ker[ f 2 − 2ai f + (a2

i + b2
i ) idV ];

moreover, the restriction of f to Mi for i = 0, . . . , k induces a normal transformation
fi : Mi → Mi the minimum polynomial of which is X−a0 if i = 0 and X 2−2aiX+a2

i +
b2

i otherwise. Note that each fi is normal so that fi = gi +hi where gi is self-adjoint
and hi is skew-adjoint. Now gi and hi coincide with the mappings induced on Mi by
g and h where g is the self-adjoint part of f and h is the skew-adjoint part of f . To
see this, let these induced mappings be g ′, h′ respectively. Then for every x ∈ Mi we
have

gi(x) + hi(x) = fi(x) = f (x) = g(x) + h(x)

and so gi − g ′ = h′ − hi . Since the left-hand side is self-adjoint and the right-hand
side is skew-adjoint, we deduce that gi = g ′ and hi = h′.

Suppose now that i, j > 0 with i 6= j. Then m fi
= X 2 − 2aiX + a2

i + b2
i and

m f j
= X 2 − 2a jX + a2

j + b+ j2, where either ai 6= a j or b2
i 6= b2

j . By Theorem 20.22,
we have

mgi
= X − ai , mg j

= X − a j , mhi
= X 2 + b2

i , mh j
= X 2 + b2

j .

Given x i ∈ Mi and x j ∈ M j , we therefore have

0= 〈(h2
i + b2

i idVi
)(x i) | x j〉 = 〈h2(x i) | x j〉 + b2

i 〈x i | x j〉
= 〈x i |h2(x j)〉 + b2

i 〈x i | x j〉
= 〈x i |h2

j (x j)〉 + b2
i 〈x i | x j〉

= −b2
j 〈x i | x j〉 + b2

i 〈x i | x j〉

= (b2
i − b2

j )〈x i | x j〉,

so that in the case where b2
i 6= b2

j we have 〈x i | x j〉= 0. Likewise,

0= 〈(gi − ai idV )(x i) | x j〉 = 〈g(x i) | x j〉 + ai〈x i | x j〉
= 〈x i | g(x j)〉 + ai〈x i | x j〉
= 〈x i | g j(x j)〉 + ai〈x i | x j〉
= a j〈x i | x j〉 + ai〈x i | x j〉
= (a j − ai)〈x i | x j〉,

so that in the case where ai 6= a j we have 〈ai | a j〉 = 0. We thus se that M1, . . . , Mk
are pairwise orthogonal. That M0 is orthogonal to each Mi with i ≥ 1 follows from
the above strings of equalities on taking j = 0 and using the fact that f0 = a0 idV is
self-adjoint and therefore g0 = f0 and h0 = 0. �
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We can now establish a canonical form for real normal matrices.

Theorem 20.29 Let V be a non-zero finite-dimensional real inner product space and
let f : V → V be a normal transformation. Then there is an ordered orthonormal basis
of V relative to which the matrix of f is of the form









A1
A2

. . .
Ak









where each Ai is either a 1× 1 matrix, or a 2× 2 matrix of the form

�

α −β
β α

�

in which β 6= 0.

Proof With the same notation as used above, let

m f = (X − a0)
k
∏

i=1
(X 2 − 2aiX + a2

i + b2
i )

and let the primary components of f be Mi for i = 0, . . . , k. Then

m fi
=

�

X − a0 if i = 0;

X 2 − 2aiX + a2
i + b2

i otherwise.

Given any Mi with i 6= 0, we have fi = gi + hi where the self-adjoint part gi is
such that mgi

= X − ai , and the skew-adjoint part hi is such that mhi
= X 2 + b2

i .
By Theorem 20.26, there is an ordered orthonormal basis Bi of Mi with respect to
which the matrix of hi is

M[bi] =





















0 −bi
bi 0

0 −bi
bi 0

...
0 −bi
bi 0





















.

Since the minimum polynomial of gi is X − ai , we have gi(x) = ai x for every x ∈ Bi
and so the matrix of gi relative to Bi is the diagonal matrix all of whose entries are
ai . It now follows that the matrix of fi = gi + hi relative to Bi is
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M[ai , bi] =





















ai −bi
bi ai

ai −bi
bi ai

. . .
ai −bi
bi ai





















.

In the case where i = 0, we have f0 = a0 idV so f is self-adjoint, hence ortho-
diagonalisable. There is therefore an ordered orthonormal basis with respect to
which the matrix of f0 is diagonal.

Now by Theorem 20.28 the primary components of f are pairwise orthogo-
nal. Stringing together the above ordered orthonormal bases for M0, M1, . . . , Mk we
therefore obtain an ordered orthonormal basis for V with respect to which the matrix
of f is of the form stated. �

Corollary 1 A real square matrix is normal if and only if it is orthogonally similar to
a matrix of the form described in Theorem 20.29. �

Let us now turn our attention to orthogonal transformations on real inner prod-
uct spaces. Recall that f is orthogonal if f −1 exists and is f ?. An orthogonal transfor-
mation is therefore in particular a normal transformation. So our labours produce a
bonus : we can use the above result to determine a canonical form for orthogonal
matrices.

Theorem 20.30 Let V be a non-zero finite-dimensional real inner product space and
let f : V → V be an orthogonal transformation. Then there is an ordered orthonormal
basis of V with respect to which the matrix of f is of the form

















Im
−Ip

P1
P2

. . .
Pk

















in which each Pi is a 2× 2 matrix of the form

�

α −β
β α

�

where β 6= 0 and α2 + β2 = 1.

Proof With the same notation as in the above, the matrix M(ai , bi) that represents
fi relative to the ordered orthonormal basis Bi is an orthogonal matrix (since fi is
orthogonal). Multiplying this matrix by its transpose, we obtain an identity matrix
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and, equating the entries, we see that a2
i + b2

i = 1. As for the primary component
M0, the matrix of f0 is diagonal. Since the square of this diagonal matrix must then
be an identity matrix, its entries have to be ±1. We can now rearrange the basis to
obtain a matrix of the required form. �

The results of this section have applications to a variety of problems that occur
in other areas of mathematics. By way of illustration, we mention that orthogonal
transformations have applications in the study of finite symmetry groups, and the
Jordan decomposition theorem is useful in obtaining solutions of systems of simulta-
neous first order linear differential equations with constant coefficients. Whilst these
and other applications are largely another story, we shall end this section with a brief
description of an application to the study of quadratic forms. These in turn have im-
portant applications in number theory and in cartesian geometry. In the course of our
discussion, we shall shed light on another equivalence relation on square matrices
relative to which we shall seek a useful canonical form.

Suppose then that V is a vector space of dimension n over a field F and let
f : V × V → F be a bilinear form on V . If (ei)n is an ordered basis of V then by the
matrix of the bilinear form f relative to (ei)n we shall mean the matrix A= [ai j]n×n
given by

ai j = f (ei , e j).

If x =
n
∑

i=1
x iei and y =

n
∑

i=1
yiei then, by the bilinearity of f , we have

f (x , y) =
n
∑

i=1

n
∑

j=1
x i y j f (eI , e j) =

n
∑

i, j=1
x i y jai j . (20.2)

Conversely, given any n × n matrix A = [ai j] over F , it is clear that (2) defines a
bilinear form f on V whose matrix relative to (ei)n is A.

• In what follows we shall commit the usual abuse of identifying a scalar λ with
the 1× 1 matrix [λ]. In this way, we can write (1) as

f (x , y) = [x1 . . . xn]A





y1
...
yn



= xtAy.

Example 20.1 Let f : F n × F n → F be given as follows : for x = (x1, . . . , xn) and

y = (y1, . . . , yn) let f (x , y) =
n
∑

i=1
x i yi . It is readily seen that f is bilinear; in fact,

f (x , y) = [x1 . . . xn]





y1
...
yn



 .

Let (ei)n be the natural ordered basis of F n. Then the matrix of f relative to (ei)n is
simply In.
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Example 20.2 The matrix

A=





0 1 1
0 0 1
0 0 0





gives rise to the bilinear form f : R3 ×R3→ R described by

f (x,y) = x1(y2 + y3) + x2 y3.

It is natural to ask how the matrix of a bilinear form is affected when we change
reference to another ordered basis.

Theorem 20.31 Let V be a vector space of dimension n over a field F. Let (ei)n and
(e′i)n be ordered bases of V . If f : V ×V → F is a bilinear form on V and if A= [ai j]n×n
is the matrix of f ralative to (ei)n then the matrix of f relative to (e′i)n is P tAP where

P =Mat[idV , (e′i)n, (ei)n]

is the matrix that represents the change of basis from (ei)n to (e′i)n.

Proof We have e′j =
n
∑

i=1
pi jei for j = 1, . . . , n and so

f (e′i , e′j) = f
� n
∑

t=1
pt iet ,

n
∑

k=1
pk jek

�

=
n
∑

t=1

n
∑

k=1
pt i pk j f (et , ek)

=
n
∑

t=1

n
∑

k=1
pt i pk jat j

=
n
∑

t=1
pt i

� n
∑

k=1
atk pk j

�

= [P tAP]i j ,

from which the result follows. �

Definition 20.9 If A, B are n× n matrices over a field F then we shall say that B is
congruent to A if there is an invertible matrix P over F such that B = P tAP.

It is clear that the relation of being congruent is an equivalence relation on
Matn×n(F).

Definition 20.10 A bilinear form f : V × V → F is said to be symmetric if

(∀x , y ∈ V ) f (x , y) = f (y, x).

It is clear that the matrix of a symmetric bilinear form is itself symmetric, and
conversely that every symmetric matrix yields a symmetric bilinear form.
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Definition 20.11 Let V be a vector space over a field F . Then a mapping Q : V → F
is called a quadratic form on V if there exists a symmetric bilinear form f : V×V → F
such that

(∀x ∈ V ) Q(x) = f (x , x).

In what follows, we shall restrict our attention to the real field R. Our reason for
so doing is, quite apart from the fact that most applications involve R, that certain
difficulties have to be avoided when the ground field is of characteristic 2. Indeed,
instead of working with R we could work with any field that is not of characteristic
2; but in what we shall discuss no great advantage would be gained in so doing.

Given a symmetric bilinear form f : V × V → R, we shall denote by Q f : V → R
the quadratic form given by

(∀x ∈ V ) Q f (x) = f (x , x).

Theorem 20.32 Let V be a vector space over R. If f : V × V → R is a symmetric
bilinear form then

(1) (∀λ ∈ R)(∀x ∈ V ) Q f (λx) = λ2Q f (x);

(2) (∀x , y ∈ V ) f (x , y) = 1
2 [Q f (x + y)−Q f (x)−Q f (y)];

(3) (∀x , y ∈ V ) f (x , y) = 1
4 [Q f (x + y)−Q f (x − y)].

Proof (1) : Q f (λx) = f (λx ,λx) = λ2 f (x , x) = λ2Q f (x).
(2) : Since f is symmetric we have

Q f (x + y) = f (x + y, x + y) = f (x , x) + f (x , y) + f (y, x) + f (y, y)
= Q f (x) + 2 f (x , y) +Q f (y),

whence (2) follows.
(3) : By (1) we have Q f (−x) =Q f (x) so that, by (2),

Q f (x − y) =Q f (x)− 2 f (x , y) +Q f (y)

and consequently Q f (x + y)−Q f (x − y) = 4 f (x , y). �

Corollary 1 A real quadratic form on V is associated with a uniquely determined sym-
metric bilinear form.

Proof Suppose that Q : V → R is a quadratic form that is associated with both the
symmetric bilinear forms f , g : V × V → R. Then clearly Q = Q f = Q g and so, by
Theorem 20.32(2), we deduce that f = g. �

Example 20.3 The bilinear form of Example 20.1 is clearly symmetric. In the case
where F = R the associated quadratic form is given by

(∀x ∈ V ) Q f (x) = f (x , x) =
n
∑

i=1
x2

i .
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Theorem 20.33 Let V be a vector space of dimension n over R and let (ei)n be an
ordered basis of V . If f : V × V → R is a symmetric bilinear form on V , if Q f is the
associated quadratic form, and if A = [ai j]n×n is the (symmetric) matrix of f relative

to (ei)n, then for all x =
n
∑

i=1
x iei ∈ V we have

Q f (x) =
n
∑

i, j=1
x i x jai j .

Conversely, if A= [ai j]n×n is a real symmetric matrix then the above prescription defines
a real quadratic form Q f on V such that A is the matrix of the associated symmetric
bilinear form relative to the ordered basis (ei)n.

Proof The first part is clear since Q f (x) = f (x , x). As for the converse, we note
that the mapping f : V × V → R given by

f (x , y) =
n
∑

i, j=1
x i y jai j

is (as is readily verified) symmetric and bilinear with f (ei , e j) = ai j . The associated
quadratic form is precisely Q f . �

• By the matrix of a real quadratic form we shall mean, by an abuse of language,
the matrix of the associated symmetric bilinear form.

Example 20.4 The mapping Q : R2→ R given by

Q(x , y) = 4x2 + 6x y + 9y2 = [x y]
�

4 3
3 9

��

x
y

�

is a quadratic form on R2. The associated symmetric bilinear form is the mapping
f : R2 ×R2→ R given by

f
�

(x , y), (x ′, y ′)
�

= 1
2 [Q(x + x ′, y + y ′)−Q(x , y)−Q(x ′, y ′)]

= 4x x ′ + 3(x y ′ + x ′ y) + 9y y ′.

As we have seen in Theorem 20.33, for every quadratic form Q : V → R with
associated matrix A relative to an ordered basis (ei)n of V ,

Q(x) =
n
∑

i, j=1
x i x jai j = [x1 . . . xn]A





x1
...

xn



 .

Our aim now is to determine a canonical form for real symmetric matrices under con-
gruence. This will allow us to obtain a simpler formula for Q(x) (relative, of course,
to a specific ordered basis). This we achieve by means of the following result, at the
heart of whose proof lie the facts that a real symmetric matrix is ortho-diagonalisable
(Corollary to Theorem 20.14) and that its eigenvalues are all real (Corollary to The-
orem 20.13).
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Theorem 20.34 If A is a real n× n symmetric matrix then A is congruent to a unique
matrix of the form





Ir
−Is

0



 .

Proof Since A is real symmetric it is ortho-diagonalisable and its eigenvalues are
all real. Let the positive eigenvalues be λ1, . . . ,λr and let the negative eigenvalues
be −λs+1, . . . ,−λr+s. Then there is a real orthogonal matrix P such that

P tAP = P−1AP = diag{λ1, . . . ,λr ,−λr+1, . . . ,−λr+s, 0, . . . , 0}.

Let N be the n× n diagonal matrix whose diagonal entries are

nii =







1
p

λi

if i = 1, . . . , r + s;

1 otherwise.

Then it is readily seen that

N t P tAPN =





Ir
−Is

0



 .

Since P and N are invertible, so also is PN ; and since N t P t = (PN)t , it follows that
A is congruent to a matrix of the stated form.

As for uniqueness, it suffices to suppose that

L =





Ir
−Is

0n−(r+s)



 , M =





Ir ′

−Is′

0n−(r ′+s′)





are congruent and show that r = r ′ and s = s′. Now if L and M are congruent then
they are certainly equivalent; and since equivalent matrices have the same rank, we
deduce that

r + s = rank L = rank M = r ′ + s′.

Suppose, by way of obtaining a contradiction, that r < r ′ (so that, by the above,
s > s′). Let W be the real vector space Matn×1(R). It is clear that W is an inner
product space relative to the mapping described by

(x,y) 7→ 〈x |y〉= xty.

Consider the mapping fL : W →W given by

fL(x) = Lx.
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If x= [x1 . . . xn]
t and y= [y1 . . . yn]

t , we have

〈x | fL(y)〉 = xt Ly

= x1 y1 + · · ·+ x r yr − x r+1 yr+1 − · · · − x r+s yr+s.

Now
〈 fL(x) |y〉= 〈Lx |y〉= (Lx)ty= xt L ty= xLy

and consequently we see that fL is self-adjoint. Similarly, so is fM : W →W given by
fM (x) = Mx. Consider now the subspaces

X = {x ∈W ; x1 = · · ·= x r = 0, x r+s+1 = · · ·= xn = 0};
Y = {x ∈W ; x r ′+1 = · · ·= x r ′+s′ = 0}.

Clearly, X is of dimension s and for every non-zero x ∈ X we have

〈 fL(x) |x〉= xt Lx= −x2
r+1 − · · · − x2

r+s < 0. (20.3)

Also, Y is of dimension n− s′ and for x ∈ Y we have

〈 fM (x) |x〉= xt Mx= x2
1 + · · ·+ x2

r ≥ 0.

Now since L and M are congruent there is an invertible matrix P such that M =
P t LP. Since, for all x ∈ Y ,

0≤ 〈 fM (x) |x〉 = 〈Mx |x〉
= 〈P t LPx |x〉
= 〈( fP t ◦ fL ◦ fP)(x) |x〉
= 〈( fL ◦ fP)(x) | fP(x)〉,

we see that
�

∀y ∈ f →P (Y )
�

〈 fL(y) |y〉 ≥ 0. (20.4)

Now since fP is an isomorphism we have

dim f →P (Y ) = dim Y = n− s′

and so
dim f →P (Y ) + dim X = n− s′ + s > n≥ dim [ f →P (Y ) + X ]

and consequently, by Corollary 1 of Theorem 8.10,

dim [ f →P (Y )∩ X ]> 0.

Suppose then that z is a non-zero element of f →P (Y )∩ X . Then from (3) we see that
〈 fL(z |z〉 is negative; whereas from (4) we see that 〈 fL(z |z〉 is non-negative. This
contradiction shows that we cannot have r < r ′. In a similar way we cannot have
r ′ < r. We conclude therefore that r = r ′ whence also s = s′. �
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Corollary 1 [Sylvester’s law of inertia] Let V be a vector space of dimension n over
R and let Q : V → R be a quadratic form on V . Then there is an ordered basis (ei)n of

V such that if x =
n
∑

i=1
x iei then

Q(x) = x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

r+s.

Moreover, the integers r and s are independent of such a basis. �

• The integers r + s and r − s are called the rank and signature of the quadratic
form Q.

Example 20.5 Consider the quadratic form Q : R3→ R given by

Q(x , y, z) = x2 − 2x y + 4yz − 2y2 + 4z2.

By the process of completing the squares it is readily seen that

Q(x , y, z) = (x − y)2 − 4y2 + (y + 2z)2

which is in canonical form, of rank 3 and signature 1. Alternatively, we can use
matrices. The matrix of Q is

A=





1 −1 0
−1 −2 2

0 2 4



 .

Let P be the orthogonal matrix such that P tAP is the diagonal matrix D. If y = P tx
(so that x= Py) then

xtAx= (Py)tAPy= yt P tAPy= yt Dy,

where the right hand side is of the form X 2 − 4Y 2 + Z2.

Example 20.6 The quadratic form given by

Q(x , y, z) = 2x y + 2yz

can be reduced to canonical form either by the method of completing squares or by
a matrix reduction. The former is not so easy in this case, but can be achieved as
follows. Define p

2x = X + Y,
p

2y = X − Y,
p

2z = Z .

Then the form becomes

X 2 − Y 2 + (X − Y )Z = (X + 1
2 Z)2 − (Y + 1

2 Z)2

= 1
2 (x + y + z)2 − 1

2 (x − y + z)2,

which is of rank 2 and signature 0.
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Definition 20.12 A quadratic form Q is said to be positive definite if Q(x)> 0 for all
non-zero x .

By taking the inner product space V to be Matn×1(R) under 〈x |y〉= xty, we see
that a quadratic form Q on V is positive definite if and only if, for all non-zero x ∈ V ,

0<Q(x) = xtAx= 〈Ax |x〉,

which is the case if and only if A is positive definite. It is clear that this situation
obtains when there are no negative terms in the canonical form, i.e. when the rank
and signature are the same.

Example 20.7 Let f : R×R→ R be a function whose partial derivatives fx , f y are
zero at (x0, y0). Then the Taylor series at (x0 + h, y0 + h) is

f (x0, y0) +
1
2 [h

2 fx x + 2hk fx y + k2 f y y](x0, y0) + · · · .

For small values of h, k the significant term is this quadratic form in h, k. If it has
rank 2 then its normal form is ±H2 ± K2. If both signs are positive (i.e. the form is
positive definite) then f has a relative minimum at (x0, y0), and if both signs are
negative then f has a relative maximum at (x0, y0). If one is positive and the other
is negative then f has a saddle point at (x0, y0). Thus the geometry is distinguished
by the signature of the quadratic form.

Example 20.8 Consider the quadratic form

4x2 + 4y2 + 4z2 − 2x y − 2yz + 2xz.

Its matrix is

A=





4 −1 1
−1 4 −1

1 −1 4



 .

The eigenvalues of A are 3, 3,6. If P is an orthogonal matrix such that P tAP is di-
agonal then, changing coordinates by X = P tx, we transform the quadratic form
to

3X 2 + 3Y 2 + 6Z2

which is positive definite.
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EXERCISES
20.1 Let SL(2,C) be the multiplicative subgroup of Mat2×2(C) consisting of those 2× 2 ma-

trices of determinant 1. If M ∈ SL(2,C) and tr M /∈ {2,−2}, prove that there exists
P ∈ SL(2,C) and t ∈ C \ {0, 1,−1} such that

P−1M P =
�

t 0
0 t−1

�

.

If M ∈ SL(2,C) and M 6= I2, tr M = 2 prove that there exists P ∈ SL(2,C) such that

P−1M P =
�

1 1
0 1

�

.

If M ∈ SL(2,C) and M 6= −I2, tr M = −2 prove that there exists P ∈ SL(2,C) such that

P−1M P =
�

−1 1
0 −1

�

.

20.2 If A, P ∈Matn×n(C) with P invertible and if f ∈ C[X ], prove that

f (P−1AP) = P−1 f (A)P.

If B ∈Matn×n(C) is triangular with diagonal entries t1, . . . , tn, prove that f (B) is trian-
gular with diagonal entries f (t1), . . . , f (tn).

Suppose now that λ1, . . . ,λn are the eigenvalues of A. Deduce from the above that the
eigenvalues of f (A) are f (λ1), . . . , f (λn) and that

det f (A) =
n
∏

i=1
f (λi), tr A=

n
∑

i=1
f (λi).

[Hint. Let B be the Jordan form of A.]

20.3 By a circulant matrix we mean a square matrix over C of the form

M =













α1 α2 α3 . . . αn

αn α1 α2 . . . αn−1

αn−1 αn α1 . . . αn−2
...

...
...

...
α2 α3 α4 . . . α1













.

If f = α1 +α2X + · · ·+αnX n and M is an n× n circulant matrix, prove that

det M =
n
∏

i=1
f (ωi)

where ω1, . . . ,ωn are the n-th roots of unity.

[Hint. Observe that M = f (A) where A=
�

In−1

1

�

and use Exercise 20.2.]
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20.4 Let V be a non-zero finite-dimensional vector space over a field F and let f : V → V be

a linear transformation. Let V =
n
⊕

i=1
Vi be the primary decomposition of V as a direct

sum of f -stable subspaces. Prove that for each projection pri : V → Vi there exists
gi ∈ F[X ] such that pr′i = gi( f ) where pr′i : V → V is induced by pri .

Deduce that if W is an f -stable subspace of V then

W =
n
⊕

i=1
(W ∩ Vi).

20.5 Let V be a non-zero finite-dimensional inner product space. Prove that if ϑ is a mapping
from V ×V to the ground field of V then ϑ is an inner product on V if and only if there
is a positive transformation f : V → V such that

(∀x , y ∈ V ) ϑ(x , y) = 〈 f (x) | y〉.

20.6 Let a, b ∈ R be such that a < b. If V is the real vector space of continuous functions
f : [a, b]→ R, prove that the mapping Q : V → R described by

Q( f ) =

∫ b

a

[ f (x)]2d x

is a quadratic form on V .

20.7 Determine the rank and signature of the quadratic form Q : R3→ R given by

Q(x , y, z) = 2x2 − 4x y + 2xz + 3y2 − 2yz + 4z2.

20.8 For each of the following quadratic forms write down the symmetric matrix A for which
the form is expressible as xtAx. Diagonalise each of the forms and in each case find an
invertible matrix P such that P tAP is diagonal with diagonal entries in {−1,0, 1} :

(1) x2 + 2y2 = 9z2 − 2x y + 4xz − 6yz;

(2) 4x y + 2yz;

(3) yz + xz + z2 − 4t2 + 2x y − 2x t + 6yz − 8y t − 14zt.
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adjoint, 133
adjugate, 212
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alternating, 201
annihilated, 102, 228
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ascending chain condition, 39
augmented matrix, 113

balanced, 164
Bessel’s inequality, 127
bidual, 98
bilinear, 183, 184
bimodule, 166
bitranspose, 101
butterfly of Zassenhaus, 34

canonical form, 113
canonical projection, 50
cartesian product module, 50
cartesian product morphism, 169
Cauchy-Schwartz inequality, 126
Cayley-Hamilton Theorem, 263
centraliser, 152
centre, 6
character group, 141
characteristic polynomial, 262
Chinese remainder theorem, 155
classical p-matrix, 256
classical canonical matrix, 257
coefficient matrix, 113
cofactor, 212
cokernel, 36
column matrix, 111
column rank, 111
commutative, 21
companion matrix, 249
complex inner product space, 125

congruent, 292
conjugate transformation, 131
conjugate transpose, 134
coordinate forms, 99
corpoduct, 51
cyclic, 222, 248
cyclic vector, 248

derivation, 220
descending chain condition, 40
determinant, 209
diagonalisable, 267
diagram chasing, 23
dimension, 78
dimension theorem, 89
direct product, 50
divisible, 140
division algebra, 4
division ring, 2
dot product, 126
dual basis, 99

eigenspace, 268
eigenvalue, 267
eigenvectors, 268
elementary divisor ideals, 237
elementary Jordan matrix, 257
elementary matrix, 114
elementary row operations, 114
equivalent towers, 42
essential extension, 145
exact sequence, 21
extension, 27, 145
exterior algebra, 198, 203
exterior power, 202, 208
exterior product, 203
external direct sum, 52

faithful, 155
field, 2
finite-dimensional, 78
finitely generated, 9
first isomorphism theorem, 31
flat, 174
formal power series, 4
Fourier coefficients, 129
Fourier expansion, 129
free, 68
free R-module, 66
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generated, 9
Gram matrix, 281
Gram-Schmidt orthonormalisation, 129
group, 1

Hermite matrix, 117
homogeneous equation, 113
homomorphism, 13
homothety, 209
Hopkins’ theorem, 162

image, 14
indecomposable, 236
induced morphism, 84
injective, 138
inner product, 125
inner product space, 125
integral domain, 2
internal direct sum, 57
invariant, 246
invariant factor ideals, 240, 244
invariant under f , 246
isotopic, 155
isotopic components, 156

Jacobson radical, 157
Jordan canonical matrix, 258
Jordan decomposition theorem, 271
Jordan morphism, 258
Jordan-Hölder tower, 43

kernel, 14
Krull’s theorem, 77

Lagrange polynomials, 105
Laplace expansion, 212
lattice, 10
left action, 2
left quasi-regular, 163
linear combination, 9
linear equations, 107
linear forms, 98
linear functionals, 98
linear transformation, 13
linearly independent, 68

matrix, 107
maximum condition, 39
minimum condition, 40
minimum polynomial, 247
modular, 10
modular law, 10
morphism, 13
multilinear, 184

Nakayama’s theorem, 159

natural basis, 69
nil ideal, 161
nilpotent, 122, 161, 271
nilpotent ideal, 161
noetherian, 39
normal, 137, 275
normal sequence, 240
null-space, 14

opposite ring, 160
ordered basis, 107
ortho-diagonalisable, 273
ortho-projection, 274
orthogonal, 135
orthogonal complement, 133
orthogonal subset, 127
orthogonally similar, 135
orthonormal basis, 128
orthonormal subset, 127

parallelogram identity, 135
Parseval’s identity, 129
piecewise linear function, 79
pivotal condensation, 221
positive, 279
positive definite, 298
primary component, 248
principal ideal domain, 222
product, 48
product of matrices, 108

quadratic form, 293
quasi-simple, 155
quotient algebra, 35
quotient module, 29

range, 14
rank, 227, 297
rational p-matrix, 253
rational canonical matrix, 251, 253
real inner product space, 125
refinement, 42
regular ring, 179
ring, 1
row equivalent matrices, 115
row matrix, 111
row rank, 111

scalar, 2
Schreier’s refinement theorem, 42
second isomorphism theorem, 32
self-adjoint, 135
self-adjoint part, 282
semi-definite, 279
semi-exact sequence, 22
semigroup, 1
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semisimple, 148
set of generators, 9
signature, 297
signum, 198
similar, 245
simple R-module, 41
simple ring, 151
skew-adjoint, 281
skew-adjoint part, 282
skew-symmetric, 120, 281
spectral resolution, 269
spectrum, 267
split sequence, 58
splitting morphsim, 58
stable, 246
stairstep, 116
standard inner product, 126
step function, 78
submodule, 7
submodule generated, 8
substitution morphism, 245
substitution morphisms, 105
symmetric, 120
symmetriser, 219

tensor algebra, 193
tensor map, 165, 185
tensor power, 194
tensor product, 164, 184
tensor product of elements, 185
the 3× 3 lemma, 26
the five lemma, 24
the four lemma, 23
torsion element, 223
torsion module, 223
torsion submodule, 227
torsion-free, 179, 223
tower of submodules, 42
trace, 192
trace form, 192
transition matrix, 110
transpose, 100
transposition, 198
triangle inequality, 126
trilinear, 184
two-echelon, 116

unitary, 2, 135
unitary transformation, 135

vector space, 2
von Neumann ring, 179

Wedderburn-Artin Theorem, 153


