
GEOMETRY 1: real numbers.

GEOMETRY 1: real numbers.

You are supposed to know what field is, consult ALGEBRA-1 for the definition.

Cauchy sequences.

Real numbers are usually considered as something that can be approximated by rational num-
bers, for example, one can regard a real number a as infinite decimal fraction a0, a1a2 . . . , the finite
fragments of that fraction a0, a1a2 . . . an are then approximations of a. Some fractions are declared
equivalent, for example, 1, 00000 . . . and 0, 9999 . . . . It turns out that it is easier to rigorously define
real numbers and operations on them when not only decimal fractions but just any sequences of
rational numbers which approximate a given real number are considered. And again it should be
taken into account that different sequences can be equivalent (when they approximate one and the
same number). It appears quite logical to define a real number as a set of sequences of rational
numbers that approximate it. This is Cauchy approach to real numbers definition.

Definition 1.1. We will say that something holds for almost all elements of a set if it holds for all
elements except finite number of them. Let {ai} = a0, a1, a2, . . . be a sequence of rational numbers.
It is said that {ai} is a Cauchy sequence if for any rational number ε > 0 there exists an interval
[x, y] of length ε which contains almost all {ai}.

Exercise 1.1. Let a be a rational number. Prove that a constant sequence a, a, . . . is a Cauchy
sequence.

We will denote such a sequence by {a}.

Exercise 1.2. Let {ai} be a Cauchy sequence. Let us permute arbitrarily its elements ai. Prove
that we obtain a Cauchy sequence then.

Exercise 1.3. Consider a sequence {ai} of rational numbers from an interval I = [a, b], a, b ∈ Q.
Prove that one can select a subsequence out of {ai} which is a Cauchy subsequence.

Hint. Let us split the interval I0 = [a, b] into two equal parts. One of the halves (we will denote it
by I1) contains an infinite number of elements of the sequence. Let us delete from {ai} all elements
that do not belong to I1 except a0. Let then divide I1 into two equal parts and repeat the procedure
over and over again. An interval Ik obtained on a k-th step contains all elements of the sequence
starting from k-th and this interval is of length b−a

2k .

Exercise 1.4 (!). Consider a monotonically increasing sequence a1 6 a2 6 a3 6 . . . . All ai are
bounded by some constant C: ai 6 C. Prove that this is a Cauchy sequence.

Hint. Use the previous problem.

Definition 1.2. Let {ai}, {bi} be Cauchy sequences. They are called equivalent if a sequence
a0, b0, a1, b1, a2, b2, . . . is a Cauchy sequence.

Exercise 1.5. Let a, b be two rational numbers. Prove that {a} is equivalent to {b} iff a = b.

Exercise 1.6. Prove that a Cauchy sequence is equivalent to any subsequence of it.

Exercise 1.7. Prove that if {ai} is equivalent to {bi} then {bi} is equivalent to {ai}.
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GEOMETRY 1: real numbers.

Exercise 1.8 (!). Let {ai}, {bi} be two non-equivalent Cauchy sequences. Prove that there exist
two non-intersecting intervals I1, I2 such that almost all ai belong to I1 while almost all bi belong
to I2.

Hint. Apply the definition of a Cauchy sequence with ε = 1
2n for all n.

Exercise 1.9 (!). Prove that if a sequence {ai} is equivalent to a sequence {bi} and a sequence {bi}
is equivalent to a sequence {ci} then {ai} is equivalent to {ci} (one says that “Cauchy sequences
equivalence is transitive”).

Definition 1.3. Let {ai}, {bi} be two non-equivalent Cauchy sequences. It is said that {ai} > {bi}
if ai > bi for almost all i.

Exercise 1.10. Let {ai}, {bi} be two non-equivalent Cauchy sequences. Prove that either {ai} <
{bi} or {bi} < {ai}.

Hint. Use the problem 1.8.

Exercise 1.11. Let {ai}, {bi} be two non-equivalent Cauchy sequences and {ai} < {bi}. Prove
that there exist two rational numbers c, d such that {ai} < {c} < {d} < {bi}.

Hint. Use the previous hint.

Exercise 1.12. Let {ai} < {bi} and {bi} be equivalent to {ci}. Prove that {ai} < {ci}.

Hint. Use the previous problem and the definition of Cauchy sequence for ε < |c− d|.

Exercise 1.13. Let {ai} be a Cauchy sequence and c ∈ Q be a rational number. Prove that the
following properties are equivalent

a. {ai} is equivalent to a sequence {c}.

b. there are infinitely many elements of a sequence {ai} in any open interval ]x, y[ containing c.

c. any open interval ]x, y[ which contains c contains almost all elements of a sequence {ai} as
well.

Definition 1.4. If any of these properties holds then it is said that {ai} converges to c.

Exercise 1.14. Let {ai}, {bi} be a Cauchy sequence. Prove that {ai +bi} and {ai−bi} are Cauchy
sequences.

Exercise 1.15. Let {ai}, {bi} be Cauchy sequences and bi converges to 0. Prove that {ai} is
equivalent to {ai + bi}.

Exercise 1.16. Let {ai}, {bi} be Cauchy sequences. Prove that {aibi} is a Cauchy sequence.

Exercise 1.17. Prove that if {bi} converges to 1 then {aibi} is equivalent to {ai}.

Exercise 1.18. Let {ai} be a Cauchy sequence which does not contain zeros and which does not
converge to 0. Prove that {a−1

i } is a Cauchy sequence.

Hint. Prove that there exists a closed interval [x, y] which does not contain 0 such that almost all
{ai} are contained in [x, y]. Let almost all {ai} belong to an interval I ⊂ [x, y] of a length ε. Prove
that all {a−1

i } except a finite number belong to an interval I−1 of a length ε(min(|x|, |y|)−1.
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GEOMETRY 1: real numbers.

Definition 1.5. A set of all Cauchy sequences equivalent to a Cauchy sequence {ai} is called an
equivalence class of a Cauchy sequence. The set of all equivalence classes is called a set of real
numbers and is denoted by R.

Exercise 1.19. Prove that to correspondence c 7→ {c} defines an injective mapping from a set Q
of all rational numbers into R.

Exercise 1.20 (!). Prove that four arithmetic operations that we have defined on R in the prob-
lems 1.14- 1.18 define on R the structure of a field.

Dedekind sections

The main disadvantage of defining real numbers using Cauchy sequences is that there are too
many Cauchy sequences and the definition appears to be too implicit. This difficulty is rather psy-
chological. Nevertheless, there exists a way to overcome it, it is to introduce more straightforward
definition of real numbers that was proposed by Dedekind.

Definition 1.6. Let R ⊂ Q be a subset of a set of rational numbers which is non-empty and does
not equal to the whole Q. It is said that R is a Dedekind section if a ∈ R and b < a entails that
b ∈ R. Dedekind section R is said to be closed if there exists a rational number a such that b ∈ R
as soon as b 6 a. Otherwise R is said to be open.

Let {ai} be a Cauchy sequence. Let us denote the set of all rational numbers b such that
{b} < {ai} by R{ai}.

Exercise 1.21. Prove that R{ai} is a Dedekind section (i.e. if b ∈ R{ai} and c < b then c ∈ R{ai}).
Prove that this section is open.

Exercise 1.22. Let {ai} and {bi} be equivalent Cauchy sequences. Prove that R{ai} = R{bi}.

Exercise 1.23. Let {ai} and {bi} be non-equivalent Cauchy sequences and {ai} < {bi}. Prove
that R{ai} ⊂ R{bi} but those two sets do not coincide.

Hint. Consider the points of an interval [c, d] from the problem 1.11; which of the sets R{ai}, R{bi}
do they belong?

Exercise 1.24 (*). Let {ai}, {bi} be two Cauchy sequences. Prove that they are equivalent if and
only if R{ai} = R{bi}.

Hint. Use the problem 1.10 (as well as the preceding problems).

Exercise 1.25 (*). Let R ⊂ Q be an open Dedekind section. Prove that R = R{ai} holds for
some Cauchy sequence {ai}.

Hint. Consider an interval I0 = [a, b] such that a belongs to R and b does not. Split it into two
equal parts, select the half I1 with the same property. Repeat this process and select any point of
Ii as ai.

We observe that the set of equivalence classes of Cauchy sequences is the same thing as the set
of open Dedekind sections. That is why the real numbers can be defined as Dedekind sections. In
what follows you can use the definition that suits you best.
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GEOMETRY 1: real numbers.

Exercise 1.26 (**). Define arithmetic operations on R explicitly on Dedekind sections without
using Cauchy sequences. Check that the axioms of a field hold.

Hint. To define multiplication define first the operations “multiplication by a positive real number
a” and “multiplication by −1”, then prove distributivity for each of them separately.

Supremum and infimum

Definition 1.7. Let A ⊂ R be some subset of R. A set A is said to be bounded above if all
elements of A are greater that some constant C ∈ R. A set A is said to be bounded below if all
elements of A are less than some constant C ∈ R. A set A is called bounded if it bounded above
and bounded below.

Definition 1.8. Let A ⊂ R be some subset of R. Infimum of A (notation: inf A) is by definition
a number c ∈ R such that c 6 a for all a ∈ A and in any open interval ]x, y[ containing c there are
elements of a. Supremum of A (notation: sup A) is by definition a number c ∈ R such that c > a
for all a ∈ A and in any open interval ]x, y[ containing c there are elements of a.

Exercise 1.27. Prove that inf A and sup A are unique (if they exist).

Exercise 1.28 (!). Let A be a set bounded above. Prove that sup A exists.

Hint. Consider every a ∈ A as Dedekind sections, i.e. subsets of Q. Consider their union R; since
every a 6 C this will be Dedekind section too. Prove that inf A = R.

Exercise 1.29 (!). Let A ⊂ R a set bounded below. Prove that inf A exists.

Remark. Let A ⊂ R is not bounded above (below). It is denoted by inf A = −∞ (sup A = ∞).
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GEOMETRY 2: real numbers, part 2.

Roots of polynomials of an odd degree.

Exercise 2.1 (!). Consider a polynomial over Q of an odd degree, P = t2n+1+a2nt
2n+a2n−1t

2n−1+
· · ·+ a0. Let RP be the set of all x ∈ Q such that P (t) < 0 on an interval ]−∞, x]. Prove that RP

is not empty.

Hint. Prove that RP contains −max(1,
∑

|ai|).

Exercise 2.2 (!). Prove that RP is not the set of all real numbers.

Hint. Prove that the complement Q\RP contains max(1,
∑

|ai|).

Exercise 2.3 (!). Prove that RP is a Dedekind section.

Exercise 2.4 (!). Prove that P satisfies Lipschitz property: for any interval I there exists a
constant C > 0 such that |P (a)− P (b)| < C|a− b| for any a, b ∈ I.

Exercise 2.5 (!). Consider a Dedekind section RP as a real number. Prove that P (RP ) = 0. It
follows that any polynomial over R of an odd degree has a root.

Hint. First prove that P (RP ) 6 0. Then prove that P (RP ) < 0 contradicts the problem 2.4.

Limits.

Definition 2.1. Let A ⊂ R be a set of real numbers and c be a real number. Then c is called
accumulation point (limit point) of a set A if every open interval I =]x, y[ containing c contains
infinitely many elements of A.

Definition 2.2. Let {ai} be a sequence of real numbers and c be a real number. Let any open
interval I =]x, y[ containing c contain all elements of {ai} except a finite number of them. Then c
is called the limit of the sequence {ai} (denoted by c = lim

i→∞
ai). It is said that a sequence ai

converges to c.

Exercise 2.6. Let c be an accumulation point of a sequence {ai}. Prove that there exists a
subsequence of {ai} that converges to c.

Exercise 2.7 (*). Consider a sequence {ai} of points from an interval [x, y]. Prove the existence
of accumulation points of that sequence.

Definition 2.3. A set A ⊂ R is called discrete if it has no accumulation points.

Exercise 2.8 (*). Let {ai} be a sequence. Denote a set of all ai by A. Prove that {ai} converges
if and only if A has no infinite discrete subsets and has a unique accumulation point.

Exercise 2.9. Consider a sequence 0, 1, 2, 3, 4, . . .. Prove that this sequence has no limit.

Exercise 2.10. Consider a sequence 0, 1, 1/2, 1/3, 1/4, . . .. Prove that this sequence converges to
0.
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GEOMETRY 2: real numbers, part 2.

Exercise 2.11. Consider an increasing sequence a1 6 a2 6 a3 6 . . ., ai ∈ R. Let all ai be bounded
above by C: ai 6 C. Prove that this sequence has a limit. Use the definition of real numbers as
Dedekind sections.

Hint. Prove that lim
i→∞

ai = sup{ai}, and use the fact that the supremum exists.

Definition 2.4. Let {ai} = a0, a1, a2, . . . be a sequence of real numbers. {ai} is called a Cauchy
sequence if for any ε > 0 there exists an interval [x, y] of length ε which contains all members
{ai} except a finite number of them.

Remark. This is the same definition as the definition of Cauchy sequences of rational numbers.

Exercise 2.12. Let a sequence {ai} converge to a real number c. Prove that this is a Cauchy
sequence.

Exercise 2.13. Let a Cauchy sequence {ai} have a subsequence that converges to x ∈ R. Prove
that {ai} converges to x.

Exercise 2.14. Let {ai} be a Cauchy sequence. Consider the sequence {bi}, bi = infi>k ai. Prove
that this infimum is correctly defined and that the sequence bi increases.

Exercise 2.15. Consider the previous problem and prove that if the sequence {bi} has a limit then
lim
i→∞

ai = lim
i→∞

bi.

Exercise 2.16 (!). Let {ai} be a Cauchy sequence. Prove that {ai} converges. Use the definition
of real numbers as Dedekind sections.

Hint. Use the previous problem.

Exercise 2.17 (!). Let {ai} be a Cauchy sequence. Prove that {ai} converges. Use the definition
of real numbers as Cauchy sequences.

Hint. Let a real number {ai} be represented by a Cauchy sequence of rational numbers ai(0),
ai(1), ai(2), . . .. Passing to a suitable subsequence one can suppose that all ai (i > n) are contained
in an interval on length 2−n and that all ai(j) (j > m) are contained in an interval of length 2−m.
Prove that the sequence {ai(i)} is a Cauchy sequence and that the sequence {ai} converges to the
real number represented by it.

Exercise 2.18 (!). Let {ai}, {bi}, {ci} be converging sequences of real numbers and ai 6 bi 6 ci

for all i. Suppose that lim
i→∞

ai = lim
i→∞

ci = x. Prove that lim
i→∞

bi = x.

Exercise 2.19 (*). Let a sequence {ai} converge to x. Prove that bj = 1
j

∑j
i=0 ai converges to x.

Give an example, when {bj} converges but {ai} does not.

Series.

Definition 2.5. Let {ai} be a sequence of real numbers. Consider a sequence of partial sums∑n
i=0 ai. If this sequence converges it is said that series

∑∞
i=0 ai converge. It is denoted by∑∞

i=0 ai = x where

x = lim
i→∞

n∑
i=0

ai.

It is often denoted by
∑

ai = x.
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GEOMETRY 2: real numbers, part 2.

Definition 2.6. A series
∑

ai converges absolutely, if series
∑

|ai| converges.

Exercise 2.20 (!). Consider a series
∑

ai which converges absolutely. Prove that these series
converges.

Exercise 2.21. Consider a series
∑

ai which converges absolutely. Let bi be a sequence of non-
negative numbers such that ai > bi. Prove that the series

∑
bi converges absolutely.

Exercise 2.22 (**). Let ai, bi be sequences of integer numbers such that the series
∑

a2
i ,

∑
b2
i

converge. Prove that the series
∑

aibi converge.

Exercise 2.23 (*). Let ai be a sequence of positive real numbers. Limit of the sequence of prod-
ucts

lim
n→∞

n∏
i=0

(1 + ai)

is denoted by
∏∞

i=0(1 + ai). If this limit exists it is said that an infinite product
∏∞

i=0(1 + ai)
converges. Let the product

∏∞
i=0(1 + ai) converge. Prove that the series

∑∞
i=0 ai converges.

Exercise 2.24 (*). Prove that the infinite product
∏∞

i=0(1 + 1
3n ) converges.

Exercise 2.25 (**). Let a series
∑

ai converge. Prove that
∏∞

i=0(1 + ai) converges, as well.

Exercise 2.26 (!). Let a0 > a1 > a2 > . . . be a decreasing sequence of positive real numbers
converging to 0. Consider the series

∑∞
i=0(−1)iai. Prove that these series converges. Such series

are called sign-alternating.

Exercise 2.27. Prove that the series
∑

1
n(n+1)

converges.

Hint. Consider the value 1
n
− 1

(n+1)
.

Exercise 2.28. Prove that the series
∑

1
n2 converges.

Exercise 2.29. Prove that the series
∑

1
n!

converges.

Exercise 2.30 (!). Prove that the series
∑

1
2n converges. Calculate the value it converges to.

Exercise 2.31 (*). Prove that the series
∑∞

n=0
xn

n!
converges for all x ∈ R.

Exercise 2.32 (**). Consider the series
∑∞

n=0
xn

n!
in a complete ordered field A. Does this series

converge for all x ∈ A?
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GEOMETRY 3: Metric spaces and norm

GEOMETRY 3: Metric spaces and norm

You are supposed to know the definition of a linear space and dot product (i.e. a positive bilinear
symmetric form). Consult ALGEBRA 3.

Metric spaces, convex sets, norm

Definition 3.1. A metric space is a set X equipped with a function d : X ×X → R such that

a. d(x, y) > 0 for all x 6= y ∈ X; moreover, d(x, x) = 0.

b. Symmetry: d(x, y) = d(y, x)

c. “Triangle inequality”: for all x, y, z ∈ X,

d(x, z) 6 d(x, y) + d(y, z).

A function d which satisfies these conditions is called metric. The number d(x, y) is called “distance
between x and y”.

If x ∈ X is a point and ε is a real number then the set

Bε(x) = {y ∈ X | d(x, y) < ε

is called an (open) ball of radius ε with the center in x. Such ball can be called as well an
ε-ball. A closed ball is defined as follows

Bε(x) = {y ∈ X | d(x, y) 6 ε.

Exercise 3.1. Consider any subset of a Euclidean plane R2 and the function d defined as d(a, b) =
|ab| where |ab| is the length of a segment [a, b] on the plane. Prove that this defines a metric space.

Exercise 3.2. Consider the function d∞ : R2 × R2 → R:

(x, y), (x′, y′) 7→ max(|x− x′|, |y − y′|).

Prove that this is a metric. Describe a unit ball with the center in zero.

Exercise 3.3. Consider a function d1 : R2 × R2 → R:

(x, y), (x′, y′) 7→ |x− x′|+ |y − y′|.

Prove that this is a metric. Describe a unit ball with the center in zero.

Exercise 3.4 (*). A function f : [0,∞[→ [0,∞[ is said to be upper convex if f(ax+by
a+b

) >
af(x)+bf(y)

a+b
, for any positive a, b ∈ R. Let f be such a function and (X, d) be a metric space.

Suppose that f(λ) = 0 iff λ = 0. Prove that the function df (x, y) = f(d(x, y)) defines a metric on
X.

Exercise 3.5. Let V be a linear space with a positive bilinear symmetric form g(x, y) (in what
follows we will call that form a dot product). Define the “distance” dg : V × V → R as

dg(x, y) =
√

g(x− y, x− y). Prove that d(x, y) > 0 where equality holds iff x = y.
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GEOMETRY 3: Metric spaces and norm

Definition 3.2. Let x ∈ V be a vector from a vector space V . Parallel transport along vector
x is a mapping Px : V → V , y 7→ y + x.

Exercise 3.6. Prove that a function dg is “invariant with respect to parallel transports”, i.e.
dg(a, b) = dg(Px(a), Px(b)).

Exercise 3.7. Prove that if y 6= 0, then dg satisfies the triangle inequality:√
g(x− y, x− y) 6

√
g(x, x) +

√
g(y, y)

Hint. Consider a two-dimensional subspace V0 ⊂ V , generated by x and y. Prove that it is
isomorphic (as a space with dot product) to the space R2 with dot product g((x, y), (x′, y′)) =
xx′ + yy′. Use the triangle inequality for R2.

Exercise 3.8 (!). Prove that dg satisfies the triangle inequality.

Hint. Use invariance of parallel transports and reduce to the previous problem.

Definition 3.3. Consider a vector space V with a dot product g, and let dg be the metric con-
structed above. This metric is called a euclidean metric.

Definition 3.4. Consider a vector space V , a parallel transport Px : V → V and a one-
dimensional subspace V1 ⊂ V . Then the image Px(V1) is called a line in V .

Exercise 3.9. Consider two different points in x, y ∈ V . Prove that there exists a unique line Vx,y

through x and y.

Definition 3.5. Consider a line l through points x and y, and a point a on l. We say that a lies
between x and y, if d(x, a)+d(b, y) = d(x, y). A line segment between x and y (denoted [x, y])
is the set of all points belonging to the line Vx,y, that “lie between” x and y.

Exercise 3.10. consider three different points on a line. Prove that one (and only one) of these
points lies between two other points. Prove that the line segment [x, y] is a set of all points z of
the form ax + (1− a)y, where a ∈ [0, 1] ⊂ R.

Definition 3.6. Consider a vector space V , and let B ⊂ V be its subset. We say that B is convex
if B contains all points of the line segment [x, y] for any x, y ∈ V .

Definition 3.7. Let V be a vector space over R. A norm on V is a function ρ : V → R, such
that the following hold:

a. For any v ∈ V one has ρ(v) > 0. Moreover, ρ(v) > 0 for all nonzero v.

b. ρ(λv) = |λ|ρ(v)

c. For any v1, v2 ∈ V one has ρ(v1 + v2) 6 ρ(v1) + ρ(v2).

Exercise 3.11. Consider a vector space V over R, and let ρ : V → R be a norm on V . Consider
the function dρ : V × V → R, dρ(x, y) = ρ(x− y). Prove that this is a metric on V .

Exercise 3.12 (*). Let d : V ×V → R be a metric on V , invariant w.r.t. the parallel transports.
Suppose that d satisfies

d(λx, λy) = |λ|d(x, y)

for all λ ∈ R. Prove that d can be obtained from the norm ρ : V → R by using the formula
d(x, y) = ρ(x− y).
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Exercise 3.13. Let V be a linear space over R and ρ : V → R be a norm on V . Consider the set
B1(0) of all points with the norm 6 1. Prove that this set is convex.

Definition 3.8. Consider a vector space V over R and let v be a nonzero vector. Then the set of
all vectors of the form {λv | λ > 0} is called a half-line (or a ray) in V .

Definition 3.9. A central symmetry in V is the mapping x 7→ −x.

Exercise 3.14 (*). Consider a central symmetric convex set B ⊂ V that does not contain any
half-lines and has an intersection with any half-line {λv | λ > 0}. Consider the function ρ

v
ρ7→ inf{λ ∈ R>0 | λv /∈ B}

Prove that this is a norm on V . Prove that all the norms can be obtained that way.

Exercise 3.15. Consider an abelian group G and a function ν : G → R satisfying ν(g) > 0 for
all g ∈ G, and ν(g) > 0 whenever g 6= 0. Suppose that ν(a + b) 6 ν(a) + ν(b), ν(0) = 0 and that
ν(g) = ν(−g) for all g ∈ G. Prove that the function dν : G × G → R, dν(x, y) = ν(x − y) is a
metric on G.

Exercise 3.16. A metric d on an abelian group G is called an invariant metric if d(x+g, y+g) =
d(x, y) for all x, y, g ∈ G. Prove that any invariant metric d is obtained from a function ν : G → R
by setting d(x, y) = ν(x− y).

Definition 3.10. Fix a prime number p ∈ Z. The function νp : Z → R, which given a number
n = pkr (r is not divisible by p) yields p−k, and satisfies νp(0) = 0, is called the p-adic norm on
Z.

Exercise 3.17. Prove that the function dp(m, n) = νp(n−m) defines a metric on Z. This metric
is called p-adic metric on Z.

Hint. Check that νp(a + b) 6 ν(a) + ν(b) holds and use the previous problem.

Definition 3.11. Let R be a ring and ν : R → R be a function that is positive and yields strictly
positive values for all nonzero r. Suppose that ν(r1r2) = ν(r1)ν(r2) and ν(r1 + r2) 6 ν(r1) + ν(r2).
Then ν is called a norm on R. A ring endowed with a norm is called a normed ring.

Remark. It follows from the problems above that a norm on a ring R defines an invariant metric
on R. In what follows any normed ring will be regarded as a metric space.

Exercise 3.18. Prove that νp is a norm on a ring Z. Define a norm on Q that extends νp.

Complete metric spaces.

Definition 3.12. Let (X, d) be a metric space and {ai} be a sequence of point from X. A sequence
{ai} is called a Cauchy sequence, if for every ε > 0 there exists an ε-ball in X which contains all
but a finite number of ai.

Exercise 3.19. Let {ai}, {bi} be Cauchy sequences in X. Prove that {d(ai, bi)} is a Cauchy
sequence in R.
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Definition 3.13. Let (X, d) be a metric space and {ai}, {bi} be Cauchy sequences in X. Sequences
{ai} and {bi} are called equivalent, if the sequence a0, b0, a1, b1, . . . is a Cauchy sequence.

Exercise 3.20. Let {ai}, {bi} be Cauchy sequences in X. Prove that {ai}, {bi} are equivalent iff
lim
i→∞

d(ai, bi) = 0.

Exercise 3.21. Let {ai}, {bi} be equivalent Cauchy sequences in X, and {ci} be another Cauchy
sequence. Prove that

lim
i→∞

d(ai, ci) = lim
i→∞

d(bi, ci)

Exercise 3.22 (!). Let (X, d) be a metric space and X be the set of equivalence classes of Cauchy
sequences. Prove that the function

{ai}, {bi} 7→ lim
i→∞

d(ai, bi)

defines a metric on X.

Definition 3.14. In that case, X is called the completion of X.

Exercise 3.23. Consider a natural mapping X → X, x 7→ {x, x, x, x, ...}. Prove that it is an
injection which preserves the metric.

Definition 3.15. Let A be a subset of X. An element c ∈ X is called an accumulation point
(limit point) of a set A if any open ball containing c contains an infinite number of elements of
A.

Exercise 3.24. Prove that a Cauchy sequence cannot have more than one accumulation point.

Definition 3.16. Let {ai} be a Cauchy sequence. It is said that {ai} converges to x ∈ X, or
that {ai} has the limit x (denoted as lim

i→∞
ai = x), if x is an accumulation point of {ai}

Definition 3.17. A metric space (X, d) is called complete if any Cauchy sequence in X has a
limit.

Exercise 3.25 (!). Prove that the completion of a metric space is complete.

Definition 3.18. A subset A ⊂ X of a metric space is called dense if any open ball in X contains
an element from A.

Exercise 3.26. Prove that X is dense in its completion X.

Exercise 3.27 (*). Let X be a metric space and consider a metric preserving mapping j : X → Z
from X into a complete metric space Z. Prove that j can be uniquely extended to j : X → Z.

Remark. This problem can be used as a definition of X. The definition 3.14 then becomes a
theorem.

Exercise 3.28 (!). Let R be a ring endowed with a norm ν. Define addition and multiplication
on the completion of R with respect to the metric corresponding to ν. Prove that R has a norm
that extends the norm ν on R.
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Definition 3.19. The normed ring R is called the completion of R with respect to the norm
ν.

Exercise 3.29 (*). Let R be a normed ring and R be its completion. Suppose that R is a field.
Prove that R is also a field.

Exercise 3.30 (*). Let R be a ring without zero divisors (i.e. it satisfies the following property:
if r1, r2 are nonzero elements, then r1r2 is also non-zero). Consider a function ν : R → R which
maps all non-zero elements of R to unity and maps zero to zero. Prove that ν is a norm. What is
R?

Exercise 3.31. Prove that R can be obtained as the completion of Q with respect to the norm
q 7→ |q|. Can this statement be used as a definition of R?

Definition 3.20. The completion of Z with respect to the norm νp is called the ring of integer
p-adic numbers. This ring is denoted by Zp.

Exercise 3.32. Let (X, d) be a metric space and {ai} be a sequence of points in X. Suppose that
the series

∑
d(ai, ai−1) converges. Prove that {ai} is a Cauchy sequence. Is the converse true?

Exercise 3.33 (!). Prove that for any sequence of integer numbers ak the series
∑

akp
k converges

in Zp.

Hint. Use the previous problem.

Exercise 3.34. Prove that (1− p)(
∑∞

k=0 pk) = 1 in Zp.

Exercise 3.35 (*). Prove that any integer number which is not divisible by p is invertible in Zp.

Definition 3.21. The completion of Q with respect to the norm obtained by extension of νp, is
denoted by Qp and is called the field of p-adic numbers.

Exercise 3.36 (*). Take x ∈ Qp. Prove that x = x′

pk , where x′ ∈ Zp.

Exercise 3.37 (*). Prove that lim
n→∞

n
√

n = 1.

Definition 3.22. A norm ν on a ring R is called non-Archimedean, if ν(x+y) 6 max(ν(x), ν(y))
for all x, y. Otherwise the norm is called Archimedean.

Exercise 3.38 (*). Let ν be a norm on Q. Prove that ν is non-Archimedean iff Z is contained in
the unit ball.

Hint. Use the following equality: lim
n→∞

n
√

n = 1. Find an estimate of n
√

((ν(x + y)n) for big n using

the estimate of binomial coefficients: ν(
(

k
n

)
) 6 1.

Exercise 3.39 (*). Let ν be a non-Archimedean norm on Q. Consider m ⊂ Z consisting of all
integers n such that ν(n) < 1. Prove that m is an ideal in Z (ideal in a ring R is a subset which is
closed under addition and multiplication by elements of R). Prove that the ideal

m = {n ∈ Z | ν(n) < 1}

is prime (prime ideal is an ideal such that xy /∈ m for all x, y /∈ m).
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Exercise 3.40 (*). Prove that any ideal in Z is of the form {0,±1m,±2m,±3m, ...} for some
m ∈ Z. Prove that any prime ideal m in Z is of the form {0,±p,±2p,±3p, ...}, where p = 0 or p
prime.

Hint. Use the Euclid’s Algorithm.

Exercise 3.41 (*). Let ν be a non-Archimedean norm Q and m = {p, 2p, 3p, 4p, ...} be an ideal
constructed above. Prove that there exists a real number λ > 1 such that ν(n) = λ−k for any

n = pkr, r 6 ...p.

Exercise 3.42 (*). Let ν be a norm on Q such that ν(2) 6 1. Prove that ν(a) < log2(a) + 1 for
any integer a > 0.

Hint. Use the binary representation of a number.

Exercise 3.43 (*). Let ν be a norm on Q such that ν(2) < 1. Prove that ν(a) 6 1 for any integer
a > 0 (i.e. ν is non-Archimedean).

Hint. Deduce from lim
n→∞

n
√

n = 1 that lim
n→∞

log n
n

= 0. Prove lim
N→∞

ν(aN) 6 1, using the previous

problem.

Exercise 3.44 (*). Let ai be a Cauchy sequence of rational numbers of the form x
2n (“Cauchy

sequence” here means the same thing as Cauchy sequence of real numbers). Suppose that a norm
ν on Q is Archimedean. Prove that ν(ai) is a Cauchy sequence.

Hint. Write down x in the binary system and prove that

ν(x/2n) 6 ν(2)log2(x)+1/ν(2)n 6 ν(2)log2 |x+1/2n|.

Exercise 3.45 (*). Deduce that ν can be extended to a continuous function on R, which satisfies
ν(xy) = ν(x)ν(y). Prove that ν can be obtained as x 7→ |x|λ for some constant λ > 0. Express λ
in terms of ν(2).

Exercise 3.46 (*). For which λ > 0 the function x 7→ |x|λ defines a norm on Q?

We have obtained a complete classification of norms on Q: any norm can be obtained as a
power of either a p-adic norm or the absolute value norm. This classification is called Ostrovsky
theorem.
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GEOMETRY 4: Topology of metric spaces.

Definition 4.1. Let M be a metric space and X ⊆ M . Then X is called open when it contains,
together with any point x ∈ X, some ε-ball with the center in x. A subset is called closed if its
complement is open.

Exercise 4.1. Prove that X is open iff for any sequence {ai} converging to x ∈ X all but a finite
number of ai belong to X.

Exercise 4.2. Prove that the union of any number of open sets is open. Prove that the intersection
of a finite number of closed sets is closed.

Exercise 4.3. Prove that the closed ball

Bε(x) = {y ∈ X | d(x, y) 6 ε}

is a closed subset.

Exercise 4.4. Prove that a set is closed iff it contains all its accumulation points.

Definition 4.2. The closure of a set A ⊂ M is the union of A and the set of all the accumulation
points of A.

Exercise 4.5. Consider a metric space, a closed ball Bε(x) and an open ball Bε(x). Is it always
true that Bε(x) is the closure of Bε(x)? Prove that the closure of any subset is always closed.

Exercise 4.6. Let A be a subset of M which has no accumulation points (such a subset is called
discrete). Prove that M\A is open.

Definition 4.3. Let M be a metric space and ε > 0 be a number. Consider R ⊆ M such that M
can be covered by a union of all ε-balls with center in R. Then R is called an ε-net.

Exercise 4.7. Let any sequence in M have an accumulation point. Prove that for any ε > 0 in
M there exists a finite ε-net.

Hint. Suppose that there is no such net, then for any finite set R there exists a point x, whose
distance to R is more than ε. Add x to R, and, using this operation as induction step, obtain an
infinite discrete subset of M .

Definition 4.4. Let X ⊂ M and Ui ⊂ M be a collection of open sets. If X ⊂ ∪Ui then it is said
that Ui is a cover of X. A collection of sets obtained from {Ui} by throwing out some open sets
in such a way that it remains a cover, is called a subcover.

Exercise 4.8. Let M be a metric space, S be an open cover of M . Let every subsequence of
elements of M have an accumulation point. Prove that there exists such an ε > 0, that any ball of
radius < ε is contained in one of the sets of the cover S.

Hint. Suppose that for any ε there exists a point xε such that a corresponding ε-ball is not
contained entirely in any of the sets of the cover. Consider a sequence {εi} which converges to zero
and let x be an accumulation point of {xεi

}. Prove that x is not contained in any of the sets of S.

Exercise 4.9 (!). (Bolzano-Weierstrass lemma) Let X ⊂ M be a subset of a metric space. Prove
that the following conditions are equivalent
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a. Every sequence of points from X has an accumulation point in X.

b. Every open cover of X has a finite subcover.

Hint. Use problem 4.6 to deduce (a) from (b). In order to deduce (b) from (a), take an arbitrary
cover S, a number ε from the problem 4.8 and a finite ε-net. Every ball of the ε-net is contained
in some of the elements Ui ∈ S. Prove that {Ui} is a finite subcover.

Definition 4.5. Let M , M ′ be metric spaces, and f : M → M ′ be a function. Then f is called
continuous, if f maps any sequence that converges to x to a sequence that converges to f(x), for
all x ∈ M .

Exercise 4.10 (!). Let X be any subset of M . Prove that a function f : M → R, x
f7→ d({x}, X) is

continuous, where d({x}, X) (distance between x and X) is defined as d({x}, X) := infx′∈X d(x, x′).

Definition 4.6. Let M be a metric space, X ⊂ M . It is said that X is a compact set, if any
of the statements of the problem 4.9 holds. Note that these conditions do not depend on inclusion
X ↪→ M , but only on the metric on X.

Exercise 4.11 (!). Consider the completion of Z with respect to the norm νp defined above (it is
called “a ring of integer p-adic numbers” and is denoted Zp). Prove that it is compact.

Hint. Prove that any p-adic number can be represented in the from
∑

aip
i, where ai are integers

between 0 and p− 1.

Exercise 4.12. Prove that a compact subset of M is always closed.

Hint. Prove that it contains all its accumulation points.

Exercise 4.13. Prove that a closed subspace of a compact set is always compact.

Exercise 4.14. Prove that a union of a compact sets is compact.

Exercise 4.15 (!). Let f : X → R be a continuous function defined on a compact set. Prove
that f achieves maximum on X.

Definition 4.7. Let X, Y be two subsets of a metric space. Denote the number infx∈X,y∈Y (d(x, y))
by d(X, Y ).

Exercise 4.16 (!). Let X, Y be two compact subsets of a metric space. Prove that there exist
points x, y in X, Y such that d(x, y) = d(X, Y ).

Definition 4.8. A subset Z ⊂ M is called bounded if it is contained in a ball Br(x) for some
r ∈ R, x ∈ M .

Exercise 4.17. Let Z ⊂ M be compact. Prove that it is bounded.

Definition 4.9. Let M be a metric space and X ⊂ M . The union of all open ε-balls with centers
in all points of X is called the ε-neighbourhood of X.

Definition 4.10. Let M be a metric space and let X and Y be its bounded subsets. The Haus-
dorff distance dH(X, Y ) is the infimum of all ε such that Y is contained in an ε-neighborhood of
X and X is contained in an ε-neighborhood Y .
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Exercise 4.18 (!). Prove that the Hausdorff distance defines a metric on the set M of all closed
bounded subsets of M .

Exercise 4.19. Let X, Y be bounded subsets of M and x ∈ X. Prove that it is always the case
that dH(X, Y ) > d(x, Y ).

Exercise 4.20 (!). Let M be a complete metric space. Prove that M is also complete.

Hint. Consider a Cauchy sequence {Xi} of subsets of M . Let S be the set of Cauchy sequences
{xi} with xi ∈ Xi. Let X be the set of accumulation points of sequences from S. Prove that {Xi}
converges to X.

Exercise 4.21 (*). Let {Xi} be a Cauchy sequence of compact subsets of M and X be its limit.
Prove that X is compact.

Hint. One can identify {Xi} with its subsequence such that

dH(Xi, Xj) < 2−min(i,j). (4.1)

Consider a sequence {xi} of points from X. For every Xj find a sequence {xi(j) ∈ Xj} such that
d(xi(j), xi) = d(xi, Xj). Since Xj is compact, this sequence has an accumulation point. Choose
an accumulation point x(0) in {xi(0)} and replace {xi} with its subsequence such that {xi(0)}
converges to x(0). Then replace {xi}, i > 0 with a subsequence such that {xi(1)} converges to x(1).
We replace {xi}, i > k with a subsequence on k-the step in such a way that {xi(k)} converges to
x(k). Prove that we will finally obtain a sequence {xi} such that {xi(k)} converges to x(k) for all
k. Prove that this operation can be carried out in such a way that d(xi(k), x(k)) < 2−i. Use (4.1)
to prove that d(xi(k), xi) < 2−min(k,j)+2. Deduce that {xi} is a Cauchy sequence.

Exercise 4.22 (!). Let M be compact and X ⊂ M . Prove that for any ε > 0 there is a finite
set R ⊂ M such that dH(R,X) < ε. (This statement can be rephrased as follows: “X allows
approximation by finite sets with any prescribed accuracy”)

Hint. Find a finite ε-net in X.

Exercise 4.23 (*). Let M be compact. Prove that M is also compact.

Hint. Use the previous problem.

Definition 4.11. Let M be a metric space. It is said that M is locally compact, if for any point
x ∈ M there exists a number ε > 0, such that the closed ball Bε(x) is compact.

Exercise 4.24. Let M be a locally compact metric space and Bε(x) be a closed compact ball.
Prove that Bε(x) is contained in an open set Z with compact closure.

Hint. Cover Bε(x) with balls such that their closures are compact, and find a finite subcover.

Exercise 4.25 (!). Prove in the previous problem setting that for some ε′ > 0 the ball Bε+ε′(x)
is also compact.

Hint. Take Z as in the previous problem. Take ε′ to be d(M\Z,Bε(x)).
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Definition 4.12. Let (M, d) be a metric space. It is said that M satisfies Hopf-Rinow condi-
tion if for any two points x, y ∈ M and for any two numbers rx, ry > 0 such that rx + ry < d(x, y)

d(Brx(x), Bry(y)) = d(x, y)− rx − ry.

Exercise 4.26 (**). If you know the definition of a Riemannian (or Finsler) manifold, prove that
the Hopf-Rinow condition holds for the natural metric on such a manifold. Justify all the facts
that you use in the proof.

Exercise 4.27 (*). Let M be a complete locally compact metric space which satisfies Hopf-Rinow
condition, x ∈ M be a point and ε > 0 be a number such that Bε′(x) is compact for all ε′ < ε.
Prove that the ball Bε(x) is compact.

Hint. Let {εi}, with εi < ε, be a sequence that converges to ε. Use the Hopf-Rinow condition to
prove that {Bεi

(x)} is a Cauchy sequence with respect to Hausdorff metric, Bε(x). Use the fact
that the limit of such a sequence is compact (you have already proved it before).

Exercise 4.28 (*). (Hopf-Rinow theorem, I) Let M be a complete locally compact metric space
which satisfies Hopf-Rinow condition. Prove that every closed ball Bε(x) in M is compact.

Exercise 4.29. Let M be a metric space such that every closed ball Bε(x) in M is compact. Prove
that M is complete.

Exercise 4.30 (*). Let M be a locally compact complete metric space which satisfies Hopf-Rinow
condition, x, y ∈ M . Prove that there is a point z ∈ M such that d(x, z) = d(y, z) = 1

2
d(x, y).

Exercise 4.31 (*). Let S be a set of all rational numbers of the form n
2k , n ∈ Z which belong to

the interval [0, 1]. Prove in the previous problem setting that there exists a mapping S
ξ→ M such

that d(ξ(a), ξ(b)) = |a− b|d(x, y) and ξ(0) = x and ξ(1) = y.

Exercise 4.32 (*). (Hopf-Rinow theorem, II) Let M be a locally compact complete metric space
which satisfies Hopf-Rinow condition, x, y ∈ M . Prove that the mapping ξ can be naturally
extended to the completion of S with respect to the standard metric, so that the resulting mapping

[0, 1]
ξ→ M satisfies ξ(0) = x, ξ(1) = y and d((ξ(a), ξ(b)) = |a − b|d(x, y) for any two reals

a, b ∈ [0, 1].

Remark. Such a mapping ξ is called geodesic. The Hopf-Rinow theorem can be restated as
follows: for any two points in a complete metric locally compact space which satisfies Hopf-Rinow
condition there is a geodesic that connects them.

Definition 4.13. Such a space is called geodesically connected.

Exercise 4.33 (*). Give an example of a metric space, which is not locally compact but geodesi-
cally connected.

Exercise 4.34. Let V = Rn be the metric space with the standard (Euclidean) metric. Prove that
geodesics in V are intervals (sets of the form ax + (1 − a)y, where a belongs to [0, 1] ⊂ R, and
x, y ∈ V ).

Exercise 4.35. Let V be a finite dimensional vector space with a norm that defines a metric d and
d0 be the Euclidean metric on V . Prove that the identity mapping (V, d) → (V, d0) is continuous
iff a unit ball in (V, d) contains a ball from (V, d0). Prove that the inverse mapping is continuous
provided that a unit ball in (V, d) is contained in a ball from (V, d0).
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Exercise 4.36. In the previous problem settings, consider a function D(x) := d(0, x) on a unit
sphere Sn−1 ⊂ V

Sn−1 = {x ∈ V | d0(0, x) = 1}

Let D be a continuous function on Sn−1. Prove that the mapping (V, d) → (V, d0) is continuous
and the inverse mapping is continuous.

Hint. Use the fact that a continuous function on a compact set achieves its minimum and maximum
values.

Exercise 4.37 (**). Prove that D is a continuous function.

Exercise 4.38. Let V be a finite dimensional vector space with a norm that defines the metric d.
Suppose that the identity mapping (V, d) → (V, d0) is continuous and the inverse mapping is also
continuous. Prove that (V, d) is complete and locally compact.

Exercise 4.39 (*). Let d be the metric on Rn associated with the norm (x1, x2, ...) 7→ max |xi|.
Prove that it satisfies the Hopf-Rinow condition. Prove that Rn with such a metric is geodesically
connected. Describe how the geodesics look like.

Exercise 4.40 (*). Is it true that the metric d defined by a norm always satisfies the Hopf-Rinow
condition?

Definition 4.14. Let X be a metric space and 0 < k < 1 be a real number. A mapping f : X → X
is called contraction mapping with a contraction coefficient k if kd(x, y) > d(f(x), f(y)).

Exercise 4.41 (!). Let X be a meric space and f : X → X be a contraction mapping. Prove
that for any x ∈ X the sequence {ai}, a0 := x, a1 := f(x), a2 := f(f(x)), a3 := f(f(f(x))), . . . is
Cauchy sequence.

Hint. Use the fact that d(ai, ai+1) = kid(x, f(x)), and deduce that the series
∑

d(ai, ai+1) con-
verges.

Exercise 4.42 (!). (The Contraction Mapping Theorem) Let X be a complete metric space and
f : X → X be a contraction mapping. Prove that f has a fixed point.

Hint. Find the limit of the sequence x, f(x), f(f(x)), f(f(f(x))), . . ..
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GEOMETRY 5: Set-theoretic topology.

Definition 5.1. Consider a set M and a collection of distinguished sets S ⊂ ℘(M) called open
subsets. A pair (M,S) (and, by abuse of notation, M itself) is called a topological space, if the
following conditions are met:

1. An empty set and M are open;

2. The union of any number of open sets is open;

3. The intersection of a finite number of open sets is open.

A mapping ϕ : M −→M ′ of topological spaces is called continuous, if the preimage of every
open set is open. Continuous mappings are also called morphisms of topological spaces. An
isomorphism of topological spaces is a morphism ϕ : M −→M ′ such that there is an inverse
morphism ψ : M ′ −→M (i.e. ϕ ◦ ψ and ψ ◦ ϕ are identity morphisms). An isomorphism of
topological spaces is called homeomorphism.

A subset Z ⊂ M is called closed, if its complement is open. A neighborhood of a point
x ∈M is an open subset of M which contains x. A neighborhood of a subset Z ⊂M is an open
subset of M that contains Z.

Exercise 5.1. Prove that a composition of continuous mappings is continuous.

Exercise 5.2 (!). Consider a set M and let S be a set of all subsets of M . Prove that S defines a
topology on M . This topology is called discrete. Describe a set of all continuous mappings from
M to a given topological space.

Exercise 5.3 (!). Consider a set M and let S be the set containing an empty set and M itself.
Prove that S defines a topology on M . This topology is called codiscrete. Describe a set of all
continuous mappings from M to a space with discrete topology.

Exercise 5.4. Give an example of a continuous bijection between topological spaces that is not a
homeomorphism.

Exercise 5.5. Consider a subset Z of a topological space M . Open subsets of Z are defined to be
intersections of the form Z ∩ U , where U is open in M .

a. Prove that this defines a topology on Z. Prove that a natural embedding Z ↪→M is contin-
uous.

b. (*) Can all the continuous embeddings be obtained in this way?

Definition 5.2. Such a topology on Z ⊂ M is said to be induced by M . We will consider any
subset of any topological space as a topological space with induced topology.

Definition 5.3. Consider a topological space M , and let S0 be such a collection of open sets such
that any open set can be represented as a union of sets from S0. Then S0 is called a base of M .

Exercise 5.6. Describe all bases of a space M with discrete topology; of a space M with codiscrete
topology.

Definition 5.4. Consider a metric space M . Recall that a subset U ⊂ M is called open, if for
every point u ∈ U , U contains a ball of radius ε > 0 with the center u.

1



GEOMETRY 5: Set-theoretic topology.

Exercise 5.7. Prove that this definition defines a topology on a metric space.

Definition 5.5. A topological space is called metrizable if it can be obtained from a metric space
as described above.

Exercise 5.8. Prove that a discrete space is metrizable and a codiscrete space is not.

Exercise 5.9. Prove that open balls in a metric space M are open. Prove that open balls define
a base of topology on M .

Exercise 5.10 (!). Consider a topological space M and two topologies S, S ′ on M . Suppose that
for every point m ∈M and every neighborhood U ′ 3 m which is open in the topology S ′ there is a
neighborhood U 3 m, U ⊂ U ′, which is open in the topology S. Prove that the identity mapping

(M,S)
i−→ (M,S ′) is continuous. Give an example where i is not a homeomorphism.

Remark. It is said in this case that the topology defined by S ′ is stronger than the topology
defined by S.

Exercise 5.11. Consider the space Rn with a norm ν (see GEOMETRY 3). This norm defines a
metric and hence a topology on Rn. Denote this topology by Sν . Let ν, ν ′ be two norms satisfying
C−1ν ′(x) < ν(x) < Cν ′(x) for a fixed C ∈ R. Prove that the identity mapping on Rn defines a
homeomorphism (Rn, Sν)−→ (Rn, Sν′).

Hint. Use the previous problem.

Exercise 5.12 (*). Consider two norms ν, ν ′ on Rn such that the identity mapping on Rn defines a
homeomorphism (Rn, Sν)−→ (Rn, Sν′). Prove that there exists a constant C such that C−1ν ′(x) <
ν(x) < Cν ′(x).

Exercise 5.13 (*). Consider a finite-dimensional vector space V endowed with a symmetric pos-
itive bilinear form g. We will consider V as a metric space with the metric dg, constructed in
GEOMETRY 3. Denote by Sg the topology defined by dg. Prove that the corresponding topology
on V does not depend upon g, i.e. for any (symmetric positive bilinear) g, g′, the identity map on
V is a homeomorphism (V, Sg)−→ (V, Sg′).

Exercise 5.14 (**). Consider a finite-dimensional vector space V with norm ν. Prove that
the topology Sν does not depend on norm ν: the identity map on Rn is a homeomorphism
(Rn, Sν)−→ (Rn, Sν′). Is it true for a infinite-dimensional V ?

Definition 5.6. Consider a metric d on Rn, defined by the norm

|(α1, . . . , αn)| =
√∑

i

α2
i .

The topology on Rn, defined by d is called the natural topology. The natural topology on
subsets of Rn is the topology induced by the natural Rn-topology.

Exercise 5.15. Consider R with the natural topology. Consider a space M with discrete topology
and a space M ′ with a codiscrete topology. Find the set of all continuous maps

a. from R to M
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b. from M to R

c. from M ′ to R

d. from R to M ′.

Exercise 5.16. Consider a mapping ϕ : M −→M ′, where M,M ′ are topological spaces. Is it
true that the continuity of ϕ implies that the preimage of any closed set is closed? Is it true that
if a preimage of any closed set is closed then ϕ is continuous?

Exercise 5.17. Give an example of a continuous mapping of topological spaces such that the
image of an open set is not open. Give an example of a continuous mapping of topological spaces
such that the image of a closed set is closed.

Definition 5.7. Consider a topological space M and arbitrary Z ⊂ M . The intersection of the
closed sets of M containing Z is denoted by Z and is called the closure of Z.

Exercise 5.18. Prove that Z is closed.

Definition 5.8. Consider a topological space M . The following conditions T0-T4 are called sep-
aration axioms.

T0. Let x 6= y ∈M . Then at least one of the points x, y has a neighborhood containing the other
point.

T1. Every point in M is closed.

T2. For any x 6= y ∈M there are non-intersecting neighborhoods Ux, Uy.

T3. For any point y ∈ M , every M ⊇ U 3 y contains an open neighborhood U ′ 3 y such that U
contains the closure of U ′.

T4. For any closed subset Z ∈ M , any neighborhood U ⊃ Z contains an open neighborhood
U ′ ⊃ Z such that U contains the closure of U ′.

The condition T2 is widely known as the Hausdorff axiom. A topological space that satisfies the
T2 condition is called a Hausdorff.

Exercise 5.19. Prove that the condition T1 is equivalent to the following one: for any two distinct
points x, y ∈M , there exists a neighborhood of y, which does not contain x.

Exercise 5.20. Prove that the condition T4 is equivalent to the following one: any two distinct
closed sets X, Y ⊂M have two non-intersecting neighborhoods.

Exercise 5.21. Let M be a topological space. Consider an equivalence relation on M defined the
following way: x is equivalent to y iff x ∈ {y} and y ∈ {x}. Denote the set of equivalence classes
as M ′.

a. Verify that this is indeed an equivalence relation . Prove that M satisfies the T0 iff M = M ′.

b. Define U ⊂ M ′ to be open iff its preimage w.r.t. the mapping M → M ′ is open. Prove that
this defines a topology on M ′. Does it satisfy the T0 condition?

c. Prove that the open subsets of M are exactly the preimages of the open subsets of M ′.
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d. Suppose that M has the codiscrete topology. What is M ′?

Exercise 5.22. Are T0 − T4 conditions satisfied by a space with the discrete topology? With the
codiscrete topology?

Exercise 5.23. Prove that T0 − T4 are satisfied by R.

Exercise 5.24. Prove that T1 implies T0 and that T2 implies T1.

Exercise 5.25. Give an example of a space that does not satisfy the T1 condition. Give an example
of a non-Hausdorff space such that all the singleton sets are closed in it.

Exercise 5.26 (*). Give an example of a space that satisfies the T1 condition such that any two
non-empty open sets have an non-empty intersection.

Exercise 5.27 (*). Prove that T2 follows from T1 and T3.

Exercise 5.28 (*). Give an example of a space that satisfies T4 but does not satisfy T1.

Exercise 5.29. Consider a metrizable topological space. Prove that it satisfies conditions T1, T2,
T3.

Exercise 5.30 (*). Consider a metrizable topological space. Prove that it satisfies the condition
T4.

Exercise 5.31 (*). Let M be a finite set.

a. Find all topologies on M that satisfy the T1 condition.

b. Are there any topologies on M that do not satisfy T1?

c. Are there any topologies on M that do not satisfy T1, but satisfy T0?

Definition 5.9. A set M is said to be partially ordered, if there is a binary relation x ≤ y (“x
less than or equal y”) defined on it such that:

1. If x ≤ y and y ≤ z, then x ≤ z.

2. If x ≤ y and y ≤ x, then x = y.

Exercise 5.32 (*). a. Consider a partially ordered set M ; say that S ⊂M is open if together
with any x ∈ S it contains all y ∈M satisfying y ≤ x. Prove that this defines a topology on
M . When does this topology satisfy the T0 condition? The T1 condition?

b. Consider a finite set M and a topology on M that satisfies the T0 condition. Prove that it is
induced by a partial order on M .

Definition 5.10. Let Z ⊂M be a subset of a topological space. A subset Z is called dense, if Z
has a non-empty intersection with every open subset of M .

Exercise 5.33 (!). Prove that Z is dense iff the closure Z is the entire M .

Exercise 5.34. Find all dense subsets in a topological space with the discrete topology; with the
codiscrete topology.
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Exercise 5.35. Prove that Q is dense in R.

Exercise 5.36 (!). A subset Z in a topological space M is called nowhere dense, if for every
open U ⊂M the subset Z ∩ U is not dense in U . Prove that Z is nowhere dense iff M\Z is dense
in M .

Exercise 5.37 (*). Construct a nowhere dense subset of the interval [0, 1] (endowed with the
natural topology) of the continuum cardinality.

Exercise 5.38. Find all nowhere dense subsets in a space with discrete topology; with codiscrete
topology.

Definition 5.11. Let M be a topological space and x ∈M be an arbitrary point. A neighborhood
base of x is a collection B of neighborhoods of x such that any neighborhood U 3 x contains some
neighborhood from B.

Exercise 5.39. Consider a collection B of open subsets of a topological space M such that for
any x ∈M the collection of all U ∈ B containing x is a neighborhood base of x. Prove that B is a
base of the topology of M .

Definition 5.12. Consider a topological space M . One can impose two countability conditions on
M . If every point of M has a countable neighborhood base, then it is said that M satisfies the
first countability axiom. If M has a countable base of open sets, then it is said that M satisfies
the second countability axiom, or that M is a space with a countable base. If there exists
a countable dense subset of M then it is said that M is separable.

Exercise 5.40. Consider a space M with discrete topology. Prove that M satisfies the first count-
ability axiom.

Exercise 5.41. Consider a topological space M with a countable base. Prove that it is separable.

Exercise 5.42 (*). Consider a separable topological space M . Prove that M has a countable
base.

Exercise 5.43 (!). Consider a metrizable topological space. Prove that it has a countable neigh-
borhood base for every point.

Exercise 5.44. Construct a non-separable metrizable topological space.

Exercise 5.45 (**). Give an example of a countable Hausdorff space without a countable base.

5.1 Topology and convergence

Topological space were invented as a language to speak about continuous functions. In GEOME-
TRY 4 we defined a continuous function as a function that preserves limits of convergent sequences.
One can consider topology from the axiomatic viewpoint as above, or from the point of view of
geometric intuition, by giving a class of convergent sequences on a space to define its topology and
considering a mapping continuous if it preserves limits.

The second approach (despite all its obvious advantages) encounters set-theoretical problems: if
the space does not have a countable base, then one has to use well-founded uncountable sequences.
We are going to work mostly with spaces which have a countable neighborhood base and it is
convenient to define topology and continuity via limits of sequences.

5
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Definition 5.13. Let M be a topological space and Z ⊂M be an infinite subset. A point x ∈M
is called an accumulation point of Z, if every neighborhood of x contains some point z ∈ Z. A
limit of a sequence {xi} is defined to be a point x such that every neighborhood of x contains
almost all xi’s. A sequence is called convergent if it has a limit.

Exercise 5.46. Find all convergent subsequences in a space with discrete topology; in a space
with codiscrete topology.

Exercise 5.47. Consider a Hausdorff space M . Prove that every sequence has at most one limit.

Exercise 5.48 (*). Is the converse true (i.e. does it follow from the uniqueness of a limit that the
space is Hausdorff)? What if M has a countable neighborhood base of its point?

Exercise 5.49. Consider a space M where any sequence has at most one limit. Prove that M
satisfies the separation axiom T1.

Exercise 5.50. Consider a continuous mapping f : M −→M ′ and a subset Z ⊂M . Prove that f
maps accumulation points of Z to accumulation point of f(Z). Prove that f maps limits to limits.

Exercise 5.51 (!). Consider a mapping that maps accumulation points to accumulation points.
Prove that it is continuous.

Exercise 5.52. Consider a space M with a countable neighborhood base for every point, and an
arbitrary Z ⊂M . Prove that the closure of Z is the set of limits of all sequences from Z.

Exercise 5.53 (!). Consider topological spaces M , M ′ with a countable neighborhood base for
every point and a mapping f : M −→M ′ that preserves limits of sequences. Prove that f is
continuous.

Hint. Use the previous problem.

Exercise 5.54 (*). What happens if we do not require in the previous problem that neighborhood
bases are countable in M? In M ′?

Exercise 5.55 (*). Consider a set M and let some sequences of elements of M be declared to
converge to points from M (it is denoted like this: x ∈ limxi; note that there can be more than
one limit of a sequence1). Let the following conditions hold for the notion of convergence:

(i) The limit of a sequence x, x, x, x, x, . . . contains x.

(ii) If x ∈ limxi then the limit of any subsequence {xi`} is nonempty and contains x.

(iii) Consider an infinite number of elements of a sequence {xi}. Let us permute them and denote
the result by {yi}. If x ∈ limxi then x ∈ lim yi.

(iv) If x ∈ limxi and x ∈ lim yi then the sequence x1, y1, x2, y2, ... converges to x.

a. Define closed subsets of M as these Z ⊂M that contain the limits of all sequences {xi} ⊆ Z.
Define open sets as complements of closed sets. Prove that this defines a topology on M .

1Thus we talk here about limits of sequences as sets of points. (DP)
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GEOMETRY 5: Set-theoretic topology.

b. Consider a topology S on M with a countable neighborhood base for every point. Define the
limits of sequences with respect to this topology. Prove that conditions (i)-(iv) hold for this
notion of convergence. Let S ′ be a topology obtained from limits with the help of construction
in (a). Prove that the topologies S ′ and S coincide.

c. Take a uncountable set with the following topology: open sets are complements of finite sets
(this topology is called cofinite). Consider a topology S ′ defined by limits as above. Describe
S ′. Prove that S ′ does not satisfy the first countability axiom.

7
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GEOMETRY 6: Set-theoretic topology: product of spaces

Definition 6.1. Consider a topological space M and a collection B of open subsets of M . The
collection B is called a prebase of the topology on M , if every open set can be obtained as a union
(potentially infinite) of finite intersections of open subsets from B.

Exercise 6.1. Consider R with discrete topology. Prove that it does not have a countable prebase.

Exercise 6.2 (!). Consider a topological space M with a countable prebase. Prove that M has a
countable base.

Exercise 6.3 (*). Consider a finite set M , |M | = 2n with discrete topology and a prebase B of
M . Prove that |B| > 2n. Find a prebase that has 2n elements.

Exercise 6.4. Consider R with natural topology and let B be the set of all intervals such that
their end-points are finite binary fractions. Prove that B is a base of topology of R.

Exercise 6.5. Consider a collection B of subsets of a set M such that ∪B = M . Consider all
subsets of M that are finite intersections and arbitrary unions of elements of B, as well as M and
∅. Prove that these sets define a topology on M .

Definition 6.2. This topology is called the topology defined by the prebase B.

Definition 6.3. Consider topological spaces M1 and M2. Consider a topology S on M1 × M2

defined by the prebase of subsets of the form U1 ×M2, M1 × U2 where U1, U2 are open in M1, M2

respectively. Then (M1 ×M2, S) is called the product of M1 and M2.

Exercise 6.6. Prove that the natural projection M1 ×M2 −→M1 is continuous. Prove that sets
of the form U1 × U2 define a base of the topology of M1 ×M2.

Exercise 6.7. Consider mappings of topological space X
γ1−→M1, X

γ2−→M2. Prove that they are
continuous iff the product

X
γ1×γ2−→M1 ×M2

is continuous.

Exercise 6.8. Consider topological spaces M1, M2 that have one of the properties from the list
below. Prove that M1 ×M2 has the same property.

a. Separation axiom T1.

b. (!) Hausdorff separation axiom (T2).

c. Separation axiom T3.

d. Being separable.

e. (!) Having a countable neighborhood base for every point.

f. Having a countable base.

Exercise 6.9 (**). Does this hold for the separation axiom T4? What about T4 + T1?

Definition 6.4. The mapping x
∆−→ (x, x) ∈ X × X is called the diagonal embedding and its

image is called the diagonal in X ×X.

1
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Exercise 6.10. Prove that the diagonal embedding is a homeomorphism onto its image (supposing
that the topology on ∆ ⊂ X ×X is induced from X ×X).

Hint. Use the Problem 6.7.

Exercise 6.11. Prove that X satisfies the T1 separation axiom iff the diagonal is the intersection
of all open sets that contain it.

Exercise 6.12 (!). Prove that X is Hausdorff iff the diagonal is closed in X ×X.

Exercise 6.13 (*). Suppose that the graph Γ ⊂ X×Y of a mapping of topological spaces X
γ−→ Y

is closed. Is it true that γ is continuous?

Exercise 6.14 (!). Consider a morphism of topological spaces X
γ−→ Y and suppose X is Haus-

dorff. Prove that the graph of γ is closed.

Exercise 6.15. Consider metric spaces M1, M2 and their product M = M1 × M2, and let d be
one of the functions defined on M ×M listed below. Prove that d defines a metric on M .

a. d((m1, m2), (m
′
1, m

′
2)) = d(m1, m2) + d(m′

1, m
′
2)

b. d((m1, m2), (m
′
1, m

′
2)) = max(d(m1, m2), d(m′

1, m
′
2))

c. (!) d((m1, m2), (m
′
1, m

′
2)) =

√
d(m1, m2)2 + d(m′

1, m
′
2)

2

Exercise 6.16 (!). Prove that all the three metric structures from the previous problem define the
same topology on M1 ×M2. Prove that this topology is equivalent to the topology of the product
M1 ×M2 considered as a product of topological spaces.

Tychonoff cube and Hilbert cube

Definition 6.5. Consider a (possibly uncountable) index set I and the set M = XI of all mappings
from I to a fixed topological space X. One can regard XI as a set of sequences of points of X
indexed by I or as an infinite product of X with itself. Denote by W (i, U) ⊂ XI the set of all
mappings I −→X that map a fixed index i to an element from a subset U ⊂ X. Define a prebase
B of topology on XI in the following way: let V ∈ B if V = W (i, U) for some index element i ∈ I
and some open subset U ⊂ X. This topology is called weak.

Exercise 6.17 (!). Consider a sequence of points α1, α2, . . . in XI . Prove that it converges iff the
sequence αk(i) converges for every index i ∈ I.

Remark. The previous problem statement is often expressed as follows: “a space XI with weak
topology is the set of mappings from I to X with the pointwise convergence topology”.

Definition 6.6. Consder an index set I. The space [0, 1]I with the weak topology is called a
Tychonoff cube.

Exercise 6.18. Consider a set of continuous functions αi : M −→ [0, 1] indexed by a set I. Prove
that the mapping of the form ∏

αi : m−→
∏
i∈I

αi(m)

from M to Tychonoff cube [0, 1]I is continuous.

2
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Exercise 6.19. Prove that any point of a Tychonoff cube is closed.

Exercise 6.20 (*). Prove that a Tychonoff cube satisfies T2 and T3 separation axioms.

Exercise 6.21 (!). Consider a Tychonoff cube [0, 1]I where I is countable. Prove that it has a
countable base.

Hint. Prove that the collection of all U = W (i, ]a, b[) with a, b rational numbers defines a countable
prebase in [0, 1]I and use the Problem 6.2.

Exercise 6.22 (**). Prove that if the index set I has the cardinality greater than or equal to
continuum then the Tychonoff cube [0, 1]I is non-separable.

Hint. Consider a countable subset W of a Hausdorff space. Prove that the cardinality of the
closure of W is not greater than continuum.

Exercise 6.23 (!). Consider a set M = [0, 1]N of sequences of real numbers in [0, 1] indexed by N.
Consider the function d : M ×M −→ R,

d({αi}, {βi}) =

√∑
i

i−2|αi − βi|2.

Prove that this function is well-defined and defines a metric on [0, 1]N.

Definition 6.7. A metric space [0, 1]N with the metric defined as above is called Hilbert cube.

Exercise 6.24 (!). Consider a sequence {αi(n)} of points of [0, 1]N. Prove that it converges in the
Tychonoff topology iff it converges in the topology of the Hilbert cube.

Exercise 6.25 (*). Deduce that the identity mapping is a homeomorphism of the Tychonoff cube
and the Hilbert cube.

Remark. We actually proved that if the index set I is countable then the Tychonoff cube [0, 1]I

is metrizable.

Exercise 6.26 (*). Consider a uncountable index set I. Is the Tychonoff cube [0, 1]I metrizable
in that case?

Urysohn lemma and metrization of topological spaces

Definition 6.8. Consider two non-intersecting closed subsets A, B ⊂ M of a topological space M .
A continuous function f : M −→ [0, 1] is called an Urysohn function if f(A) = 0, f(B) = 1.

Exercise 6.27. Suppose that Urysohn function exists for any two non-intersecting closed subsets
A, B ⊂ M . Prove that M satisfies the separation axiom T4.

Exercise 6.28. Prove in the previous problem setting that it is possible that M does not satisfy
T1 separation axiom.

Exercise 6.29 (*). Suppose M satisfies T4 separation axiom and A, B ⊂ M are non-intersecting
and closed. Prove that there exists a sequence of neighborhoods Up/2q ⊃ A indexed by rational
numbers of the form 0 < p/2q < 1 that satisfies the following conditions:

3
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(i) for all p, q, B does not intersect Up/2q .

(ii) if p1/2
q1 < p2/2

q2 then the closure of Up1/2q1 is contained in Up2/2q2 .

Hint. Use an inductive argument.

Exercise 6.30 (*). In the previous problem setting define a function f : M −→ [0, 1] to be

f(m) = sup
{
p2/2

q2 | m /∈ Up1/2q1

}
outside A and equal to zero on A. Prove that f is continuous and that f is an Urysohn function.

Hint. Prove that the intervals of the form ]p1/2
q1 , p2/2

q2 [ form a prebase of the topology on [0, 1].
Prove that

f−1(]p1/2
q1 , p2/2

q2 [) = Up2/2q2\Up1/2q1 .

Deduce that f is continuous.

Remark. We have proven the following “Urysohn lemma”: if M satisfies the T4 condition, then
for any two non-intersecting closed subsets of M there is an Urysohn function.

Exercise 6.31 (*). Consider a Hausdorff space M with a countable base B, which satisfies the
T4 condition and let I be a set of all pairs U1, U2 ∈ B such that the closures of U1, U2 do not
intersect, FU1,U2 are respective Urysohn functions and F : M −→ [0, 1]I is a mapping to Tychonoff
cube define as F (m) =

∏
FU1,U2 . Prove that F is continuous and injective.

Exercise 6.32 (*). In the previous problem setting denote the inverse mapping of F as G :
F (M)−→M . Consider a sequence of points {xi} such that FU1,U2(xi) converges for every pair
(U1, U2) from I. Deduce that the sequence {xi} converges. Prove that G is continuous.

Exercise 6.33 (*). Prove that any Hausdorff space M with a countable base which satisfies the
T4 condition (such space is called a Polish space) is a subspace of a Hilbert cube.

Remark. We have proved the following metrization theorem: every Polish space is metrizable.

Exercise 6.34. Prove that any subset of a Hilbert cube is Polish.

Exercise 6.35 (*). Is it true that every metrizable space is a Polish space?
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GEOMETRY 7: Set-theoretic topology: compactness

Definition 7.1. Consider a topological space M . We call any collection of open subsets Ui ⊂ M
(possibly infinite or even uncountable) such that M =

⋃
Ui a cover of M . The topological space

M is called compact (or a compactum) if it is possible to find a finite subcover of every open
cover of M . A subset Z ⊂ M of the topological space M is called compact if it is compact in the
induced topology.

Exercise 7.1. Prove that the interval [0, 1] is compact. In which case a set with discrete topology
is compact? With codiscrete topology?

Exercise 7.2 (*). Consider the following topology on M : open sets are complements of finite sets
(this topology is called cofinite). Find all compact subsets of M .

Exercise 7.3 (!). Consider a compact space Z and a closed subset Z ′ ⊂ Z. Prove that Z ′ is also
compact. Does compactness of a set follow from its closedness?

Exercise 7.4. Consider a Hausdorff topological space M , an arbitrary subset Z of M and a point
x /∈ Z.

a. Prove that there is an open cover {Ui} of Z such that the closure of every Ui does not contain
x.

b. (*)Give an example of a non-Hausdorff T1-space where this is not true.

Exercise 7.5 (!). Consider a Hausdorff space M . Prove that every compact subset of M is closed.

Hint. Use the previous problem.

Exercise 7.6. Consider two compact subsets of a Hausdorff space. Prove that there exist two
non-intersecting open neighborhoods of these subsets.

Exercise 7.7 (!). Consider a compact Hausdorff topological space. Prove that it satisfies the T4

separation axiom.

Definition 7.2. A topological space is called locally compact if every point has a neighborhood
such that its closure is compact.

Exercise 7.8. Consider a locally compact Hausdorff topological space. Prove that is satisfies the
T3 separation axiom.

Exercise 7.9 (**). Does there exist a locally compact topological space which does not satisfy
the first countability axiom?

Exercise 7.10 (**). Does there exist a countable topological space which is not locally compact?

Exercise 7.11. Consider a topological space X. Denote by X̂ the set X
⋃
{∞} (X with one point

added, this point is denoted by ∞) with the following topology: U ⊂ X̂ is open if either ∞ ∈ U
and the complement of U is compact as a subset of X, or if ∞ 6∈ X and U is open as a subset of
X. Prove that this is indeed a topology and that the space X̂ is compact.

Definition 7.3. The space X̂ is called a one-point compactification of the space X.

1
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Exercise 7.12 (*). Consider a Hausdorff space X. Is it true that X̂ is also Hausdorff?

Exercise 7.13. Consider the space X = Rn with the natural topology. Prove that X̂ is homeo-
morphic to the n-dimensional sphere.

Exercise 7.14. Consider a topological space M and a subset Z. Prove that the following are
equivalent:

(i) Every point z ∈ Z has a neighborhood U 3 z that contains no other points from Z.

(ii) M induces the discrete topology on Z.

(iii) Z does not contain any of its accumulation points.

Definition 7.4. A closed subset Z ⊂ M that satisfies one of the conditions from the statement of
Problem 7.14 is called discrete.

Exercise 7.15. Consider a Hausdorff space M and suppose it has an infinite discrete subset Z ⊂
M . Prove that M is non-compact.

Consider a collection Zi of subsets of a set M . We say that the collection is incomplete, if
for every finite subcollection Z1, Z2, . . . , Zk the intersection Z1 ∩ Z2 ∩ · · · ∩ Zk is non-empty. A
monotone collection Zi of subsets of the set M is a collection of subsets that is linearly ordered
by inclusion (i.e. for all Zi, Zj from the collection either Zi ⊂ Zj, or Zj ⊂ Zi).

Exercise 7.16. Prove that a topological space M is compact iff every incomplete collection of
closed subsets Zi ⊂ M has a non-empty intersection ∩iZi.

Exercise 7.17. Prove that if a topological space M is compact then every monotone collection of
non-empty closed subsets Zi ⊂ M has a non-empty intersection ∩iZi.

Exercise 7.18 (!). Consider a Hausdorff topological space M with a countable base. Prove that
M is compact iff M does not have infinite discrete subsets.

Hint. If M has an infinite discrete subset then it follows from the Problem 7.17 that M is non-
compact. Conversely, if M is non-compact then M has a countable cover S such that no finite
subset of S covers M .

Exercise 7.19. Consider a Hausdorff topological space M with a countable base. Prove that M
is compact iff every sequence of points from M has an accumulation point.

Exercise 7.20 (*). Consider a topological space M , not necessarily Hausdorff.

a. Is it possible that a compact subset of M contains an infinite discrete subset?

b. Is it possible that there is a non-compact subset of M that contains no infinite discrete
subsets?

c. (**) Consider a Hausdorff space M . Does there exist a non-compact subset of M that does
not contain infinite discrete subsets?

Exercise 7.21 (!). Consider a continuous mapping f : M −→N of topological spaces. Prove
that for any compact subset Z ⊂ M , f(Z) is compact.
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Exercise 7.22. Consider a subset Z ⊂ R.

a. Prove that Z is compact iff it is closed and bounded (i.e. contained in an interval [a, b]).

b. Prove that Z is compact iff every subset of it has an infimum and supremum in Z.

Exercise 7.23 (!). Consider a continuous mapping f : M −→ R of topological spaces. Prove that
f reaches its maximum and minimum on any compact subset of M .

Exercise 7.24 (*). Consider a non-compact Hausdorff topological space with a countable base
that satisfies the T4 separation axiom. Construct a continuous function f : M −→ R that has no
maximum.

Hint. Consider {xi}, a countable discrete subset of M . Use the T4 separation axiom to construct a
collection of neighborhoods Ui ⊃ xi such that the closure of Ui does not intersect with the closure of⋃

j 6=i Uj. Now apply Urysohn lemma to closed sets {xi}, M\Ui and sum up the Urysohn functions
fi obtained with the right coefficients.

Exercise 7.25. Consider a continuous mapping f : M −→N of topological spaces, where M is
compact and N is Hausdorff. Prove that f maps closed sets to closed sets.

Exercise 7.26. Consider a continuous mapping f : M −→N of topological spaces, where M is
compact and N is Hausdorff. Suppose that f is bijective. Prove that f is a homeomorphism.

Exercise 7.27. Give an example of a continuous mapping f : M −→N , where M is compact,
such that f is not a homeomorphism (N is not Hausdorff here).

Compact sets and products

Definition 7.5. A continuous mapping f : X → Y of topological spaces is called proper if for
every compact K ⊂ Y the preimage f−1(K) ⊂ X is compact.

Exercise 7.28 (!). Consider a Hausdorff space Y with a countable base. Prove that a proper
mapping f : X → Y maps closed subsets of X to closed subsets of Y .

Hint. Take a closed set Z ⊂ Y which has a non-closed image. Take a sequence of points yi ∈ f(Z)
which converges to y ∈ Y that does not belong to f(Z).

Exercise 7.29 (*). Is the previous problem statement true if we do not require existence of a
countable base?

Exercise 7.30 (*). Consider a continuous mapping f : X → Y that maps closed sets to closed
sets and the preimage f−1(y) of any point y ∈ Y is compact. Prove that the mapping f is proper.

Hint. Use the compactness criterion from the Problem 7.16.

Definition 7.6. A continuous mapping f : X → Y is called closed if the image of any any
closed subset is closed. The mapping is called universally closed if for any continuous mapping
g : Z → Y the induced mapping X×Y Z → Z is closed (X×Y Z is a subset of X×Z that contains
all pairs 〈x, z〉 such that f(x) = g(z)).
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Exercise 7.31 (*). Consider a continuous mapping F : X → Y which is universally closed. Prove
that it is a proper mapping.

Hint. Use the Problem 7.30 to justify that only the case when Y is a one point space can be
considered. Then use the Problem 7.18: if X contains an infinite discrete subset M then take
Z = M̂ , i.e. a one-point compactification of M and deduce the contradiction.

Exercise 7.32 (!). Consider compact topological spaces X, Y . Prove that the product X × Y is
compact.

Hint. Use the fact that sets of the form U × V , where U is open in X and V is open in Y ,
form a base of the topology on X × Y and prove that it suffices to consider covers of X × Y that
contain only sets of this form. Then for every point y ∈ Y choose a finite subcover of the subset
X × {y} ⊂ X × Y that contains sets of the form Ui × Vi, and notice that sets Vy = ∩Vi form an
open cover of Y .

Thus every projection X × Y → Y for any Y and compact X is a proper mapping.

Exercise 7.33. Consider a subset X ⊂ Rn. Prove that the following are equivalent:

(i) X is compact

(ii) X is closed and bounded (i.e. lies within a ball).

Tychonoff’s theorem

Exercise 7.34. Consider a sequence ai(n) of mappings from N to [0, 1]. Prove that one can select
a subsequence ai1 , ai2 , ai3 , . . . such that {aik(n)} converges for any n.

Exercise 7.35 (!). Deduce that the Tychonoff cube [0, 1]N is compact.

Exercise 7.36 (*). Consider a topological space M . Consider a (possibly uncountable) collection
{Vα} of covers of M , such that every Vα either contains Vα′ or is contained in it (in other words,
in {Vα} every cover can be obtained from any other cover by adding or removing some elements).
Suppose every Vα does not have a finite subcover. Prove that the union of all Vα does not have a
finite subcover either.

Exercise 7.37 (*). Use the Zorn’s lemma to prove that every non-compact subset X ⊂ M has a
cover {Vα} that does not have a finite subcover, but if one adds to {Vα} any open set that does
not belong to it, then the cover obtained has a finite subcover.

Hint. Use the previous problem.

We will call such covers maximal.

Exercise 7.38 (*). Consider a maximal cover {Vα} of a non-compact topological space M . Prove
that if open sets U1, U2 do not belong to {Vα} and they have a non-empty intersection then the
intersection does not belong to {Vα} either. Prove that any non-empty finite intersection of open
sets that do not belong to {Vα}, does not belong to {Vα} either.

Hint. Use the previous problem.
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Exercise 7.39 (*). Consider a topological space M with a given prebase of topology R. Consider
then a non-compact subset X ⊂ M and a maximal cover {Vα}. Prove that {Vα} has a subcover
whose elements belong to R.

Hint. Use the previous problem.

Remark. We have proved the following theorem (Alexander’s theorem about prebase). Consider
a topological space M with a given prebase S. Then a subset X ⊂ M is compact iff every cover of
X whose elements are from S has a finite subcover. Alexander’s theorem uses the Axiom of Choice
and is equivalent to it (that was shown by Cayley).

Exercise 7.40 (*). Deduce that the Tychonoff cube [0, 1]I is compact for any index set I.

Hint. Consider a prebase of the topology on the Tychonoff cube that consists of subsets of the
form [0, 1]× [0, 1]×· · ·×]a, b[×[0, 1]× . . . (an open interval occurs once). Use Alexander’s theorem.

Remark. Compactness of the Tychonoff cube is equivalent to the following statement. Consider
a space Map(I, [0, 1]) of mappings from a set I to the interval [0, 1], endowed with the topology of
the pointwise convergence. Then Map(I, [0, 1]) is compact. In particular, every sequence {ai(x)}
of mappings has a subsequence {aik(x)} such that {aik(x)} converges for all x ∈ I.

Definition 7.7. Consider a topological space M , a set I and M I , the set of all mappings from
I to M , that is, the product of I copies of M . For an arbitrary x ∈ I and an open set U ⊂ M
consider a subset U(x) ⊂ M I which consists of all mappings that map x to an element of U . Define
a topology on M I using the prebase that consists of all U(x). This topology is called Tychonoff
topology (or weak topology or topology of pointwise convergence).

Exercise 7.41 (*). Consider a compact space M . Deduce from Alexander’s theorem that M I

endowed with Tychonoff topology is compact.

Fundamental theorem of algebra

Consider a polynomial P (x) = xn + an−1x
n−1 + · · · + a0 of a positive degree with complex

coefficients. We look at P as a function from C to C. C is identified with R2 as a topological space.

Exercise 7.42. Prove that P is continuous.

Exercise 7.43 (!). Prove that if |x| > 2 max (1,
∑
|ai|), then |P (x)−xn|

|xn| < 1/2.

Exercise 7.44 (!). Prove that if |x| > 2R max (1,
∑
|ai|), then |P (x)| > Rn.

Exercise 7.45 (!). Deduce that |P | reaches its local minimum at a point a ∈ C.

Hint. We approximated the polynomial |P | with the polynomial xn, for which we know how fast
it grows. We deduce that |P (x)| > Rn, when |x| is big enough. That’s why the minimum of |P | on
the disc |x| 6 R is reached inside the disc and not on its boundary.

In order to simplify the notation we will suppose that |P | reaches its minimum at zero. We
want to prove that the minimum of |P | is zero. Suppose it is not true. Then let k be the smallest
number among 1, 2, 3, . . . , n, such that ak 6= 0. Multiply P by a−1

0 and perform the substitution

x = z k

√
a−1

k , so we get a polynomial of the form

Q(z) = 1 + zk + bk+1z
k+1 + bk+2z

k+2 + . . .

5



GEOMETRY 7: Set-theoretic topology: compactness

Exercise 7.46. Prove that for any complex z, such that |z| < 1, the following holds:

|Q(z)− 1− zk| < |zk+1|(
∑

|bi|).

Exercise 7.47 (!). Prove that for any complex number z, such that
|z| < 1

2
max (1,

∑
|bi|)−1, the following holds:

|Q(z)− 1− zk|
|zk|

<
1

2
.

Exercise 7.48 (!). Deduce that for any positive real ε < 1
2
max (1,

∑
|bi|)−1 and any complex z,

such that zk = −ε, the following holds:

|Q(z)− 1 + ε| < ε/2.

Remark. We approximated Q with the polynomial 1 − zk in a neighbourhood of zero. We can
use this approximation to deduce that |Q( k

√
−ε)| < |Q(0)|(1 − 1

2
ε) for ε that is small enough. It

follows that the local minimum of the polynomial is 0.

Exercise 7.49 (!). Prove the Fundamental Theorem of Algebra: every polynomial P of positive
degree has a root in C.

6
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GEOMETRY 8: Pointwise and uniform convergence

During the work on this sheet, it is allowed to use Tychonoff’s Theorem in the following form.

Theorem. Let X be a compact topological space, I an arbitrary set, XI the topological space (in
the pointwise convergence topology), of the mappings I → X. Then XI is compact.

Exercise 8.1. Consider the space of of functions from an interval to an interval. Show that the
limit of a sequence of continuous functions need not be continuous.

Definition 8.1. Let X, Y be metric spaces, {fα} a set of continuous functions X → Y . Then
{fα} is called uniformly continuous if for any ε there exists δ such that the image of any δ-ball
under any fα is contained in an ε-ball Bα. (Note that Bα can depend upon α.)

Exercise 8.2. Let f : X −→ Y be a mapping of metric spaces that maps each Cauchy sequence
to a Cauchy sequence. Show that f is continuous as a mapping of topological spaces. Is it true
that any continuous mapping maps each Cauchy sequence to a Cauchy sequence?

Exercise 8.3 (!). Let X, Y be metric spaces, {fi} a uniformly continuous sequence of continuous
functions X → Y . Suppose that {fi} converges to f in the pointwise convergence topology. Show
that f is continuous.

Hint. Show that f is uniformly continuous, with the same ε, δ as {fi}, and then use the preceding
problem.

Pick compact metric spaces X, Y , and let Map(X, Y ) be the set of continuous mappings X → Y .

Exercise 8.4. For any f, g ∈ Map(X, Y ) define

dsup(f, g) := sup
x∈X

d(f(x), g(x)).

Show the correctness of the definition of dsup(f, g), and that it defines a metric on Map(X, Y ).

Definition 8.2. The latter metric is called sup-metric on Map(X, Y ).

Exercise 8.5 (!). Let a uniformly continuous sequence of mappings {fi} ⊂ Map(X, Y ) pointwise
converge to f . Show that it converges to f in the topology induced by the sup-metric, too.

Hint. Let supx∈X d(f(x), fi(x)) > C for any i. Find a converging subsequence of {xi}’s satisfying
d(f(xi), fi(xi)) > C. Let x = lim

i→∞
xi. Due to uniform convergence, d(fi(xi), fi(x)) → 0. Derive a

contradiction from the triangle inequality

d(fi(x), f(x)) + d(fi(xi), fi(x)) > d(f(x), fi(xi)).

Exercise 8.6 (!). (Arzelà-Ascoli Theorem) Let Ψ ⊂ Map(X, Y ) be closed (w.r.t. the sup-metric)
and uniformly continuous. Show that Ψ is compact.

Hint. Use Tychonoff’s Theorem and the preceding problem. As we have already said, we assume
here that X and Y are compact!

Exercise 8.7 (**). Find an independent of Tychonoff’s Theorem (and thus, of the axiom of
choice) proof of Arzelà-Ascoli Theorem.
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GEOMETRY 8: Pointwise and uniform convergence

Exercise 8.8 (*). Let K ⊂ X be compact and V ⊂ Y open. Denote by U(K, V ) ⊂ Map(X, Y )
the set of all mappings sending K in V . Consider the topology on Map(X, Y ), defined by the
subbase of all U(K, V ). Show that it coincides with the topology induced by the sup-metric.

Definition 8.3. The latter topology on Map(X, Y ) is called topology of uniform convergence.

Exercise 8.9. Show that the pointwise convergence topology is weaker than the uniform conver-
gence topology; in other words that the identity map from Map(X, Y ) endowed with the latter
topology onto Map(X, Y ) endowed with the former topology is continuous.

Definition 8.4. Let M be a metric space and Z ⊆ M . Diameter of Z is the number diam(Z) :=
supx,y∈Z d(x, y).

Exercise 8.10. Let f ∈ Map(X, Y ) be an arbitrary mapping, ε be a real number, and δ(f, ε) be
the supremum of diam(f(B)) over all the ε-balls B in X. Show that lim

ε−→ 0
δ(f, ε) = 0.

Hint. Assume that for a convergent to 0 sequence εi, a collection of points xi ∈ X and a positive
constant C one has diamf(Bεi

(xi))) > C. Consider a limit point x of {xi}. Then each ε-ball
around x contains Bεi

(xi) (for sufficiently large i), implying that the image of this ε-ball has
diameter greater than C. Thus, f is not continuous.

Exercise 8.11 (!). Let f ∈ Map(X, Y ) be continuous. Show that f is uniformly continuous.

Hint. The claim is tautologically equivalent to lim
ε−→ 0

δ(f, ε) = 0.

Exercise 8.12. Let Ψ ⊂ Map(X, Y ). Show that Ψ is uniformly continuous if and only if

lim
ε−→ 0

sup
f∈Ψ

δ(f, ε) = 0.

Exercise 8.13 (*). Let dsup(f, g) < γ. Show that δ(f, ε) < δ(g, ε) + γ.

Exercise 8.14 (*). Let {fi} be a Cauchy sequence in (Map(X, Y ), dsup). Show that it is uniformly
continuous.

Hint. We shall show that
lim

ε−→ 0
sup

i
δ(fi, ε) = 0.

Using the preceding problem, check that for all fi in an γ-ball in (Map(X, Y ), dsup) the numbers
δ(fi, ε) differ by no more than γ. Derive from this that supi δ(fi, ε) < δ(fN , ε) + γ for a fixed N ,
and thus

sup
i

δ(fi, ε) < γ + max
i6N

δ(fi, ε)

The limit of the latter, as ε−→ 0, cannot be greater than γ, as all fi are uniformly continuous.

Exercise 8.15 (*). Show the completness of the metric space (Map(X, Y ), dsup).

Exercise 8.16 (*). Is the space (Map(X, Y ), dsup) locally compact?
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GEOMETRY 8: Pointwise and uniform convergence

Peano curve

Let [a, b] ⊂ R. The mapping [a, b]
f−→ Rn is called linear, if f(λa + (1 − λ)b) = λf(a) + (1 −

λ)f(b), for any 0 < λ < 1. It is called piecewise linear if [a, b] is partitioned into subsegments
[a, a1], [a1, a2], [a2, a3], . . ., and f is linear on each of [a`, a`+1]. The image of [a, b] under a piecewise
linear map is, certainly, a polygonal curve.

Let f be a piecewise linear map f : [0, 1] → [0, 1] × [0, 1] satisfying the following property; all
the segments of f([0, 1]) are parallel either to the line x = y or to the line x = −y.
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In other words, for any subsegment [a, a1], on which f linear, f maps [a, a1] onto a diagonal of a
square Q, with the sides parallel to the coordinate axes. Let Pl be the space of such piecewise
linear mappings. Let us define an operation µ that produces from an f ∈ Pl with k linear segments
a piecewise linear map with 4k linear segments.
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Namely µ(f) is defined as follows.

1. Denote by a0, a1, . . . , ak the ends of the segments where f was linear. Then µ(f) maps ai to
f(ai).

2. Partition each segment [ai, ai+1] into 4 equal parts:

[b4i, b4i+1], [b4i+1, b4i+2], [b4i+2, b4i+3], [b4i+3, b4i+4].

µ(f) maps [b4i, b4i+1] linearly to [f(ai), f
(ai+ai+1

2

)
], and [b4i+3, b4i+4] to [f

(ai+ai+1

2

)
, f(ai+1)].

3. Consider the square with a diagonal [f(ai), f(ai+1)], and number its vertices clockwise: f(ai),
A, f(ai+1), B. Then µ(f) maps [b4i+1, b4i+2] linearly to [f

(ai+ai+1

2

)
, B], and [b4i+2, b4i+3] to

[B, f
(ai+ai+1

2

)
].

We obtain the following polygonal curve:
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Exercise 8.17. Consider the segment and the square as metric spaces endowed with the standard
metric. Let f ∈ Pl, and the biggest straight segment [f(ai), f(ai+1)] of the corresponding polygonal
curve is of length k. Then dsup(f, µ(f)) 6 k√

2
.

Exercise 8.18. Let f ∈ Pl, and the biggest straight segment [f(ai), f(ai+1)] of the corresponding
polygonal curve is of length k. Then the biggest straight segment in µ(f) is of length k/2.

Exercise 8.19. Let f0 ∈ Pl, f1 = µ(f0), . . . , fn = µ(fn−1), and the biggest straight segment of the
polygonal curve f([0, 1]) has length k. Show that

dsup(fn, fn+1) <
k

2n
√

2

Exercise 8.20 (!). Show that {fi} is a Cauchy sequence in the metric dsup.

Exercise 8.21. Let f ∈ Pl, and for all straight segments [ai, ai+1] f the length of [f(ai), f(ai+1)]
is at most

ρ(ai+1 − ai),

where ρ > 0 is a real. Show that δ(f, ε) 6 ρε, where δ(f, ε) is the function defined above.

Exercise 8.22. Let f0 ∈ Pl, f1 = µ(f0), . . . , fn = µ(fn−1), and for all straight segments [ai, ai+1]
f0 the length of [f(ai), f(ai+1)] is at most ρ(ai+1 − ai). Show that δ(fn, ε) 6 ρ2nε.

Exercise 8.23. Let f ∈ Pl, and the longest straight segment [f(ai), f(ai+1)] of f([0, 1]) has length
k. Show that δ(µ(f), ε) 6 2 k√

2
+ δ(f, ε).

Exercise 8.24. Let f0 ∈ Pl, f1 = µ(f0), . . . , fn = µ(fn−1), and the longest straight segment of
f0([0, 1]) has length k. Show that

δ(fn, ε) 6 4
k

2n−m
√

2
+ ρ2mε (8.1)

for any n, m (n > m)

Exercise 8.25. In the previous problem take ε < 2−2m, n > 2m. Derive from (8.1) that

δ(fn, ε) 6
4k
√

2 + ρ

2−m
.
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Show that for any i the following holds.

δ(fi, ε) 6 max

(
4k
√

2 + ρ

2−m
, ρ22mε

)
.

Exercise 8.26 (!). Let f0 linearly map [0, 1/2] to the segment [(0, 0), (1, 1)], and [1/2, 1] – to
[(1, 1), (0, 0)]. Show that {fi} is uniformly continuous.

Hint. Derive from the preceding problem that lim
ε−→ 0

supi(δ(fi, ε)) = 0.

Exercise 8.27. Derive from Arzelà-Ascoli Theorem the existence of lim fi (in sup-metric) and
continuity of it as a function P : [0, 1]−→ [0, 1]× [0, 1].

Definition 8.5. The function P defined above is called a Peano curve.

Exercise 8.28. Find P(q), for q = a
2n (a ∈ Z). (Such numbers are called binary-rational.)

Exercise 8.29. Let Q2 be the set of binary-rational numbers. Show that P(Q2) is dense on the
unit square.

Exercise 8.30 (!). Show that P([0, 1]) is the whole unit square.

Hint. Use the fact that the image of a compact is compact.

Exercise 8.31 (!). Is it possible to map, surjectively and continuously, [0, 1] onto a cube ? Onto
a cube with one point removed?

5
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GEOMETRY 9: Connectedness

Definition 9.1. Let M be a topological space. A closed and open at the same time subset W ⊂ M
is called clopen. M without proper clopen subsets is called connected. A subset Z ⊂ M is called
connected if it is connected in the induced topology.

Exercise 9.1. Is R connected?

Exercise 9.2 (!). Let X, Y be connected. Show that X × Y is connected.

Hint. Let U ⊆ X×Y be clopen. Consider U ∩X×{y}. Show that X×{y} (in induced topology)
is homeomorphic to X, and U ∩X × {y} is clopen there.

Exercise 9.3. Is Rn connected (in its natural topology)?

Exercise 9.4. Assume that it is possible to connect any two points x, y in M by a path, that is, to
find a continuous mapping [0, 1]

ϕ−→ M satisfying ϕ(0) = x, ϕ(1) = y. Show that M is connected.

Remark. Such an M is called path-connected.

Exercise 9.5. Remove a point from a circle or the plane. Show that the result is connected.

Exercise 9.6 (!). a. Remove a finite number of points from R2. Show that the result is con-
nected.

b. Remove a point from an interval. Show that the result is not connected.

Exercise 9.7 (!). Show that the following spaces are not homeomorphic to each other: R, R2, the
circle.

Exercise 9.8 (!). Show that the following spaces are not homeomorphic to each other: closed
interval, half-open interval, open interval.

Exercise 9.9. Let f : X −→ Y be continuous and X be connected. Show that f(X) is connected.

Exercise 9.10 (!). Let U ⊆ [0, 1] be connected. Show that U is either a closed interval, or a
half-open interval, or an open interval.

Exercise 9.11. Let f : X −→ R be continuous and X be connected. Assume that f takes positive
as well as negative values. Show that f(x) = 0 for some x ∈ X.

Exercise 9.12 (*). Let M be a connected metrizable countable topological space. Show that M
consists of one point.

Exercise 9.13. Show that the union of two connected subsets of a topological space M is con-
nected, provided that their intersection is nonempty.

Exercise 9.14 (!). Let x ∈ M and W be the union of all the connected subsets of M containing
x. Show that W is connected.

Definition 9.2. In such a situation W is called the connected component of x (or just a
connected component).

1
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Exercise 9.15. Show that W ⊂ M is a connected component if and only if any connected subset
containing W coincides with W .

Exercise 9.16. Show that M is the disjoint union of its connected components.

Exercise 9.17. Show that each connected component of M is closed.

Totally disconnected spaces

Definition 9.3. A topological space M is called totally disconnected if each connected compo-
nent of M consists of one point.

Exercise 9.18. Show that Q, the space of rational numbers, in the topology induced by R, is
totally disconnected, but not discrete.

Exercise 9.19 (*). Show that Qp, the space of p-adic numbers, is totally disconnected.

Exercise 9.20 (*). Show that the product of totally disconnected spaces is totally disconnected.

Exercise 9.21. Let S be a subbase in a Hausdorff topological space M , and all the elements of S
clopen. Show that M is totally disconnected.

Exercise 9.22 (!). Consider the set {0, 1} equipped with the discrete topology. Let {0, 1}I be the
product of I copies of {0, 1} with Tychonoff topology, with I being an arbitrary index set. Show
that {0, 1}I is totally disconnected.

Hint. Use the preceding problem.

Exercise 9.23 (*). Let M be Hausdorff topological space, M1 be the sets of connected components
of M , and M

π−→M1 the natural projection (each point is mapped to its connected component).
On M1 introduce the following topology: U ⊂ M1 open if π−1(U) ⊂ M is open. Show that
M1 is totally disconnected. Show that any continuous mapping M

π2−→M2 from M to a totally
disconnected space M2 can be written as a composition of continuous mappings M

π−→M1 −→M2.

Hint. If S ⊂ M1 is connected then the preimage π−1(S) is connected, too. Indeed, if W ⊂ π−1(S)
is clopen then W = π−1(W1) (if W intersects a connected component of M , then W contains it).
Thus W1 is clopen.

Exercise 9.24. Let U be an open subset of a compact Hausdorff space and a collection of closed
subsets {Ki}, so that their intersection is conatined in U . Show that {Ki} contains a finite subcol-
lection so that their intersection is contained in U .

Exercise 9.25 (*). Let M be a totally disconnected compact Hausdorff space. Show that, for
each point x ∈ M , the intersection of all the clopen subsets of M containing x is {x}.

Hint. Let P be the intersection of the clopen subsets containing x. Obviously P is closed. Show
that P is either {x} or disconnected. In the latter case P is the disjoint union of two nonempty closed
subsets P1, P2. As T4 holds in M (show this), find for P1, P2 nonintersecting open neighbourhoods
U1, U2. Derive from the preceding problem that U1∪U2 contains a clopen subset W ⊂ M containing
x. Show that W ∩ Ui are clopen, and derive from this that P = {x}.
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Exercise 9.26 (*). Let M be a totally disconnected compact Hausdorff space. Show that the
clopen subsets form a base of the topology of M .

Hint. Let U ⊂ M be open and x ∈ U . For each point in M\U pick a clopen neighbourhood that
does not contain x (show that this is always possible). This is a cover {Uα} of M\U . As M\U is
compact, {Uα} contains a finite subcover U1, ...Un. Show that the complement to ∪Ui is clopen,
contains x, and is contained in U .

Exercise 9.27 (*). Let M be a totally disconnected compact Hausdorff space. Let x, y ∈ M be
two distinct points. Show that M admits a continuous mapping to {0, 1} (with discrete topology)
such that x goes to 0 and y goes to 1.

Exercise 9.28 (*). Let M be a totally disconnected compact Hausdorff space. Let I be the set
of all continuous mappings from M to {0, 1}. Define a natural mapping M −→ {0, 1}I . Show that
it is a continuous embedding, and that the image of M is closed.

Exercise 9.29 (*). Let M be a compact Hausdorff space. Show that the following statements are
equivalent.

(i) M is totally disconnected.

(ii) M can be embedded into {0, 1}I for some set I of indices.

Remark. Recall that if a compact M admits a continuous injective mapping f : M → X into a
Hausdorff space X then f is a homeomorphism between M and f(M) ⊂ X with induced topology.
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Geometry 10: The fundamental group and the loop space

Path-connectedness

Definition 10.1. Let M be a topological space. Recall that a path in M is a continuous mapping
[a, b]

ϕ
−→ M . In this case one says that the path ϕ connects the points ϕ(a) and ϕ(b). M is

called path-connected when any two points of M can be connected by a path [a, b]
ϕ

−→ M .

Exercise 10.1. Let a, b, c are points in M , so that a can be connected (by a path) to b, and b can
be connected to c. Show that a can be connected to c.

Exercise 10.2. From this derive that a union of path-connected subsets of M containing a point
x ∈ M is path-connected.

Definition 10.2. The union of all the subsets of M , containing a fixed point x is called a path-
connected component of M

Exercise 10.3. Consider X ⊂ R
2 that is the union of the graph of the function sin(1/t) and the

segment [(0, 1), (0,−1)]. Show that X is locally compact, connected, but not path-connected. Find
its path-connected components.

Exercise 10.4 (*). Construct a compact, connected metrizable topological space with infinitely
many path-connected components.

Definition 10.3. Let {Mα} be a collection of topological spaces indexed by the set A. The disjoint
union

∐

α∈A
Mα is a topological space whose points are pairs (α,m) | α ∈ A, m ∈Mα, and a base

of the topology is given by the open sets in all Mα.

Exercise 10.5. Show that the disjoint union of one-point spaces is discrete. Show that the natural
projection

∐

α∈A
Mα −→ A on A with discrete topology is continuous.

Definition 10.4. A topological space M is called locally connected (respectively, locally path-
connected), if any point x ∈ M is contained in a connected (respectively, path-connected) open
set.

Exercise 10.6. Let M be a topological space. Show that M is locally connected (resp. locally
path-connected) iff M is a disjoint union of its (path-)connected components.

Exercise 10.7. Show that a connected space is path-connected iff it is locally path-connected.

Exercise 10.8. Show that an open subset of R
n is locally path-connected.

Exercise 10.9 (**). Let ω be the smallest uncountable ordinal, and ϕ : [0, 1] −→ ω the corre-
sponding bijection. Let X ⊂ [0, 1] × [0, 1] be the subset of the square constisting of x, y satisfying
ϕ(x) > ϕ(y). Show that X is connected. Show that path-connected components of X are either
points or segments of horisontal intervals.

Hint. Show that the intersection of X with any vertical segment is nowhere dense. Let V ⊂
[0, 1] × [0, 1] be a connected closed subset of the square contained in X. Show that V intersects
each vertial segment in no more than 1 point. Thus V is the graph of a continuous mapping
γ : [a, b] −→ [0, 1], satisfying ϕ(γ(a)) < ϕ(a). Show that this mapping is constant.
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Geodesic connectedness

Definition 10.5. Let M be a complete locally compact metric space. Recall that a geodesic in
M is a metric-preserving mapping [a, b] −→M . We say that M is geodesically connected if any
two points can be connected by a geodesic. Obviously such a space is path-connected.

Definition 10.6. Let M be a complete locally compact metric space. We say that M is Lipschitz
connected, with Lipschitz constant C > 1, if for any x, y ∈ M and any ε > 0 there exists a sequence
of points x = x1, x2, . . . , xn = y such that d(xi, xi+1) < ε,

∑

i d(xi, xi+1) 6 Cd(x, y). In other words,
one can place n points between x and y so that they are at distance at most ε from each other,
whereas the length of the polygonal line they form is at most Cd(x, y).

Exercise 10.10 (*). Show that any geodesically connected metric space is Lipschitz connected
with Lipschitz constant 1.

Hint. This is Hopf-Rinow Theorem.

Exercise 10.11 (!). Let (M, d) be a Lipshitz connected metric space, with constant C. Define a
function dh : M ×M −→ R as

lim
ε−→ 0

inf
(

∑

d(xi, xi+1)
)

,

where inf is taken over such sequences x = x1, x2, . . . , xn = y that d(xi, xi+1) < ε. Show that
d(x, y) 6 dh(x, y) 6 Cd(x, y) for any x, y ∈ M . Show that dh is a metric and that (M, d) is
homeomorphic to (M, dh).

Exercise 10.12 (*). Show that (M, dh) is Lipschitz connected, for any C > 1.

Exercise 10.13 (*). Show that (M, dh) satisfies Hopf-Rinow condition (and is therefore geodesi-
cally connected).

Definition 10.7. Recall that a mapping [a, b]
ϕ

−→ M satisfies the Lipschitz condition, with
constant C > 0, if d(ϕ(x), ϕ(y)) 6 C|x− y| for any x, y ∈ [a, b]. It is easy to see that a Lipshitz
mapping is continuous.

Exercise 10.14 (*). Let M be a complete locally compact metric space. Show thatM is Lipschitz
connected with constant C iff one can connect any two points by a Lipschitz path with the same
(universal for M) constant.

Hint. Use the previous problem and the inequality d(x, y) 6 dh(x, y) 6 Cd(x, y).

Remark. We have established that a Lipschitz connected metric space is path-connected.

Exercise 10.15. Consider the circle S on the plane with induced metric. Show that S is Lipschitz
connected with constant π

2
.

Exercise 10.16 (*). Show that π
2

is the smallest possible constant for which the circle with such
a metric is Lipschitz connected.

Exercise 10.17 (**). Consider the mapping ]0,∞[ −→ R
2, given in polar coordinates by the func-

tion θ = 1/x, r = x (this is a spiral winding around 0 with the step 1
2πn

). Let X be the closure
of the graph of this function (that obviously consists of the graph itself and 0). Show that X is
path-connected. Show that X is not Lipschitz connected, no matter what constant C we take.

2



Exercise 10.18 (*). Let M be a locally compact complete metric space. Denote by Sε(x) the
sphere of radius ε with the centre in x. Show that the following conditions are equivalent.

(i) M is Lipschitz connected, with constant C

(ii) for any x, y ∈ M and any r1, r2 > 0 satisfying r1 + r2 6 1, the distance between Sdr1(x) and
Sdr2(y) is not bigger than Cd(1 − r1 − r2), where d = d(x, y).

Hint. To derive (ii) from Lipschitz connectedness, consider a Lipschitz curve through x, y. Lips-
chitz connectedness follows immediately from (ii). The distance from x to Sd(1−C−1ε)(y) is at most
ε; take as x2 the point of the sphere realizing this distance (that is possible, as the sphere is compact
by Hopf-Rinow Theorem), and use induction.

Remark. Recall that in one version that Hopf-Rinow condition says that the distance between
Sdr1(x) and Sdr2(y) equals d(1 − r1 − r2).

Loop space

Definition 10.8. Let (M,x) be a topological space with a marked point x. Consider the set

Ω(M,x) of paths [0, 1]
ϕ

−→ M , ϕ(0) = ϕ(1) = x, with open-compact topology (the base of this
topology consists of the set U(K,W ) of mappings of a given compact K ⊂ [0, 1] into a given open
set W ⊂M). The Ω(M,x) is called the loop space for (M,x).

Exercise 10.19 (!). Let M be metrizable. Show that Ω(M,x) is metrizable too, with the metric

d(γ, γ′) = sup
x∈[0,1]

d(γ(x), γ′(x)).

Exercise 10.20. Let (M,x) be a space with a marked point x. M0 the connected component of
x, and M1 the path-connected component of x. Show that Ω(M,x) = Ω(M0, x) = Ω(M1, x).

Exercise 10.21. Let X, Y be compacts, W be the space of mappings from X to M endowed with
open-compact topology. Construct a bijection between continuous mappings from Y to W and
continuous mappings X × Y −→M .

Exercise 10.22 (!). Let γ, γ′ ∈ Ω(M,x). Construct a bijection between the following sets:

(i) Paths Γ : [0, 1] −→ Ω(M,x), connecting γ and γ′.

(ii) Continuous mappings Ψ from the square [0, 1] × [0, 1] to M that map {1} × [0, 1] to x and

such that Ψ
∣

∣

∣

[0,1]×{0}
= γ, Ψ

∣

∣

∣

[0,1]×{1}
= γ′.

Definition 10.9. Paths γ, γ′ ∈ Ω(M,x) for which the mappings Ψ : [0, 1]× [0, 1] −→M exist, are
called homotopic, and Ψ, that connectes them, is called homotopy.

Exercise 10.23. Show that the set of loops homotopic to γ ∈ Ω(M,x) is a path-connected com-
ponent of γ ∈ Ω(M,x).

Exercise 10.24. Show that the homotopy of loops is an equivalence relation.

Remark. Loops homotopic to each other are also called homotopy equivalent.
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Definition 10.10. Let (M,x) be path-connected. The set of homotopy equivalent classes of loops
is denoted by π1(M,x).

Exercise 10.25 (*). Let M ⊂ R
2 be the union of the closed segment [(0, 1), (0,−1)] and arcs of

circles of diameters 3, 4, 5, . . . that connect (0, 1) and (0,−1).

������������������������

Show that M is path-connected. Show that for any x ∈ M the space Ω(M,x) is not locally
path-connected.

Exercise 10.26 (*). Let (M, d) be a geodesically connected locally compact metric space such
that for a δ > 0 and any x, y ∈ M , d(x, y) < δ, the geodesic connecting x and y is unique. Let
∆δ ⊂ M ×M be the set of pairs x, y ∈ M , d(x, y) < δ. Consider the mapping ∆δ −→M of pairs
to the middle points of the geodesics that connect pairs. Show that it is continuous.

Hint. Let {(xi, yi)} is a sequence of pairs converging to (x, y), and {zi} the sequence of middle
points of corresponding geodesics. Due to local compactness, {zi} has limit points and does not
contain infinite discrete subsets. Any limit point of {zi} will be the middle of geodesic connecting
x and y. Thus {zi} has unique limit point.

Exercise 10.27 (*). Consider the mapping ∆δ ⊗ [0, 1]
Ψ

−→ M , of pairs x, y ∈ M , d(x, y) = d,
t ∈ [0, 1] to points γx,y

(

t
d

)

, where γx,y is a geodesic connecting x and y (when x = y set Ψ(x, y, t) =
x). Show that this mapping is continuous.

Hint. Use the previous problem and the construction of a geodesic as the limit of middle points
of segments used in the proof of Hopf-Rinow Theorem.

Definition 10.11. LetM be a metric space. A path γ : [0, 1] −→M is called piecewise geodesic
if [0, 1] is subdivided into [0, a1], [a1, a2], . . ., [an, 1], and on each of these closed intervals γ satisfies
d(γ(x), γ(y)) = λi|x− y|, for some constant λi

Remark. If M is an open set in R
n with the natural metric then, as shown is Sheet 4, geodesics are

segments. Thus piecewise geodesics are piecewise linear. Such mappings are also called piecewise
linear.

Exercise 10.28 (*). In the conditions of Excercise 10.26, consider Ω(M,x) as a metric space (with
sup-metric). Show that any loop γ ∈ Ω(M,x) is homotopic to a piecewise geodesic, so that the
homotopy can be chosen in any ε-neighbourhood Bε(γ) ⊂ Ω(M,x).

Exercise 10.29 (*). Derive from this that Ω(M,x) is locally path-connected.

Remark. In such a situation π1(M,x) is the set of connected components of Ω(M,x).

Exercise 10.30. Let M be an open set in R
n. Show that Ω(M,x) is locally path-connected.
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Hint. Show that any loop can be homotopically deformed, in a sufficiently small ε-neighbourhood,
into a piecewise linear.

Fundamental group

Exercise 10.31. Given loops γ1, γ2 ∈ Ω(M,x), consider the loop γ1γ2 ∈ Ω(M,x), defined as
follows:

γ1γ2(λ) =

{

γ1(2λ) λ ∈ [0, 1/2],

γ2(2λ− 1) λ ∈ [1/2, 1].

Show that the class of the homotopy γ1γ2 depends only on classes of homotopies γ1, γ2: if γ1 ∼ γ′1,
γ2 ∼ γ′2 then γ1γ

′

1 ∼ γ2γ
′

2.

Exercise 10.32. Show that (γ1γ2)γ3 is homotopy equivalent to γ1(γ2γ3).

Exercise 10.33. Given a loop γ ∈ Ω(M,x), denote by γ−1 the loop γ−1(x) = γ(1−x). Show that
the loops γγ−1 and γ−1γ are homotopic to the trivial loop [0, 1] −→ x.

Remark. Loops that are homotopic to the trivial one are called null-homotopic.

Exercise 10.34 (!). Show that the operation γ1, γ2 −→ γ1γ2 makes π1(M,x) into a group.

Definition 10.12. This group is called the fundamental group of M .

Exercise 10.35. Let X
f

−→ Y be a continuous mapping of path-connected spaces, and x ∈ X.
Consider the corresponding mapping

Ω(X, x)
f̌

−→ Ω(Y, f(y)), γ 7→ γ ◦ f.

Show that f̌ maps homotopic paths to homotopic and induces a homomorphism of fundamental
groups.

Exercise 10.36. Let M be a path-connected topological space, and x, y ∈M . Consider the space
Ω(M,x, y) of paths [0, 1] −→M connecting x and y with open-compact topology. As above, paths
are called homotopic (homotopy equivalent) is they lie in the same path-connected component of
Ω(M,x, y). Define an operation Ω(M,x, y) × Ω(M, y, z) −→ Ω(M,x, z), γ1, γ2 7→ γ1γ2 using the
same formula as in Excercise 10.31. Show that this mapping is continuous and maps homotopic
paths to homotopic.

Exercise 10.37 (!). Let x, y ∈ M , and γxy[0, 1] −→M be a path connecting x and y. Define
γ−1
xy using γ−1

xy (λ) = γxy(1 − λ). Consider the mapping Ω(M,x) −→ Ω(M, y), γ 7→ γ−1
xy γγxy and

Ω(M, y) −→ Ω(M,x), γ 7→ γxyγγ
−1
xy . Show that these mappings map homotopic paths to homotopic.

Let f , g be corresponding maps on fundamental groups. Show that f g are inverses of each other

and induce an isomorphism of groups π1(M,x)
ϕγxy

−→ π1(M, y).

Remark. As can be seen from the preceding problem, if π1(M) is not abelian then the isomor-
phism π1(M,x) ∼= π1(M, y) obtained there nontrivially depends upon the choice of the path γxy.
Nevertheless, when the dependence upon the marked point is not important, the fundamental group
M is denoted simply by π1(M). This notation is not quite correct.
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Exercise 10.38 (!). In conditions of the preceding problem, let x = y, and γxx a path. Show

that the isomorphism π1(M,x)
ϕγxx
−→ π1(M,x) obtained above can be expressed via γxx as follows:

γ −→ γxxγγ
−1
xx .

Simply connected spaces

Definition 10.13. Let M be a path-connected topological space. We say that M is simply
connected when all the loops on M are contractible, i.e. when π1(M) = {1}.

Exercise 10.39. Show that R
n is simply connected.

Definition 10.14. Let (M,x) be a topological space with a marked point, M × [0, 1]
ϕ

−→ M

be a continuous mapping such that ϕ(M × {1}) = {x} and ϕ
∣

∣

∣

M×{0}
the identity mapping from

M = M × {0} to M . Then (M,x) is called contractible. In such a situation one says that ϕ
defines a homotopy between the identity mapping and the projection M −→ {x}.

Exercise 10.40 (!). Let (M,x) be path-connected and contractible. Show that for any point
y ∈M the space (M, y) is contractible.

Hint. Let M × [0, 1]
ϕ

−→ M be a homotopy between the identity mapping and the projection

onto {x}, and [1, 0]
γ

−→ M be a path connecting x and y. Take M × [0, 1]
ϕ1
−→M , mapping (m, t)

to ϕ(m, 2t) for t ∈ [0, 1/2] and (m, t) in γ(2t− 1) for t ∈ [1/2, 0].

Exercise 10.41. Show that a contactible topological space is path-connected.

Remark. Two preceding problems immediately imply that the contractibility of (M,x) does not
depend upon the choice of x. Thus we say in the remainder simply “M is contractible”.

Exercise 10.42. Show that a contractible space is simply connected.

Exercise 10.43 (!). Let V ⊂ R
n be a star subset of (Rn, x), that is, it satisfies the property that

any line through x ∈ R
n intersects V in a connected set, and x ∈ V . Show that V is contractible.

Exercise 10.44. Let V ⊂ R
n be a convex set. Show that it is contractible.

Definition 10.15. Let N be a subset of a toplogical space M . The deformation retract (or

simply retract) of M to N is a continuous mapping M× [0, 1]
ϕ

−→ M , such that ϕ(M×{1}) ⊂ N ,

its restriction onto N the identity, and ϕ
∣

∣

∣

M×{0}
an identity mapping. In this case N is called a

retract of M .

Exercise 10.45 (!). Let N be a retract of M , and n ∈ N . Show that the natural mapping
π1(N, n) −→ π1(M,n) is an isomorphism.

Definition 10.16. Let M be a topological space, and ∼ be an equivalence relation. As always, the
set of equivalence classes is denoted by M/ ∼. We introduce on M/ ∼ the quotient topology:
the open subsets of M/ ∼ are those, whose preimages in M are open. In particular, if G is a
group acting on M , there is the natural (orbit) equivalence relation on M : x ∼ y if there exists
g ∈ G satisfying g · x = y. The quotient of M w.r.t. this equivalence relation is called the quotient
space w.r.t. the G-action and denoted by M/G. The corresponding equivalence classes are called
G-orbits of M .
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Exercise 10.46. LetM be a Hausdorff topological space and {x1, . . . , xn} ⊂ M and {y1, . . . , ym} ⊂
M two disjoint finite subsets. Show that for these subsets there exist non-intersecting neighbour-
hoods.

Exercise 10.47 (!). Let M be a Hausdorff topological space and G a finite group of M-homeo-
morphisms. Show that M/G is Hausdorff.

Hint. Let x, y be two points in distinct G-orbits. Find non-intersecting G-invariant neighbour-
hoods of x and y. For this, apply Excercise 10.46 to the orbits Gx, Gy, obtain neighbourhoods U ,
U ′, and pick

⋂

g∈G gU ,
⋂

g∈G gU
′.

Exercise 10.48 (*). Give an example of a Hausdorff space M and non-Hausdorff space M/G
(here the group G will be infinite).

Definition 10.17. Let Γ be a graph, that is, a data collection consistiting of “vertex set” {V} and
“edge set” {R}, and information on which vertices are endpoints of which edges.

More precisely, one may define Γ as a pair of sets V, R and a surjection {R} × {′,∞}
−

−→ {V}.
Introduce on {R} × [′,∞] the equivalence relation generated by the following: endpoints of two
edges are equivalent if the are incident to the same vertex. This relatin glues together endpoints of
edges through the same vertex. The quotient {R}× [′,∞] w.r.t. this equivalence relation is called
the topological space of the graph.

Exercise 10.49. Show that the topological space of any graph is Hausdorff.

Exercise 10.50. A graph is called connected if any vertex is connected to any other vertex by a
sequence of edges. Show that the topological space of a connected graph is path-connected.

Exercise 10.51 (**). Let Γ be a graph with infinite vertex set. Show that Γ contains either an
infinite clique (i.e. the set of pairwise connected by edges vertices), or an infinite coclique (i.e. the
set of vertices such that none of them are connected by an edge).

Exercise 10.52 (!). Let Γ be a connected graph with n vertices and n− 1 edges (such a graph is
called a tree).

7



Show that the topological space MΓ of Γ is contractible.

Exercise 10.53 (*). Let Γ be an infinite graph so that each of its connected finite subgraphs is a
tree. Show that π1(MΓ) = {1}.

Exercise 10.54 (*). Let Sn be an n-dimensional sphere (n > 1). Show that Sn is simply con-
nected.

Hint. Use geodesic connectedness.

Coverings

Definition 10.18. Let M̃
π

−→ M be a continuous mapping of topological spaces; π is called a
covering when any point has a neighbourhood U such that π−1(U) is the product of U and a
discrete topological space K, so that the natural mapping π−1(U)

π
−→ U coincided the projection

π−1(U) = U ×K −→ U . In this case one also says that M̃ covers M .

We consider the circle S1 as the quotient S1 = R/Z. This gives a natural group structure on
S1.

Exercise 10.55. Let n 6= 0 be an integer. Condider a natural mapping S1 −→ S1, t−→ nt. Show
that it is a covering.

Exercise 10.56. Show that the natural projection R −→ S1 = R/Z is a covering.

Exercise 10.57. Show that the natural projection R
n −→ (S1)n is a covering.

Exercise 10.58. Consider the quotient Sn −→ Sn/{±1} = RP n of the sphere w.r.t. the central
symmetry, with the natural topology. Show that it is a covering.

Exercise 10.59. Let M̃
π

−→ M be a covering, and M̃ ′ ⊂M a subspace that covers M , too. Show
that M̃ ′ is clopen in M̃ .

Exercise 10.60. Let M̃
π

−→ M be a covering, and M path-connected. Show that M̃ is locally
path-connected. Show that any path-connected component of M̃ covers M .

Exercise 10.61 (!). Let M̃
π

−→ M be a covering, and M path-connected. Show that M̃ is
connected iff it is path-connected.

Definition 10.19. Let γ : [a, b] −→M be a path, and M̃
π

−→ M a covering of M . A mapping
γ̃ : [a, b] −→ M̃ is called a lifting of γ if γ̃ ◦ π = γ.
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Exercise 10.62 (!). Let M̃
π

−→ M be a covering, and γ : [a, b] −→M a path joining x and y.
Show that for any x̃ ∈ π−1({x}) the lifting γ̃, mapping a to x̃, exists, and is unique.

Exercise 10.63 (!). Show that homotopic paths are lifted to homotopic paths, and that γ̃(y) ∈
π−1({y}) is uniquely determined by the class of the homotopy γ in Ω(M,x, y) and the point x̃.

Remark. Denote by π1(M,x, y) the set of classes of homotopic paths from x to y. We have a
mapping

π−1({x}) × π1(M,x, y)
Ψ

−→ π−1({y})

Definition 10.20. Let M̃
π

−→ M be a cover, and M path-connected. The space M̃ is called a
universal cover if it is connected and simply connected.

Remark. Simple connectedness was defined for path-connected spaces only. But this does not
present an obstacle, as it follows from the Excercise 10.61 that M̃ is path-connected.

Exercise 10.64 (!). Let M̃
π

−→ M be a universal cover. Fix x ∈M and x̃ ∈ π−1({x}). Consider

the mapping π1(M,x)
ψ

−→ π−1({x}), constructed in Excercise 10.63, and ψ(γ) = Ψ(x̃, γ). Show
that it is a bijection.

Exercise 10.65. Show that π1(S
1) = Z.

Exercise 10.66. Show that π1((S
1)n) = Z

n.

Exercise 10.67 (*). Show that for (n > 1) one has π1(RP
n) = Z/2Z.

Exercise 10.68. Find the fundamental groups of all the letters of Greek alphabet, except Φ and
B. (More precisely, graphs modelled by these letters.)

Exercise 10.69 (*). Given a finite connected graph with n edges and n vertices, consider its
topological space M . Show that π1(M) = Z.
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GEOMETRY 11: Galois coverings

GEOMETRY 11: Galois coverings

The subject of Galois covering that is covered in this exercise sheet is very similar to the Galois
theory of field extensions. This is not a coincidence. In algebraic geometry methods from topology
and differential geometry are applied to objects of algebro-geometric and number-theoretic nature.
The version of Galois theory that is presented in ALGEBRA-11 goes back to A. Grothendieck.
Grothendieck has given a definition of a fundamental group in such a way that Galois group and
fundamental group of a topological space turned out to be particular cases of a more general
construction. If one studies coverings and field extensions, it is very useful to keep in mind that
these two things are similar.

All topological spaces in this exercise sheet are supposed to be Hausdorff.

Exercise 11.1. Let M̃
π−→ M be a covering and let M1 be a connected component of M̃ . Prove

that π−1(M1) is a connected component of M̃ .

Exercise 11.2 (!). Let M̃
π−→ M be a covering and let M̃ and M be connected and non-empty,

and π injective. Prove that π is a homeomorphism.

Definition 11.1. Let M̃
π−→ M , M̃ ′ π′−→ M be coverings. A morphism of coverings is

a continuous map ϕ : M̃ −→ M̃ ′, that respects the projection to M , in other words, such that
ϕ◦π′ = π. The set of all morphisms between coverings is denoted by Mor(M̃, M̃ ′). An isomorphism
of covering is a morphism that is invertible, and moreover ϕ−1 ◦ ϕ = Id, ϕ ◦ ϕ−1 = Id.

Exercise 11.3 (!). Let ϕ : M̃ −→ M̃ ′ be a morphism of coverings. Prove that ϕ : M̃ −→ M̃ ′ is
a covering.

Exercise 11.4. Let M be connected and M̃
π−→ M be a covering. Prove that M̃ is locally

connected.

Exercise 11.5. Let M1 −→M2 and M2 −→M3 be coverings.

** Is it true that the composition M1 −→M3 is also a covering?

! Assume every point of 3 has a simply connected neighbourhood. Prove that M1 −→M3 is a
covering.

Exercise 11.6. Let M̃
π−→ M , M̃ ′ π′−→ M be coverings and M̃ ′∐ M̃ be their disjoint sum.

Prove it is also a covering of M .

Exercise 11.7. Let M be connected and M̃
π−→ M be a covering. Prove that M̃ ∼=

∐
α∈I M̃α

where {M̃α} is the set of connected components of M̃ regarded as coverings of M .

Definition 11.2. A splitting of a covering M̃
π−→ M is an isomorphism between M̃ and a

covering of the form M̃ ∼= V ×M where V is a set with discrete topologogy.

Exercise 11.8. Let M̃
π−→ M be a covering of a connected space M . Prove that π splits if and

only if all connected components M̃ are isomorphic to M .

Galois coverings
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Exercise 11.9 (!). Let M1
π1−→ M , M2

π2−→ M be coverings. Consider the following subset in
M1 ×M2

M1 ×M M2 := {(m1,m2) ∈M1 ×M2 | π1(m1) = π2(m2)}

We consider M1 ×M M2 as a topological space (with the topology induced from M1 ×M2). Prove
that the natural map M1 ×M M2 −→M is a covering.

Definition 11.3. The space M1×MM2 together with the natural map to M is called the product
of coverings M1, M2. The product of arbitrary number of coverings is defined similarly.

Remark. If one uses the analogy between field extensions and coverings then disjoint unions of
coverings correspond to a direct sums of semisimple Artinian rings, and products of coverings
correspond to tensor products.

Exercise 11.10. Let M1, M2, M3 be coverings of M . Proe that morphisms from M3 to M1 ×M2

are in bijective correspondence with pairs of morphisms ϕ1 : M3 −→M1, ϕ2 : M2 −→M1.

Exercise 11.11. Consider R as a covering of S1. How many connected components does R×S1 R
have?

Definition 11.4. Let M1
ϕ−→ M2 be a morphism between two coverings of . Define the graph

of ϕ as a subset in M1 ×M M2 that consists of pairs of the form (m,ϕ(m)) for all m ∈M1.

Exercise 11.12 (!). Let M1
ϕ−→ M2 be a morphism between two coverings and let Γϕ be its

graph. Prove that Γϕ is both open and closed in M1
ϕ−→ M2.

Exercise 11.13. Let [M̃ : M ] be a covering, and moreover let M and M̃ be connected (such a
covering is called connected). Let X ⊂ M̃ ×M M̃ be a connected component. Prove that X is
the graph of an automorphism ν : M̃ −→ M̃ if and only if the projection on the first components
is an isomorphism X ∼= M̃ .

Exercise 11.14 (!). Let [M̃ : M ] be a connected covering. Consider the projection on the first
argument M̃ ×M M̃ −→ M̃ as a covering of M̃ . Construct a bijective correspondence between
MorM̃(M̃, M̃×M) and the set of automorphisms of M̃ over M .

Hint. Use the previous problem.

Definition 11.5. Let [M̃ : M ] be a covering and assume M and M̃ are connected. Then [M̃ :
M ] is called a Galois covering, if the covering M̃ ×M M̃ −→ M̃ is split. In this situation the
automorphism group of M̃ over M is called the Galois group of the covering [M̃ : M ] (denoeted
Gal([M̃ : M ])). Sometimes the Galois group is called monodromy group, or deck transform
group.

Exercise 11.15 (!). Let M be connected and let [M̃ : M ] be such a Galois covering that every
point of M has exactly n preimages (such a covering is called n-sheet covering). Prove that the
Galois group [M̃ : M ] has exactly n elements.

Hint. Prove thta [M̃ ×M M̃ : M̃ ] is n-sheet covering too, and use the previous problem.

Definition 11.6. Let a group G act on a set S. The action is called free if s 6= gs for any g ∈ G,
s ∈ S, if g 6= 1. The action is called transitive if for any two points s1, s2 ∈ S there exists g ∈ G
such that g(s1) = s2.
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Exercise 11.16. Let M̃
π−→ M be a covering and G = AutM(M̃) be its automorphism group.

Assume that M is connected. Prove that for any x ∈M the group G acts freely on π−1(x).

Exercise 11.17 (!). Let M̃
π−→ M be a Galois covering and let x ∈M be any point. Prove that

Gal([M̃ : M ]) acts on π−1(x) freely and transitively.

Hint. Find a bijective correspondence between π−1(X) and the set of connected componentns
M̃ ×M M̃ , and apply Exercise 11.14.

Exercise 11.18 (!). Let M̃
π−→ M be a covering and let x ∈ M be any point. Prove that

AutM(M̃) acts transitively on π−1(X) if and only if [M̃ : M ] is a Galois covering.

Exercise 11.19. Consider the covering Rn −→ Rn/Zn ∼= (S1)n. Prove that it is a Galois covering.

Exercise 11.20. Take n ∈ Z and consider an n-sheeted covering S1 −→ S1, t 7→ nt. Prove that
this is a Galois covering.

Definition 11.7. Let M be a topological space and let G be a group that acts on M by continuous
transformations. Consider the space of G-orbits M/G. Recall (GEOMETRY-10) that the topology
on M/G is introduced a follows: a subset of M/G is open if and only if its preimage in M is open.
The set M/G with this topology is called a quotient of M by the action of G.

Exercise 11.21 (!). Let [M̃ : M ] be a covering and assume G ⊂ AutM(M̃) acts on [M̃ : M ] by
automorphisms. Prove that this action is free and that the quotient M̃/G is Hausdorff and is a
covering of M .

Remark. Taking a quotient by the action of G plays the same role in the Galois coverings theory
as taking G-invariant in the Galois theory of field extensions.

Exercise 11.22 (!). Let [M̃ : M ] be a covering and let G be its automorphism group. Prove that
M̃/G is isomorphic to M if and only if [M̃ : M ] is a Galois covering.

Hint. Use Exercise 11.18.

Remark. In the several exercises that follow the statement and the proof mimic almost verbatim
the corresponding exercises about Galois field extensions.

Exercise 11.23. Let M1
ϕ1−→ M2

ϕ2−→ M3 be a sequence of coverings, and moreover ϕi are
surjective and their composition is split. Prove that ϕi’s split.

By analogy with Galois theory of field extension the coverings of the form M̃
π−→ M will

further be denoted [M̃ : M ].

Exercise 11.24 (!). Let M1 −→M2 −→M3 be a sequence of coverings, and assume all Mi are
connected and [M1 : M3] is a Galos covering. Prove that M1 ×M3 M2 splits as a covering of M1.

Hint. Use Exercise 11.23, apply it to the sequence of coverings

M1 ×M3 M1 −→M1 ×M3 M2 −→M1 ×M3 M3.

Exercise 11.25 (!). Let M1 −→M2 −→M3 be a sequence of coverings and assume that [M1 : M3]
is a Galois covering. Prove that [M1 : M2] is a Galois covering.
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Hint. Use Exercise 11.23.

Exercise 11.26. Let M1 −→M2 −→M3 be a sequence of coverings. Prove that

M1 ×M3 M1
∼= M1 ×M2 (M2 ×M3 M2)×M2 M1.

Exercise 11.27. Deduce the following statement from the previous exercise: if M1 −→M2 −→M3

is a sequence of coverings and if [M1 : M2] and [M2 : M3] is a Galois covering then [M1 : M3] is also
a Galois covering.

Exercise 11.28. Let [M̃ : M ] be a covering and let G be its Galois gorup and G′ ⊂ G be its
subgroup. Consider the quotient M̃/G′. Prove that [M̃ : M̃/G′] is a Galois covering with Galois
group G′.

Definition 11.8. Let M̃ −→M be a covering. A quotient covering [M̃ : M ] is a covering
M̃ ′ −→M together with a sequence of coverings M̃ −→ M̃ ′ −→M .

Exercise 11.29 (!). (fundamental theorem of Galois theory) Let [M̃ : M ] be a Galois covering
with Galois group G. Consider the correspondence that to a subgroup G′ ⊂ G associates a quo-
tient covering [M̃/G′ : M ]. Prove that this correspondence defines a bijection between the set of
subgroups of G and the set of isomorphism classed of quotient coverings.

Exercise 11.30. Let M1 −→M2 −→M3 be a sequence of coverings and assume that [M1 : M3] is
a Galois covering. Consider the natural projection

M1 ×M3 M1
Ψ−→ M2 ×M3 M2.

Let g ∈ Gal([M1 : M3]) and eg ⊂ M1 ×M3 M1 be the graph {(m, g(m))} of the action of g in
M1 ×M3 M1. Prove that g ∈ Gal([M1 : M2]) ⊂ Gal([M1 : M3]) if and only if eg projects to the
diagonal componont in M2 ×M3 M2.

Exercise 11.31. Let M1 −→M2 −→M3 be a sequence of Galois coverings. Prove that the natural
projection

M1 ×M3 M1
Ψ−→ M2 ×M3 M2.

defines a surjective homomorphism Gal([M1 : M3])
ψ−→ Gal([M2 : M3]). Prove that kerψ =

Gal([M1 : M2]).

Hint. Use the fact the Galois Gal([Mi : M3]) is identified with the set of connected components of
Mi ×M3 Mi and use the previous problem.

Exercise 11.32 (!). Let M̃ −→M be a Galois covering and G′ −→ M̃/G′ be the bijective cor-
respondence between quotient coverings and subgroups of the Galois gorup defined above. Prove
that G′ is a normal subgroup if and only if [M̃/G′ : M ] is a Galois covering.

Coverings of linearly connected spaces

Definition 11.9. Let M be a metric space. Recall that a geodesic in M is a path [a, b]
γ−→ M

such that d(γ(x), γ(y)) = |x − y|. The length of the geodesic is the distance between its ends.
A path is called piece-wise geodesic if it can be decomposed into a union of a finite number of
geodesic segments. The length of a piece-wise geodesic path is defined to be the sum of lengths of
its geodesic pieces. We denote the length of a path γ by |γ|.
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Definition 11.10. Let Γ be a graph and MΓ be its topological space. We say that Γ is connected
if its topological space is connected.

Exercise 11.33 (!). Prove that a graph is connected if and only if any two vertices are connected
by a finite sequence of edges. Prove that a connected graph is linearly connected.

Exercise 11.34 (!). Let Γ be a connected graph. By construction, on each edge rα ⊂ Mγ of the
graph are defined the coordinates that identify the edge with [0, 1]. Let γ be a piece-wise linear

path in ΓM , that is, a path that consists of a finite number of intervals of the form [ai, bi]
ϕi−→

[λi, µi] ⊂ rα, where ϕi is linear. Define |γ| :=
∑
|λi, µi| as the sum of lengths of all intervals that

contain this path. Define d(x, y) := inf |γ| where γ runs throuh all piece-wise linear paths from x
to y. Prove that d(x, y) defines a metric and MΓ is geodesically connected.

Definition 11.11. This metric is called the standard metric on the topological space of a
graph.

Definition 11.12. Geodesically connected manifold M is called star-shaped if any two points of
M are connnected by a unique geodesic.

Exercise 11.35. Prove that any convex subset in Rn (with the standard metric) is star-shaped.

Exercise 11.36 (*). Find a metric on M = R2 such that is geodesically connected and there are
infinitely many geodesics connecting arbitrary two fixed points.

Exercise 11.37 (*). Let Γ be a tree, that is, a connected finite graph that has n vertices and
n− 1 edges. Prove that MΓ with the standard metric is start-shaped.

Exercise 11.38 (*). Let Γ be a finite graph such that ΓM is star-shaped. Prove that Γ is a tree.

Exercise 11.39 (!). Let M be a geodesically connected manifold, M̃
π−→ M be a covering, and

x and y be two points in M̃ . Consider the set Sx,y of all paths on M̃ that connect x and y, such
that their projection to M is piece-wise geodesic. Consider the following function on M̃ × M̃

d̃(x, y) = inf
γ∈Sx,y

|π(γ)|

Prove that it is a metric. Prove that d̃(x, y) > d(π(x), π(y)).

Exercise 11.40 (*). In the previous problem setting prove that M̃ is geodesically connected.

Exercise 11.41. Let M be a geodesicall connected metric space and M̃ −→M be its covering.
Prove that the connected component of the preimage of a geodesic is a geodesic in (M̃, d̃).

Hint. Prove that the preimage of a geodesic is a geodesic in a neighbourhood of every point. Then
use the inequality d̃(x, y) > d(π(x), π(y)).

Exercise 11.42 (!). Let (M,d) be a star-shaped metric space and M̃
π−→ M be its connected

covering. Let moreover x ∈ M̃ be any point and Ux be the set of points y ∈M that can be connected
with x by a geodesic. Prove that Ux is open and closed in M̃ and that (Ux, d̃) is star-shaped. Deduce
that the natural projection M̃

π−→ M is an isometry and a homeomorphism.

Hint. Use the previous exercise.
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Exercise 11.43. Let M = [0, 1]× [0, 1] be a square and M̃ −→M be its connected covering. Prove
that it is a homeomorphism.

Exercise 11.44. Let M be a linearly connected and simply connected space, and M̃
π−→ M be

a connected covering. Prove that it is a homeomorphism

Hint. Prove that M̃ is linearly connected. Let x, y ∈ π−1(x0) be two points and γ̃ be a path that
connects them. Then γ := π(γ̃) is a loop. Since M is simply connected, γ can be extended to a
map from the square to X ⊂M (prove it). Consider the preimage of this square in M̃ and let X̃ be
the component of the preimage that contains γ̃. Use the previous exercise to prove that X̃

π−→ X
is a homeomorphism and deduces that x = y.

Exercise 11.45. In the previous problem setting prove that any covering M splits.

Definition 11.13. Let M be a any (not necessarily linearly connected) connected topological
space. The space M is called simply connected if any covering of M is split.

Remark. Thanks to the previous exercise this definition is consistent with the definition of a
simply connected linearly connected topological spaces given in GEOMETRY 10.

Definition 11.14. Let M be connected. A covering M̃ −→M is called universal if it is simply
connected.

Exercise 11.46 (!). Prove a universal covering is a Galois covering.

Exercise 11.47 (!). Prove that universal covering is unique up to isomorphism.

Hint. Let M̃ , M̃ ′ be two universally coverings of M . Since M̃ ×M M̃ ′ is a covering of M̃ , M̃ ′, it
splits over M̃ , M̃ ′. This means that any connected component M̃ ×M M̃ ′ projects isomorphically
to M̃ , M̃ ′.

Existence of the universal covering

Exercise 11.48. Let M be linearly connected, M̃
π−→M be a connected covering and x ∈ M be

any point. Prove that the cardinality of the set π−1(x) is not greater than the cardinality of π1(M).

Exercise 11.49. Prove that the cardinality π−1(x) is not greater than the cardinality of the set
M [0,1] of maps from [0, 1] to M .

Exercise 11.50 (*). Let M̃
π−→M be a connected covering of a connected M and x ∈M be any

point. Prove that the cardinality of π−1(x) is not greater than |22S|, where |22S| is the cardinality
of the set of subsets of S × S.

Hint. Choose x1, x2 ∈ π−1(x). Prove that there exists a collection of such connected open subsets
{Ũα} ∈ π−1(S) that Ũα0 has non-empty intersection with the union of all Ũα that are not equal to
Uα0 , and moreover

{x1, x2} = π−1(x) ∩ (
⋃

Ũα)

Decreasing the base S if necessary one can assume that π splits over π(Uα) for all α. Prove that
x2 is determined uniquely if x1, {π(Uα)} is given, and if it is known which Uα have non-empty
intersection.
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Exercise 11.51. Let M be connected and let V be a set of a cardinality defined below. Denote
by R the set of all topologies defined on some subset X ⊂ M × V in such a way that the only
natural projection X −→M is a covering. Prove that any connected covering M is isomorphic to
some element of R if

a. M is linearly connected and the cardinality of V is |M [0,1]|

b. (*) The cardinality of V is |22S| where S is the base of topology on M .

Remark. This exercise allows one to speak of “the set of isomorphism classes of coverings”. Recall
that not all mathematical objects are sets; thus, the class of all sets is not a set. In order to prove
that a class is a set, one has to restrict its cardinality.

Definition 11.15. Let {Mα
πα−→ M} be a collection of maps ontoM indexed b I (possibly infinite,

and even uncountable). Consider the set of all (mα1 ,mα1 , . . . ) ∈
∏
Mα such that πα(mα) = m for

some m ∈M . This set is called the fibre product of {Mα} and is denoted by
∏

M Mα.

Exercise 11.52. Let M be a topological space and {Mα
πα−→ M} be a collection of its coverings.

Introduce on
∏

M Mα a topology in the following way. Let U ⊂M be open and let {Uα ⊂Mα} be
the collection of open sets that cover U . Prove that the sets of the form

∏
U Uα ⊂

∏
M Mα define

the base of topology on
∏

M Mα. Prove thta
∏

M Mα is Hausdorff.

* Is it true that the natural projection
∏

M Mα −→M is a covering?

! Suppose that every point of has a simply connected neighbourhood. Prove that the natural
projection

∏
M Mα −→M is a covering.

Definition 11.16. In this situation
∏

M Mα is called the fibred product of Mα over M or just

a product of coverings Mα
πα−→ M .

Exercise 11.53. Assume all coverings {Mα
πα−→ M} are split. Prove that

∏
M Mα split too.

Exercise 11.54 (!). Let {Mα
πα−→ M} be a Galois covering. Prove thta any connected component

of their product over M is a Galois covering too.

Hint. Use the Exercise 11.53.

Exercise 11.55. Let M̃ be a covering ofM . Constructi the natural bijection between Mor(
∏

M Mα, M̃)
and

∏
Mor(Mα, M̃)

Exercise 11.56 (*). Let {Mα
πα−→ M} be the set of all coverings S1 −→ S1, t−→ nt, indexed by

n ∈ Z. Prove that any connected component of
∏

M Mα is isomorphic to R−→ R/Z = S1.

Exercise 11.57. Let M̃
π−→ M be a covering, and assume that M̃ and M are connected, x ∈M ,

x1, x2 ∈ π−1(x), W is the connected component of M̃ ×M M̃ that contains x1 × x2, and W1 is
the connected component of M̃ ×M M̃ ×M M̃ , that contains x1 × x2 × x2. Prove that the natural
projection W1 −→W (forgetting the third argument) is an isomorphism.

Exercise 11.58. In the same situation, let {xα} be a set of points in π−1(x), indexed by α ∈ I,
and let W be the corresponding component in the fibre product

∏
M,I M̃ of I copies of M̃ , and W1

be a component in
(∏

M,I M̃
)
×M M̃ , that contains {xα} and x0, and moreover x0 ∈ {xα}. Prove

that the natural projection W1 −→W is an isomorphism.
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Exercise 11.59 (!). Let M̃
π−→ M be a connected covering and x ∈ M . Consider the product∏

M,{π−1(x)} M̃ of M̃ with itself indexed by the set π−1(x), and let M̃G be the connected component

in
∏

M,{π−1(x)} M̃ containing the product of all xα ∈ {π−1(x)}. Prove that M̃G ×M M̃ splits over

M̃G. Prove that M̃G −→M is a Galois covering.

Remark. We have proved that any covering is a quotient covering of a Galois covering.

Exercise 11.60. Let M be a connected topological space, R be the set of all isomorphism classes
of connected coverings of M , and let {Mα

πα−→ M} be the corresponding set of coverings, and
M̃ ⊂

∏
M Mα be the connected component of their product. Prove that for any connected covering

M̃ ′ −→ M̃ there exists a surjective morphism of coverings M̃ −→ M̃ ′.

Hint. Use the previous exercise.

Exercise 11.61. In the previous problem setting prove that M̃ is a Galois covering.

Exercise 11.62 (!). Deduce tht for any M̃ −→M the covering M̃ ×M M̃ ′ −→ M̃ splits.

Hint. Use the Exercise 11.24.

Exercise 11.63 (!). Let M any connected topological space, M̃ −→M be a Galois covering con-
structed above. Prove that M̃ is simply connected.

Remark. We have obtained that any connected topological space has a universal covering. As
was shown above, the universal cover is unique.

Exercise 11.64 (!). Let M be linearly connected, and M̃ be its universal covering, and Gal([M̃ :
M ]) be the corresponding Galois group. Prove that Gal([M̃ : M ]) is not isomorphic to the Galoi
group of M .

Definition 11.17. The fundamental group of a topological space is the group π1(M) :=
Gal([M̃ : M ]), where M̃ is the universal covering.

Definition 11.18. Subgroups G1, G2 ⊂ G are called conjugated if there exists g ∈ G such that
G1 is mapped to G2 by the automorphism x−→ xg.

Exercise 11.65 (*). Let M1 −→M be a covering, and let M̃ −→M1 −→M be the universal
covering. Consider the subgroup G1 ⊂ Gal([M̃ : M ]) = π1(M), obtained as a result of the
fundamental theory of the Galois theory. Prove that this correspondence defines a bijection between
isomorphism classes of coverings of M and conjugacy classes of subgroups of π1(M).

Exercise 11.66 (!). Find all coverings of a circle up to isomorphism. Construct them explicitly.

Exercise 11.67 (*). Let M be a connected topological space such that all linear connected com-
ponents of it are simply connected. Can it have a non-trivial fundamental group?

Exercise 11.68 (*). Let B be the set of polynomials P (t) = tn + an−1t
n−1 + an−2t

n−2 + · · · + a0

over C that have distinct roots and let B1 be the set of all tuplese (x1, . . . , xn) ∈ Cn of pairwise
distinct numbers xi ∈ C. Introduce on B and B1 the natural topology of a subset of Cn. Consider
the map B1

π−→ B, (x1, . . . , xn)−→
∏

(t− xi). Prove that π is a Galois covering. Find its Galois
group.

Exercise 11.69 (*). Construct a connected covering that is not a Galois cover.
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GEOMETRY 12: fundamental group and homotopies

Homotopies

All topological spaces in this exercise sheet are assumed locally arcwise connected and Hausdorff,
unless the contrary is stated.

Definition 12.1. Let f1, f2 : X −→ Y be a continuous map of topological spaces. Recall that a

homotopy between f1 and f2 is a continuous map F : [0, 1]×X −→ Y such that F
∣∣∣{0}×X

equals

f1, and F
∣∣∣{1}×X

equals f2.

Exercise 12.1. Prove that maps that are homotopic induce the same morphism π1(X)−→ π1(Y ).

Definition 12.2. Let f : X −→ Y , g : Y −→X be continuous maps of topological spaces,
moreover, f ◦ g g ◦ f are homotopic to identity maps from X to X and from Y to Y . Such maps
are called homotopy equivalences and X and Y are then called homotopy equivalent.

Exercise 12.2. Prove that a composition of homotopy equivalence between maps is a homotopy
equivalence. Prove that a homotopy equivalence of spaces is an equivalence relation.

Exercise 12.3 (!). Let f : X −→ Y be a homotopy equivalence. Prove that f induces an isomor-
phism of fundamental groups.

Exercise 12.4. Let X ⊂ Y be a retraction. Prove that X are Y homotopy equivalent.

Exercise 12.5 (!). Let X be a topological spaces. Prove that X is contractible if and only if it is
homotopy equivalent to a point.

Exercise 12.6 (!). Consider the connected graph Γ which has n edges and n vertices. Prove that
the associated topological space is homotopy equivalent to a circle.

Exercise 12.7 (!). Let M be a connected topological space and let x, x′, y, y′ ∈M be any points.
Prove that the spaces of paths Ω(M,x, x′) and Ω(M, y, y′) are homotopy equivalent.

Hint. Consider a path γxy that connects x and y and let γx′y′ be the path that connects x′ and y′.
Let γ−1

xy (t) = γxy(1− t) and γ−1
x′y′(t) = γx′y′(1− t). Consider the map f : Ω(M,x, x′)−→ Ω(M, y, y′)

that maps any path γ ∈ Ω(M,x, x′) into the composition γ−1
xy γγx′y′ , and the analogous map g :

Ω(M, y, y′)−→ Ω(M,x, x′) that maps γ ∈ Ω(M, y, y′) to γxyγγ
−1
x′y′ . Prove that fg is homotopic to

the identity maps and that gf is homotopic to the identity map.

The space of paths on locally contractible spaces

Definition 12.3. Let M be a topological space. The space M is called locally contractible if
every point has a contractible neighbourhood.

Exercise 12.8. Let M be a locally contractible topological space. Prove that M is locally arcwise
connected.
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Exercise 12.9 (*). Let M be a geodesically connected metric space such that for some δ > 0 any
two points that are at a distance < δ one from another are connected by a unique geodesic. Prove
that M is locally contractible.

Exercise 12.10. Prove that any graph is locally contractible.

Definition 12.4. A topological space M is called a manifold of dimension n if any point has a
neighbourhood that is homeomorphic to an open ball in Rn.

Remark. Manifolds are easily seen to be locally contractible.

Exercise 12.11 (!). Prove that a sphere Sn is a manifold.

Hint. Use the stereographic projection.

Exercise 12.12. Let M be contractible, x, y ∈ M . Prove that all paths γ ∈ Ω(M,x, y) are
homotopic.

Exercise 12.13 (!). Let γ ∈ Ω(M,x, y) be a path in a locally contractible space M and {Uα} be
the set of contractible open sets in M . Choose a finite set in {Uα} such that it covers γ (this can
be done since γ is compact). Let V1, . . . , Vn be the corresponding cover of [0, 1] with connected
intervals where every Vi is a connected component of γ−1(Ui), and all Ui are contractible. Order
Vi in such a way that Vi and Vi+1 intersect at a point ti, and let ai := γ(ti). Prove that any path
γ′ ∈ Ω(M,x, y) such that γ′(ti) = ai, and γ′([ti, ti+1]) ⊂ Ui, is homotopic to γ.

Hint. Use the previous exercise.

Exercise 12.14 (!). Let M be a locally contractible topological space, and γ ∈ Ω(M,x, y) is a
path. Prove that γ has a neighbourhood U ⊂ Ω(M,x, y) such that all γ′ ∈ U are homotopic.

Hint. Use the previous problem.

Remark. Notice that on all compact manifolds of dimension > 1 there are loops that are defined
by a surjective map. Such loops can be constructed in the same way as the Peano curve.

Exercise 12.15 (!). Let M be a manifold (for instance, a sphere) of dimension greater than 1,
and γ ∈ Ω(M,x) be a loop. Prove that γ is homotopic to a loop that is not surjective.

Hint. Use the previous exercise.

Exercise 12.16 (!). Let n > 1. Prove that n-dimensional sphere is simply connected.

Hint. Let γ be a loop on a sphere. Use the previous exercise and find a homotopy from γ to a
loop that maps [0, 1] to Sn\{x} where x is some point. Prove that a sphere without a point is
homeomorphic to Rn, and in particular is contractible.

Exercise 12.17 (*). Let M be contractible and let F : M × [0, 1]−→M be a homotopy from
the identity map to the constant map M → y ∈M . Consider the following map M −→ Ω(M, y, ∗),
t,m−→ F (m, t) (t ∈ [0, 1], m ∈M). Prove that it is continuous.

Exercise 12.18. Let M be locally contractible, x, y ∈ M be two points and γ ∈ Ω(M,x, y) be a
path. Prove that γ has a neighbourhood U ∈ Ω(M,x, ∗), such that all paths γ′ ∈ U that connect
x and a are homotopic in Ω(M,x, a).
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Exercise 12.19 (*). Let M be a locally contractible topological space, and let x ∈M be a point,
and Ω(M,x, ∗) be the set of all paths that start at the point x endowed with the compact-open
topology. Consider the equivalence relation on Ω(M,x, ∗): γ ∼ γ′ if γ and γ′ connect x and y,
and homotopic in Ω(M,x, y). Consider Ω(M,x, ∗)/ ∼ with the quotient topology. Consider a

contractible neighbourhood Uy 3 y, and let Uy
F−→ Ω(Uy, y, ∗) be a mapping that was constructed

in the exercise 12.17. Let γ ∈ Ω(M,x, y) be a path and Uy
Ψ−→ Ω(M,x, ∗) be a mapping that maps

a ∈ Uy to a path γF (a) (that is, to a path that is defined on [0, 1/2] as t−→ γ(2t), and on [1/2, 1] as

F (a, 2t− 1). Prove that (for sufficiently smallUy) Ψ composed with Ω(M,x, ∗) π−→ Ω(M,x, ∗)/ ∼
is a homeomorphism Uy on some open subset in Ω(M,x, ∗)/ ∼.

Hint. Continuity of Ψ ◦ π is obvious by construction and injectivity follows from the previous
exercise. In order to show that Ψ ◦ π defines a homeomorphism Uy on Ψ ◦ π(Uy) we need to show
that prove Ψ ◦ π maps open sets to open sets. This is clear from the fact that the natural map
Ω(M,x, ∗)/ ∼ −→M , γ′ −→ γ′(1) is continuous and defines a homeomorphism Uy on its image.

Exercise 12.20 (*). Consider the mapping Ω(M,x, ∗)/ ∼ −→M that maps a path γ ∈ Ω(M,x, y)
to the point y = γ(1). Prove that this is a covering.

Hint. Use the previous exercise.

Exercise 12.21 (!). Prove that Ω(M,x, ∗) is contractible.

Exercise 12.22 (*). Prove that γ is a path in Ω(M,x, ∗)/ ∼. Prove that γ is homotopic to an
image of some path from Ω(M,x, ∗).

Hint. Prove that γ can be lifted to a path in Ω(M,x, ∗) locally and use the fact that for any point
in Ω(M,x, ∗)/ ∼ its preimage in Ω(M,x, ∗) is connected.

Exercise 12.23 (*). Deduce that Ω(M,x, ∗)/ ∼ is simply connected.

Remark. Let (M,x) be a locally connected topological space with a marked point. The universal
covering of M can be thus identified with the set of pairs (y ∈ M , homotopy class of a path
γ ∈ Ω(M,x, y)).
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Free group and wedge sum

Definition 12.5. Let (M1, x1), (M2, x2), (M3, x3), . . . be a collection (possibly infinite) of con-
nected topological spaces with a marked point. Consider the quotient space of a disconnected sum
of all (Mα, xα) by the equivalence relation {x1} ∼ {x2} ∼ {x3} ∼ . . . This quotient space is called
a wedge sum, denoted by

∨
α(Mα, xα). A wedge sum can also be denoted by (M1, x1)∨ (M2, x2)∨

(M3, x3) ∨ . . .

Exercise 12.24. Assume that all Mα are connected (arcwise connected, Hausdorff). Prove that
the wedge sum is connected (arcwise connected, Hausdorff).

Exercise 12.25 (!). Assume that all Mα are connected and simply connected. Prove that their
wedge sum is simply connected.

Exercise 12.26 (!). Let Γ be a connect graph that has n vertices and n+k− 1 edges. Prove that
its associated topological space MΓ is homotopy equivalent to a wedge sum of k circles.

Hint. Assume Γ has an edge r that connects two distinct vertices v1, v2. Consdireth graph Γ′ with
n− 1 vertices and n+ k− 2 edges that is obtained from Γ in the following way. Remove an edge r
from Γ and glue vertices v1 and v2 together. Prove that MΓ and MΓ′ are homotopy equivalent.

Definition 12.6. Consider a set {a1, a2, . . . } of cardinality N (N by either finite or infinite). An
N-ary tree DN is an infinite graph that is defined in the following way. The verticesof DN are
finite sequences of symbols ai. The edges connect vertices that correspond to A1A2 . . . Ak and
A1A2 . . . AkAk+1 (all Ai belong to {a1, a2, . . . }).

Exercise 12.27. Prove that every vertex DN has N + 1 incoming edges.

Exercise 12.28 (!). Let MN be a topological space of an N -ary tree, with the natural metric,
defined in the beginning of this exercise sheet. Prove that MN is star-shaped (any two points can
be connected by a unique geodesic). Prove that it is contractible.

Exercise 12.29 (!). Consider an 2N − 1-ary tree. Colour its edges in N colours in such a way
that any vertex has 2 incoming edges of each colour. Consider the wedge sum of N circles and
colour each of the circles in a diffferent colour. Consider the mapping from M2N−1 to the wedge
sum of N circles that maps the vertices of the graph to the vertices of the wedge sum and an edge
of colour ai to the circle of the same colour. Prove that this is a universal cover.

Exercise 12.30. Let {a1, a2, . . . } be a set of cardinality N , and letW be the set of finite sequences
(“words”) of symbols ai, a

−1
j , such that subsequences of the form aia

−1
i and a−1

i ai never occur. A
sequence of length 0 is denoted e. We multiply words by juxtaposing them and striking out all
aia
−1
i , a−1

i ai that might occur. Prove that W forms a group.

Definition 12.7. This group is called the free group generated by {a1, a2, . . . } and is denoted
FN .

Exercise 12.31. Prove that F1 is isomorphic to Z.

Exercise 12.32 (!). Let G be a group and {g1, g2, . . . } be a collection of elements from G, labelled
{a1, a2, . . . }. Prove that there exists a unique homomorphism FN −→G that maps ai to gi.
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Exercise 12.33 (!). Find a free action of FN on the topological space M2N−1 of an 2N − 1-ary
tree that is transitive on vertices.

Exercise 12.34 (!). Prove that M2N−1/FN is a wedge sum of N circles and that the fundamental
group of the wedge sum is free.

Exercise 12.35 (!). Prove that any (possibly infinite) graph is homotopy equivalent to a wedge
sum of circles.

Exercise 12.36 (!). Deduce that any subgroup of a free group is free.

Hint. Use the Galois theory of coverings.

Exercise 12.37 (*). Let G1, G2, . . . be a set of groups. Consider the set W of finite sequences of
non-identity elements from different Gi such that elements of the same group never occur next to
each other. Given any sequence A of elements from Gi one can obtain an element W the following
way. If A has to successive elements from Gi, we multiply them and replace these elements with
their product. If A an identity element of one of the groups we strike it out. Repeat this procedure
as many times as needed in order to get an element from W . The elements of W can be multiplied
by juxtaposing words and applying the procedure above. Prove that this defines a group.

Definition 12.8. This group is called the free product of groups G1, G2, . . . .

Exercise 12.38. Prove that the free group on N generators is the free product of N copies of Z.

Exercise 12.39. Prove that a free product of free groups is free.

Exercise 12.40 (*). Let (M1, x1), (M2, x2), (M3, x3), . . . be a collection of connected topological
spaces with a marked point. Prove that π1(

∨
α(Mα, xα)) is isomorphic to a free product of groups

π1(M1, x1), π1(M2, x2), π1(M3, x3), . . . .
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